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Abstract. We study Q-valued metric/topological invariants of manifolds, by counting closed geodesics,
and using the Fuller index. As one application, let g be a regular Finsler metric on Tn sufficiently
nearby to the standard flat metric. Let o be a closed geodesic in a non-trivial class β, s.t. a given
prime p divides multiplicity of o is even. Then there is at least one other such o. This holds for any
regular g with finitely many class β orbits, provided a certain conjectural topological invariance of
our geodesic string count holds. The formulation extends from metrics to Reeb vector fields on the
unit cotangent bundle of X. The conjecture is partially verified, and this plays a role for a number of
other applications. Along the way, we also prove that sky catastrophes of smooth dynamical systems
are not geodesible by a certain class of forward complete Riemann-Finsler metrics, in particular by
complete Riemannian metrics with non-positive sectional curvature. This partially answers a question
of Fuller and gives further examples for our theory here.

1. Introduction

Using counts of geodesic strings (equivalence classes of closed, constant speed geodesics up to
reparametrization S1 action), and the Fuller index [7], we will define certain rational number valued,
deformation invariants for complete Riemann-Finsler manifolds. A basic case is a complete Riemann-
ian manifold with non-positive sectional curvature, and in this case we get deformation invariants of
the metric, provided the deformation is through non-positive sectional curvature metrics. Studying
connections of the Fuller index with Riemann-Finsler geometry was suggested by Fuller himself in the
1960’s.

These invariants can be directly interpreted as the untwisted part of certain elliptic Gromov-Witten
invariants in an associated lcs manifold, [15]. The twist is coming by way of metric isometries.

We also get a conjectural topological invariant of manifolds, the conjecture will be partially verified. See
Conjecture 1, and Theorem 1.20. The latter is an important ingredient for some geometric applications
here.

Assuming full topological invariance of our string counting invariant we get the following perhaps
mysterious theorem. For a non-constant class β we say that a metric g on X is β-regular if all of
its class β closed geodesics are non-degenerate the usual sense, or equivalently the closed orbits of the
associated geodesic flow are dynamically non-degenerate. For a geodesic string o, mult(o) will denote
its multiplicity, that is the order of the corresponding isotropy subgroup of S1, where S1 is acting by
reparametrization.

Theorem 1.1.

Assume the Conjecture 1 and let g be a β-regular Finsler metric on Tn having finitely many β class
geodesic strings. Suppose that o is a g-geodesic string s.t.:

(1) o has class β.

(2) p|mult(o), where p is prime,
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is even,

then there is at least one other such o.

Remark 1.2. We can extend the above from metrics to Reeb vector fields on the unit cotangent bundle,
representing the standard contact structure. Now counting closed Reeb orbits in classes β̃, lifting a
class β as above. But we need a stronger form of the Conjecture 1, see Remark 1.17. The following
local result, Theorem 1.3, also holds in the Reeb context, with basically the same proof.

Without Conjecture 1 we have a local form of the above.

Theorem 1.3. Let g0 be the standard flat metric on Tn. For all ε > 0 sufficiently small, whenever
g′ is a Finsler metric C0 ε close to g0 and is β-regular, the following holds. Suppose g′ has a closed
geodesic string o s.t.

(1) o has class β.

(2) p|mult(o), where p is prime.

Then g′ has at least one other geodesic string satisfying these conditions. Moreover, any Finsler metric
g1 taut deformation equivalent to g0 (see Definition 1.10) has the same property as g0, above.

Recall that a now classical theorem of Preissman [12] implies that there are no non-trivial compact
products with negative sectional curvature. The following is one generalization:

Theorem 1.4. (1) Let Σ be a connected, possibly infinite type oriented surface. There is a forward
complete Finsler metric on M = Σ × Tn with negative flag curvature, if and only if Σ is the
infinite cylinder or is R2.

(2) If Z is closed and admits a metric with finitely many class β geodesic strings (for some non-
trivial class), then there is no Finsler metric on M = Z×Tn with a unique and non-degenerate
geodesic string in class β.

(3) Tn does not admit a Finsler metric with a unique and non-degenerate geodesic string in some
fixed non-trivial class β.

When Σ is the infinite cylinder, a counterexample g to part one of the theorem, can be given as the
warped product Riemannian metric.

Remark 1.5. The Riemannian version of the first part of the theorem above can be proved via the
remarkable flat strip theorem [4]. Furthermore, the above results can be proved via S1 equivariant
Morse theory for the energy functional on the loop space of M , but the proofs are harder.

Part 1,2 of the above theorem are just a very special case of the following. We denote by πinc
1 (X)

the set of free homotopy classes of loops incompressible to the ends, in the sense of Definition 1.7,
(non-constant classes when X is closed). Part 3 of the theorem above is proved.

Theorem 1.6. Let X = Z × Y where Z, Y admit complete Riemannian metrics with non-positive
sectional curvature, Y is closed, πinc

1 (Z) 6= 0, χ(Y ) 6= ±1. Then:

• X does not admit a complete metric of negative sectional curvature, or a forward complete
Finsler metric with negative flag curvature.

• Moreover, X does not admit a forward complete Finsler metric with a unique and non-
degenerate class β geodesic string for any β ∈ πinc

1 (Z).
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This theorem is very close to being sharp, for example the conclusion of the corollary is false if Y = S1

and X = S1 × R. As Z = T 2 × R admits the warped product metric gT 2 ×et gR (with respect to
the function f = et on R) where gT 2 , gR are the flat metrics. This warped product has constant
negative sectional curvature −1. So it is essential that not only π1(Z) 6= 0 but also that there is a
class incompressible to the ends. Of course, χ(Y ) = 1 is also obviously essential, otherwise we may
take Y = pt. The condition χ(Y ) 6= −1 is however not obviously essential.

We will also give various generalizations of this result to fibrations. For fibrations, the most obvious
analogue of Preissman’s theorem fails even assuming compactness. In fact, every closed 3-manifold
X3, for which there is no injection Z2 → π1(X,x0), and which fibers over a circle has a hyperbolic
structure gh, Thurston [16].

1.1. Setup and more extensive statements.

Terminology 1. From now on, all our metrics are Riemann-Finsler (a.k.a. Finsler) metrics unless
specified to be Riemannian, and usually denoted by just g. Completeness, always means forward
completeness, and it is an assumption for all our metrics. Curvature always means sectional curvature
in the Riemannian case and flag curvature in the Finsler case. Thus we will usually just say complete
metric g, for a forward complete Riemann-Finsler metric. A reader may certainly choose to interpret
all metrics as Riemannian metrics, completeness as standard completeness, and curvature as sectional
curvature.

In what follows π1(X) denotes the set of free homotopy classes of continuous maps o : S1 → X.

Definition 1.7. Let X be a smooth manifold. Fix an exhaustion by nested compact sets
⋃

i∈N Ki = X,
Ki ⊃ Ki−1 for all i ≥ 1. We say that a class β ∈ π1(X) is end compressible if β is in the image of

inc∗ : π1(X −Ki) → π1(X)

for all i, where inc : X −Ki → X is the inclusion map. We say that β is end incompressible (or
incompressible to the ends) if it is not end compressible.

Let πinc
1 (X) denote the set of such end incompressible classes. When X is compact, we set πinc

1 (X) :=
π1(X)− const, where const denotes the set of homotopy classes of constant loops.

It is easily seen that the above is well defined (independent of the choice of an exhaustion) and moreover
any homeomorphism X1 → X2 of a pair of manifolds induces a set isomorphism πinc

1 (X1) → πinc
1 (X2).

Denote by LβX the class β ∈ πinc
1 (X) component of the free loop space of X, with its compact open

topology. Let g be a complete metric on X, and let S(g, β) ⊂ LβX denote the subspace of all constant
speed parametrized, smooth, closed g-geodesics in class β.

Definition 1.8. We say that a metric g on X is β-taut if it is complete and S(g, β) is compact. We
will say that g is taut if it is β-taut for each β ∈ πinc

1 (X).

Lemma 1.9. A complete metric g with non-positive curvature satisfies:

• All of its closed geodesics are minimizing in their free homotopy class.

• It is taut.

Proof. The first part is a standard consequence of the Cartan-Hadamard theorem. The second part
follows by the first part and Lemma 5.1. □

It should be emphasized that taut metrics form a much larger class of metrics then just non-positive
curvature metrics. For example any sufficiently C1 small perturbation of a metric with non-positive
curvature will be taut. (Indeed, this is crucial for the construction of our invariant.) Another class
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of examples comes by way of Lemma 1.27 ahead, these metrics may not be non-positively curved nor
nearby to metrics non-positively curved.

Definition 1.10. Let β ∈ πinc
1 (X), and let g0, g1 be a pair of β-taut metrics on X. A β-taut

deformation between g0, g1, is a continuous (in the topology of C0 convergence on compact sets)
family {gt}, t ∈ [0, 1] of complete metrics on X, s.t.

S({gt}, β) := {(o, t) ∈ LβX × [0, 1] | o ∈ S(gt, β)}
is compact. We say that {gt} is a taut deformation if it is β-taut for each β ∈ πinc

1 (X). The above
definitions of tautness are extended naturally to the case of a smooth fibration X ↪→ P → [0, 1], with
a smooth fiber-wise family of metrics.

A useful criterion for β-tautness is the following.

Theorem 1.11. Let {gt}t∈[0,1] be a continuous family of complete metrics on X. Suppose that:
sup
t

| max
o∈S(gt,β)

lgt(o)− min
o∈S(gt,β)

lgt(o)| < ∞,

where lgt is the length functional with respect to gt, then {gt} is β-taut. It follows that sky catastrophes
of vector fields on closed manifolds are not geodesible by metrics all of whose geodesics are minimal,
Appendix A.1.

For example, the hypothesis is trivially satisfied if gt have the property that all their class β closed
geodesics are minimal in their homotopy class.

Corollary 1.12. If gt, t ∈ [0, 1] have non-positive curvature then {gt} is taut.

Proof. This follows by the theorem and by Lemma 1.9. □

Fuller at the end of [7] has asked for any metric conditions on vector fields to rule out sky catastrophes,
see Appendix A.1. By the above, non-positivity of curvature is one such condition. So this is a partial
answer to his question.

Remark 1.13. Note that if sky catastrophes were never geodesible (or at least if geodesible sky catas-
trophes are necessarily unstable, as was conjectured in [14]) then the geodesible Seifert conjecture
would follow, by the main result of [14]. Hence, this is a subtle question. The qualitative structure of
such potential geodesible or Reeb sky catastrophes is partially understood, [14, Theorem 1.10]. But
this does not greatly aid constructing potential examples, which must be topologically very complex,
(there are necessarily infinitely many suitably synchronized bifurcation events).

1.1.1. The geodesic string counting invariant F . Let G(X) be the set of equivalence classes of taut
metrics g, where g0 is equivalent to g1 whenever there is a taut deformation between them. We may
denote an equivalence class by its representative g by a slight abuse of notation.

Theorem 1.14. For each manifold X there is a natural, non-trivial functional:
F : G(X)× πinc

1 (X) → Q.

The value F(g, β) is a certain weighted count of the set of closed g-geodesic strings in class β. But one
must take care of exactly how to count, as in general this set should be understood as an orbifold or
rather a Kuranishi space (as introduced by Fakaya-Ono [5]), hence this is why F is Q valued. In the
special case when g is β-regular we have the following formula:

F (g, β) =
∑

o∈O(g,β)

(−1)morse(o)

mult(o)
,
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where morse(o) denotes the Morse index of o, (meaning the Morse-Bott index of the associated critical
submanifold of the loop space), and mult(o) is as in the Introduction.

Corollary 1.15. Suppose for a pair g1, g2 of β-taut metrics on X:
F (g1, β) 6= F (g2, β),

then any path {gt}, connecting g0, g1, is not β-taut and in fact has a sky catastrophe. So that if such
a pair g1, g2 exists the conjecture of [14] would be disproved.

Proof. The fact that any connecting {gt} is not β-taut is just a direct corollary of the theorem above.
The fact that {gt} has a sky catastrophe follows by [14, Theorem 3.2 ]. □

I was unable to find such a pair g1, g2, in fact there is strong evidence to believe the following:

Conjecture 1. F does not depend on the choice of a smooth structure and taut metric. In other
words we have the following. Let X be a topological manifold, define:

S(X) : πinc
1 (X) → Q t {∞}

by:

S(X)(β) =

{
∞, if X does not admit a smooth structure and a β-taut Finsler metric.
F (g, β), if g is a β-taut Finsler metric on X.

,

then S is well defined and hence determines a topological invariant of topological manifolds. So if
f : X1 → X2 is a homeomorphism then S(X1)(β) = S(X2)(f∗(β)).

Theorem 1.20 in the following section partially proves this conjecture.

Remark 1.16. The smooth manifold version of this conjecture, i.e. that S(X) is a smooth manifold
invariant, is implied by the dynamical conjecture of [14], see Remark 1.13. However, the above seems
to be much more basic as will be apparent from the proof of Theorem 1.20.

Remark 1.17. The formulation of the conjecture naturally extends to Reeb vector fields. That is let
λ be a contact form on the unit cotangent bundle C of a smooth manifold X (for simplicity closed),
with λ representing the Louiville contact structure (i.e. the standard contact structure). Assume that
the space of closed, class β̃ λ-Reeb orbits on C is compact. Then the Fuller index (See Section 5) of
this compact set is a topological invariant of X.

1.1.2. Basic results on the invariant F .

Definition 1.18. Let β ∈ π1(X). For any based point x0 ∈ imageβ ⊂ X (for imageβ the image of
some representative of β) there is a naturally determined element βx0 ∈ π1(X,x0) well defined up to
an inner automorphism, (concatenate a representative of β with a path from x0 to a point in imageβ).

• We say that a class β ∈ π1(X,x0) is not a power if whenever β = αk for some α, k > 0 then
k = 1.

• We say that a class β ∈ π1(X,x0) is a k-power if β = αk, k > 1, for some α which is not a
n-power for any n.

• We say that β is atomic if it is a k-power for some k. 1

• We say that β ∈ π1(X) is not a power, respectively is a k-power, respectively is atomic if for
any x0 as above, βx0 is not a power, respectively is a k-power, respectively is atomic.

1As we are working with non-compact manifold, we may in principle have non atomic classes.
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Note that if a class β ∈ πinc
1 (X) is not a power then any representative of this class is not multiply

covered, but the converse generally does not hold.

Example 1. Let g be a Riemannian metric with negative sectional curvature on a closed manifold X
and β ∈ π1(X) a class represented by a multiplicity n closed geodesic, then

(1.19) F (g, β) =
1

n
.

In particular, if β is not a power then F (g, β) = 1. More generally, (1.19) holds whenever g has a
unique and non-degenerate geodesic string in class β, where non-degenerate is as in the Introduction.

If β ∈ πinc
1 (X) is not a power, then it is easy to see that that the reparametrization S1 action on LβX

is free (see Appendix A), so that HS1

∗ (LβX,Z) ' H∗(LβX/S1,Z), where HS1

∗ (LβX,Z) denotes the
S1-equivariant homology. Moreover, we have:

Theorem 1.20. Suppose that β ∈ πinc
1 (X) is not a power, and X admits a β-taut metric, then

HS1

∗ (LβX,Z) is finite dimensional. Denote by χS1

(LβX) the Euler characteristic of this homology.
Then for any β-taut metric g on X:

F (g, β) = χS1

(LβX).

In particular Conjecture 1 holds on the subset of classes β which are not a power.

Explicit examples for the theorem above can be found by the proof of Theorem 1.22. For these types
of examples any negative integer may appear as the value of F (g, β). We leave out the details.

Remark 1.21. If β is a power, the idea behind Theorem 1.20 breaks down, as the S1-equivariant
homology of LβX may then be infinite dimensional even if X admits a β-taut g. As a trivial example,
this homology is already infinite dimensional when g is negatively curved, and the class β geodesic is
k-covered, as then this homology is the group homology of Zk. However for a general β we should still
have that F (g, β) is the orbifold Euler characteristic, of a suitable orbifold quotient LβX/S1 which in
principle proves Conjecture 1.

We can use the above, and the product formula of Theorem 11.1 to get:

Theorem 1.22. Every rational number has the form F (g, β) for some β-taut Riemannian g on some
compact manifold X and for some β.

1.1.3. Applications to existence of negative curvature metrics. A celebrated theorem of Preissman [12]
says that there are no negative sectional curvature metrics on compact products. Fibration counterex-
amples to Preissman’s product theorem certainly exist as mentioned in the Introduction. We are going
to give a certain generalization of Preissman’s theorem to fibrations, with possibly non-compact fibers,
also replacing the negative sectional curvature condition by a significantly weaker condition.

Definition 1.23. Let Z ↪→ X
p−→ Y be a smooth fiber bundle with X having a β-taut Riemannian

metric g, for β ∈ πinc
1 (X), and let gY be a metric on Y . Suppose that:

(1) The fibers Zy = p−1(y) are totally g-geodesic, for closed geodesics in class β. We denote by gy
the metric g restricted to Zy.

(2) The fibers are parallel (the distribution T vertX = ker p∗ is parallel along any smooth curve in
X with respect to the Levi-Civita connection of g).

(3) For any pair of fibers (Zy0 , gy0), (Zy1 , gy1), and a path γ : [0, 1] → Y from y0 to y1 the fiber
family {(Zγ(t), gγ(t))} furnishes a taut deformation.
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(4) p projects g-geodesics to geodesics of Y, gY .

We then call p : X → Y a β-taut fibration, with the metrics g, gY and gZ all possibly implicit.

Definition 1.24. For Z ↪→ X → Y as above, we say that β ∈ π1(X) is a fiber class if it is in the
image of the inclusion iZ : π1(Z) → π1(X).

In the above definition of a taut fibration and the following theorem we need the auxiliary metric g on
X to be Riemannian, and there is no obvious extension of the theorem to the Riemann-Finsler case.
However, the conclusions of the theorem are for Riemann-Finsler metrics.

Theorem 1.25. Let p : (X, g) → (Y, gY ) be a β-taut fibration, where β ∈ πinc
1 (X) is a fiber class.

Suppose further that Y is connected, closed, χ(Y ) 6= ±1 and is such that all smooth closed contractible
gY -geodesics in Y are constant. Then the following holds:

• X does not admit a complete Riemann-Finsler metric with negative curvature.

• Moreover, X does not admit a complete Riemann-Finsler metric with a unique and non-
degenerate class β geodesic string.

Note that χ(Y ) 6= 1 is of course essential, as the trivial fibration X → {pt}, with X admitting a
complete negatively curved metric, will satisfy the hypothesis. The condition that there is a fiber class
β ∈ πinc

1 (X) is also essential, for any vector bundle over a manifold admitting a Riemannian metric of
negative curvature admits a metric of negative curvature, Anderson [1].

Theorem 1.6 gives one set of examples. A further basic set of examples for the theorem is obtained by
starting with any homomorphism
(1.26) φ : π1(Y, y0) → Isom(Z, gZ), (the group of all isometries).
where gZ is a taut Riemannian metric, and there is a class βZ ∈ πinc

1 (Z) (for example (Z, gZ) is a
non-simply connected complete hyperbolic surface). Suppose further:

(1) The orbit
O :=

⋃
γ∈π1(Y,y0)

φ∗(γ)(βZ)

is finite.

(2) Y is closed and connected.

(3) All contractible smooth closed gY geodesics in Y are constant.

We have the obvious induced diagonal action

π1(Y, y0) → Diff(Z × Ỹ ), (the group of all diffeomorphisms),

γ 7→ ((z, y) 7→ (φ(γ)(z), γ · y)),
for Ỹ the universal cover of Y . Taking the quotient of Z× Ỹ by this action, we get an associated “flat”
bundle Z ↪→ Xϕ

p−→ Y , with a metric gϕ induced from the product metric g̃ = gZ ⊕ gY , on the covering
space q : Z × Ỹ → Z × Y .

Lemma 1.27. Let p : (Xϕ, gϕ) → (Y, gY ) be as above, then this is a β-taut fibration, where β = i∗(βZ),
for i∗ : πinc

1 (Z) → πinc
1 (Xϕ) induced by inclusion.

By the lemma above, p : (Xϕ, gϕ) → (Y, gY ) satisfies the hypothesis of the theorem above. Yet more
concretely:
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Example 2. Suppose we have βZ ∈ πinc
1 (Z), and let φ : Z → Z be an isometry of a taut metric gZ .

Then by the construction above, the mapping torus

(Z, gZ) ↪→ (Xϕ, gϕ)
π−→ S1

has the structure of a β-taut fibration, satisfying the hypothesis of the theorem, for β = i∗(βZ) as
above.

The next corollary of Theorem 1.25 is immediate.

Corollary 1.28. Let
(Zg,Z) ↪→ (Xϕ, gϕ) → (Y, gY )

be as in the construction above for Z, gZ having non-positive curvature, and let βZ ∈ πinc
1 (Z). Then if

χ(Y ) 6= ±1:

(1) Xϕ does not admit a complete Riemann-Finsler metric with negative curvature.

(2) Moreover, Xϕ does not admit a Riemann-Finsler metric with a unique and non-degenerate
class β geodesic string, for β = i∗(βZ) as above.

As a special case, this applies to the mapping tori Xϕ, for φ : Z → Z an isometry of a complete
Riemannian non-positively curved metric on Z, satisfying the finiteness condition 1. (The non-positive
curvature hypothesis is for concreteness we may of course replace this condition by tautness.)

In the special case when Z is compact, the first part of the above corollary can be deduced, with some
work, from Preissman’s theorem (specifically, because of the condition 1), see also [3, Theorem 9.3.4]
for a generalization that fits our Finsler setting. The second part is new even when Z is compact.

1.2. Estimated counts of multiply covered geodesics.

Theorem 1.29. Suppose that g1 is a taut metric on X, taut deformation equivalent to a complete
metric of negative curvature (everything is Finsler). Suppose that β ∈ πinc

1 (X) is a k-power. Let Lβ

be the length of a class β, g1-geodesic. For all ε > 0 sufficiently small, whenever g′ is C0 ε close to g1,
and is β-regular, we have: ∑

o∈O2Lβ
(g′,β)

(−1)morse(o)

mult(o)
=

1

k
,

where O2Lβ
(g′, β) is the set of class β geodesic strings with g′-length less than 2Lβ.

2. Proof of Theorem 1.11

The first part of the theorem clearly follows by the second part. So let {gt}, t ∈ [0, 1] be as in the
hypothesis, with

(2.1) sup
t

| max
o∈S(gt,β)

lgt(o)− min
o∈S(gt,β)

lgt(o)| < C,

and suppose that
sup

(o,t)∈O({gt},β)
lgt(o) = ∞.

Then we have a sequence {ok}, k ∈ N, of closed class β gtk -geodesics in X, satisfying:

(1) limk→∞ tk = t∞ ∈ [0, 1].

(2) limk→∞ lgtk (ok) = ∞, where lgtk (otk) is the length with respect to gtk .
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Let o∞ be a minimal, class β, g∞ = gt∞ geodesic in X. And let L denote its length g∞ length. Let
gaux be a fixed auxiliary metric on X, and let Laux be the gaux length of o∞.

Define a pseudo-metric dC0 on the space of metrics on X as follows. Set K = image o∞. And set
V ⊂ TX = {v ∈ TX |π(v) ∈ K for π : TX → X the canonical projection, and |v|aux = 1},

where |v|aux is the norm taken with respect to gaux.

Then define:
dC0(g1, g2) = sup

v∈V
||v|g1 − |v|g2 |.

By Properties 1 and 2 we may find a k > 0 such that:
(2.2) dC0(gtk , gt∞) < ε

and
(2.3) lgtk (ok) > C + L+ Laux · ε.

By (2.2), we have:
lgtk (o∞) < lgt∞ (o∞) + Laux · ε = L+ Laux · ε.

Combining with (2.3) we get:
lgtk (ok) > lgtk (o∞) + C.

Since we may find a closed gtk -geodesic o′ satisfying lgtk (o
′) ≤ lgtk (o∞), we get that

| max
o∈S(gtk ,β)

lgtk (o)− min
o∈S(gtk ,β)

lgtk (o)| > C,

and so we are in contradiction.

Thus,
sup

(o,t)∈O({gt},β)
lgt(o) < ∞.

It follows, by an analogue of Lemma 5.2, that the images of all elements o ∈ S({gt}, β) are contained
in a fixed compact T ⊂ X. Compactness of S({gt}, β) then readily follows by the Arzella-Ascolli
theorem. □

3. Proof of Lemma 1.27

Let φ∗ : π1(Y, y0) → Aut(πinc
1 (Z)) be the natural induced action, where Aut(πinc

1 (Z)) denotes the
group of set isomorphisms of πinc

1 (Z)). And such that the orbit

O :=
⋃

γ∈π1(Y,y0)

φ∗(γ)(βZ)

is finite.

As gZ is taut, S(gZ , φ∗(γ)(βZ)) is compact for each γ, where S(gZ , φ∗(γ)(βZ)) is the space of geodesics
as in Definition 1.8. By the condition on contractible geodesics of gY , we get:

S(gϕ, β) = q∗(S(gZ ⊕ gY , β)))

=
⋃
β∈O

q∗(S(gZ , β)× Ỹ ),

for q∗ : L(Z × Ỹ ) → L(Z × Y ) induced by the quotient map q : Z × Ỹ → Z × Y , (as in the preamble
to the statement of the lemma) and where S(gZ , γ)× Ỹ is understood as a subset

S(gZ , γ)× Ỹ ⊂ L(Z)× Ỹ ⊂ L(Z × Ỹ ).

Given that O is finite, this then readily implies our claim. □
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4. Preliminaries on Reeb flow

Let (C2n+1, λ) be a contact manifold with λ a contact form, that is a one form s.t. λ ∧ (dλ)n 6= 0.
Denote by Rλ the Reeb vector field satisfying:

dλ(Rλ, ·) = 0, λ(Rλ) = 1.

Recall that a closed λ-Reeb orbit (or just Reeb orbit when λ is implicit) is a smooth map
o : (S1 = R/Z) → C

such that
ȯ(t) = cRλ(o(t)),

with ȯ(t) denoting the time derivative, for some c > 0 called period. Let S(Rλ, β) denote the space of
all closed λ-Reeb orbits in free homotopy class β, with its compact open topology. And set

O(Rλ, β) = S(Rλ, β)/S1,

where S1 = R/Z acts by reparametrization t · o(τ) = o(t+ τ).

5. Definition of the functional F and proofs of auxiliary results

Let X be a manifold with a taut metric g. Let C be the unit cotangent bundle of X, with its Louiville
contact 1-form λg. If o : S1 = R/Z → X is a constant speed closed geodesic, it has a canonical lift
õ : S1 → C, which is a closed flow line of s ·Rλg , where s = |dodt | is the speed of the geodesic, i.e. it is
a Reeb orbit.

If β ∈ πinc
1 (X), let β̃ ∈ π1(C) denote class [õ] ∈ π1(C), where o is a constant speed closed geodesic

representing β.

Let S(Rλg , β̃) be the orbit space as in Section 4, for the Reeb flow of the contact form λg. And
set

Og,β = O(Rλg , β̃) := S(Rλg , β̃)/S1,

which by construction is identified with the space of class β g-geodesic strings. By the tautness
assumptions Og,β is compact.

We then define
F (g, β) = i(Og,β , R

λg , β̃) ∈ Q
where the right hand side is the Fuller index as outlined in the Appendix A. As a basic example we
have:

Lemma 5.1. Suppose that g is a complete metric on X, all of whose class β ∈ πinc
1 (X) geodesics are

minimal, then g is β-taut.

Proof. First we state a more basic lemma.

Lemma 5.2. Suppose that g is a complete metric on X, β ∈ πinc
1 (X) and let S ⊂ LβX be a subset

on which the g-length functional is bounded from above. Then the images in X of elements of S are
contained in a fixed compact subset of X.

Proof. Suppose otherwise. Fix an exhaustion by nested compact sets⋃
i∈N

Ki = X, Ki ⊃ Ki−1.

Then either there is sequence {oi}i∈N, oi ∈ S s.t. oi ∈ Kc
i , for Kc

i the complement of Ki, which
contradicts the fact that β is end incompressible. Or there is a sequence {ok}k∈N, ok ∈ S s.t.:

(1) Each ok intersects Ki0 for some i0 fixed.
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(2) For each i ∈ N there is a ki > i s.t. oki is not contained in Ki.

Now if diam(ok) is bounded in k, then condition 1 implies that ok are contained in a set of bounded di-
ameter. (Here diam(ok) denotes the diameter of image ok.) Consequently, by Hopf-Rinow theorem [2],
ok are contained in a compact set. But this contradicts condition 2, and the fact that Ki form an
exhaustion of X.

Thus, we conclude that diam(ok) is unbounded, but this contradicts the hypothesis. □

Returning to the proof of the main lemma. By assumption, closed, class β ∈ πinc
1 (X) geodesics are

g-minimizing in their homotopy class and in particular have fixed length. By the lemma above there
is a fixed K ⊂ X s.t. every class β closed geodesic has image contained in K. Then compactness of
S(g, β) follows by Arzella-Ascolli theorem.

□

Proof Theorem 1.14. Let β ∈ πinc
1 (X), be given and let g be β-taut. We just need to prove that

F (g, β) is invariant under a β-taut deformation of g. So let {gt}, t ∈ [0, 1] be a β-taut deformation of
metrics on a compact manifold X. Let Rλgt be the geodesic flow on the gt unit cotangent bundle Ct.
Trivializing the family {Ct} we get a family {Rt} of flows on C ' Ct, with Rt conjugate to Rλgt .

Let O({Rt}, β̃) be the cobordism as in (A.2), where β̃ ∈ π1(C) is as above. Then O({Rt}, β̃) is compact
as S({gt}, β) is compact by assumption.

Basic invariance of the Fuller index, that is (A.3), immediately yields: F (g0, β) = F (g1, β). □

6. Proof of Theorem 1.29

We already know by Example 1 that F (g0, β) =
1
k and hence by Theorem 1.14 F (g1, β) =

1
k . Let U

denote the open subset of LβX consisting of loops with g1-length less then 2Lβ . By [14, Lemma 4.1],
for all ε > 0 sufficiently small, for any g′, C0 ε close to g the following holds. Set g′t = (t−1) ·g1+ t ·g′,
for t ∈ [0, 1], then

Ñ = O({g′t}, β) ∩ (U × [0, 1])

is an open and compact subset of O({g′t}, β).

Now set
N1 = Ñ ∩ (LβX × {1}),

and N0 = O(g1, β). By the invariance property (A.3) of the Fuller index, we then have that
1

k
= i(N0, R

λg1 ) = i(N1, R
λg′ ).

On the other hand, by construction and by index computations as in [14, Section 2]), we get:

i(N1, R
λg′ ) =

∑
o∈O(g′,β)∩U

(−1)morse(o)

mult(o)
.

If ε is chosen to be sufficiently small then O(g′, β) ∩U = O2Lβ
(g′, β). So that we are done. □

7. Proof of Theorem 1.3

Let β be a non-zero class, as in the statement. Let Y ⊂ Tn be a totally geodesic submanifold
diffeomorphic to Tn−1, containing imageβ. Let α ∈ H1(Tn,Z) be the Poincare dual of Y and let
p : Tn → S1 be the classifying map of α. Then clearly p is a β-taut fibration with respect to g0.
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By Theorem 1.20, F (g0, β) = 0. Analogously to the proof of Theorem 1.29, we get that for all ε > 0
sufficiently small, for any g′ as in the statement of our theorem we have:∑

o∈O2Lβ
(g′,β)

(−1)morse(o)

mult(o)
= 0.

But if ε is sufficiently small then O2Lβ
(g′, β) = O(g′, β) by the following. A g′ geodesic string o has g0

geodesic curvature approximately 0, then o must be approximately g0 minimizing, i.e. approximately
of length Lβ (this is specific to the Euclidean metric g0). Hence any g′ geodesic string o can be assumed
to have length less 2Lβ by taking ε to be sufficiently small.

So we get: ∑
o∈O(g′,β)

(−1)morse(o)

mult(o)
= 0.

The conclusion follows by basic arithmetic.

□

8. Proof of Part 3 of Theorem 1.4

Suppose otherwise, and let g be such a metric, and let o be the unique and non-degenerate geodesic
string in some class β̃.

If β̃ is not a power, F (g, β̃) is g-independent by Theorem 1.20. So we get:

0 = F (g0, β̃) = F (g, β̃) = 1,

where g0 is as in the proof of Theorem 1.3 above. We have a contradiction, so that β̃ is a k-power, and
so that β̃x0 = βk for k ≥ 1 and β ∈ π1(X,x0), (β̃x0 is as in Definition 1.18) and is not a power.

Let o be a class β geodesic string, then its k-cover is a class β̃ geodesic string, and by the uniqueness
assumption on the latter, o is likewise unique. Moreover, it is non-degenerate since its k-cover is non-
degenerate. We may apply the argument above to get that β is a k′-power for some k′. But this is a
contradiction. □

9. Proof of Theorem 1.1

Let p : Tn → S1 be the β-taut fibration with respect to g0, as in the proof of Theorem 1.3 above. By
Theorem 1.20, F (g0, β) = 0. Hence, as we assumed Conjecture 1, for any other β-regular g on M with
finitely β-class geodesic strings we have:∑

o∈O(g,β)

(−1)morse(o)

mult(o)
= 0.

The conclusion then readily follows by basic arithmetic. □

10. Proof of Theorem 1.20

This is an application of Morse theory. As g is β-taut, S(g, β) is compact. Let
L = sup

o∈S(g,β)

energyg(o),

where
energyg : LβX → R,

is the function:

(10.1) energyg(o) =

∫
S1

〈ȯ(t), ȯ(t)〉gdt.
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Choose C > L and let U denote the subspace of LβX consisting of loops with g-energy less than C.
Now U has the homotopy type of LβX. This can be proved without infinite dimensional Morse theory.
We may use the finite dimensional broken geodesic approximation as in Milnor [10], (passing to the
limit) and the fact that there are no geodesics in the complement of U .

If g′ is sufficiently C0 nearby to g and is β-regular than

F (g, β) =
∑

o∈O(g′,β)∩U

(−1)morse(o).

The latter assertion is shown similarly to the proof of Theorem 1.29, except now there is no multiplicity
weight since our geodesics are forced have multiplicity one, by the condition that β is not a power.
To finish the proof we just need to show that

∑
o∈O(g′,β)∩U (−1)morse(o) is the Euler characteristic of

U/S1, since the latter is the Euler characteristic of LβX/S1.

Let us now denote by LβX the Hilbert manifold of H1 loops, in class β, as used for example in the
classical work of Gromoll-Meyer [8]. We also denote by U the C-sublevel set analogous to U . The
Hilbert manifold LβX is well known to be homotopy equivalent to LβX with its previously used
compact open topology.

The energy function energyg′ : LβX → R, defined as above, is smooth, S1 invariant and satisfies the
Palais-Smale condition. The flow for its negative gradient vector field V is complete, and we can do
Morse theory mostly as usual. This is understood starting with the work of Klingenberg [9], with
the framework of Palais and Smale [11]. Note that all this also applies to U . In our case, energyg′ is
moreover a Morse-Bott function with critical manifolds Co corresponding to S1 families of geodesics,
for each geodesic string o.

There is an induced Morse-Bott cell decomposition on U , meaning a stratification formed by V unstable
manifolds of the above mentioned critical manifolds Co. This is Bott’s extension of the fundamental
Morse decomposition theorem. Now the S1 action on LβX is free by the condition that β is not a
power. This action is continuous, so taking the topological S1 quotient, we get a CW cell decomposition
of U/S1, with one k-cell for each closed g′-geodesic string o in U , with Morse index morse(o) = k.
(Here the Morse index is the Morse-Bott index of the critical manifold Co.) All of the above is well
understood, see for instance [8].

From the above cell decomposition, we readily get that the homology

H∗(U/S1,Z) = H∗(U/S
1,Z) = H∗(LβX/S1,Z) = HS1

∗ (LβX,Z)

is finite dimensional. And we get that:

χ(U/S1) =
∑

o∈O(g′,β)∩U

(−1)morse(o) (immediate from the cell decomposition).

□

11. Proof of Theorem 1.25 and its corollaries

We first prove:

Theorem 11.1. Let p : X → Y be a β-taut fibration as in the statement of Theorem 1.25 and
β ∈ πinc

1 (X) a fiber class. Then

(11.2) F (g, β) = card · χ(Y ) · F (gZ , βZ),

where card ∈ N − {0} is the cardinality of a certain orbit of the holonomy group (as explained in the
proof), and where βZ is as in Lemma 1.27.
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Proof. We have a natural subset of O′ ⊂ Og, β, consisting of all vertical geodesics, that is g-geodesics
contained in fibers p−1(y) = Zy. In fact,
(11.3) O′ = Og, β,

for if o is any class β closed geodesic, the projection p(o) is a contractible closed gY -geodesic, and by
assumptions is constant.

In particular, there a natural continuous projection
p̃ : Og, β → Y, p̃(o) = y

where y is determined by the condition that
Zy ⊃ image o.

We will use this to construct a suitable (in a sense abstract i.e. not Reeb) perturbation of the vector
field Rλg , using which we can calculate the invariant F (g, β).

Fix a Morse function on f on Y , let C = S∗X denote the g-unit cotangent bundle of X. For v ∈ TxX
let 〈v| denote the functional

TxX → R, w 7→ 〈v, w〉g.
Define f̃ : C → R by

f̃(〈v|) := f(p(v)),

also define
P : C → R

by
P (〈v|) := |P vert(v)|2g,

where P vert(v) denotes the g-orthogonal projection of v onto the T vert
x X ⊂ TxX, for T vertX the

vertical tangent bundle of X, i.e. the kernel of the bundle map p∗ : TX → TY .

Next define F : C → R by:
F (〈v|) := P (〈v|) + f̃(〈v|).

Set
Vt = Rλg − t gradgS F,

where the gradient is taken with respect to the Sasaki metric gS on C [13] induced by g. The latter
Sasaki metric is the natural metric for which we have an orthogonal splitting TC = T vertC ⊕ ThorC,
where T vertC is the kernel of pr∗ : TC → TX, induced by the natural projection pr : C → X, and
where ThorC is the g Levi-Civita horizontal sub-bundle.

Set Ot = O(Vt, β̃), where β̃ is as in Section 5.

Lemma 11.4. We have:

(1) For all t ∈ [0, 1], Nt := Ot ∩ Og,β is open and closed in Ot.

(2) For all t ∈ (0, 1], Nt = ∪y∈crit(f)p̃
−1(y), where crit(f) is the set of critical points of f .

Proof. It is easy to see that Vt is complete and without zeros. Suppose that t > 0. Let 〈vτ |, τ ∈ R be
the flow line of Vt, through 〈v0|, i.e. 〈vτ | = φτ (〈v0|), for φτ the time τ flow map of Vt. By the fact
that the fibers of p are assumed to be parallel, we have that

Rλg (P ) = 0, using the derivation notation.
Also,

gradgS f̃(P ) = 0,
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which readily follows by the conjunction of gS being Sasaki and the fibers of p being parallel. Conse-
quently, the function

τ 7→ P (〈vτ |) = |P vert(vτ )|2g
is monotonically decreasing unless either:

(1) v0 is tangent to T vertX, in which case for all τ , vτ are tangent to T vertX and |P vert(vτ )|2g = 1.

(2) For all τ , |P vert(vτ )|2g = 0.

In particular, the closed orbits of Vt split into two types.

(1) Closed orbits o(τ) = 〈vτ | with vτ always tangent to T vertX. In this case we may immediately,
conclude that o is a lift to C of a closed g-geodesic contained in the fiber over a critical point
of f .

(2) Closed orbits o(τ) = 〈vτ | for which vτ is always g-orthogonal to T vertX.

Clearly, the conclusion follows. □

Remark 11.5. It would be very fruitful to remove the condition on the fibers of p being parallel. But
our argument would need to substantially change.

We return to the proof of the theorem. Set

Ñ = {(o, t) ∈ Lβ̃C × [0, ε] | o ∈ Nt},

where Lβ̃C denotes the β̃ component of the free loop space as previously. By part I of Lemma 11.4,
this is an open compact subset of O({Vt}, β̃) s.t.

Ñ ∩ (Lβ̃C × {0}) = O(Rλg , β̃),

(equalities throughout are up to natural set theoretic identifications.)

By definitions:
Nt = Ñ ∩ (Lβ̃C × {t}).

Now the basic invariance of the Fuller index, (A.3) gives:

i(N0, R
λg , β̃) = i(N1, V1, β̃).

We proceed to compute the right hand side. Fix any smooth Ehresmann connection A on the fiber
bundle p : X → Y . This induces a holonomy homomorphism:

holy : π1(Y, y) → Autπ1(Zy) (the right-hand side is the group of set automorphisms),

with image denoted Hy ⊂ Autπ1(Zy).

Let βZ denote a class in π1(Zy) s.t. (iZy )∗(βZ) = β, for iZy : Zy → X the inclusion map. Set

Sy :=
⋃

g∈Hy

g(βZ) ⊂ π1(Zy).

Then for another y′ ∈ Y ,

(11.6) h∗ : Sy′ → Sy,

is an isomorphism, where h : Zy → Zy′ is a smooth map given by the A-holonomy map determined by
some path from y to y′, and where h∗ is the naturally induced map.
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Denoting by gy the restriction of g to the fiber Zy, let Ry denote the λgy Reeb vector field on the gZy -
unit cotangent bundle Cy of Zy. The cardinality card of Sy is finite, as otherwise we get a contradiction
to the compactness of S(g, β). Now

p̃−1(y) =
⋃

α∈Sy

O(Rλy , α).

From part 2 of Lemma 11.4 and by index computations as in [14, Section 2]), we get:

i(N1, V1, β̃) =
∑

y∈crit(f)

(−1)morse(y) · i(p̃−1(y), Rλy , β̃),

where morse(y) denotes the Morse index of y. Now

i(p̃−1(y), Rλy , β̃) =
∑
α∈Sy

i(O(Rλy ), Rλy , α̃)

=
∑
α∈Sy

F (gy, α).

= card · F (gZ , βZ),

where the last equality follows by (11.6), and by the condition 3 in the Definition 1.8. And so the
result follows. □

We return to the proof of Theorem 1.25. The first part immediately follows from the second, as any
class β ∈ πinc

1 (X) geodesic strings of a complete negatively curved Riemannian manifold X are unique.
We prove second part. Suppose first that β is an n-power: β = αn, for some n ≥ 1 where α is not
a power. By the assumption that all contractible gY geodesics are constant, classical Morse theory
Milnor [10] tells us that Y has vanishing higher homotopy groups πk(Y, y0), k ≥ 2. And in particular
iZ,∗ : π1(Z, p0) → π1(X, p0) is a group injection, by the long exact sequence of a fibration. It follows
that α ∈ πinc

1 (X) is also a fiber class.

Now, any α-class g-geodesic string must be contained in a fiber of p. For otherwise we may find a β
class g-geodesic string, which is not contained in a fiber of p, which would contradict (11.3). It readily
follows that p : X → Y is also α-taut.

Now, if χ(Y ) 6= ±1 then by (11.2) F (g, α) 6= 1, since F (gZ , αZ) is an integer by Theorem 1.20. By
Theorem 1.20

F (g, α) = χS1

(LαX).

So if X admits a complete metric with a unique and non-degenerate class α g-geodesic string then we
have:

F (g, α) = χS1

(LαX) = 1

(see Proof of Theorem 1.20), which is impossible. It follows that X does not admit a metric with a
unique and non-degenerate class β g-geodesic string. For if o, o′ are distinct, non-degenerate, class
α g-geodesics strings, then the n-fold covers on, (o′)n are class β, distinct non-degenerate g-geodesic
strings.

We now prove the general case. Suppose by contradiction that X admits a metric with a unique and
non-degenerate class β g-geodesic string o. By the above, β is not atomic. Now o covers a multiplicity
one geodesic string õ in some class β̃ ∈ πinc

1 (X). Moreover, õ is the unique geodesic string in its
class, otherwise o would not be unique in its class. We prove that β̃ is not a power, which will be a
contradiction to β not being atomic and will complete the proof.

Suppose otherwise, so that β̃x0 = αk for k > 1 and α ∈ π1(X,x0), (βx0 is as in Definition 1.18). Let u
be a class α, closed g-geodesic string (where α also denotes the class in πinc

1 (X) corresponding to the
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based class α.) It is immediate that the k cover of u, uk represents β̃ and is a g-geodesic string. By
the uniqueness, õ = uk. But this contradicts simplicity of õ. So β̃ is not a power.

□

Proof of Theorem 1.6. Let gZ , gY be complete Riemannian metrics on Z respectively Y with non-
positive curvature. Take the product metric g = gZ × gY on X = Z × Y . For a class β ∈ π1(Z) in
the image of the inclusion π1(Z) → π1(X), the natural projection X → Y is automatically a β-taut
fibration. Then the conclusion readily follows from Theorem 1.25.

□

Proof of Theorem 1.22. By Theorem 11.1 0 is certainly a value of the invariant F . We first prove that
every negative rational number is the value of the invariant. Let p, q be positive integers. Let Y be a
closed surface of genus (p + 1) > 1 with a hyperbolic metric gY , let Z be the genus 2 closed surface
with a hyperbolic metric gZ and let βZ ∈ πinc

1 (Z) be the class represented by a 2 · q-fold covering of a
simple closed loop representing a generator of the fundamental group of Z.

Let X = Y × Z with the product metric g = gY × gZ and p : X → Y the canonical projection. By
Theorem 11.1

F (g, β) = χ(Y ) · F (gZ , βZ) = (−2p) · 1

2q
= −p

q
,

where β is as in Lemma 1.27. So we proved our first claim.

Let again p, q be positive integers. Let Y be closed surface of genus 2, with a hyperbolic metric gY .
And let Z be a manifold satisfying F (gZ , βZ) = − p

2q for some βZ-taut metric gZ on Z and for some
class βZ ∈ πinc

1 (Z). This exist by the discussion above. Let g = gY × gZ be the product metric on
Y × Z, and β as above. Analogously to the discussion above we get:

F (g, β) = χ(Y ) · F (gZ , βZ) = (−2) · −p

2q
=

p

q
.

□

A. Fuller index and sky catastrophes

Let X be a complete vector field without zeros on a manifold M . Set
(A.1) S(X,β) = {o ∈ LβM | ∃p ∈ (0,∞), o : R/Z → M is a periodic orbit of pX}.

The above p is uniquely determined and we denote it by p(o) called the period of o.

There is a natural S1 reparametrization action on S(X,β): t · o is the loop t · o(τ) = o(t + τ). The
elements of O(X,β) := S(X,β)/S1 will be called orbit strings. Slightly abusing notation we just
write o for the equivalence class of o.

The multiplicity m(o) of an orbit string is the ratio p(o)/l for l > 0 the period of a simple orbit string
covered by o.

We want a kind of fixed point index which counts orbit strings o with certain weights. Assume for
simplicity that N ⊂ O(X,β) is finite. (Otherwise, for a general open compact N ⊂ O(X,β), we need
to perturb.) Then to such an (N,X, β) Fuller associates an index:

i(N,X, β) =
∑
o∈N

1

m(o)
i(o),

where i(o) is the fixed point index of the time p(o) return map of the flow of X with respect to a local
surface of section in M transverse to the image of o.
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Fuller then shows that i(N,X, β) has the following invariance property. For a continuous homotopy
{Xt}, t ∈ [0, 1] set

S({Xt}, β) = {(o, t) ∈ LβM × [0, 1] | o ∈ S(Xt)}.

And given a continuous homotopy {Xt}, X0 = X, t ∈ [0, 1], suppose that Ñ is an open compact subset
of

(A.2) O({Xt}, β) := S({Xt}, β)/S1,

such that
Ñ ∩ (LβM × {0}) /S1 = N.

Then if
N1 = Ñ ∩ (LβM × {1}) /S1

we have

(A.3) i(N,X, β) = i(N1, X1, β).

We call this basic invariance. In the case O(X0, β) is compact, O(X1, β) is compact for any suffi-
ciently C0 nearby X1, and in this case basic invariance implies (see for instance [14, Proof of Lemma
1.6]):

(A.4) i(O(X0, β), X, β) = i(O(X1, β), X1, β).

A.1. Blue sky catastrophes.

Definition A.5 (Preliminary). A sky catastrophe for a smooth family {Xt}, t ∈ [0, 1], of non-
vanishing vector fields on a closed manifold M is a continuous family of closed orbit strings τ 7→ otτ ,
otτ is an orbit string of Xtτ , τ ∈ [0,∞), such that the period of otτ is unbounded from above.

A sky catastrophe as above was initially constructed by Fuller [6]. Or rather his construction essentially
contained this phenomenon. A more general definition appears in [14], we slightly extend it here to
the case of non-compact manifolds. All these definitions become equivalent given certain regularity
conditions on the family {Xt} and assuming M is compact.

Definition A.6. Let {Xt}, t ∈ [0, 1] be a continuous family of non-zero, complete smooth vector fields
on a manifold M and β ∈ πinc

1 (X).

We say that {Xt} has a catastrophe in class β, if there is an element

y ∈ O(X0, β) t O(X1, β) ⊂ O({Xt}, β)

such that there is no open compact subset of O({Xt}, β) containing y.

A vector field X on M is geodesible if there exists a metric g on M s.t. every flow line of X is a unit
speed g-geodesic. A family {Xt} is geodesible if there is a continuous family {gt} of metrics, with Xt

geodesible with respect to gt for each t. A family {Xt} is geodesible if there is a continuous family
{gt} of metrics with Xt geodesible with respect to gt for each t. A geodesible sky catastrophe is a
geodesible family {Xt} with a sky catastrophe. A Reeb sky catastrophe is a family of Reeb vector
fields {Xt} with a sky catastrophe.
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