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Foreword

The present course on calculus of several variables is meant as a text,
either for one semester following A First Course in Calculus, or for a
year if the calculus sequence is so structured.

For a one-semester course, no matter what, one should cover the first
four chapters, up to the law of conservation of energy, which provides a
beautiful application of the chain rule in a physical context, and ties up
the mathematics of this course with standard material from courses on
physics. Then there are roughly two possibilities:

One is to cover Chapters V and VI on maxima and minima, quadratic
forms, critical points, and Taylor's formula. One can then finish with
Chapter IX on double integration to round off the one-term course.
The other is to go into curve integrals, double integration, and
Green's theorem, that is Chapters VII, VIII, IX, and X, §1. This forms
a coherent whole.

Both paths have been followed at Yale, and they depend on the
fashion of the moment, or the emphasis given to connections with other
fields (physics or economics, for instance). I have no preference for
either. Either way has considerable unity of style. Many of the results
are immediate corollaries of the chain rule. The main idea is that given
a function of several variables, if we want to look at its values at two
points P and Q, we join these points by a curve (often a straight line
segment), and then look at the values of the function on that curve. By
this device, we are able to reduce a large number of problems in several
variables to problems and techniques in one variable. For instance, the
tangent plane, the directional derivative, the law of conservation of en­
ergy, and Taylor's formula are all handled in this manner.
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One advantage of covering Green's theorem is that it provides a very
elegant mixture of integration and differentiation techniques in one and
two variables. This mixing is used frequently in applications to physics,
and also serves to fix these techniques in the mind because of the way
they are used. On the other hand, maxima-minima, critical points, and
Taylor's formula find applications in linear programming, economics, and
optimization problems. The only clear fact is that there is not enough
time to cover both paths in one semester.

For a year's course, the rest of the book provides an adequate amount
of material to be covered during the second semester. It consists of three
topics, which are logically independent of each other and could be
covered in any order. Some order must be chosen because it is necessary
to project the course in a totally ordered way on the page axis (and the
time axis), but logically, the choice is arbitrary. Pedagogically, the order
chosen here seemed the one best suited for most people. These three
topics are:

(a) Whichever curve integrals-Green's theorem, or maxima-mInI­
ma-Taylor's formula were omitted from the first semester.

(b) Triple integration and surface integrals, which continue ideas of
Chapters IX and X.

(c) Inverse mappings and the change of variables formula, including
as much of matrices and determinants as are needed, and which
may have been covered in another course about linear algebra.

Different instructors will cover these three topics in whatever order
they prefer. For applications to economics, it would make sense to cover
the chapters on maxima-minima and the quadratic form in Taylor's for­
mula before doing triple integration and surface integrals. The methods
used depend only on the techniques developed as corollaries of the chain
rule.
I think it is important that even at this early stage, students acquire

the idea that one can operate with differentiation just as with polyno­
mials. Thus §4 of Chapter VI could be covered early.
I have included only that part of linear algebra which is immediately

useful for the applications to calculus. My Introduction to Linear Algebra
provides an appropriate text when a whole semester is devoted to the
subject. Many courses are still structured to give primary emphasis to
the analytic aspects, and only a few notions involving matrices and linear
maps are needed to cover, say, the chain rule for mappings of one space
into another, and to emphasize the importance of linear approximations.
These, it seems to me, are the essential ingredients of a second semester
of calculus for students who want to become acquainted rapidly with the
most important basic notions and how they are used in practice. Many
years ago, there was no linear algebra introduced in calculus courses. In­
termediate years have probably seen an excessive amount-more than
was needed. I try to strike a proper balance here.
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Some proofs have been included. On the whole, our policy has been
to include those proofs which illustrate fundamental principles and are
free of technicalities. Such proofs, which are also short, should be
learned by students without difficulty. Examples are the uniqueness of
the potential function, the law of conservation of energy, the indepen­
dence of an integral on the path if a potential function exists, Green's
theorem in the simplest cases, etc.
Other proofs, like those of the chain rule, or the local existence of a

potential function, can be given in class or omitted, depending on the
level of interest of a class and the taste of the instructor. For con­
venience, such proofs have usually been placed at the end of each
section.
Many worked-out examples have been added since previous editions,

and answers to some exercises have been expanded to include more com­
prehensive solutions. I have done this to lighten the text on occasion.
Such expanded solutions can also be viewed as worked-out examples
simply placed differently, allowing students to think before they look up
the answer if they have troubles with the problem.
I include an appendix on Fourier series, for the convenience of courses

structured so that it is desirable to give an inkling of this topic some
time during the second-year calculus, without waiting for a course in ad­
vanced calculus. It fits in nicely with scalar products.
I would like to express my appreciation for the helpful guidance pro­

vided by previous reviewers: M. B. Abrahamse (University of Virginia),
Sherwood F. Ebey (University of the South), and William F. Keigher
(Rutgers University).
I thank Anthony Petrello for working out many answers. I thank Mr.

Gimli Khazad, William Scott and Gerhard Kroiss for communicating to
me a number of misprints and corrections. I thank Ron Infante for
helping with the proofreading.

New Haven, Connecticut S.LANG
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Part One

Basic Material

In the first chapter of this part, we consider vectors, which form the
basic algebraic tool in investigating functions of several variables. The
differentiation aspects of them which we take up are those which can be
handled up to a point by "one variable" methods. The reason for this is
that in higher dimensional space, we can join two points by a curve, and
study a function by looking at its values only on this curve. This re­
duces many higher dimensional problems to problems of a one-dimen­
sional situation.



CHAPTER

Vectors

The concept of a vector is basic for the study of functions of several
variables. It provides geometric motivation for everything that follows.
Hence the properties of vectors, both algebraic and geometric, will be
discussed in full.
One significant feature of all the statements and proofs of this part is

that they are neither easier nor harder to prove in 3-space than they are
in 2-space.

I, §1. DEFINITION OF POINTS IN SPACE

We know that a number can be used to represent a point on a line,
once a unit length is selected.
A pair of numbers (i.e. a couple of numbers) (x, y) can be used to

represent a point in the plane.
These can be pictured as follows:

•o •x

y ----1 (x, y)
I
I
I
I

x

(a) Point on a line (b) Point in a plane

Figure 1

We now observe that a triple of numbers (x, y, z) can be used to
represent a point in space, that is 3-dimensional space, or 3-space. We
simply introduce one more axis. Figure 2 illustrates this.
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x-axis

VECTORS

z-axis

"
'"

'"
" " (x,y,z)

I
I
I
I
1
I

.A::',-,-,,-,-,_--j---,-,-/~'-- y-axis

"', : ",;,'/;'

" I ,../
---------------------~/

Figure 2

[I, §I]

Instead of using x, y, z we could also use (Xl' X 2 , x 3). The line could
be called I-space, and the plane could be called 2-space.
Thus we can say that a single number represents a point in I-space.

A couple represents a point in 2-space. A triple represents a point in 3­
space.
Although we cannot draw a picture to go further, there is nothing to

prevent us from considering a quadruple of numbers.

and decreeing that this is a point in 4-space. A quintuple would be a
point in 5-space, then would come a sextuple, septuple, octuple, ....
We let ourselves be carried away and define a point in n-space to be

an n-tuple of numbers

if n is a positive integer. We shall denote such an n-tuple by a capital
letter X, and try to keep small letters for numbers and capital letters for
points. We call the numbers Xl"" 'Xn the coordinates of the point X.
For example, in 3-space, 2 is the first coordinate of the point (2,3, -4),
and -4 is its third coordinate. We denote n-space by Rn

•

Most of our examples will take place when n = 2 or n = 3. Thus the
reader may visualize either of these two cases throughout the book.
However, three comments must be made.
First, we have to handle n = 2 and n = 3, so that in order to avoid a

lot of repetitions, it is useful to have a notation which covers both these
cases simultaneously, even if we often repeat the formulation of certain
results separately for both cases.
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Second, no theorem or formula is simpler by making the assumption
that n = 2 or 3.
Third, the case n = 4 does occur in physics.

Example 1. One classical example of 3-space is of course the space we
live in. After we have selected an origin and a coordinate system, we can
describe the position of a point (body, particle, etc.) by 3 coordi­
nates. Furthermore, as was known long ago, it is convenient to extend
this space to a 4-dimensional space, with the fourth coordinate as time,
the time origin being selected, say, as the birth of Christ-although this
is purely arbitrary (it might be more convenient to select the birth of the
solar system, or the birth of the earth as the origin, if we could deter­
mine these accurately). Then a point with negative time coordinate is a
BC point, and a point with positive time coordinate is an AD point.

Don't get the idea that "time is the fourth dimension", however. The
above 4-dimensional space is only one possible example. In economics,
for instance, one uses a very different space, taking for coordinates, say,
the number of dollars expended in an industry. For instance, we could
deal with a 7-dimensional space with coordinates corresponding to the
following industries:

1. Steel
5. Chemicals

2. Auto
6. Clothing

3. Farm products
7. Transportation.

4. Fish

We agree that a megabuck per year is the unit of measurement. Then a
point

(1,000, 800, 550, 300, 700, 200, 900)

in this 7-space would mean that the steel industry spent one billion
dollars in the given year, and that the chemical industry spent 700 mil­
lion dollars in that year.
The idea of regarding time as a fourth dimension is an old one.

Already in the Encyclopedie of Diderot, dating back to the eighteenth
century, d'Alembert writes in his article on "dimension":

Cette maniere de considerer les quantites de plus de trois dimensions estaussi exacte que I'autre, car les lettres peuvent toujours etre regardeescomme representant des nombres rationnels ou non. J'ai dit plus haut qu'iln'etait pas possible de concevoir plus de trois dimensions. Un hommed'esprit de rna connaissance croit qu'on pourrait cependant regarder laduree comme une quatrieme dimension, et que Ie produit temps par lasolidite serait en quelque maniere un produit de quatre dimensions; cetteidee peut etre contestee, mais elle a, ce me semble, quelque merite, quandce ne serait que celui de la nouveaute.

Encyclopedie, Vol. 4 (1754), p. 1010
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Translated, this means:

VECTORS [I, §1]

This way of considering quantities having more than three dimensions is
just as right as the other, because algebraic letters can always be viewed as
representing numbers, whether rational or not. I said above that it was
not possible to conceive more than three dimensions. A clever gentleman
with whom I am acquainted believes that nevertheless, one could view
duration as a fourth dimension, and that the product time by solidity
would be somehow a product of four dimensions. This idea may be chal­
lenged, but it has, it seems to me, some merit, were it only that of being
new.

Observe how d'Alembert refers to a "clever gentleman" when he appar­
ently means himself. He is being rather careful in proposing what must
have been at the time a far out idea, which became more prevalent in
the twentieth century.
D'Alembert also visualized clearly higher dimensional spaces as "prod

ucts" of lower dimensional spaces. For instance, we can view 3-space as
putting side by side the first two coordinates (Xl' X2) and then the third
X 3 . Thus we write

We use the product sign, which should not be confused with other
"products", like the product of numbers. The word "product" is used in
two contexts. Similarly, we can write

There are other ways of expressing R4 as a product, namely

This means that we view separately the first two coordinates (Xl' X2) and
the last two coordinates (x 3 , x 4 ). We shall come back to such products
later.
We shall now define how to add points. If A, B are two points, say

in 3-space,

and

then we define A + B to be the point whose coordinates are

Example 2. In the plane, if A = (1,2) and B = (- 3, 5), then

A + B = (- 2, 7).
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In 3-space, if A = (-1, n, 3) and B = (j2, 7, -2), then

A + B = (j2 - 1, n + 7, 1).

Using a neutral n to cover both the cases of 2-space and 3-space, the
points would be written

and we define A + B to be the point whose coordinates are

We observe that the following rules are satisfied:

1. (A + B) + C = A + (B + C).
2. A + B = B + A.
3. If we let

o = (0, 0, ... ,0)

be the point all of whose coordinates are 0, then

O+A=A+O=A

for all A.
4. Let A = (a1,···,an) and let -A =(-a1, ... ,-an). Then

A + (-A) = O.

All these properties are very simple, and are true because they are
true for numbers, and addition of n-tuples is defined in terms of addition
of their components, which are numbers.

Note. Do not confuse the number 0 and the n-tuple (0, ... ,0). We
usually denote this n-tuple by 0, and also call it zero, because no diffi­
culty can occur in practice.

We shall now interpret addition and multiplication by numbers geo­
metrically in the plane (you can visualize simultaneously what happens
in 3-space).

Example 3. Let A = (2, 3) and B = (-1,1). Then

A + B = (1,4).
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The figure looks like a parallelogram (Fig. 3).

(1,4)

( -1,1)

(2,3)

Figure 3

Example 4. Let A = (3, 1) and B = (1,2). Then

A + B = (4,3).

We see again that the geometric representation of our addition looks like
a parallelogram (Fig. 4).

A+B

Figure 4

The reason why the figure looks like a parallelogram can be given in
terms of plane geometry as follows. We obtain B = (1,2) by starting
from the origin 0 = (0, 0), and moving 1 unit to the right and 2 up. To
get A + B, we start from A, and again move 1 unit to the right and 2
up. Thus the line segments between 0 and B, and between A and A + B
are the hypotenuses of right triangles whose corresponding legs are of
the same length, and parallel. The above segments are therefore parallel
and of the same length, as illustrated in Fig. 5.

B

A+B

L1
A

Figure 5
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Example 5. If A = (3, 1) again, then - A = (- 3, - 1). If we plot this
point, we see that -A has opposite direction to A. We may view -A
as the reflection of A through the origin.

A

-A

Figure 6

We shall now consider multiplication of A by a number. If c is any
number, we define cA to be the point whose coordinates are

Example 6. If A = (2, -1, 5) and c = 7, then cA = (14, - 7, 35).

It is easy to verify the rules:

5. c(A + B) = cA + cB.
6. If c1, C2 are numbers, then

and

Also note that

(-I)A = -A.

What is the geometric representation of multiplication by a number?

Example 7. Let A = (1, 2) and c = 3. Then

cA = (3,6)

as in Fig. 7(a).

Multiplication by 3 amounts to stretching A by 3. Similarly, !A
amounts to stretching A by t, i.e. shrinking A to half its size. In general,
if t is a number, t > 0, we interpret tA as a point in the same direction
as A from the origin, but t times the distance. In fact, we define A and
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B to have the same direction if there exists a number c > 0 such that
A = cB. We emphasize that this means A and B have the same direction
with respect to the origin. For simplicity of language, we omit the words
"with respect to the origin".
Mulitiplication by a negative number reverses the direction. Thus

- 3A would be represented as in Fig. 7(b).

(a)

3A= (3,6)

3A

-3A

(b)

Figure 7

We define two vectors A, B (neither of which is zero) to have opposite
directions if there is a number c < 0 such that cA = B. Thus when
B = - A, then A, B have opposite direction.

I, §1. EXERCISES

Find A + B, A - B, 3A, - 2B in each of the following cases. Draw the points of
Exercises 1 and 2 on a sheet of graph paper.

1. A = (2, -1), B = (-1,1) 2. A = (-1,3), B = (0,4)

3. A = (2, -1,5), B = (-1, 1, 1) 4. A = (-1, - 2,3), B = (-1,3, -4)

5. A = (n, 3, -1), B = (2n, -3,7) 6. A = (15, -2,4), B = (n, 3, -1)

7. Let A = (1,2) and B = (3, 1). Draw A + B, A + 2B, A + 3B, A - B, A - 2B,
A - 3B on a sheet of graph paper.

8. Let A, B be as in Exercise 1. Draw the points A + 2B, A + 3B, A - 2B,
A - 3B, A + tB on a sheet of graph paper.

9. Let A and B be as drawn in Fig. 8. Draw the point A - B.
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B

(a)

A

LOCATED VECTORS

B

(b)

B
A

11

(C)

A

Figure 8

(d)

B

I, §2. LOCATED VECTORS

We define a located vector to be an ordered pair of points which we
write Aif. (This is not a product.) We visualize this as an arrow be­
tween A and B. We call A the beginning point and B the end point of
the located vector (Fig. 9).

{

I----------,~ B
b2 - a2

A~"'------l

Figure 9

We observe that in the plane,

Similarly,
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This means that

B = A + (B - A)

In the next figures, we have drawn the located vectors O(B - A) ,
--+ I --+
AB , and O(A - B) , BA .

Let Ali and CD be two located vectors. We shall say that they are
--->

equivalent if B - A = D - C. Every located vector AB is equivalent to

one whose beginning point is the origin, because Ali is equivalent to
O(B - A)~ Clearly this is the only located vector whose beginning point

--->
is the origin and which is equivalent to AB. If you visualize the parello-
gram law in the plane, then it is clear that equivalence of two located
vectors can be interpreted geometrically by saying that the lengths of the
line segments determined by the pair of points are equal, and that the
"directions" in which they point are the same.

•

A~B A~B

B-A

A-B
o

Figure 10 Figure 11

Example 1. Let P = (1, -1,3) and Q= (2,4, 1). Then PQ is equiva­

lent to Co, where C = Q- P = (1, 5, -2). If

A = (4, -2,5) and B = (5, 3, 3),

then PQ is equivalent to Ali because

Q - P = B - A = (1, 5, - 2).

Given a located vector Co whose beginning point is the origin, we

shall say that it is located at the origin. Given any located vector Ali,
we shall say that it is located at A.
A located vector at the origin is entirely determined by its end point.

In view of this, we shall call an n-tuple either a point or a vector, de­
pending on the interpretation which we have in mind.

Two located vectors Ali and PQ are said to be parallel if there is a
number c =I 0 such that B - A = c(Q - P). They are said to have the
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same direction if there is a number c > 0 such that B - A = c(Q - P),
and have opposite direction if there is a number c < 0 such that

B - A = c(Q - P).

In the next pictures, we illustrate parallel located vectors.

B

(a) Same direction

Figure 12
(b) Opposite direction

Example 2. Let

P = (3, 7) and Q = (-4,2).
Let

A = (5, 1) and B = (-16, -14).
Then

Q - P = (- 7, - 5) and B - A = (-21, -15).

Hence PQ is parallel to AB, because B - A = 3(Q - P). Since 3 > 0,
we even see that PQ and AB have the same direction.
In a similar manner, any definition made concerning n-tuples can be

carried over to located vectors. For instance, in the next section, we
shall define what it means for n-tuples to be perpendicular.

B-A

B~ Q

Q-P :/

Figure 13
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Then we can say that two located vectors AB and PQ are perpendicular
if B - A is perpendicular to Q- P. In Fig. 13, we have drawn a picture
of such vectors in the plane.

I, §2. EXERCISES

In each case, determine which located vectors PQ and 7fjJ are equivalent.

1. P = (1, -1), Q = (4,3), A = (-1,5), B = (5,2).

2. P = (1,4), Q= (-3,5), A = (5,7), B = (1,8).

3. P = (1, -1,5), Q = (-2,3, -4), A = (3,1,1), B = (0, 5, 10).

4. P = (2, 3, -4), Q = (-1,3,5), A = (- 2,3, -1), B = (- 5,3,8).

In each case, determine which located vectors PQ and 7fjJ are parallel.

5. P = (1, -1), Q = (4,3), A = (-1,5), B = (7, 1).

6. P = (1,4), Q= (-3,5), A = (5,7), B = (9,6).

7. P = (1, -1,5), Q = (-2,3, -4), A = (3, 1, 1), B = (-3,9, -17).

8. P = (2, 3, -4), Q = (-1,3,5), A = (-2,3, -1), B = (-11,3, -28).

9. Draw the located vectors of Exercises 1, 2, 5, and 6 on a sheet of paper to

illustrate these exercises. Also draw the located vectors QP and BA. Draw
the points Q - P, B - A, P - Q, and A-B.

I, §3. SCALAR PRODUCT

It is understood that throughout a discussion we select vectors always in
the same n-dimensional space. You may think of the cases n = 2 and
n = 3 only.
In 2-space, let A = (ai' a2 ) and B = (b i , b2 ). We define their scalar

product to be

In 3-space, let A = (ai' a2 , a3 ) and B = (b i , b2 , b3 ). We define their
scalar product to be

In n-space, covering both cases with one notation, let A = (a i ,··· ,an)
and B = (b i , ... ,bn) be two vectors. We define their scalar or dot product
A·B to be
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This product is a number. For instance, if

then

A=(1,3,-2) and B = (-1,4, -3),

A· B = -1 + 12 + 6 = 17.

For the moment, we do not give a geometric interpretation to this scalar
product. We shall do this later. We derive first some important proper­
ties. The basic ones are:

SP 1. We have A·B = B·A.

SP 2. If A, B, C are three vectors, then

A . (B + C) = A .B + A· C = (B + C)· A.

SP 3. If x is a number, then

(xA)·B = x(A ·B) and A·(xB) = x(A·B).

SP 4. If A = 0 is the zero vector, then A· A = 0, and otherwise

A·A>O.

We shall now prove these properties.
Concerning the first, we have

because for any two numbers a, b, we have ab = ba. This proves the
first property.
For SP 2, let C = (c1 , ... ,cn). Then

and

Reordering the terms yields
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which is none other than A· B + A .C. This proves what we wanted.
We leave property SP 3 as an exercise.
Finally, for SP 4, we observe that if one coordinate ai of A is not

equal to 0, then there is a term af =1= 0 and af > 0 in the scalar product

A- A = ar + ... + a;.

Since every term is ~ 0, it follows that the sum is > 0, as was to be
shown.

In much of the work which we shall do concerning vectors, we shall
use only the ordinary properties of addition, multiplication by numbers,
and the four properties of the scalar product. We shall give a formal
discussion of these later. For the moment, observe that there are other
objects with which you are familiar and which can be added, subtracted,
and multiplied by numbers, for instance the continuous functions on an
interval [a, b].
Instead of writing A· A for the scalar product of a vector with itself, it

will be convenient to write also A 2
• (This is the only instance when we

allow ourselves such a notation. Thus A 3 has no meaning.) As an exer­
cise, verify the following identities:

A dot product A· B may very well be equal to 0 without either A or
B being the zero vector. For instance, let

Then

A = (1, 2, 3) and

A·B=O

B = (2, 1, -1).

We define two vectors A, B to be perpendicular (or as we shall also
say, orthogonal), if A· B = O. For the moment, it is not clear that in the
plane, this definition coincides with our intuitive geometric notion of
perpendicularity. We shall convince you that it does in the next section.
Here we merely note an example. Say in R3, let

E 1 = (1,0,0), E2 = (0, 1,0), E 3 = (0,0, 1)

be the three unit vectors, as shown on the diagram (Fig. 14).
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Then we see that E 1 • E 2 = 0, and similarly Ei • E j =°if i i' j. And
these vectors look perpendicular. If A = (ai' a2 , a3), then we observe that
the i-th component of A, namely

ai=A·Ei

is the dot product of A with the i-th unit vector. We see that A is
perpendicular to E i (according to our definition of perpendicularity with
the dot product) if and only if its i-th component is equal to 0.

I, §3. EXERCISES

1. Find A· A for each of the following n-tuples.
(a) A = (2, -1), B = (-1,1) (b) A = (-1,3), B = (0,4)
(c) A = (2, -1,5), B = (-1, 1, 1) (d) A = (-1, - 2,3), B = (-1,3, -4)
(e) A = (n, 3, -1), B = (2n, -3,7) (f) A = (15, -2,4), B = (n, 3, -1)

2. Find A· B for each of the above n-tuples.

3. Using only the four properties of the scalar product, verify in detail the identi­
ties given in the text for (A + B)2 and (A - B)2.

4. Which of the following pairs of vectors are perpendicular?
(a) (1, -1,1) and (2,1,5) (b) (1, -1,1) and (2,3,1)
(c) (-5,2,7) and (3, -1,2) (d) (n,2, 1) and (2, -n, 0)

5. Let A be a vector perpendicular to every vector X. Show that A = O.

I, §4. THE NORM OF A VECTOR

We define the norm of a vector A, and denote by IIAII, the number

IIAII=~.
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Since A· A ~ 0, we can take the square root. The norm is also some­
times called the magnitude of A.

When n = 2 and A = (a, b), then

HAH = Ja 2 + b2
,

as in the following picture (Fig. 15).

b

Figure 15

Example 1. If A = (1,2), then

HAil =J1+4 =./5.

HAil = Jai + a~ + a~.

Example 2. If A = (-1, 2, 3), then

HAil =Jl +4+9=Ji4.

If n = 3, then the picture looks like Fig. 16, with A = (x, y, z).

A
I
1
I
I
I

iz
I

k-----I---....,;;~
" I ,,/

~" : //"
" I ,,'.___________ :."v'

(x, y)

Figure 16
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If we first look at the two components (x, y), then the length of the

segment between (0,0) and (x, y) is equal to w = Jx2 + y2, as indicated.
Then again the norm of A by the Pythagoras theorem would be

Thus when n = 3, our definition of norm is compatible with the geom­
etry of the Pythagoras theorem.

In terms of coordinates, A = (a l , ... ,an) we see that

IIAII = Jai + ... + a;.
If A of- 0, then IIAII of-°because some coordinate ai of- 0, so that af > 0,
and hence ai + ... + a; > 0, so IIAII of- 0.
Observe that for any vector A we have

IIAII = II-All·

This is due to the fact that

because (_1)2 = 1. Of course, this is as it should be from the picture:

A

-A

Figure 17

Recall that A and - A are said to have opposite direction. However,
they have the same norm (magnitude, as is sometimes said when speak­
ing of vectors).
Let A, B be two points. We define the distance between A and B to

be .

IIA - BII = J(A - B)·(A - B).
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This definition coincides with our geometric intUItion when A, Bare
points in the plane (Fig. 18). It is the same thing as the length of the
located vector AB or the located vector BA.

B

Length=\lA-B\I = \lB-A\I

Figure 18

Example 3. Let A = (-1,2) and B = (3,4). Then the length of the
----+

located vector AB is liB - All. But B - A = (4,2). Thus

liB - All = Jl6+4 = )20.

In the picture, we see that the horizontal side has length 4 and the
vertical side has length 2. Thus our definitions reflect our geometric
intuition derived from Pythagoras.

A

-3 -2 -1 0 2 3

Figure 19

Let P be a point in the plane, and let a be a number > O. The set of
points X such that

IIX - PII < a

will be called the open disc of radius a centered at P. The set of points
X such that

IIX-PII ;;:;a
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will be called the closed disc of radius a and center P. The set of points
X such that

IIX - PII = a

is called the circle of radius a and center P. These are illustrated in Fig.
20.

Circle Disc

Figure 20

In 3-dimensional space, the set of points X such that

IIX - PII < a

will be called the open ball of radius a and center P. The set of points X
such that

IIX-PII ::,£a

will be called the closed ball of radius a and center P. The set of points
X such that

IIX - PII = a

will be called the sphere of radius a and center P. In higher dimensional
space, one uses this same terminology of ball and sphere.
Figure 21 illustrates a sphere and a ball in 3-space.

Ball

Figure 21



22 VECTORS [I, §4]

The sphere is the outer shell, and the ball consists of the region inside
the shell. The open ball consists of the region inside the shell excluding
the shell itself. The closed ball consists of the region inside the shell and
the shell itself.
From the geometry of the situation, it is also reasonable to expect

that if c> 0, then IlcA11 = ciIAII, i.e. if we stretch a vector A by multiply­
ing by a positive number c, then the length stretches also by that
amount. We verify this formally using our definition of the length.

Theorem 4.1 Let x be a number. Then

IlxAIl = Ixl IIAII

(absolute value of x times the norm of A).

Proof By definition, we have

IIxAII 2 = (xA)·(xA),

which is equal to

by the properties of the scalar product. Taking the square root now
yields what we want.
Let S1 be the sphere of radius 1, centered at the origin. Let a be a

number > 0. If X is a point of the sphere S1, then aX is a point of the
sphere of radius a, because

II aX II = allXIl = a.

In this manner, we get all points of the sphere of radius a. (Proof?)
Thus the sphere of radius a is obtained by stretching the sphere of radius
1, through multiplication by a.
A similar remark applies to the open and closed balls of radius a,

they being obtained from the open and closed balls of radius 1 through
multiplication by a.

Disc of radius 1 Disc of radius a

Figure 22
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We shall say that a vector E is a unit vector if IIEII = 1. Given any
vector A, let a = IIAII. If a #- 0, then

1
-A
a

is a unit vector, because

We say that two vectors A, B (neither of which is 0) have the same
direction if there is a number c > °such that cA = B. In view of this
definition, we see that the vector

1

IIAII
A

is a unit vector in the direction of A (provided A #- 0).

A

Figure 23

If E is the unit vector in the direction of A, and IIAII = a, then

A =aE.

Example 4. Let A = (1,2, -3). Then IIAII = ji4. Hence the unit
vector in the direction of A is the vector

( 1 2 -3)E=---ji4' ji4' ji4 .

Warning. There are as many unit vectors as there are directions. The
three standard unit vectors in 3-space, namely

E1 = (1,0,0), E 2 = (0, 1,0), E3 = (0,0,1)

are merely the three unit vectors in the directions of the coordinate axes.
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We are also in the position to justify our definition of perpendicular­
ity. Given A, B in the plane, the condition that

IIA + BII = IIA - BII

(illustrated in Fig. 24(b») coincides with the geometric property that A
should be perpendicular to B.

A IIA-BII

(a)

B

-B

Figure 24

A
,/ ------1-1---____ B
/

/
-<'
/

/

,/
/

/

(b)

We shall prove:

IIA + BII = IIA - BII if and only if A·B = O.

Let..;;. denote "if and only if". Then

IIA + BII = IIA - BII ..;;. IIA + BI1 2 = IIA - BII 2

..;;. A 2 + 2A . B + B 2 = A 2 - 2A . B + B 2

..;;. 4A·B = 0

..;;. A·B = O.

This proves what we wanted.

General Pythagoras theorem. If A and B are perpendicular, then

The theorem is illustrated on Fig. 25.

A+B

B
A

Figure 25
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To prove this, we use the definitions, namely

IIA + BI1 2 = (A + B)·(A + B) = A 2 + 2A·B + B2

= IIAII 2 + 1IB11 2 ,

because A·B = 0, and A·A = IIA11 2 , B·B = IIBI1 2 by definition.

Remark. If A is perpendicular to B, and x is any number, then A is
;11so perpendicular to xB because

A-xB = xA·B = 0.

We shall now use the notion of perpendicularity to derive the notion
of projection. Let A, B be two vectors and B #- O. Let P be the point
on the line through 0iJ such that PA is perpendicular to 0iJ, as
shown on Fig. 26(a).

A

o
(a)

We can write

A-cB

Figure 26

P=cB

A

o
(b)

for some number c. We want to find this number c explicitly in terms of-- --A and B. The condition PA .1 OB means that

A - P is perpendicular to B,

and since P = cB this means that

(A - cB)·B = 0,
in other words,

A-B - cB·B = 0.

We can solve for c, and we find A· B = cB· B, so that

~
~
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Conversely, if we take this value for c, and then use distributivity, dot­
ting A - cB with B yields 0, so that A - cB is perpendicular to B.
Hence we have seen that there is a unique number c such that A - cB is
perpendicular to B, and c is given by the above formula.

A·B
Definition. The component of A along B is the number c = -- .

BoB

The projection of A along B is the vector cB = A . B B.
B·B

Example 5. Suppose

B = E j = (0, ... ,0, 1, 0, ... ,0)

is the i-th unit vector, with 1 in the i-th component and 0 in all other
components.

If A = (aI' 0 0 0 ,an)' then A· E j = a j •

Thus A· E; is the ordinary i-th component of A.

More generally, if B is a unit vector, not necessarily one of the E;, then
we have simply

c = A·B

because B· B = 1 by definition of a unit vector.

Example 6. Let A = (1,2, -3) and B = (1, 1,2). Then the component
of A along B is the number

A·B -3 1
c=B.B=(;= -2'

Hence the projection of A along B is the vector

cB = (-t, -t, -1).

Our construction gives an immediate geometric interpretation for the
scalar product. Namely, assume A#-O and look at the angle () between
A and B (Fig. 27). Then from plane geometry we see that

c11B11
cos () = ill'

or substituting the value for c obtained above,

I A . B = II A II II B [I cos () and
A·B

cos() = IIAII IIBII
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A

/\./~,...,B
~B

Figure 27

27

In some treatments of vectors, one takes the relation

A .B = II A II II B II cos e

as definition of the scalar product. This is subject to the following disad­
vantages, not to say objections:

(a) The four properties of the scalar product SP 1 through SP 4 are
then by no means obvious.

(b) Even in 3-space, one has to rely on geometric intuition to obtain
the cosine of the angle between A and B, and this intuition is
less clear than in the plane. In higher dimensional space, it fails
even more.

(c) It is extremely hard to work with such a definition to obtain
further properties of the scalar product.

Thus we prefer to lay obvious algebraic foundations, and then recover
very simply all the properties. We used plane geometry to see the ex­
pression

A- B = IIAIIIIBII cos e.

After working out some examples, we shall prove the inequality which
allows us to justify this in n-space.

Example 7. Let A = (1, 2, - 3) and B = (2, 1, 5). Find the cosine of
the angle e between A and B.
By definition,

A·B 2+2-15 -11
cose = = =--

IIAIIIIBIl Ji4j30 J420'

Example 8. Find the cosine of the angle between the two located
vectors PQ and Pi where

P = (1,2, -3), Q = (-2,1,5), R = (1, 1, -4).
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The picture looks like this:
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Q

~
p

Figure 28

We let

A = Q - P = (- 3, - 1, 8) and B = R - P = (0, -1, -1).

Then the angle between PQ and Pi is the same as that between A and
B. Hence its cosine is equal to

A·B
cos e= IIAII IIBII

0+1-8

fiy0.
-7

We shall prove further properties of the norm and scalar product
using our results on perpendicularity. First note a special case. If

Ei = (0, ... ,0, 1, 0, ... ,0)

is the i-th unit vector of R", and

then

A·E,=ai

is the i-th component of A, i.e. the component of A along E i • We have

Iai I=R ~ Jai + ... + a; = IIA II,

so that the absolute value of each component of A is at most equal to
the length of A.
We don't have to deal only with the special unit vector as above. Let

E be any unit vector, that is a vector of norm 1. Let c be the compon­
ent of A along E. We saw that

c=A·E.
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Then A - cE is perpendicular to E, and

A = A - cE + cEo

Then A - eE is also perpendicular to cE, and by the Pythagoras
theorem, we find

Thus we have the inequality c2~ IIAI1 2, and lei ~ IIAII.

In the next theorem, we generalize this inequality to a dot product
A .B when B is not necessarily a unit vector.

Theorem 4.2. Let A, B be two vectors in Rn. Then

IA· BI ~ IIAII IIBII·

Proof If B = 0, then both sides of the inequality are equal to 0, and
so our assertion is obvious. Suppose that B =1= O. Let e be the compon­
ent of A along B, so c = (A- B)j(B· B). We write

A = A - cB + cB.

By Pythagoras,

Hence e211BI1 2
~ IIAI1 2. But

2 2_ (A-B)2 2_IA.Bj2 2_IA.BI2

c IIBII - (B. B)2 IIBII - IIBI14 IIBII - IIBI12 .

Therefore

Multiply by IIBI1 2 and take the square root to conclude the proof.

In view of Theorem 4.2, we see that for vectors A, B in n-space, the
number

A·B

IIAIIIIBII

has absolute value ~ 1. Consequently,

A-B
-1< <1
= IIAIIIIBIl = ,
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and there exists a unique angle () such that 0 ~ () ~ n, and such that

A·B
cos () = IIAII IIBII

We define this angle to be the angle between A and B.
The inequality of Theorem 4.2 is known as the Schwarz inequality.

Theorem 4.3. Let A, B be vectors. Then

IIA + BII ~ IIAII + IIBII·

Proof Both sides of this inequality are positive or O. Hence it will
suffice to prove that their squares satisfy the desired inequality, in other
words,

(A + B)·(A + B) ~ (IIAII + IIBII)2.

To do this, we consider

(A + B)·(A + B) = A·A + 2A·B + B·B.

In view of our previous result, this satisfies the inequality

and the right-hand side is none other than

Our theorem is proved.

Theorem 4.3 is known as the triangle inequality. The reason for this is
that if we draw a triangle as in Fig. 29, then Theorem 4.3 expresses the
fact that the length of one side is ~ the sum of the lengths of the other

two sides.

A+B

o
Figure 29
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Remark. All the proofs do not use coordinates, only properties SP 1
through SP 4 of the dot product. In n-space, they give us inequalities
which are by no means obvious when expressed in terms of coordinates.
For instance, the Schwarz inequality reads, in terms of coordinates:

Just try to prove this directly, without the "geometric" intuition of Pyth­
agoras, and see how far you get.

I, §4. EXERCISES

1. Find the norm of the vector A in the following cases.
(a) A = (2, -1), B = (-1, 1)
(b) A = (-1,3), B = (0,4)
(c) A = (2, -1,5), B = (-1, 1, 1)
(d) A = (-1, -2,3), B = (-1,3, -4)
(e) A = (n, 3, -1), B = (2n, -3,7)
(f) A = (15, -2,4), B = (n, 3, -1)

2. Find the norm of vector B in the above cases.

3. Find the projection of A along B in the above cases.

4. Find the projection of B along A in the above cases.

5. Find the cosine between the following vectors A and B.
(a) A = (1, -2) and B = (5, 3)
(b) A = (- 3, 4) and B = (2, - 1)
(c) A = (1, -2,3) and B = (-3,1,5)
(d) A = (- 2, 1,4) and B = (-1, -1,3)
(e) A = (-1, 1,0) and B = (2, 1, -1)

6. Determine the cosine of the angles of the triangle whose vertices are
(a) (2, -1, 1), (1, - 3, - 5), (3, -4, -4).
(b) (3,1,1), (-1,2,1), (2, -2,5).

7. Let AI"" ,Ar be non-zero vectors which are mutually perpendicular, in
other words Ai' A j = 0 if i *" j. Let CI' ... 'Cr be numbers such that

Show that all Ci = O.

8. For any vectors A, B, prove the following relations:
(a) IIA + BII 2 + IIA - BII 2

= 211AI1 2 + 211B1I 2.
(b) IIA + BII 2

= IIAI1 2 + IIBI1 2 + 2A·B.
(c) IIA + BII 2

- IIA - BII 2 = 4A·B.
Interpret (a) as a "parallelogram law".
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9. Show that if 8 is the angle between A and B, then

IIA - BI1 2
= IIAI1 2 + IIBI1 2

- 211AII IIBII cos 8.

10. Let A, B, C be three non-zero vectors. If A· B = A· C, show by an
example that we do not necessarily have B = C.

I, §S. PARAMETRIC LINES

We define the parametric equation or parametric representation of a
straight line passing through a point P in the direction of a vector
A"# 0 to be

X=P+ tA,

where t runs through all numbers (Fig. 30).

Figure 30

When we give such a parametric representation, we may think of a
bug starting from a point P at time t = 0, and moving in the direction of
A. At time t, the bug is at the position P + tAo Thus we may interpret
physically the parametric representation as a description of motion, in
which A is interpreted as the velocity of the bug. At a given time t, the
bug is at the point.

X(t) = P + tA,

which is called the position of the bug at time t.
This parametric representation is also useful to describe the set of

points lying on the line segment between two given points. Let P, Q be
two points. Then the segment between P and Q consists of all the points

S(t) = P + t(Q - P) with O~t~1.

Indeed, O(Q - P) is a vector having the same direction as PQ, as
shown on Fig. 31.



[I, §5] PARAMETRIC LINES

Q-P

o

Figure 31
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When t = 0, we have S(O) = P, so at time t = 0 the bug is at P. When
t = 1, we have

S(I) = P + (Q - P) = Q,

so when t = 1 the bug is at Q. As t goes from 0 to 1, the bug goes from
P to Q.

Example 1. Let P = (1, - 3,4) and Q = (5, 1, - 2). Find the coordi­
nates of the point which lies one third of the distance from P to Q.
Let Set) as above be the parametric representation of the segment

from P to Q. The desired point is S(l/3), that is:

(1) 1 1S 3 = P + 3(Q - P) = (1, -3,4) + 3(4,4, -6)

(
7 -5 )

= 3'3,2.

Warning. The desired point in the above example is not given by

P+Q
3

Example 2. Find a parametric representation for the line passing
through the two points P = (1, - 3, 1) and Q = ( - 2,4,5).
We first have to find a vector in the direction of the line. We let

A = P - Q,

so

A = (3, -7, -4).
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The parametric representation of the line is therefore

X(t) = P + tA = (1, -3,1) + t(3, -7, -4).

Remark. It would be equally correct to give a parametric representa­
tion of the line as

yet) = P + tB where B = Q - P.

Interpreted in terms of the moving bug, however, one parametrization
gives the position of a bug moving in one direction along the line, start­
ing from P at time t = 0, while the other parametrization gives the posi­
tion of another bug moving in the opposite direction along the line, also
starting from P at time t = O.

We shall now discuss the relation between a parametric representation
and the ordinary equation of a line in the plane.
Suppose that we work in the plane, and write the coordinates of a

point X as (x, y). Let P = (p, q) and A = (a, b). Then in terms of the
coordinates, we can write

x = p + ta, y = q + tb.

We can then eliminate t and obtain the usual equation relating x and y.

Example 3. Let P = (2, 1) and A = (-1,5). Then the parametric
representation of the line through P in the direction of A gives us

x = 2 - t, y = 1 + 5t.

Multiplying the first equation by 5 and adding yields

5x + Y = 11,

which is the familiar equation of a line.

This elimination of t shows that every pair (x, y) which satisfies the
parametric representation (*) for some value of t also satisfies equation
(**). Conversely, suppose we have a pair of numbers (x, y) satisfying
(**). Let t = 2 - x. Then

y = 11 - 5x = 11 - 5(2 - t) = 1 + 5t.
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Hence there exists some value of t which satisfies equation (*). Thus we
have proved that the pairs (x, y) which are solutions of (**) are exactly
the same pairs of numbers as those obtained by giving arbitrary values
for t in (*). Thus the straight line can be described parametrically as in
(*) or in terms of its usual equation (**). Starting with the ordinary
equation

5x + Y = 11,

we let t = 2 - x in order to recover the specific parametrization of (*).
When we parametrize a straight line in the form

x = P + tA,

we have of course infinitely many choices for P on the line, and also
infinitely many choices for A, differing by a scalar multiple. We can
always select at least one. Namely, given an equation

ax + by = c

with numbers a, b, c, suppose that a # O. We use y as parameter, and
let

y=t.

Then we can solve for x, namely

c b
x = - - - t.

a a

Let P = (cla,O) and A = (-bla, 1). We see that an arbitrary point (x, y)
satisfying the equation

ax + by = c

can be expressed parametrically, namely

(x,y) = P + tAo

In higher dimensions, starting with a parametric representation

x = P + tA,

we cannot eliminate t, and thus the parametric representation is the only
one available to describe a straight line.
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I, §5. EXERCISES

VECTORS [1, §6]

1. Find a parametric representation for the line passing through the following
pairs of points.
(a) P 1 = (1, 3, -1) and P2 = (-4, 1,2)
(b) P 1 =(-1,5,3) and P2 =(-2,4,7)

Find a parametric representation for the line passing through the following
points.

2. (1,1, -1) and (-2,1,3) 3. (-1,5,2) and (3, -4,1)

4. Let P = (1,3, -1) and Q = (-4,5,2). Determine the coordinates of the fol­
lowing points:
(a) The midpoint of the line segment between P and Q.
(b) The two points on this line segment lying one-third and two-thirds of the
way from P to Q.

(c) The point lying one-fifth of the way from P to Q.
(d) The point lying two-fifths of the way from P to Q.

5. If P, Q are two arbitrary points in n-space, give the general formula for the
midpoint of the line segment between P and Q.

I, §6. PLANES

We can describe planes in 3-space by an equation analogous to the
single equation of the line. We proceed as follows.

z

1)lC;===-------::-------y

x
Figure 32

Let P be a point in 3-space and consider a located vector ON. We
define the plane passing through P perpendicular to ON to be the col­
lection of all points X such that the located vector IT is perpendicular

to ON. According to our definitions, this amounts to the condition

(X - P)·N = 0,
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which can also be written as

PLANES

X·N=P·N.
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We shall also say that this plane is the one perpendicular to N, and
consists of all vectors X such that X - P is perpendicular to N. We
have drawn a typical situation in 3-spaces in Fig. 32.
Instead of saying that N is perpendicular to the plane, one also says

that N is normal to the plane.
Let t be a number # O. Then the set of points X such that

(X - P)·N = 0

coincides with the set of points X such that

(X - P) . tN = O.

Thus we may say that our plane is the plane passing through P and
perpendicular to the line in the direction of N. To find the equation of
the plane, we could use any vector tN (with t # 0) instead of N.

Example 1. Let

P = (2, 1, -1)

Let X = (x, y, z). Then

and N = (-1, 1,3).

X .N = (- l)x + Y + 3z.

Therefore the equation of the plane passing through P and perpendicular
to N is

- x + Y + 3z = - 2 + 1 - 3

or
- x + y + 3z = - 4.

Observe that in 2-space, with X = (x, y), the formulas lead to the
equation of the line in the ordinary sense.

Example 2. The equation of the line in the (x, y)-plane, passing
through (4, - 3) and perpendicular to (- 5, 2) is

-5x+2y= -20-6= -26.
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We are now in position to interpret the coefficients (- 5, 2) of x and y
in this equation. They give rise to a vector perpendicular to the line. In
any equation

ax + by = c

the vector (a, b) is perpendicular to the line determined by the equation.
Similarly, in 3-space, the vector (a, b, c) is perpendicular to the plane
determined by the equation

ax + by + cz = d.

Example 3. The plane determined by the equation

2x - y + 3z = 5

is perpendicular to the vector (2, -1,3). If we want to find a point in
that plane, we of course have many choices. We can give arbitrary val­
ues to x and y, and then solve for z. To get a concrete point, let x = 1,
y = 1. Then we solve for z, namely

3z = 5 - 2 + 1 = 4,

so that z = 1. Thus
(1, 1,1)

is a point in the plane.

In n-space, the equation X· N = p. N is said to be the equation of a
hyperplane. For example,

3x - y + z + 2w = 5

is the equation of a hyperplane in 4-space, perpendicular to (3, -1, 1, 2).
Two vectors A, B are said to be parallel if there exists a number c =1= 0

such that cA = B. Two lines are said to be parallel if, given two distinct
points PI' QI on the first line and P2, Q2 on the second, the vectors

and

are parallel.
Two planes are said to be parallel (in 3-space) if their normal vectors

are parallel. They are said to be perpendicular if their normal vectors are
perpendicular. The angle between two planes is defined to be the angle
between their normal vectors.
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Example 4. Find the cosine of the angle () between the planes.

2x - y + z = 0,

x + 2y - z = 1.

This cosine is the cosine of the angle between the vectors.

Therefore

A = (2, -1,1) and B = (1, 2, -1).

Example 5. Let

A·B 1
cos () = IIAII IIBII 6'

Q= (1, 1, 1) and p = (1, -1, 2).

Let
N = (1,2,3)

Find the point of intersection of the line through P in the direction of N,
and the plane through Q perpendicular to N.
The parametric representation of the line through P in the direction of

N is

(1) X =P+ tN.

The equation of the plane through Q perpendicular to N is

(2) (X - Q)·N = O.

We visualize the line and plane as follows:

Figure 33 .



40 VECTORS [I, §6]

We must find the value of t such that the vector X in (1) also satisfies
(2), that is

(P + tN - Q). N = 0,

or after using the rules of the dot product,

(P - Q). N + tN· N = O.

Solving for t yields

(Q - P)·N 1
t= =-

N·N 14'

Thus the desired point of intersection is

P + tN = (1, -1,2) + -Ml, 2, 3) = nt -l~, U).

Example 6. Find the equation of the plane passing through the three
points

P l = (1,2, -1). P 2 = ( -1, 1, 4), P3 = (1, 3, -2).

We visualize schematically the three points as follows:

Pz
r-------Pa

Figure 34

Then we find a vector N perpendicular to vP and P;P; , or in other
words, perpendicular to P2 - P l and P3 - Pl' We have

P2 - P l = (-2, -1, +5),

P3 - Pl = (0,1, -1).

Let N = (a, b, c). We must solve

and
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in other words,

PLANES

- 2a - b + 5c = 0,

b - c = o.
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We take b = c = 1 and solve for a = 2. Then

N = (2, 1, 1)

satisfies our requirements. The plane perpendicular to N, passing
through P 1 is the desired plane. Its equation is therefore X· N = Pl· N,

that is

2x + Y + z = 2 + 2 - 1 = 3.

Distance between a point and a plane. Consider a plane defined by the
equation

(X - P)·N = 0,

and let Q be an arbitrary point. We wish to find a formula for the
distance between Q and the plane. By this we mean the length of the
segment from Q to the point of intersection of the perpendicular line to
the plane through Q, as on the figure. We let Q' be this point of inter­
section.

Q

Figure 35

From the geometry, we have:

length of the segment QQ' = length of the projection of QP on QQ'.
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We can express the length of this projection in terms of the dot product
as follows. A unit vector in the direction of N, which is perpendicular to
the plane, is given by N/IINII. Then

length of the projection ofQP on QQ'

= norm of the projection of Q - P on N/IINII

= I(Q - p)·II~III·

This can also be written in the form:

distance between Q and the plane = I(Q - P)· N I
IINII .

Example 7. Let

Q = (1,3,5), P = (-1,1,7) and N = (-1,1, -1).

The equation of the plane is

-x + y - z = -5.

We find IINII = .j3,

Q - P = (2, 2, - 2) and (Q - P) .N = - 2 + 2 + 2 = 2.

Hence the distance between Q and the plane is 2/.j3.

I, §6. EXERCISES

1. Show that the lines 2x + 3y = 1 and 5x - 5y = 7 are not perpendicular.

2. Let y = mx + band y = m'x + c be the equations of two lines in the plane.
Write down vectors perpendicular to these lines. Show that these vectors are
perpendicular to each other if and only if mm' = -1.

Find the equation of the line in 2-space, perpendicular to N and passing through
P, for the following values of Nand P.

3. N=(I, -1), P=(-5,3)

5. Show that the lines

4. N = ( - 5,4), P = (3, 2)

are not perpendicular.

3x - 5y = 1, 2x + 3y = 5
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6. Which of the following pairs of lines are perpendicular?
(a) 3x - 5y = 1 and 2x + y = 2
(b) 2x + 7y = 1 and x - y = 5
(c) 3x - 5y = 1 and 5x + 3y = 7
(d) -x + y = 2 and x + y = 9

7. Find the equation of the plane perpendicular to the given vector Nand
passing through the given point P.
(a) N = (1, -1,3), P = (4,2, -1)
(b) N = (-3, -2,4), P = (2, 1t, -5)
(c) N = (-1,0,5), P = (2, 3, 7)

8. Find the equation of the plane passing through the following three points.
(a) (2,1,1), (3, -1,1), (4,1, -1)
(b) (-2,3, -1), (2,2,3), (-4, -1,1)
(c) (-5, -1,2), (1,2, -1), (3, -1,2)

9. Find a vector perpendicular to (1,2, - 3) and (2, -1,3), and another vector
perpendicular to (-1,3,2) and (2, 1, 1).

10. Find a vector parallel to the line of intersection of the two planes

2x - y + z = 1,

11. Same question for the planes,

2x + Y + 5z = 2,

3x + Y + z = 2.

3x - 2y + z = 3.

12. Find a parametric representation for the line of intersection of the planes of
Exercises 10 and It.

13. Find the cosine of the angle between the following planes:
(a) x + y + z = 1 (b) 2x + 3y - z = 2

x-y-z=5 x- y+z=1
(c) x + 2y - z = 1 (d) 2x + y + z = 3
-x+~+z=2 -x-y+z=1t

14. (a) Let P = (1, 3, 5) and A = (- 2, 1, 1). Find the intersection of the line
through P in the direction of A, and the plane 2x + 3y - z = 1.

(b) Let P = (1,2, -1). Find the point of intersection of the plane

3x - 4y + z = 2,

with the line through P, perpendicular to that plane.

15. Let Q= (1, -1,2), P = (1, 3, - 2), and N = (1, 2, 2). Find the point of the
intersection of the line through P in the direction of N, and the plane
through Q perpendicular to N.

16. Find the distance between the indicated point and plane.
(a) (1, 1,2) and 3x + y - 5z = 2
(b) (-1,3,2) and 2x-4y+z= 1
(c) (3, - 2, 1) and the yz-plane
(d) (- 3, - 2, 1) and the yz-plane
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17. Draw the triangle with vertices A = (1, 1), B = (2, 3), and C = (3, -1). Draw
the point P such that AP.l BC and P belongs to the line passing through
the points Band C.
(a) Find the cosine of the angle of the triangle whose vertex is at A.
(b) What are the coordinates of P?

18. (a) Find the equation of the plane M passing through the point P = (1, 1, 1)
and perpendicular to the vector ON, where N = (1,2,0).

(b) Find a parametric representation of the line L passing through

Q=(1,4,0)

and perpendicular to the plane M.
(c) What is the distance from Q to the plane M?

19. Find the cosine of the angle between the planes

2x + 4y - z = 5

I, §7. THE CROSS PRODUCT

and x - 3y + 2z = O.

This section will not be used until either Chapter XII, on surface inte­
grals, or Chapter XVII, on the change of variables formula. Conse­
quently, it can be omitted until then. We include it here because as a
matter of taste, some people like to see immediately how to construct a
perpendicular vector to a plane by means of the cross product. Also this
section is completely elementary, not depending on anything much, and a
reader might want to use it independently. Hence we do not want to
make it appear as if it is tied up with the more elaborate material of
the later chapters.

Let A = (ai' a2 , a3 ) and B = (b 1, b2 , b3) be two vectors in 3-space. We
define their cross product

For instance, if A = (2, 3, -1) and B = (-1, 1,5), then

A x B = (16, -9,5).

Remark. At first sight, the pattern of indices for the components of
A x B see~s rather random and hard to remember. It is possible to give
a more easily remembered form to this cross product by using the ex­
pansion rule for a determinant according to the pattern of Chapter XV,
§2. Indeed, let

£1 = (1,0,0), £2 = (0, 1,0), £3 = (0,0, 1).
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If we follow the above-mentioned pattern, we may write symbolically the
cross product in the form of a determinant

The right-hand side, by definition, is supposed to be:

E I (a 2b3 - a3 b2 ) - E 2(a l b3 - a3 b l ) + E3(a l b2 - a2 bl ),

which gives precisely the expression for the cross product A x B.

We leave the following assertions as exercises:

CP 1. A x B = -(B x A).

CP 2. A x (B + C) = (A x B) + (A x C), and

(B + C) x A = B x A + C x A.

CP 3. For any number a, we have

(aA) x B = a(A x B) = A x (aB).

CP 4. (A x B) x C = (A· C)B - (B· C)A.

CP 5. A x B is perpendicular to both A and B.

As an example, we carry out this computation. We have

A·(A x B) = al (a 2 b3 - a3 b2 ) + azCa3 bl - al b3 ) + a3(a l b2 - a2 b
l

)

=0

because all terms cancel. Similarly for B· (A x B). This perpendicularity
may be drawn as follows.

AXB

>c0
0\

\

~XA=-AXB

Figure 36
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The vector A x B is perpendicular to the plane spanned by A and B. So
is B x A, but B x A points in the opposite direction.
Finally, as a last property, we have

CP 6. (A X B)2 = (A- A)(B· B) - (A. B)2.

Again, this can be verified by a computation on the coordinates.
Namely, we have

(A· A)(B· B) - (A· B)2

Expanding everything out, we find that CP 6 drops out.

From our interpretation of the dot product, and the definition of the
norm, we can rewrite CP 6 in the form

where () is the angle between A and B. Hence we obtain

or

IIA x BII = IIAII IIBlllsin ()I·

This is analogous to the formula which gave us the absolute value of
A-B.
This formula can be used to make another interpretation of the cross

product. Indeed, we see that IIA x BII is the area of the parallelogram
spanned by A and B, as shown on Fig. 37.

Figure 37
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Figure 38
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If we consider the plane containing the located vectors 01 and OR, then
the picture looks like that in Fig. 38, and our assertion amounts simply
to the statement that the area of a parallelogram is equal to the base
times the altitude.

Example. Let A = (3, 1, 4) and B = (- 2, 5, 3). Then the area of the
parallelogram spanned by A and B is easily computed. First we get the
cross product,

A x B = (3 - 20, - 8 - 9, 15 + 2) = (-17, -17, 17).

The area of the parallelogram spanned by A and B is therefore equal to
the norm of this vector, and that is

IIA x BII=~= 17}3.

These considerations will be used especially in Chapter XII, when we dis­
cuss surface area, and in Chapter XVII, when we deal with the change of
variables formula.

I, §7. EXERCISES

Find A x B for the following vectors.

1. A = (1, -1,1) and B = (-2,3,1)

2. A = (-1, 1,2) and B = (1,0, -1)

3. A = (1, 1, - 3) and B = (-1, - 2, - 3)

4. Find A x A and B x B, in Exercises 1 through 3.

S. Let E1 = (1,0,0), E2 = (0, 1,0), and E3 = (0,0,1). Find E 1 x E2 , E2 X E3 ,

E3 X E 1•

6. Show that for any vector A in 3-space we have A x A = o.
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7. Compute E1 x (£1 x £2) and (E 1 x £1) X E 2 • Are these vectors equal to
each other?

8. Carry out the proofs of CP 1 through CP 4.

9. Compute the area of the parallelogram spanned by the following vectors.
(a) A = (3, -2,4) and B = (5, 1, 1)
(b) A = (3, 1,2) and B = (-1,2,4)
(c) A = (4, -2,5) and B = (3, 1, -1)
(d) A = (- 2,1,3) and B = (2, - 3,4)

Do the next exercises after you have read Chapter II, §1.

10. Using coordinates, prove that if X(t) and Y(t) are two differentiable curves
(defined for the same values of t), then

d[X(t) x Y(t)] dY(t) dX(t)
--=-----'.-d-t--'----"- = X(t) x -d-t- + -d-t- x Y(t).

11. Show (using only Exercise 10) that

dat [X(t) x X'(t)] = X(t) x X"(t).

12. Let Y(t) = X(t)· (X'(t) x X"(t». Show that

Y'(t) = X(t)· (X'(t) x X"'(t»).



CHAPTER II

Differentiation of Vectors

II, §1. DERIVATIVE

Consider a bug moving along some curve in 3-dimensional space. The
position of the bug at time t is given by the three coordinates

(x(t), y(t), z(t»,

which depend on t. We abbreviate these by X(t). For instance, the
position of a bug moving along a straight line was seen in the preceding
chapter to be given by

X(t) = P + tA,

where P is the starting point, and A gives the direction of the bug.
However, we can give examples when the bug does not move on a
straight line. First we look at an example in the plane.

Example 1. Let X(O) = (cos 0, sin 0). Then the bug moves around a
circle of radius 1 in counterclockwise direction.

(cos 8, sin 8)___-r--.

Figure 1
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z

Here we used e as the variable, corresponding to the angle as shown on
the figure. Let w be the angular speed of the bug, and assume w con­
stant. Thus de/dt = wand

e = wt + a constant.
For simplicity, assume that the constant is O. Then we can write the
position of the bug as

X(e) = X(wt) = (cos wt, sin wt).

If the angular speed is 1, then we have simply the representation

X(t) = (cos t, sin t).

Example 2. If the bug moves around a circle of radius 2 with angular
speed equal to 1, then its position at time t is given by

X(t) = (2 cos t, 2 sin t).

More generally, if the bug moves around a circle of radius r, then the
position is given by

X(t) = (r cos t, r sin t).

In these examples, we assume of course that at time t = 0 the bug starts
at the point (r, 0), that is

X(O) = (r, 0),

where r is the radius of the circle.

Example 3. Suppose the position of the bug is given in 3-space by

X(t) = (cos t, sin t, t).

Then the bug moves along a spiral. Its coordinates are given as func­
tions of t by

x(t) = cos t,

yet) = sin t,

z(t) = t.

The position at time t is obtained by plugging
in the special value of t. Thus:

X(n) = (cos n, sin n, n) = (-1,0, n)

X(1) = (cos 1, sin 1, 1).

We may now give the definition of a curve in
general.

Figure 2
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Definition. Let I be an interval. A parametrized curve (defined on this
interval) is an association which to each point of I associates a vector. If
X denotes a curve defined on I, and t is a point of I, then X(t) denotes
the vector associated to t by X. We often write the association tf-~ X(t)

as an arrow

We also call this association the parametrization of a curve. We call X(t)
the position vector at time t. It can be written in terms of coordinates,

X(t) = (Xl (t), ... ,xn(t»,

each xi(t) being a function of t. We say that this curve is differentiable if
each function x;(t) is a differentiable function of t.

Remark. We take the intervals of definition for our curves to be
open, closed, or also half-open or half-closed. When we define the deri­
vative of a curve, it is understood that the interval of definition contains
more than one point. In that case, at an end point the usual limit of

f(a + h) - f(a)

h

is taken for those h such that the quotient makes sense, i.e. a + h lies in
the interval. If a is a left end point, the quotient is considered only for
h > O. If a is a right end point the quotient is considered only for
h < O. Then the usual rules for differentiation of functions are true in this
greater generality, and thus Rules 1 through 4 below, and the chain rule
of §2 remain true also. [An example of a statement which is not always
true for curves defined over closed intervals is given in Exercise l1(b).]
Let us try to differentiate curves. We consider the Newton quotient

X(t + h) - X(t)

h

Its numerator is illustrated in Fig. 3.

Figure 3
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As h approaches 0, we see geometrically that

X(t + h) - X(t)

h

should approach a vector pointing in the direction of the curve. We can
write the Newton quotient in terms of coordinates,

and see that each component is a Newton quotient for the corresponding
coordinate. We assume that each xlt) is differentiable. Then each quo­
tient

xlt + h) - xlt)

h

approaches the derivatives dxjdt. For this reason, we define the deriva­
tive dX/dt to be

I dX (dX 1 dXn)
X(t) = at = dt""'at .

In fact, we could also say that the vector

(
dX 1 dXn)
dt , ... , dt

is the limit of the Newton quotient

X(t + h) - X(t)

h

as h approaches 0. Indeed, as h approaches 0, each component

xj(t + h) - X;(t)

h

approaches dxJdt. Hence the Newton quotient approaches the vector
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Example 4. If X(t) = (cos t, sin t, t) then

dX . 1)- = (- SIll t, cos t, .
dt

Physicists often denote dX/dt by X; thus in the previous example, we
could also write

X(t) = (-sin t, cos t, 1) = X'(t).

We define the velocity vector of the curve at time t to be the· vector
X'(t).

Example 5. When X(t) = (cos t, sin t, t), then

X'(t) = (-sint, cost, 1);

the velocity vector at t = n is

X'(n) = (0, -1, 1),

and for ~ = n/4 we get

X'(n/4) = (-1/.ji, 1/.ji, 1).

The velocity vector is located at the origin, but when we translate it
to the point X(t), then we visualize it as tangent to the curve, as in the
next figure.

X(t)+X'(t)

Figure 4

We define the tangent line to a curve X at time t to be the line
passing through X(t) in the direction of X'(t), provided that X'(t)"# o.
Otherwise, we don't define a tangent line. We have therefore given two
interpretations for X'(t):

X'(t) is the velocity at time t;

X'(t) is parallel to a tangent vector at time t.
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By abuse of language, we sometimes call X'(t) a tangent vector, although
)

strictly speaking, we should refer to the located vector X(t)(X(t) + X'(t))
as the tangent vector. However, to write down this located vector each
time is cumbersome.

Example 6. Find a parametric equation of the tangent line to the
curve X(t) = (sin t, cos t) at t = n/3.

h . nWe ave X'(t) =(cos t, -Sill t), so that at t ="3 we get

and X(~) = (.)3 !)3 2 '2 .

Let P = X(n/3) and A = X'(n/3). Then a parametric equation of the
tangent line at the required point is

L(t) = P + tA = (f 'D+ G, -f}·
(We use another letter L because X is already occupied.) In terms of the
coordinates L(t) = (x(t), y(t)), we can write the tangent line as

.)31
x(t) = - + - t

2 2'

1.)3
y(t) = - - - t.

2 2

Example 7. Find the equation of the plane perpendicular to the spiral

X(t) = (cos t, sin t, t)

when t = n/3.

Figure 5

Let the given point be

(
n) ( n .nn)P = X "3 = cos "3' Sill "3'"3 '
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so that more simply,
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We must then find a vector N perpendicular to the plane at the given
point P.
We have X'(t) = (-sin t, cos t, 1), so

The equation of the plane through P perpendicular to N is

X·N=P·N,

so the equation of the desired plane is

1T.

3

We define the speed of the curve X(t) to be the norm of the velocity
vector. If we denote the speed by v(t), then by definition we have

I v(t) = IIX'(t)ll, I
and thus

V(t)2 = X'(t)2 = X'(t)· X'(t).

We can also omit the t from the notation, and write

Example 8. The speed of the bug moving on the circle

X(t) = (cos t, sin t)

is the norm of the velocity X'(t) = ( - sin t, cos t), and so is

v(t) = J( -sin t)2 + (cos2 t) = 1.
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Example 9. The speed of the bug moving on the spiral

X(t) = (cos t, sin t, t)

[II, §1]

is the norm of the velocity X'(t) = (-sin t, cos t, 1), and so is

v(t) = J( -sin t)2 + (cos2 t) + 1

=)2.

We define the acceleration vector to be the derivative

dX'(t)
--=X"(t)

dt '

provided of course that X' is differentiable. We shall also denote the
acceleration vector by X"(t) as above.
We shall now discuss acceleration. There are two possible definitions

for a scalar acceleration:
First there is the rate of change of the speed, that is

dv
dt = v'(t).

Second, there is the norm of the acceleration vector, that is

IIX"(t) II.

Warning. These two are usually not equal. Almost any example will
show this.

Example 10. Let

X(t) = (cos t, sin t).

Then:
v(t) = IIX'(t)11 = 1

X"(t) = (-cos t, -sin t)

so

so

dv/dt = O.

IIX"(t)1I = 1.

Thus if and when we need to refer to scalar acceleration, we must always
say which one we mean. One could use the notation a(t) for scalar
acceleration, but one must specify which of the two possibilities a(t) de­
notes.
The fact that the above two quantities are not equal reflects the physi­

cal interpretation. A bug moving around a circle at uniform speed has
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dv/dt = O. However, the acceleration vector is not 0, because the velocity
vector is constantly changing. Hence the norm of the acceleration vector
is not equal to O.
We shall list the rules for differentiation. These will concern sums,

products, and the chain rule which is postponed to the next section.
The derivative of a curve is defined componentwise. Thus the rules

for the derivative will be very similar to the rules for differentiating func­
tions.

Rule 1. Let X(t) and Y(t) be two differentiable curves (defined for the
same values of t). Then the sum X(t) + Y(t) is differentiable, and

d(X(t) + Y(t)) dX dY
----'----'-'--dt-....:....:...:. = -d-t + -d-t .

Rule 2. Let c be a number, and let X(t) be differentiable. Then cX(t) is
differentiable, and

d(cX(t)) dX
dt = c --;It.

Rule 3. Let X(t) and Y(t) be two differentiable curves (defined for the
same values of t). Then X(t)· Y(t) is a differentiable function whose
derivative is

d
dt [X(t)· Y(t)] = X(t)· Y'(t) + X'(t) . Y(t).

(This is formally analogous to the derivative of a product of functions,
namely the first times the derivative of the second plus the second times
the derivative of the first, except that the product is now a scalar pro­
duct.)

As an example of the proofs we shall give the third one in detail, and
leave the others to you as exercises.
Let for simplicity

and

Then

dYl(t) dX 1 dY2 dX2= x1(t) ----;It + dt Yl(t) + xit) dt + dt Y2(t)

= X(t)· Y'(t) + X'(t) . Y(t),

by combining the appropriate terms.
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The proof for 3-space or n-space is obtained by replacing 2 by 3 or n,
and inserting ... in the middle to take into account the other coordinates.

Example 11. The square X(t)2 = X(t)· X(t) comes up frequently in
applications, for instance because it can be interpreted as the square of
the distance of X(t) from the origin. Using the rule for the derivative of
a product, we find the formula

~t X(t)2 = 2X(t)· X'(t).

You should memorize this formula by repeating it out loud.

Suppose that IIX(t)11 is constant. This means that X(t) lies on a
sphere of constant radius k. Taking the square yields

that is, X(t)2 is also constant. Differentiate both sides with respect to t.
Then we obtain

2X(t) . X'(t) = 0 and therefore X(t)· X'(t) = 0

Interpretation. Suppose a bug moves along a curve X(t) which remains
at constant distance from the origin, i.e. IIX(t)1I = k is constant. Then
the position vector X(t) is perpendicular to the velocity X'(t).

If IIX(t)1I 2 = 1 then X(t) 1- X'(t).

Curve on a sphere

If X(t) is a curve and f(t) is a function, defined for the same values of
t, then we may also form the product f(t)X(t) of the number f(t) by the
vector X(t).

Example 12. Let X(t) = (cos t, sin t, t) and f(t) = et, then

f(t)X(t) = (et cos t, et sin t, ett),

and
f(n)X(n) = (e"( -1), e"(O), e"n) = (-e", 0, e"n).
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If X(t) = (x(t), y(t), z(t», then

f(t)X(t) = (f(t)x(t), f(t)y(t), f(t)z(t».

We have a rule for such differentiation analogous to Rule 3.

Rule 4. If both f(t) and X(t) are defined over the same interval, and
are differentiable, then so is f(t)X(t), and

!:.- f(t)X(t) = f(t)X'(t) + f'(t)X(t).
dt

The proof is just the same as for Rule 3.

Example 13. Let A be a fixed vector, and let f be an ordinary differ­
entiable function of one variable. Let F(t) = f(t)A. Then F'(t) = f'(t)A.
For instance, if F(t) = (cos t)A and A = (a, b) where a, b are fixed
numbers, then

F(t) = (a cos t, b cos t)

and thus

F'(t) = (-a sin t, - b sin t) = (-sin t)A.

Similarly, if A, B are fixed vectors, and

G(t) = (cos t)A + (sin t)B,

then

G'(t) = (-sin t)A + (cos t)B.

II, §1. EXERCISES

Find the velocity of the following curves.

1. (e', cos t, sin t)

3. (cos t, sin t)

2. (sin 2t, log(l + t), t)

4. (cos 3t, sin 3t)

5. (a) In Exercises 3 and 4, show that the velocity vector is perpendicular to
the position vector. Is this also the case in Exercises 1 and 2?

(b) In Exercises 3 and 4, show that the acceleration vector is in the opposite
direction from the position vector.

6. Let A, B be two constant vectors. What is the velocity vector of the curve

x = A + tB?
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7. Let X(t) be a differentiable curve. A plane or line which is perpendicular to
the velocity vector X'(t) at the point X(t) is said to be normal to the curve
at the point t or also at the point X(t). Find the equation of a line normal
to the curves of Exercises 3 and 4 at the point 1[/3.

8. (a) Find the equation of a plane normal to the curve

at the point t = 1.
(b) Same question at the point t = O.

9. Let P be the point (1, 2, 3, 4) and Q the point (4, 3, 2, 1). Let A be the
vector (1, 1, 1, 1). Let L be the line passing through P and parallel to A.
(a) Given a point X on the line L, compute the distance between Q and X
(as a function of the parameter t).

(b) Show that there is precisely one point X 0 on the line such that this

distance achieves a minimum, and that this minimum is 2}5.
(c) Show that X 0 - Q is perpendicular to the line.

10. Let P be the point (1, - 1, 3, 1) and Q the point (1, 1, - 1, 2). Let A be the
vector (1, - 3, 2, 1). Solve the same questions as in the preceding problem,

except that in this case the minimum distance is JI46/15.

11. Let X(t) be a differentiable curve defined on an open interval. Let Q be a
point which is not on the curve.
(a) Write down the formula for the distance between Q and an arbitrary
point on the curve.

(b) If to is a value of t such that the distance between Q and X(to) is at a
minimum, show that the vector Q - X(to) is normal to the curve, at the
point X(to)' [Hint: Investigate the minimum of the square of the dis­
tance.]

(c) If X(t) is the parametric representation of a straight line, show that there
exists a unique value to such that the distance between Q and X(to) is a
minimum.

12. Let N be a non-zero vector, c a number, and Q a point. Let Po be the point
of intersection of the line passing through Q, in the direction of N, and the
plane X .N = c. Show that for all points P of the plane, we have

IIQ - Poll ~ IIQ - PII·

13. Prove that if the speed is constant, then the acceleration is perpendicular to
the velocity.

14. Prove that if the acceleration of a curve is always perpendicular to its velo­
city, then its speed is constant.

15. Let B be a non-zero vector, and let X(t) be such that X(t)· B = t for all t.

Assume also that the angle between X'(t) and B is constant. Show that
X"(t) is perpendicular to X'(t).
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16. Write a parametric representation for the tangent line to the given curve at
the given point in each of the following cases.
(a) (cos 4t, sin 4t, t) at the point t = n/8
(b) (t, 2t, t2) at the point (1, 2, 1)

(c) (e3', e- 3', 3J2 t) at t = 1
(d) (t, t3 , t4 ) at the point (1, 1, 1)

17. Let A, B be fixed non-zero vectors. Let

Show that X"(t) has the same direction as X(t).

18. Show that the two curves (e', e2', 1 - e- I
) and (1 - 0, cos 0, sin 0) intersect

at the point (1, 1, 0). What is the angle between their tangents at that point?

19. At what points does the curve (2t 2
, 1 - t, 3 + t2

) intersect the plane

3x -14y + z - 10 = O?

20. Let X(t) be a differentiable curve.
(a) Suppose that X'(t) = 0 for all t throughout its interval of definition I.
What can you say about the curve?

(b) Suppose X'(t) #- 0 but X"(t) = 0 for all t in the interval. What can you
say about the curve?

21. Let X(t) = (a cos t, a sin t, bt), where a, b are constant. Let O(t) be the
angle which the tangent line at a given point of the curve makes with the

z-axis. Show that cos O(t) is the constant b/Ja2 + b2 •

22. Show that the velocity and acceleration vectors of the curve in Exercise 21
have constant norms (magnitudes).

23. Let B be a fixed unit vector, and let X(t) be a curve such that X(t)· B = e21

for all t. Assume also that the velocity vector of the curve has a constant
angle 0 with the vector B, with 0 < 0 < n/2.
(a) Show that the speed is 2e21/cos O.
(b) Determine the dot product X'(t)· X"(t) in terms of t and O.

24. Let

(
2t 1 - t

2
)Xt=----1( ) 1 + t2 ' 1 + t2 ' •

Show that the cosine of the angle between X(t) and X'(t) is constant.

25. Suppose that a bug moves along a differentiable curve B(t) = (x(t), y(t), z(t)),
lying in the surface Z2 = 1 + x2 + y2. (This means that the coordinates
(x, y, z) of the curve satisfy this equation.)
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(a) Show that
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2x(t)x'(t) = B(t)· B'(t).

[II, §2]

(b) Assume that the cosine of the angle between the vector B(t) and the
velocity vector B'(t) is always positive. Show that the distance of the bug
to the yz-plane increases whenever its x-coordinate is positive.

26. A bug is moving in space on a curve given by

(a) Find a parametric representation of the tangent line at t = 1.
(b) Write the equation of the normal plane to the curve at t = 1.

27. Let a particle move in the plane so that its position at time t is

C(t) = (et cos t, et sin t).

Show that the tangent vector to the curve makes a constant angle of n/4
with the position vector.

II, §2. LENGTH OF CURVES

Suppose a bug travels along a curve X(t). The rate of change of the
distance traveled is equal to the speed, so we may write the equation

ds(t) = v(t).
dt

Consequently it is reasonable to make the following definition.
We define the length of a curve X between two values a, b of t (a ~ b)

in the interval of definition of the curve to be the integral of the speed:

f v(t) dt = f 11X'(t)11 dt.

By definition, we can rewrite this integral in the form

fJ(~Y + (tY dt

f (~Y + (~Y + (~:y dt

when

when

X(t) = (x(t), y(t)),

X(t) = (x(t), y(t), z(t)),
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fbJ(dX1 )2 (dXn)2
a dt + ... + at dt when

Example 1. Let the curve be defined by

X(t) = (sin t, cos t).

Then X'(t) = (cos t, - sin t) and v(t) = Jcos2 t + sin2 t = 1. Hence the
length of the curve between t = 0 and t = 1 is

In this case, of course, the integral is easy to evaluate. There is no
reason why this should always be the case.

Example 2. Set up the integral for the length of the curve

X(t) = (et, sin t, t)

between t = 1 and t = n.
We have X'(t) = (e', cos t, 1). Hence the desired integral is

j:Je2
' + cos2 t + 1 dt.

In this case, there is no easy formula for the integral. In the exercises,
however, the functions are adjusted in such a way that the integral can
be evaluated by elementary techniques of integration. Don't expect this
to be the case in real life, though. The presence of the square root sign
usually makes it impossible to evaluate the length integral by elementary
functions.

II, §2. EXERCISES

1. Find the length of the spiral (cos t, sin t, t) between t = 0 and t = 1.

2. Find the length of the spirals.
(a) (cos 2t, sin 2t, 3t) between t = 1 and t = 3.
(b) (cos 4t, sin 4t, t) between t = 0 and t = nj8.
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3. Find the length of the indicated curve for the given interval:
(a) (t, 2t, t2

) between t = I and t = 3. [Hint: You will get at some point the

integral J~ duo The easiest way of handling that is to let

where

e' - e-'
u = --- = sinh t

2 ' so 1 + sinh2 t = cosh2 t,

e' + e-'
cosht=--­

2

This makes the expression under the square root sign into a perfect square.
This method will in fact prove the general formula

fJa2 + x2 dx = ~ [xJa2 + x 2 + a2 log(x + Ja2 + x 2
)].

Of course, you can check the formula by differentiating the right-hand side,
and just use it for the exercise.

(b) (e 3
', e- 3

', 3fi t) between t = 0 and t = t.
[Hint: At some point you will meet a square root.

The expression under the square root is a perfect square. Try squaring
(e 3' + e - 3'). What do you get?]

4. Find the length of the curve defined by

X(t) = (t - sin t, 1 - cos t)

between (a) t = 0 and t = 2n, (b) t = 0 and t = n/2.

[Hint: Remember the identity

2 1 - cos 28
sin 8= 2

Therefore letting t = 28 gives

1 - cos t = 2 sin2(t/2).

The expression under the integral sign will then be a perfect square.]

5. Find the length of the curve X(t) = (t, log t) between:
(a) t = 1 and t = 2, (b) t = 3 and t = 5. [Hint: Substitute u2

= 1 + t2 to
evaluate the integral. Use partial fractions.]
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6. Find the length of the curve defined by X(t) = (t, log cos t) between t = 0 and
t = rr./4.

7. Let X(t) = (t, t 2
, it3

).

(a) Find the speed of this curve.
(b) Find the length of the curve between t = 0 and t = 1.

8. Let X(t) = (6t, 2t3
, 3J2 t2

). Find the length of the curve between t = 0 and
t = 1.



CHAPTER III

Functions of Several
Variables

We view functions of several variables as functions of points in space.
This appeals to our geometric intuition, and also relates such functions
more easily with the theory of vectors. The gradient will appear as a
natural generalization of the derivative. In this chapter we are mainly
concerned with basic definitions and notions. We postpone the impor­
tant theorems to the next chapter.

III, §1. GRAPHS AND LEVEL CURVES

In order to conform with usual terminology, and for the sake of brevity,
a collection of objects will simply be called a set. In this chapter, we are
mostly concerned with sets of points in space.
Let S be a set of points in n-space. A function (defined on S) is an

association which to each element of S associates a number. For in­
stance, if to each point we associate the numerical value of the tempera­
ture at that point, we have the temperature function.

Remark. In the previous chapter, we considered parametrized curves,
associating a vector to a point. We do not call these functions. Only
when the values of the association are numbers do we use the word
function. We find this to be the most useful convention for this course.

In practice, we sometimes omit mentioning explicitly the set S, since
the context usually makes it clear for which points the function is de­
fined.
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for all (x, y) =F (0,0).

Example 1. In 2-space (the plane) we can define a function f by the
rule

f(x, y) = x2 + y2.

It is defined for all points (x, y) and can be interpreted geometrically as
the square of the distance between the origin and the point.

Example 2. Again in 2-space, we can define a function f by the
formula

x2 _ y2
f(x, y) = x 2 + y2

We do not define f at (0, 0) (also written 0).

Example 3. In 3-space, we can define a function f by the rule

f(x, y, z) = x 2
- sin(xyz) + yz3.

Since a point and a vector are represented by the same thing (namely
an n-tuple), we can think of a function such as the above also as a
function of vectors. When we do not want to write the coordinates, we
write f(X) instead of f(x l , ... ,xn). As with numbers, we call f(X) the
value of f at the point (or vector) X.
Just as with functions of one variable, we define the graph of a func­

tion f of n variables Xl"" 'Xn to be the set of points in (n + I)-space of
the form

the (Xl"" ,xn) being in the domain of definition of f.
When n = 1, the graph of a function f is a set of points (x, f(x».

Thus the graph itself is in 2-space.
When n = 2, the graph of a function f is the set of points

(x, y, f(x, y».

When n = 2, it is already difficult to draw the graph since it involves a
figure in 3-space. The graph of a function of two variables may look like
this:
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For each number c, the equation f(x, y) = c is the equation of a curve
in the plane. We have considerable experience in drawing the graphs of
such curves, and we may therefore assume that we know how to draw
this graph in principle. This curve is called the level curve of f at c. It
gives us the set of points (x, y) where f takes on the value c. By drawing
a number of such level curves, we can get a good description of the
function.

Example 4. Let f(x, y) = x2 + y2. The level curves are described by
equations

These have a solution only when c ~ O. In that case, they are circles
(unless c = 0 in which case the circle of radius 0 is simply the origin). In
Fig. 2, we have drawn the level curves for c = 1 and 4.

!I

--I--t--+---+,--+-=-- .r

!(x,y) = 1

Figure 2

The graph of the function z = f(x, y) = x2 + y2 is then a figure III
3-space, which we may represent as follows.

,+O£..-----y

(x, y)-plane

x

Figure 3
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Example 5. Let the elevation of a mountain in meters be given by the
formula

f(x, y) = 4,000 - 2x2 - 3y4.

We see that f(O, 0) = 4,000 is the highest point of the mountain. As x, y
increase, the altitude decreases. The mountain and its level curves might
look like this.

Figure 4

In this case, the highest point is at the ongm, and the level curves
indicate decreasing altitude as they move away from the origin.

If we deal with a function of three variables, say f(x, y, z), then
(x, y. z) = X is a point in 3-space. In that case, the set of points satisfy­
ing the equation

f(x, y, z) = c

for some constant c is a surface. The notion analogous to that of level
curve is that of level surface.

Example 6. Let f(x, y, z) = x2 + y2 + Z2. Then f is the square of the
distance from the origin. The equation

is the equation of a sphere for c > 0, and the radius is of course~. If
c = 0 this is the equation of a point, namely the origin itself. If c < 0
there is no solution. Thus the level surfaces for the function fare
spheres.

Example 7. Let f(x, y, z) = 3x2 + 2y2 + Z2. Then the level surfaces
for f are defined by the equations

They have the same shape as ellipses, and are called ellipsoids, for c > O.
It is harder to draw figures in 3 dimensions than in 2 dimensions, so

we restrict ourselves to drawing level curves.
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The graph of a function of three variables is the set of points

(x, y, z,f(X, y, Z))

[III, §2]

in 4-dimensional space. Not only is this graph hard to draw, it is impos­
sible to draw. It is, however, possible to define it as we have done by
writing down coordinates of points.
In physics, a function f might be a potential function, giving the value

of the potential energy at each point of space. The level surfaces are
then sometimes called surfaces of equipotential. The function f might also
give a temperature distribution (i.e. its value at a point X is the tempera­
ture at X). In that case, the level surfaces are called isothermal surfaces.

III, §1. EXERCISES

Sketch the level curves for the functions z = f(x, y), where f(x, y) is given by the
following expressions.

1. x 2 + 2y2 2. y - x 2 3. y _ 3x2

4. x _ y2

7. (x - 1)(y - 2)

10. 2x - 3y

13. y2 _ x 2

8. (x + 1)(y + 3)

11. Jx2 + y2

14. (x - 1)2 + (y + 3)2

6. xy

x2 y2
9. -+­
4 16

12. x 2 _ y2

15. (x + 1)2 + y2

III, §2. PARTIAL DERIVATIVES

In this section and the next, we discuss the notion of differentiability for
functions of several variables. When we discussed the derivative of func­
tions of one variable, we assumed that such a function was defined on
an interval. We shall have to make a similar assumption in the case of
several variables, and for this we need to introduce a new notion.
Let U be a set in the plane. We shall say that U is an open set if the

following condition is satisfied. Given a point P in U, there exists an
open disc D of radius a > 0 which is centered at P and such that D is
contained in U.
Let U be a set in space. We shall say that U is an open set in space

if given a point P in U, there exists an open ball B of radius a > 0
which is centered at P and such that B is contained in U.
A similar definition is given of an open set in n-space.
Given a point P in an open set, we can go in all directions from P by

a small distance and still stay within the open set.
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Example 1. In the plane, the set consisting of the first quadrant, ex­
cluding the x- and y-axes, is an open set.
The x-axis is not open in the plane (i.e. in 2-space). Given a point on

the x-axis, we cannot find an open disc centered at the point and con­
tained in the x-axis.

Example 2. Let U be the open ball of radius a> 0 centered at the
origin. Then U is an open set. This is illustrated on Fig. 5.

Figure 5

In the next picture we have drawn an open set in the plane, consisting
of the region inside the curve, but not containing any point of the
boundary. We have also drawn a point P in U, and a ball (disc)
around P contained in U.

Figure 6

When we defined the derivative as a limit of

f(x + h) - f(x)

h

we needed the function f to be defined in some open interval around the
point x.
Now let f be a function of n variables, defined on an open set U.

Then for any point X in U, the function f is also defined at all points
which are close to X, namely all points which are contained in an open
ball centered at X and contained in U. We shall obtain the partial
derivative of f by keeping all but one variable fixed, and taking the
ordinary derivative with respect to the one variable.
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Let us start with two variables. Given a function f(x, y) of two vari­
ables x, y, let us keep y constant and differentiate with respect to x. We
are then led to consider the limit as h approaches 0 of

f(x + h, y) - f(x, y)

h

Definition. If this limit exists, we call it the derivative of f with respect
to the first variable, or also the first partial derivative of f, and denote it
by

(Dd)(x, y).

This notation allows us to use any letters to denote the variables. For
instance,

1· feu + h, v) - feu, v) - D f( )
1m h - 1 u,v.
h~O

Note that Dd is a single function. We often omit the parentheses, writ­
mg

Dd(u, v) = (Dd)(u, v)

for simplicity.
Also, if the variables x, yare agreed upon, then we write

of
Dd(x, y) = ax'

Similarly, we define

f( ) 1
· fex, y + k) - fex, y)

D2 x, Y = 1m k
k~O

and also write

of
Dd(x, y) = oy'

Example 3. Let f(x, y) = X
2 y3. Then

and
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We observe that the partial derivatives are themselves functions. This
is the reason why the notation DJ is sometimes more useful than the
notation aflax;. It allows us to write DJ(P) for any point P in the set
where the partial is defined. There cannot be any ambiguity or confu­
sion with a (meaningless) symbol D j (f(P»), since f(P) is a number. Thus
DJ(P) means (DJ)(P). It is the value of the function DJ at P.

Example 4. Let f(x, y) = sin xy. To find Dzf(l, n), we first find
aflay, or Dd(x, y), which is simply

Dzf(x, y) = (cos xy)x.

Hence

Dd(l, n) = (cos n)· 1 = -1.

Also,

A similar definition of the partial derivatives is given in 3-space. Let f
be a function of three variables (x, y, z), defined on an open set U in
3-space. We define, for instance,

(D f)( )
_ af _ I· I(x, y, z + h) - I(x, y, z)

3 x, y, Z - - 1m :...-:.--'--.:~_~-----"-~~----C.

az h-->O h '

and similarly for the other variables.

Example 5. Let f(x, y, z) = xZy sin(yz). Then

Let X = (x, y, z) for abbreviation. Let

E1 = (1,0,0), E z = (0, 1,0), E3 = (0,0,1)

be the three standard unit vectors in the directions of the coordinate
axes. Then we can abbreviate the Newton quotient for the partial deri­
vatives by writing

DJ(X) = aI = lim f(X + hE;) - I(X)
ax; h-->O h
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Indeed, observe that

hE l = (h, 0, 0) so f(X + hE l ) = f(x + h, y, z),

and similarly for the other two variables.
In a similar fashion we can define the partial derivatives in n-space, by

a definition which applies simultaneously to 2-space and 3-space. Let f
be a function defined on an open set U in n-space. Let the variables be
(Xl' ... ,xn)·

For small values of h, the point

is contained in U. Hence the function is defined at that point, and we
may form the quotient

f(x l + h, X 2 , .•. ,xn) - f(x 1, •.. ,xn)

h

If the limit exists as h tends to 0, then we call it the first partial deriva­
tive of f and denote it by

Similarly, we let

af
DJ(X)=­

ax;

if it exists, and call it the i-th partial derivative.
Let

E; = (0, ... ,0, 1, 0, ... ,0)

be the i-th vector in the direction of the i-th coordinate axis, having
components equal to °except for the i-th component which is 1. Then
we have

f(X + hE·) - f(X)
(DJ)(X) = lim ' .

h .... O h

This is a very useful brief notation which applies simultaneously to
2-space, 3-space, or n-space.
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Definition. Let f be a function of two variables (x, y). We define the
gradient of f, written grad f, to be the vector

(
of Of)

gradf(x, y) = ox' oy .

Example 6. Let f(x, y) = X
2y3. Then

so that in this case,

gradf(1, 2) = (16, 12).

Thus the gradient of a function f associates a vector to a point X.
If f is a function of three variables (x, y, z), then we define the gradi­

ent to be

(
of of Of)

gradf(x, y, z) = ox' oy' oz .

Example 7. Let f(x, y, z) = x 2y sin(yz). Find grad f(1, 1, n). First we
find the three partial derivatives, which are:

of . (
ox = 2xy sm yz),

of 2[y .
oy = x cos(yz)z + sm(yz)],

We then substitute (1, 1, n) for (x, y, z) in these partials, and get

gradf(1, 1, n) = (0, -n, -1).

Let f be defined in an open set U in n-space, and assume that
the partial derivatives of f exist at each point X of U. We define the
gradient of f at X to be the vector

(
of Of)gradf(X)= ox1' ... 'ox

n
= (Dtf(X), ... ,Dnf(X),
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whose components are the partial derivatives. One must read this

(grad f)( X),

but we shall usually omit the parentheses around grad f. Sometimes one
also writes Vf instead of grad f. Thus in 2-space we also write

Vf(x, y) = (V f)(x, y) = (Dd(x, y), D2f(x, y)),

and similarly in 3-space,

Vf(x, y, z) = (V f)(x, y, z) = (Dd(x, y, z), D2f(x, y, z), D3 f(x, y, z)).

So far, we defined the gradient only by a formula with partial deriva­
tives. We shall give a geometric interpretation for the gradient in
Chapter IV, §3. There we shall see that it gives the direction of
maximal increase of the function, and that its magnitude is the rate of
increase in that direction.
Using the formula for the derivative of a sum of two functions, and

the derivative of a constant times a function, we conclude at once that
the gradient satisfies the following properties:

Theorem 2.1. Let f, g be two functions defined on an open set U, and
assume that their partial derivatives exist at every point of U. Let c be
a number. Then

grad(f+ g) = gradf+ grad g,

grad(cf) = c gradf·

We shall give later several geometric and physical interpretations for
the gradient.

III, §2. EXERCISES

Find the partial derivatives

of
ax'

and

for the following functions f(x, y) or f(x, y, z).

1. xy + z 2. X 2y 5 + 1 3. sin(xy) + cos z

4. cos(xy) s. sin(xyz)
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7. x2 sin(yz) 8. xyz 9. xz + yz + xy

10. x cos(y - 3z) + arcsin(xy)

11. Find grad f(P) if P is the point (1, 2, 3) in Exercises 1, 2, 6, 8, and 9.

12. Find grad f(P) if P is the point (1, n, n) in Exercises 4, 5, 7.

13. Find grad f(P) if

f(x, y, z) = log(z + sin(y2 - x))

and

P = (1, -1, 1).

14. Find the partial derivatives of x Y. [Hint: x Y = eYIOgX.]

Find the gradient of the following functions at the given point.

15. f(x, y, z) = e- 2x cos(yz) at (1, n, n)

16. f(x, y, z) = e3x +y sin(5z) at (0, 0, n/6)

III, §3. DIFFERENTIABILITY AND GRADIENT

Let f be a function defined on an open set U. Let X be a point of U.
For all vectors H ~Hch that IIHII is small (and H #- 0), the point X + H
also lies in the open set. However, we cannot form a quotient

f(X + H) - f(x)

H

because it is meaningless to divide by a vector. In order to define what
we mean for a function f to be differentiable, we must therefore find a
way which does not involve dividing by H.
We reconsider the case of functions of one variable. Let us fix a

number x. We had defined the derivative to be

f 'e )= I' f(x + h) - f(x)
x 1m h .

h-O

Let

cp(h) = f(x + h~ - f(x) _ f'(x).

Then cp(h) is not defined when h = 0, but

lim cp(h) = O.
h-O
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We can write

FUNCTIONS OF SEVERAL VARIABLES

f(x + h) - f(x) = f'(x)h + h<p(h).

[III, §3]

This relation has meaning so far only when h =I O. However, we observe
that if we define <p(0) to be 0, then the preceding relation is obviously
true when h = 0 (because we just get 0 = 0).
Let

g(h) = <p(h) if h> 0,

g(h) = - <p(h) if h < O.

Then we have shown that if f is differentiable, there exists a function 9
such that

(1)

and

f(x + h) - f(x) = f'(x)h + Ihlg(h),

lim g(h) = O.
h-+O

Conversely, suppose that there exists a number a and a function g(h)
such that

(la)

and

We find for h =I 0,

f(x + h) - f(x) = ah + Ihlg(h).

lim g(h) = O.
h-+O

f(x + h) - f(x) _ l!1 (h)
h -a+ h 9 .

Taking the limit as h approaches 0, we observe that

Hence the limit of the Newton quotient exists and is equal to a. Hence f
is differentiable, and its derivative f'(x) is equal to a.
Therefore, the existence of a number a and a function 9 satisfying (la)

above could have been used as the definition of differentiability in the
case of functions of one variable. The great advantage of (1) is that no h
appears in the denominator. It is this relation which will suggest to us
how to define differentiability for functions of several variables, and how
to prove the chain rule for them.
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Let us begin with two variables. We let

x = (x,Y) and H = (h, k).

Then the notion corresponding to x + h in one variable is here

x + H = (x + h, Y + k).

We wish to compare the values of a function f at X and X + H, i.e. we
wish to investigate the difference

f(X + H) - f(X) = f(x + h, y + k) - f(x, y).

Definition. We say that f is differentiable at X if the partial derivatives

of

ox
and

of

oy

exist, and if there exists a function 9 (defined for small H) such that

lim g(H) = 0
H.... O

and

(2)
of of

f(x + h, y + k) - f(x, y) = ox h + oy k + IIHlIg(H).

We view the term

as an approximation to f(X + H) - f(X), depending in a particularly
simple way on hand k.

If we use the abbreviation

gradf= Vf,

then formula (2) can be written

I f(X + H) - f(X) = V f(x)· H + IIHlIg(H).

As with grad f, one must read (V f)(X) and not the meaningless V(f(X»
since f(X) is a number for each value of X, and thus it makes no sense
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to apply V to a number. The symbol V is applied to the function f, and
(V f)(X) is the value of Vf at X.

We now consider a function of n variables.
Let f be a function defined on an open set U. Let X be a point of U.

If H = (h l ,··· ,hn) is a vector such that IIHII is small enough, then X + H
will also be a point of U and so f(X + H) is defined. Note that

This is the generalization of the x + h with which we dealt previously in
one variable, or the (x + h, y + k) in two variables. For three variables,
we already run out of convenient letters, so we may as well write n
instead of 3.

Definition. We say that f is differentiable at X if the partial derivatives
Dd(X), ... ,Dnf(X) exist, and if there exists a function g (defined for
small H) such that

and

lim g(H) = 0
H-O

(also written lim g(H) = 0)
IIHII-O

f(X + H) - f(X) = Dd(X)h l + ... + Dnf(x)hn + IIHlIg(H).

With the other notflion for partial derivatives, this last relation reads:

8f 8f
f(X + if) - f(X) = -8 h l + ... + -8 hn + IIHllg(H).

Xl Xn

We say that f is differentiable in the open set U if it is differentiable at
every point of U, so that the above relation holds for every point X in
U.
In view of the definition of the gradient in §2, we can rewrite our

fundamental relation in the form

(3) I f(X + H) - f(X) = (gradf(X)· H + IIHlIg(H). I

The term IIHllg(H) has an order of magnitude smaller than the previous
term involving the dot product. This is one advantage of the present
notation. We know how to handle the formalism of dot products and
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are accustomed to it, and its geometric interpretation. This will help us
later in interpreting the gradient geometrically.

Example 1. Suppose that we consider values for H pointing only in
the direction of the standard unit vectors. In the case of two variables,
consider for instance H = (h, 0). Then for such H, the condition for
differentiability reads:

of
f(X + H) = f(x + h, y) = f(x, y) + ox h + Ihlg(H).

In higher dimensional space, let E; = (0, ... ,0, 1, 0, ... ,0) be the i-th
unit vector. Let H = hE; for some number h, so that

H = (0, ... ,0, h, 0, ... ,0).

Then for such H,

f(X + H) = f(X + hEJ = f(X) + ~~. h + Ihlg(H),
•

and therefore if h -# 0, we obtain

f(X +~ - f(X) = DJ(X) + I~I g(H).

Because of the special choice of H, we can divide by the number h, but
we are not dividing by the vector H.
The functions which we meet in practice are differentiable. The next

theorem gives a criterion which shows that this is true. A function cp(X)
is said to be continuous if .

lim cp(X + H) = cp(X),
H-O

for all X in the domain of definition of thlrunction.

Theorem 3.1. Let f be a function defined on some open set U. Assume
that its partial derivatives exist for every point in this open set, and that
they are continuous. Then f is differentiable.

We shall omit the proof. Observe that in practice, the partial deriva­
tives of a function are given by formulas from which it is clear that they
are continuous.
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III, §3. EXERCISES

1. Let f(x, y) = 2x - 3y. What is af/ax and af/ay?

2. Let A = (a, b) and let f be the function on R2 such that f(X) = A· X.
Let X = (x, y). In terms of the coordinates of A, determine af/ax and af/ay.

3. Let A = (a, b, c) and let f be the function on R3 such that f(X) = A· X.
Let X = (x, y, z). In terms of the coordinates of A, determine af/ax, af/ay,
and af/az.

4. Generalize the above two exercises to n-space.

5. Let f be defined on an open set U. Let X be a point of U. Let A be a
vector, and let 9 be a function defined for small H, such that

lim g(H) = O.
H-O

Assume that

f(X + H) - f(X) = A . H + IIHIIg(H).

Prove that A = grad f(X). You may do this exercise in 2 variables first and
then in 3 variables, and let it go at that. Use coordinates, e.g. let A = (a, b)
and X = (x, y). Use special values of H, as in Example 1.

III, §4. REPEATED PARTIAL DERIVATIVES

Let f be a function of two variables, defined on an open set U in 2­
space. Assume that its first partial derivative exists. Then Dd (which
we also write of/ax if x is the first variable) is a function defined on U.
We may then ask for its first or second partial derivatives, i.e. we may
form D2 Dd or D1Dd if these exist. Similarly, if D2 f exists, and if the
first partial derivative of D2 f exists, we may form D1D2 f.
Suppose that we write f in terms of the two variables (x, y). Then we

can write

and

a (Of)D2 Dd(x, y) = oy ax = (DiDd))(x, y).

Example 1. Let f(x, y) = cos(xy). Then

of = _ y sin(xy)
ax

and of = -x sin(xy).
oy
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Using the rule for the derivative of a product, we can then obtain the
second order (or iterated) partial derivatives as follows:

D2 Dd(x, y) = -xy cos(xy) - sin(xy).

But differentiating af/ay with respect to x, we see that

D1Dl!(x, y) = -xy cos(xy) - sin(xy).

These two repeated partial derivatives are equal!
The next theorem tells us that in practice, this will always happen.

Theorem 4.1. Let f be a function of two variables, defined on an open
set U of 2-space. Assume that the partial derivatives D1f, D2 f, D1D2 f,
and D2 D1f exist and are continuous. Then

The proof will be omitted.

Consider a function of three variables f(x, y, z). We can then take
three kinds of partial derivatives: D1, D 2 , or D3 (in other notation, a/ax,
a/ay, and a/az). Let us assume throughout that all the partial derivatives
which we shall consider exist and are continuous, so that we may form
as many repeated partial derivatives as we please. Then using Theorem
4.1, we can show that it does not matter in which order we take these
partials.
For instance, we see that

This is simply an application of Theorem 4.1, keeping the second vari­
able fixed. We may take a further partial derivative, for instance

Here D1 occurs twice and D3 once. Then this expression will be equal to
any other repeated partial derivative of f in which D1 occurs twice and
D3 once. For example, we apply the theorem to the function (D1!).
Then the theorem allows us tQ interchange D1 and D3 in front of (D1!)
(always assuming that all partials we want to take exist and are contin­
uous). We obtain
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(4)

FUNCTIONS OF SEVERAL VARIABLES

As another example, consider

[III, §4]

We wish to show that it is equal to D 1D2D 2D 3 f. By theorem 4.1, we
have D3 D2 f = D2 D3 f. Hence:

(5)

We then apply Theorem 4.1 again, and interchange D2 and D
1
to obtain

the desired expression
Instead of writing D1Dd, we shall write more briefly

Di!,

and similarly DU instead of D2 Dd.

Example 2. Let f(x, y, z) = X2yz3. Then

Dd(x, y, z) = 2xyz3,

D2 Dd(x, y, z) = 2xz3
,

D3 D2 Dd(x, y, z) = 6xz2
•

On the other hand,

DJ!(x, y, z) = 3x2 yz2,

D2 DJ!(x, y, z) = 3X2
Z

2
,

D 1D2DJ!(x, y, z) = 6xz2
.

Let f(x, y) be a function of two variables x, y. We shall use the nota­
tion

We could also write
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In this notation, one would thus have

(
0)2 o2f 2

AX f = ox2 = Dt!(x, y)

and

All the above notations are used in the scientific literature, and this is
the reason for including them here.

Warning. Do not confuse the two expressions

and

which are usually not equal. For instance, if f(x, y) = x 2y, then

and

Observe that

is the square of the function DJ, whereas

is obtained from f by differentiating twice with respect to x. Similarly,

Example 3. Let f(x, y) = cos(xy). Then we already computed oflax
and oflay in Example 1. Taking one more partial derivative, we find:

o2f o. 2
- = - (- y sm xy) = - y cos xy,
ox2 AX

o2f a
oy2 = oy (-x sin xy) = _x2 cos xy.
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III, §4. EXERCISES

Find the partial derivatives of order 2 for the following functions and verify ex­
plicitly in each case that D1Dz! = D 2DJ

5 x2 +y2. e

7. cos(x3 + xy)

2. sin(xy)

4. 2xy + y2

6. sin(x2 + y)

8. arctan(x2 - 2xy)

10. sin(x + y).

11. xyz

15. cos(x + y + z)
17. (X 2 +y2+ Z2)-1

12. x 2 yz

14. sin(xyz)

16. sin(x + y + z)

18. X
3y2z + 2(x + Y + z).

19. A function of three variables f(x, y, z) is said to satisfy Laplace's equation if

Verify that the following functions satisfy Laplace's equation.
(a) x 2 + y2 _ 2z2

(b) e 3x+4y cos(5z)

20. Let f, 9 be two functions (of two variables) with continuous partial deriva­
tives of order ~ 2 in an open set U. Assume that

Show that

af ag
ax = - ay and

af ag

ay = ax·

21. Let f(x, y) = arctan ylx for x > O. Show that



CHAPTER IV

The Chain Rule and the
Gradient

In this chapter, we prove the chain rule for functions of several variables
and give a number of applications. Among them will be several interpre­
tations for the gradient. These form one of the central points of our
theory. They show how powerful the tools we have accumulated turn
out to be.

IV, §1. THE CHAIN RULE

Let f be a function defined on some open set U. Let C(t) be a curve
such that the values C(t) are contained in U. Then we can form the
composite function foe, which is a function of t, given by

(f 0 C)(t) = f( C(t»).

Example 1. Take f(x, y) = eX sin(xy). Let C(t) = (t 2 , t 3 ). Then

The expression on the right is obtained by substituting t2 for x and t3

for y in f(x, y). This is a function of t in the old sense of functions of
one variable. If we interpret f as the temperature, then f(C(t») is the
temperature of a bug traveling along the curve C(t) at time t.

The chain rule tells us how to find the derivative of this function,
provided we know the gradient of f and the derivative c. Its statement
is as follows.
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Chain rule. Let f be a function which is defined and differentiable on an
open set U. Let C be a differentiable curve (defined for some interval of
numbers t) such that the values C(t) lie in the open set U. Then the
function

f(C(t))

is differentiable (as a function of t), and

df(~(t)) = (gradf(C(t))). C(t).

Memorize this formula by repeating it out loud.

In the notation dC/dt, this also reads

df(C(t)) = (gradf)(C(t)). dC.
dt dt

Proof of the Chain Rule. By definition, we must investigate the quo­
tient

f(C(t + h)) - f(C(t))

h
Let

K = K(t, h) = C(t + h) - C(t).

Then our quotient can be rewritten in the form

f(C(t) + K) - f(C(t))

h

Using the definition of differentiability for f, we have

f(X + K) - f(X) = (gradf)(X)· K + IIKllg(K)

and
lim g(K) = O.

IIKII ....O

Replacing K by what it stands for, namely C(t + h) - C(t), and dividing
by h, we obtain:

f(C(t + h2 - f(C(t)) = (gradf)(C(t)). C(t + h~ - C(t)

+ IIC(t + h) - C(t)' I (- h g K).
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As h approaches 0, the first term of the sum approaches what we want,

namely
(gradf)(C(t)· C(t).

The second term approaches

± IIC(t)lllim g(K),
h-O

and when h approaches 0, so does K = C(t + h) - C(t). Hence the
second term of the sum approaches 0. This proves our chain rule.

To use the chain rule for certain computations, it is convenient to
reformulate it in terms of components, and in terms of the two notations
we have used for partial derivatives

of
ox = Dd(x, y),

of
ay = Dd(x,y)

when the variables are x, y.
Suppose C(t) is given in terms of coordinates by

C(t) = (Xl (t), ... ,xn(t»,

then

d(f(C(t))) af dX I of dXn=--+ ... +--
dt aX l dt aXn dt .

If f is a function of two variables (x, y) then

df(C(t) of dx af dy
=--+--

dt ax dt oy dt"

In the Dl , D2 notation, we can write this formula in the form

d dx dy
dt (f(x(t), yet))) = (Dd)(x, y) dt + (Dd)(x, y) dt'

and similarly for several variables. For simplicity we usually omit the
parentheses around Dd and D2 f. Also on the right-hand side we have
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abbreviated x(t), yet) to x, y, respectively. Without any abbreviation, the
formula reads:

d dx dy
dt (f(x(t), yet»~) = Dd(x(t), yet»~ dt + Dzf(x(t), yet»~ dt·

Example 2. Let C(t) = (el
, t, t 2

) and let f(x, y, z) = x 2yz. Then put­
ting

y = t,

we get:

~f(C(t» = of dx + of dy + of dz
dt ox dt oy dt oz dt

If we want this function entirely in terms of t, we substitute back the
values for x, y, z in terms of t, and get

In some cases, as in the next example, one does not use the chain rule
in several variables, just the old one from one-variable calculus.

Example 3. Let

f(x, y, z) = sin(x2 - 3zy + xz).

Then keeping y and z constant, and differentiating with respect to x, we
find

of
- = cos(x2 - 3zy + xz)· (2x + z).
ox

More generally, let

f(x, y, z) = g(x2
- 3zy + xz),

where g is a differentiable function of one variable. [In the special case
above, we have g(u) = sin u.] Then the chain rule gives

of = g'(x2 _ 3zy + xz)(2x + z).
ox
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We denote the derivative of g by g' as usual. We do not write it as
dgjdx, because x is a letter which is already occupied for other purposes.
We could let

u = x 2
- 3zy + xz,

in which case it would be all right to write

af dg au
ax = du ax'

and we would get the same answer as above.

IV, §1. EXERCISES

1. Let P, A be constant vectors. If get) = f(P + tA), show that

g'(t) = (gradf)(P + tA)· A.

2. Suppose that f is a function such that

gradf(1, 1, 1) = (5,2, 1).

Let CCt) = (t2, t- 3, t). Find

d
dt (f(CCt))) at t = 1.

3. Let f(x, y) = e
9x + 2y and g(x, y) = sin(4x + y). Let C be a curve such that

CCO) = (0, 0). Given:

and

Find C(O).

4. (a) Let P be a constant vector. Let get) = f(tP), where f is some differentiable
function. What is g'(t)?

(b) Let f be a differentiable function defined on all of space. Assume that
f(tP) = tf(P) for all numbers t and all points P. Show that for all P we
have

f(P) = gradf(O)· P.

5. Let f be a differentiable function of two variables and assume that there is an
integer m ~ 1 such that

f(tx, ty) = tmf(x, y)
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for all numbers t and all x, y. Prove Euler's relation

af af
x ax + y ay = mf(x,y).

[IV, §2]

[Hint: Let C(t) = (tx, ty). Differentiate both sides of the given equation with
respect to t, keeping x and y constant. Then put t = 1.]

6. Generalize Exercise 5 to n variables, namely let f be a differentiable function of
n variables and assume that there exists an integer m ~ 1 such that f(tX) =
tmf(X) for all numbers t and all points X in R". Show that

which can also be written X . grad f(X) = mf(X).

7. (a) Let f(x, y) = (x2 + y2)1 /2. Find afjax and afjay.
(b) Let f(x, y, z) = (x2 + y2 + Z2)1 /2. Find afjax, afjay, afjaz.

8. Let r = (xi + ... + X~)1/2. What is arjax;?

9. Find the derivatives with respect to x and y of the following functions.
(a) sin(x3y + 2x2) (b) cos(3x2y - 4x)
(c) log(x2y + Sy) (d) (x2y + 4X)1 /2

IV, §2. TANGENT PLANE

We begin by an example analyzing a function along a curve where the
values of the function are constant. This gives rise to a very important
principle of perpendicularity.

Example 1. Let f be a function on R3. Let us interpret f as giving the
temperature, so that at any point X in R3, the value of the function f(X)
is the temperature at X. Suppose that a bug moves in space along a
differentiable curve, which we may denote in parametric form by

B(t).

Thus B(t) = (x(t), yet), z(t» is the position of the bug at time t. Let us
assume that the bug starts from a point where it feels that the tempera­
ture is comfortable, and therefore that the temperature is constant along
the path on which it moves. In other words, f is constant along the
curve B(t). This means that for all values of t, we have

f(B(t» = k,

where k is constant. Differentiating with respect to t, and using the
chain rule, we find that

gradf(B(t»· B'(t) = o.
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This means that the gradient of f is perpendicular to the velocity vector
at every point of the curve.

grad f(B(t»

Figure 1

Let f be a differentiable function defined on an open set U in 3-space,
and let k be a number. The set of points X such that

f(X) = k and gradf(X) # 0

is called a surface. It is the level surface of level k, for the function f·
For the applications we have in mind, we impose the additional condi­
tion that grad f(X) # O. It can be shown that this eliminates the points
where the surface is not smooth.
Let C(t) be a differentiable curve. We shall say that the curve lies on

the surface if, for all t, we have

f(C(t» = k.

This simply means that all the points of the curve satisfy the equation of
the surface. For instance, let the surface be defined by the equation

The surface is the sphere of radius 1, centered at the origin, and here we
have f(x, y, z) = x2 + y2 + Z2. Let

C(t) = (x(t), yet), z(t»

be a curve, defined for t in some interval. Then C(t) lies on the surface
means that

X(t)2 + y(t)2 + Z(t)2 = 1 for all t in the interval.

In other words,

f(C(t» = 1, or also C(tf = 1.

For theoretical purposes, it is neater to write f(C(t» = 1. For computa­
tional purposes, we have to go back to coordinates if we want specific
numerical values in a given problem.
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Now suppose that a curve C(t) lies on a surface f(X) = k. Thus we
have

f(C(t)) = k for all t.

If we differentiate this relation, we get from the chain rule:

gradf(C(t)· C(t) = O.

Let P be a point of the surface, and let C(t) be a curve on the surface
passing through P. This means that there is a number to such that
C(to) = P. For this value to, we obtain

gradf(P)· C(to) = O.

Thus the gradient of f at P is perpendicular to the tangent vector of the
curve at P. [We assume that C(to) 1= O.J This is true for every differen­
tiable curve on the surface passing through P. It is therefore very
reasonable to make the following

Definition. The tangent plane to the surface f(X) = k at the point P is
the plane through P, perpendicular to grad f(P).

We know from Chapter I how to find such a plane. The definition
applies only when grad f(P) =F o. If

gradf(P) = 0,

then we do not define the notion of tangent plane.
The fact that grad f(P) is perpendicular to every curve passing

through P on the surface also gives us an interpretation of the gradient
as being perpendicular to the surface

f(X) = k.

which is one of the level surfaces for the function f (Fig. 2).

grad f(P)

Figure 2
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Example 2. Find the tangent plane to the surface

at the point (1, 1, 1).
Let f(X) = x 2 + y2 + Z2. Then at the point P = (1, 1, 1),

gradf(P) = (2,2,2).

The equation of a plane passing through P and perpendicular to a vec­
tor N is

X·N=P·N.

In the present case, this yields

2x + 2y + 2z = 2 + 2 + 2 = 6.

Observe that our arguments also give us a means of finding a vector
perpendicular to a curve in 2-space at a given point, simply by applying
the preceding discussion to the plane instead of 3-space. A curve is
defined by an equation f(x, y) = k, and in this case, grad f(xo, Yo) is
perpendicular to the curve at the point (xo, Yo) on the curve.

Example 3. Find the tangent line to the curve

at the point P = (1, 2), and find a vector perpendicular to the curve at
that point.
Let f(x, y) = x2y + y3. Then

gradf(x, y) = (2xy, x 2 + 3y2),

and so

gradf(P) = gradf(1, 2) = (4, 13).

Let N = (4, 13). Then N is perpendicular to the curve at the given
point. The tangent line is given by X· N = p. N, and thus its equation
is

4x + 13y = 4 + 26 = 30.

Example 4. A surface may also be given in the form z = g(x, y) where
9 is some function of two variables. In this case, the tangent plane is
determined by viewing the surface as expressed by the equation

g(x, y) - z = O.
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For instance, suppose the surface is given by z = x2 + y2. We wish to
determine the tangent plane at (1, 2, 5). Let f(x, y, z) = x2 + y2 - z.
Then

gradf(x, y, z) = (2x, 2y, -1) and gradf(1, 2, 5) = (2,4, -1).

The equation of the tangent plane at P = (1, 2, 5) perpendicular to

N = (2,4, -1)
is

2x + 4y - z = P .N = 5.

This is the desired equation.

Example 5. Find a parametric equation for the tangent line to the
curve of intersection of the two surfaces

and

at the point P = (1, 1, 2).
The tangent line to the curve is the line in common with the tangent

planes of the two surfaces at the point P. We know how to find these
tangent planes, and in Chapter I, we learned how to find the para­
metric representation of the line common to two planes, so we know
how to do this problem. We carry out the numerical computation in
full.
The first surface is defined by the equation f(x, y, z) = 6. A vector N 1

perpendicular to this first surface at P is given by

N 1 = gradf(P), where gradf(x, y, z) = (2x, 2y, 2z).

Thus for P = (1, 1, 2) we find

N 1 = (2, 2, 4).

The second surface is given by the equation g(x, y, z) = 2, and

grad g(x, y, z) = (3x 2
, -2y, 1).

Thus a vector N 2 perpendicular to the second surface at P is

N 2 = grad g(1, 1,2) = (3, - 2, 1).

A vector A = (a, b, c) in the direction of the line of intersection is
perpendicular to both N 1 and N 2' To find A, we therefore have to solve
the equations

and A·N2 = O.
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This amounts to solving

TANGENT PLANE

2a + 2b + 4c = 0,
3a - 2b + c = O.

97

Let, for instance, a = 1. Solving for band c yields

a = 1, b = 1, c = -1.

Thus A = (1, 1, -1). Finally, the parametric representation of the de­
sired line is

P + tA = (1, 1,2) + t(l, 1, -1).

IV, §2. EXERCISES

1. Find the equation of the tangent plane and normal line to each of the fol­
lowing surfaces at the specific point.
(a) x2 + i + Z2 = 49 at (6, 2, 3)
(b) xy + YZ + zx - 1 = 0 at (1, 1, 0)
(c) x 2 + xy2 + y3 + Z + 1 = 0 at (2, -3, 4)
(d) 2y - Z3 - 3xz = 0 at (1, 7, 2)
(e) X

2 y2 + XZ - 2l = 10 at (2, 1, 4)
(f) sin xy + sin yz + sin xz = 1 at (1, rr./2, 0)

2. Let f(x, y, z) = z - eX sin y, and P = (log 3, 3rr./2, -3). Find:
(a) grad f(P),

(b) the normal line at P to the level surface for f which passes through P,
(c) the tangent plane to this surface at P.

3. Find a parametric representation of the tangent line to the curve of inter­
section of the following surfaces at the indicated point.
(a) x2 + y2 + Z2 = 49 and x2 + y2 = 13 at (3, 2, -6)
(b) xy + z = 0 and x2 + y2 + Z2 = 9 at (2, 1, -2)
(c) x2 - y2 - Z2 = 1 and x2 - y2 + Z2 = 9 at (3, 2, 2)
[Note: The tangent line above may be defined to be the line of intersection
of the tangent planes of the given point.]

4. Let f(X) = 0 be a differentiable surface. Let Q be a point which does not lie
on the surface. Given a differentiable curve CCt) on the surface, defined on
an open interval, give the formula for the distance between Q and a point
CCt). Assume that this distance reaches a minimum for t = to. Let
P = CCto)' Show that the line joining Q to P is perpendicular to the curve
at P.

5. Find the equation of the tangent plane to the surface z = f(x, y) at the given
point P when f is the following function:
(a) f(x, y) = x 2 + y2, P = (3, 4, 25)
(b) f(x, y) = x/(x2 + y2)1/2, P = (3, -4, !)
(c) J(x, y) = sin(xy) at P = (1, rr., 0)
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6. Find the equation of the tangent plane to the surface x = e2,-z at (1, 1, 2).

7. Let f(x, y, z) = xy + yz + zx. (a) Write down the equation of the level sur­
face for f through the point P = (1, 1, 0). (b) Find the equation of the
tangent plane to this surface at P.

8. Find the equation of the tangent plane to the surface

at the point (1, 1, 2)

9. Find the equation of the tangent plane to the surface

z = sin(x + y)

at the point where x = 1 and y = 2.

10. Find the tangent plane to the surface x 2 + y2 - Z2 = 18 at the point
(3, 5, -4).

11. (a) Find a unit vector perpendicular to the surface

x 3 + xz = 1

at the point (1, 2, -1).
(b) Find the equation of the tangent plane at that point.

12. Find the cosine of the angle between the surfaces

and

at the point (-1, 1, -1). (This angle is the angle between the normal
vectors at the point.)

13. (a) A differentiable curve C(t) lies on the surface

and is so parametrized that C(O) = (1, 1, 1). Let

f(x, y, z) = x 2 + 4y2 + 9z2

and let h(t) = f(C(t». Find h'(O).
(b) Let g(x, y, z) = x 2 + y2 + Z2 and let k(t) = g(C(t». Suppose in addition
that C(O) = (4, -1, 0), find k'(O).

14. Find the equation of the tangent plane to the level surface

(x + Y + z)eXYZ = 3e

at the point (1, 1, 1).
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IV, §3. DIRECTIONAL DERIVATIVE

Let f be defined on an open set and assume that f is differentiable. Let
P be a point of the open set, and let A be a unit vector (i.e. II A II = 1).
Then P + tA is the parametric representation of a straight line in the
direction of A and passing through P. We observe that

d(P + tA) = A.
dt

For instance, if n = 2 and P = (p, q), A = (a, b), then

P + tA = (p + ta, q + tb),

or in terms of coordinates,

x = p + ta,

Hence
dx
-=a
dt

so that

and

y = q + tb.

dy = b
dt

d(P + tA) _ b) _
dt - (a, - A.

The same argument works in higher dimensions.
We wish to consider the rate of change off in the direction of A. It is

natu.ral to consider the values of f on the line P + tA, that is to consider
the values

f(P + tA).

The rate of change of f along this line will then be given by taking the
derivative of this expression, which we know how to do. We illustrate
the line P + tA in the figure.

P+tA

Figure 3
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If f represents a temperature at the point P, we look at the variation
of temperature in the direction of A, starting from the point P. The
value f(P + tA) gives the temperature at the point P + tAo This is a
function of t, say

g(t) = f(P + tA).

The rate of change of this temperature function is g'(t), the derivative
with respect to t, and g'(O) is the rate of change at time t = 0, i.e. the
rate of change of f at the point P, in the direction of A.
By the chain rule, if we take the derivative of the function

g(t) = f(P + tA),

which is defined for small values of t, we obtain

df(P + tA)
dt = gradf(P + tA)· A.

When t is equal to 0, this derivative is equal to

gradf(P)· A.

For obvious reasons, we now make the

Definition. Let A be a unit vector. The directional derivative of f in
the direction of A at P is the number

DAf(P) = gradf(P)· A.

We interpret this directional derivative as the rate of change off along
the straight line in the direction of A, at the point P. Thus if we agree
on the notation DA./{P) for the directional derivative of f at P in the
direction of the unit vector A, then we have

df(P + tA)!DAf(P) = = gradf(P)· A.
dt 1=0

In using this formula, the reader should remember that A is taken to be
a unit vector. When a direction is given in terms of a vector whose norm
is not 1, then one must first divide this vector by its norm before apply­
ing the formula.
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Example 1. Let f(x, y) = x2 + y3 and let B = (1,2). Find the
directional derivative of f in the direction of B, at the point (- 1, 3).

We note that B is not a unit vector. Its norm is J5. Let

Then A is a unit vector having the same direction as B. Let

P = (-1,3).

Then grad f(P) = (- 2,27). Hence by our formula, the directional de­
rivative is equal to:

1 52
gradf(P)·A = -( -2 + 54)=-.

J5 J5
Consider again a differentiable function f on an open set U.
Let P be a point of U. Let us assume that grad f(P) # 0, and let A

be a unit vector. We know that

DAf(P) = gradf(P)·A = Ilgradf(P)III1AII cos e,

where e is the angle between grad f(P) and A. Since IIAII = 1, we see
that the directional derivative is equal to

DAf(P) = IIgradf(P)lIcos e.

We remind the reader that this formula holds only when A is a unit
vector.

The value of cos e varies between -1 and + 1 when we select all
possible unit vectors A.
The maximal value of cos e is obtained when we select A such that

e= 0, i.e. when we select A to have the same direction as grad f(P). In
that case, the directional derivative is equal to the norm of the gradient.
Thus we have obtained another interpretation for the gradient:

The direction of the gradient is that of maximal increase of the
function.

The norm of the gradient is the rate of increase of the function in
that direction (i.e. in the direction of maximal increase).
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The directional derivative in the direction of A is at a minimum when
cos () = -1. This is the case when we select A to have opposite direc­
tion to grad f(P). That direction is therefore the direction of maximal
decrease of the function.
For example, f might represent a temperature distribution in space. At

any point P, a particle which feels cold and wants to become warmer
fastest should move in the direction of grad f(P). Another particle which
is warm and wants to cool down fastest should move in the direction of
-grad f(P).

Example 2. Let f(x, y) = x 2 + y3 again, and let P = (-1, 3). Find
the directional derivative of f at P, in the direction of maximal increase
of f.
We have found previously that grad f(P) = (- 2, 27). The directional

derivative of f in the direction of maximal increase is precisely the norm
of the gradient, and so is equal to

IIgradf(P) II = 11(-2,27)11 = J4 + 272 = J733.

IV, §3. EXERCISES

1. Let f(x, Y, z) = z - eX sin y, and P = (log 3, 3n/2, -3). Find:
(a) the directional derivative of fat P in the direction of (1, 2, 2),
(b) the maximum and minimum values for the directional derivative of f
at P.

2. Find the directional derivatives of the following functions at the specified
points in the specified directions.
(a) log(x2 + y2)1/2 at (1, 1), direction (2, 1)
(b) xy + yz + zx at (-1, 1, 7), direction (3, 4, -12)
(c) 4x2 + 9y2 at (2, 1) in the direction of maximum directional derivative

3. A temperature distribution in space is given by the function

f(x, y) = 10 + 6 cos x cos y + 3 cos 2x + 4 cos 3y.

At the point (n/3, n/3), find the direction of greatest increase of temperature,
and the direction of greatest decrease of temperature.

4. In what direction are the following functions of X increasing most rapidly at
the given point?
(a) x/IIXII 3/2 at (1, -1,2) (X = (x, y, z))
(b) IIXI1 5 at (1, 2, -1,1) (X = (x, y, z, w))

5. (a) Find the directional derivative of the function

f(x, y) = 4xy + 3y2

in the direction of (2, -1), at the point (1, 1).
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(b) Find the directional derivative in the direction of maximal increase of the
function.

6. Let I(x, y, z) = (x + y)2 + (y + Z)2 + (z + X)2. What is the direction of great­
est increase of the function at the point (2, -1, 2)? What is the directional
derivative of I in this direction at that point?

7. Let I(x, y) = x 2 + xy + y2. What is the direction in which I is increasing
most rapidly at the point (-1, I)? Find the directional derivative ofI in this
direction.

8. Suppose the temperature in (x, y, z)-space is given by

Compute the rate of change of temperature at the point P = (1, 1, 1) in the
direction of PO.

9. (a) Find the directional derivative of the function

I(x, y, z) = sin(xyz)

at the point P = (n, 1, 1) in the direction of OA where A is the unit

vector (0, 1/.ji, -1/.ji).
(b) Let U be a unit vector whose direction is opposite to that of

(grad f) (P).

What is the value of the directional derivative of I at P in the direction
of U?

10. Let I be a differentiable function defined on an open set U. Suppose that P
is a point of U such that I(P) is a maximum, i.e. suppose we have

I(P) ~/(X)

Show that grad I(P) = O.

for all X in U.

IV, §4. FUNCTIONS DEPENDING ONLY ON THE
DISTANCE FROM THE ORIGIN

The first such function which comes to mind is the distance function. In
2-space, it is given by

In 3-space, it is given by
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In n-space, it is given by

r = Jxi + x~ + ... + x~ .

Let us find its gradient. For instance, in 2-space,

x x
..
r

Differentiating with respect to y instead of x you will find

or y
oy - r

Hence

grad r = (~,~}

This can also be written

X
grad r =-.

r

Thus the gradient of r is the unit vector in the direction of the position
vector. It points outward from the origin.

If we are dealing with functions on 3-space, so

then the chain rule again gives

so again

or x
ox - r'

or y
oy - r' and

or z
oz - r

X
grad r =-.

r
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Warning: Do not write or/oX. This suggests dividing by a vector X
and is therefore bad notation. The notation or/ox was correct and good
notation since we differentiate only with respect to the single variable x.
Information coming from differentiating with respect to all the variables
is correctly expressed by the formula grad r = X/r in the box.

In n-space, let

r = Jxi + ... + x;.

Then

so

~
~

By definition of the gradient, it follows that

We now come to other functions depending on the distance. Such
functions arise frequently. For instance, a temperature functibn may be
inversely proportional to the distance from the source of heat. A poten­
tial function may be inversely proportional to the square of the distance
from a certain point. The gradient of such functions has special proper­
ties which we discuss further.

Example 1. Let

f(x, y) = sin r = sin Jx2 + y2.

Then f(x, y) depends only on the distance r of (x, y) from the origin. By
the chain rule,

of d sin r or
ox=~·ox

x
c= (cos r)-.

r



106 THE CHAIN RULE AND THE GRADIENT [IV, §4]

Similarly, of/oy = (cos r)yjr. Consequently

gradf(x, y) = (cos r)~, (cos r)n
cos r ( )=-- x,y

r

cos r
=-X.

r

The same use of the chain rule as in the special case

f(x, y) = sin r

which we worked out in Example 1 shows:

Let 9 be a differentiable function of one variable, and let f(X) = g(r).
Then

gradf(X) = g'(r) X.
r

Work out all the examples given in Exercise 2. You should memorize
and keep in mind this simple expression for the gradient of a function
which depends only on the distance. Such dependence is expressed by
the function g.
Exercises 9 and 10 give important infornlation concerning functions

which depend only on the distance from the origin, and should be seen
as essential complements of this section. They will prove the following
result.

A differentiable function f(X) depends only on the distance of X from
the origin if and only if grad f(X) is parallel to X, or O.

In this situation, the gradient grad f(X) may point towards the origin,
or away from the origin, depending on whether the function is decreasing
or increasing as the point moves away from the origin.

Example 2. Suppose a heater is located at the origin, and the temper­
ature at a point decreases as a function of the distance from the origin,
say is inversely proportional to the square of the distance from the
origin. Then temperature is given as

h(X) = g(r) = k/r2
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for some constant k > O. Then the gradient of temperature is

1 X 2k
grad h(X) = -2k-- = --x.

r3 r r4

The factor 2k/r4 is positive, and we see that grad h(X) points in the
direction of - X. Each circle centered at the origin is a level curve for
temperature. Thus the gradient may be drawn as on the following
figure. The gradient is parallel to X but in opposite direction. A bug
traveling along the circle will stay at constant temperature. If it wants to
get warmer fastest, it must move toward the origin.

Figure 4

The dotted lines indicate the path of the bug when moving in the direc­
tion of maximal increase of the function. These lines are perpendicular
to the circles of constant temperature.
Sometimes we want to take a repeated derivative of a function de­

pending only on r. It is then useful for brevity of notation not to expand
r in terms of its definition as the square root of sum of squares.

Example 3. Let r = Jx2 + y2 and let f(x, y) = 1/r3. We wish to find

o2f
D1D2 f(x, y) = ax oy"

First we find

d or y y
Dd(x, y) = -d (1/r3

) -;- = - 3r- 4
- = - 3 S'

r uy r r

[You should know from the chain rule that or/oy = y/r.]
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Next we take D1 = a/ax of this last expression, usmg the chain rule
again. Then:

D1Dzf(x, y) = :x (-3 ~)
= -3Y~(~)ax r5

= -3Y~(~)'~
dr r5 r

15xy
7 .r

Suppose we deal with a function of two variables f(x, y). It comes up
frequently in physics and mathematics and many other fields to consider
the function

Without writing the variables explicitly, we may just write the function in
the form

Di! + D~f.

Functions of two variables which satisfy the condition

Di!+DY=O

are called harmonic. There is, of course, a similar definition for harmonic
functions of three variables f(x, y, z), namely, those satisfying

Di! + DY + DU = O.

This is called Laplace's equation, and we view Di + D~ in 2-space, or

Di + D~ + D~

as an operator in 3-space on functions, called the Laplace operator. Ex­
amples of harmonic functions are given in Exercise 11. If (x, Y, z) are the
three variables, then Laplace's equation can also be written

In Exercise 12 you will express this condition more simply for a function
which depends only on r.
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1. Let g be a function of r, let r = IIXII, and X = (x, y, z). Let f(X) = g(r).

Show that

2. Let 9 be a function of r, and r = IIXII. Let f(X) = g(r). Find grad f(X) for
the following functions.

(a) g(r) = l/r
(d) g(r) = e-"
(g) g(r) = cos r

(b) g(r) = rZ

(e) g(r) = log l/r
(c) g(r) = l/r3

(I) g(r) = 4/rm

You may either work out each exercise separately, writing

r= Jxi + ... + x;,

and use the chain rule, finding aflax; in each case, or you may apply the
general formula obtained in Example 1, that if f(X) = g(r), we have

g'(r)
gradf(X) = - X.

r

Probably you should do both for a while to get used to the various nota­
tions and situations which may rise.

The next five exercises concern certain parametrizations, and some of the results
from them will be used in Exercise 9.

3. Let A, B be two unit vectors such that A . B = O. Let

F(t) = (cos t)A + (sin t)B.

Show that F(t) lies on the sphere of radius 1 centered at the origin, for each
value of t. [Hint: What is F(t)· F(t)?]

4. Let P, Q be two points on the spherf of radius 1, centered at the origin. Let
L(t) = P + t(Q - P), with 0 ~ t ~ 1. If there exists a value of t in [0, 1] such
that L(t) = 0, show that t = t, and that P = -Q.

5. Let P, Q be two points on the sphere of radius 1. Assume that P 1= - Q.
Show that there exists a curve joining P and Q on the sphere of radius 1,
centered at the origin. By this we mean there exists a curve C(t) such that
C(t)z = 1, or if you wish lIC(t)1I = 1 for all t, and there are two numbers t l

and t z such that eet l ) = P and C(tz) = Q. [Hint: Divide L(t) in Exercise 4
by its norm.]

6. If P, Q are two unit vectors such that P = - Q, show that there exists a
differentiable curve joining P and Q on the sphere of radius 1, centered at
the origin. You may assume that there exists a unit vector A which is per­
pendicular to P. Then use Exercise 3.
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7. Parametrize the ellipse (x2ja2) + (y2jb2) = 1 by a differentiable curve.

8. Let f be a differentiable function (in two variables) such that grad f(X) = eX
for some constant e and all X in 2-space. Show that f is constant on any
circle of radius a > 0, centered at the origin. [Hint: Put x = a cos t and
y = a sin t and find df jdt.]

Exercise 8 is a special case of a general phenomenon, stated in Exercise 9.

9. Let f be a differentiable function in n variables, and assume that there exists
a function h such that grad f(X) = h(X)X. Show that f is constant on the
sphere of radius a > 0 centered at the origin.

[That f is constant on the sphere of radius a means that given any two points P,
Q on this sphere, we must have f(P) = f(Q). To prove this, use the fact proved
in Exercises 5 and 6 that given two such points, there exists a curve C(t) joining
the two points, i.e. C(t 1 ) = P, C(t2) = Q, and C(t) lies on the sphere for all t in
the interval of definition, so

C(t)· C(t) = a2
•

The hypothesis that grad f(X) can be written in the form h(X)X for some func­
tion h means that grad f(X) is parallel to X (or 0). Indeed, we know that
gradf(X) parallel to X means that grad f(X) is equal to a scalar multiple of X,
and this scalar may depend on X, so we have to write it as a function h(X).]

10. Let r = IIXI!. Let 9 be a differentiable function of one variable whose deriva­
tive is never equal to O. Let f(X) = g(r). Show that grad f(X) is parallel to
X for X 1= o.

[This statement is the converse of Exercise 9. The proof is quite easy, cf. Exam­
ple 1. The function heX) of Exercise 9 is then seen to be equal to g'(r)jr.]

11. Verify that the following functions are harmonic.

(a) logJx2 + y2 = log r (in two variables!)

1 1 . .
(b) = - (m three vanables!)

Jx2 + y2 + Z2 r

12. (a) Let f(x, y) = g(r) where r = J x 2 + y2. Show that

a2f a2f d2g 1 dg
-+-=-+--.
ax2 ay2 dr2 r dr

(b) If f(x, y) = e- r
\ show that

a2f a2f 2
ax2 + a

y
2 = 4f(x, y)(r - 1).
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13. Let J(x, y, z) = g(r), where r = Jx 2 + y2 + Z2. Show that

Note. The right-hand side gives the left-hand side in terms of the single coor­
dinate r. When we consider functions depending only on the distance from the
origin, we see that the right-hand side involves only ordinary differentiation with
respect to one variable, namely the distance r, whereas the left-hand side involves
the three partial derivatives as shown, which is more complicated. We have seen
that a function J such that the left-hand side in the relation of the exercise is
equal to 0 is called harmonic. When the function depends only the distance, as
arises frequently in physics, then the condition for the function to be harmonic
can be expressed in terms of ordinary differentiation instead of partial differentia­
tions, thus leading to ordinary differential equations rather than partial differen­
tial equations. The same principle occurs in many other contexts, when it is
possible to get rid of some of the variables.

IV, §5. THE LAW OF CONSERVATION OF ENERGY

Definition. Let U be an open set. By a vector field on U we mean an
association which to every point of U associates a vector of the same
dimension.

If F is a vector field on U, and X a point of U, then we denote by
F(X) the vector associated to X by F and call it the value of F at X, as
usual.

Example 1. Let F(x, y) = (x 2y, sin xy). Then F is a vector field which
to the point (x, y) associates (x 2y, sin xy), having the same number of
coordinates, namely two of them in this case.

A vector field in physics is often interpreted as a field of forces. A
vector field may be visualized as a field of arrows, which to each point
associates an arrow as shown on the figure.

.. • ..
I

-
Figure 5
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Each arrow points in the direction of the force, and the length of the
arrow represents the magnitude of the force.

If f is a differentiable function on U, then we observe that grad f is a
vector field, which associates the vector grad f(P) to the point P of U.

If F is a vector field, and if there exists a differentiable function f such
that F = grad f, then the vector field is called conservative. Since

- grad f = grade - f)

it does not matter whether we use f or -fin the definition of conserva­
tive.
Let us assume that F is a conservative field on U, and let ljJ be a

differentiable function such that for all points X in U we have

F(X) = -grad ljJ.

In physics, one interprets ljJ as the potential energy. Suppose that a par­
ticle of mass m moves on a differentiable curve C(t) in U. Newton's law
states that

F(C(t)) = mC"(t) I
for all t where C(t) is defined. Newton's law says that force equals mass
times acceleration.
Physicists define the kinetic energy to be

Conservation Law. Assume the vector .field F is conservative, that is
F = - grad ljJ, where ljJ is the potential energy. Assume that a particle
moves on a curve satisfying Newton's law. Then the sum of the potential
energy and kinetic energy is constant.

Proof We have to prove that

ljJ(C(t)) + tmC(t)2

is constant. To see this, we differentiate the sum. By the chain rule, we
see that the derivative is equal to

grad ljJ(C(t)) . C(t) + mC(t) . C"(t).



[IV, §5] THE LAW OF CONSERVATION OF ENERGY 113

By Newton's law, mC"(t) = F(C(t» = - grad ljJ(C(t». Hence this deriva­
tive is equal to

grad ljJ(C(t»· C(t) - grad ljJ(C(t»· C(t) = O.

This proves what we wanted.

It is not true that all vector fields are conservative. We shall discuss
the problem of determining which ones are conservative in the next
book.
The fields of classical physics are for the most part conservative.

Example 2. Consider a force F(X) which is inversely proportional to
the square of the distance from the point X to the origin, and in the
direction of X. Then there is a constant k such that for X # 0 we have

1 X
F(X) = k IIXI1 2 IIXII'

because X/IIXII is the unit vector in the direction of X. Thus

1
F(X) = k3"X,

r

where r = [IXII. A potential energy for F is given by

k
ljJ(X) =-.

r

This is immediately verified by taking the partial derivatives of this func­
tion.

If there exists a function q>(X) such that

F(X) = (grad q>)(X), that is F = grad q>,

then we shall call such a function q> a potential function for F. Our
conventions are such that a potential function is equal to minus the
potential energy.

IV, §5. EXERCISES

1. Find a potential function for a force field F(X) that is inversely proportional
to the distance from the point X to the origin and is in the direction of X.

2. Same question, replacing "distance" with "cube of the distance."
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3. Let k be an integer ~ 1. Find a potential function for the vector field F given
by

1
F(X) = ;:;;X, where r = I/XII.

[Hint: Recall the formula that if <p(X) = g(r), then

g'(r)
grad <p(X) = - X.

r

Set F(X) equal to the right-hand side and solve for g.]

The next section gives additional techniques in partial differentiation,
whose flavor is quite different from that of the chain rule used in the other
applications. This section may be omitted since these techniques will play
no role in the subsequent applications (conservation law, uniqueness of po­
tential function, value of an integral when a potential function exists, etc.).
However, it is important in other contexts, especially that of partial differ­
ential equations, and it may be considered useful to have exposed students
to a technique which allows them, for instance, to get the Laplace operator
in polar coordinates. Special drilling is necessary for that at the present
level of mathematical sophistication. The section has been kept separated
from the rest in order to allow for its easy omission, or alternative ordering
of the material.

IV, §6. FURTHER TECHNIQUE IN PARTIAL
DIFFERENTIATION

The techniques developed in this section will not be used in the next
applications and can be omitted. They have their own flavor, and have
importance in other contexts, especially what is known as partial differ­
ential equations. They are included here to provide the opportunity to
learn them if this is deemed important in the context of the particular
given course.
The chain rule as stated in §1 can be applied to the seemingly more

general situation when x, yare functions of more than one variable. Let
f(x, y) be a function of two variables. Suppose that

x = <pet, u) and y = t/J(t, u)

are differentiable functions of two variables. Let

get, u) = f( <pet, u), t/J(t, u»).
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If we keep u fixed and take the partial derivative of g with respect to t,
then we can apply our chain rule, and obtain

og of ox ofoy-=--+--.
ot ox ot oy ot

In the D 1, D 2 notation, this also reads

or also

ox oy
D1g(t, u) = Dd(x, y) at + Dzf(x, y) ot·

Experience will show you which is the most convenient notation.

Example 1. Let f(x, y) = x2 + 2xy. Let x = r cos e and y = r sin e.
Let g(r, e) = fer cos e, r sin e) be the composite function. Find og/oe.

We have
of
-=2x+2y
ox '

Hence

ox . e- = -rsm
oe

and

of = 2x
oy ,

oy
oe = r cos e.

:: = (2x + 2y)(-r sin e) + 2x(r cos e).

If you want the answer completely in terms of r, e, you can substitute
r cos e and r sin e for x and y respectively in this expression. Written in
full, the answer reads:

D2 g(r, e) = (Dd)(r cos e, r sin e)(-r sin e) + (Dzf)(r cos e, r sin e)r cos e

= (2r cos e + 2r sin e)( - r sin e) + 2(r cos e)(r cos e).

Such an expression is clumsy to write, and that is why we leave it in ab­
breviated form as in (*).

Example 2. Sometimes the letters x and yare occupied to denote var­
iables which are not the first and second variables of the function f In
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this case, other letters must be used if we wish to replace D 1f and D zf by
partial derivatives with respect to these variables. For example, let

u = f(x z - y, xy).

To find au/ax, we let

Then

s = x Z
- y and t = xy.

(1)

Similarly,

(2)

au af as af at
-=--+-­
ax as ax at ax

af af
=-2x+-y

as at

= Dd(s, t)2x + Dzf(s, t)y.

au af af
8y = as (-1) + at x = Dd(s, t)( -1) + Dzf(s, t)x.

The advantage of the Dd, Dzf notation is that it does not depend on
a choice of letters, and makes it clear that we take the partial derivatives
of f with respect to the first and second variables.
To be complete, we can also apply that D1, D z notation to u itself.
Write

u = g(x, y) = f(x Z
- y, xy).

Then (1) and (2) can be written in the form:

(1*) D1g(x, y) = Dd(xz - y, xy)2x + Dzf(xZ
- y, xy)y,

(2*) Dzg(x, y) = Dd(xZ
- y, xy)( -1) + Dzf(xZ

- y, xy)x.

When written in that form, which is the only correct form, the formula
has the property that it is invariant under permutations of the alphabet.
We can change x, y to any other two letters and the formula remains
valid (provided the two letters are different from f and g, and D, of
course). Thus we would have:

(1**) D1g(v, w) = Dd(vz - w, vw)2v + Dzf(vZ
- w, vw)w,

(2**) Dzg(v, w) = Dd(vZ - w, vw)( -1) + Dzf(vZ
- w, vw)v.

We avoided the letter u also because at the beginning of the discussion
we let u = f(x Z - y, xy), so for purposes of the discussion, the letter u
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was already occupied. On the other hand, it is slightly more clumsy
to write DJf(s, t) rather than of/os. Thus the second notation, when
used with an appropriate choice of variables, is shorter and a little more
mechanical. We emphasize, however, that it can only be used when the
letters denoting the variables have been fixed properly.

Example 3. Let g(t, x, y) = f(t 2x, ty). Then

Here again, since the letter x is occupied, we cannot write oflox for DJf.
In this example, we view x, y as fixed, and g(t, x, y) as a function of t
alone. If we put

C(t) = (t2 X , ty),
then

C(t) = (2tx, y).

We see that oglot has the form

og
ot = grad f (C(t)· C(t).

Evaluating at special numbers then gives:

D 1g(l, x, y) = DJf(x, y)2x + Dzf(x, y)y,

D1g(O, x, y) = D2f(O, O)y,

D1g(l, x, 1) = DJf(x, 1)2x + D2f(x, 1)

and so forth.

Example 4. Keeping the same functions as in Example 3, we now find
the repeated derivative 02glot2. We apply the same principle as before,
but to the two functions DJf and D 2f. Also we have to use the rule for
the derivative of a product, because DJf(t2x, ty)2tx is a product of two
functions of t. We then find

~:; = DJf(t2X , ty)2x + [D 1DJf(t2x, ty)2tx + D2DJf(t2x, ty)y]2tx

+ D1D2f(t 2x, ty)2txy + D2D2f(t 2x, ty)yy.

Of course, we may replace D1DJf by Di! and D2D2f by D~f.
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IV, §6. EXERCISES

(All functions are assumed to be differentiable as needed.)

1. If x = u(r, s, t) and y = v(r, s, t) and z = f(x, y), write out the formula for

az

ar
and

az

at

2. Find the partial derivatives with respect to x, y, s, and t for the following
functions.
(a) f(x, y, z) = x 3 + 3xyz - y2z, X = 2t + s, y = - t - s, z = t2 + S2

(b) f(x, y) = (x + y)/(1 - xy), x = sin 2t, y = cos(3t - s)

3. Let f be a differentiable function on R3 and suppose that

DJ(O, 0, 0) = 2, Dzf(O, 0, 0) = DJ!(O, 0, 0) = 3.

Let g(u, v) = f(u - v, u2 - 1, 3v - 3). Find D1g(l, 1).

4. Assume that f is a function satisfying

f(tx, ty) = tmf(x, y).

for all numbers x, y, and t. Show that

[Hint: Differentiate twice with respect to t. Then put t = 1.]

5. If u = f(x - y, y - x), show that

au au
-+-=0.
ax ay

6. (a) Let g(x, y) = f(x + y, x - y), where f is a differentiable function of two
variables, say f = f(u, v). Show that

(b) Let g(x, y) = f(2x + 7y), where f is a differentiable function of one vari­
able. Show that

ag ag
2 -=7-.

ay ax

(c) Let g(x, y) = f(2x 3 + 3y2). Show that

ag 2 ag
y-=x -.

ax ay
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7. Let x = u cos 0 - v sin 0, and y = u sin 0 + v cos 0, with 0 equal to a con­
stant. Let f(x, y) = g(u, v). Show that

8. (a) Let x = r cos 0 and y = r sin O. Let z = f(x, y). Show that

oz of of
-=-cosO+-sinO
or ox oy'

1 oz of of
- - = - - sin 0 + - cos O.
r 00 ox oy

(b) If we let z = g(r, 0) = fer cos 0, r sin 0), show that

(
og)2 +~ (og)2 = (Of)2 + (Of)2.
or r2 00 ox oy

9. Let c be a constant, and let z = sin(x + ct) + cos(2x + 2ct). Show that

10. Let c be a constant and let z = f(x + ct) + g(x - ct). Let

Show that
u = x + ct and v = x - ct.

11. Let z = feu, v) and u = x + y, v = x - y. Show that

02 Z 02Z 02Z

oX oy = ou2 - ov2'

12. Let z = f(x + y) - g(x - y). Let u = x + y and v = x - y. Show that

13. Let n be a positive integer. For each of the following functions g(r, 0) show
that

(a) g(r, 0) = r" cos nO (b) g(r, 0) = r" sin nO.

Note. A function f(x, y) = g(r, 0) which satisfies the condition of this exercise
is called barmonic, and is important in the theory of wave motions. This exercise
gives the basic example of harmonic functions.
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The following exercises shows that the above condition expresses in polar
coordinates another more familiar condition in terms of the (x, y)-coordinates.

14. Let x = r cos e, y= r sin e be the formulas for the polar coordinates. Let

f(x, y) = f(r cos e, r sin e) = g(r, e).

Show that

Note. This exercise gives the Laplace operator in polar coordinates. It is im­
portant because it shows you how the right-hand side can be expressed in terms
of polar coordinates on the left-hand side. The right-hand side occurs frequently
in the theory of wave motions.
For the proof, start with the formulas of Exercise 8(a), namely,

ag .
ar = (DJ) cos e + (Dd) sm e and

ag
ae = -(DJ)r sin e + (Dd)r cos e.

and take further derivatives with respect to r and with respect to e, using the
rule for derivative of a product, together with the chain rule. Then add the ex­
pression you obtain to form the left-hand side of the relation you are supposed
to prove. There should be enough cancellation on the right-hand side to prove
the desired relation.

Remark. The functions of Exercise 13 are "typical" in the sense that all har­
monic functions can be expressed in terms of r" cos ne and r" sin ne in a suitable
way. This leads into the theory of wave equations and Fourier series, which is
beyond this course. But it is with a view to such applications that Exercises 13
and 14 are included here. Exercise 13 is of course easier.
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CHAPTER V

Maximum and Minimum

When we studied functions of one variable, we found maxima and min­
ima by first finding critical points, i.e. points where the derivative is
equal to 0, and then determining by inspection which of these are max­
ima or minima. We can carry out a similar investigation for functions of
several variables. The condition that the derivative is equal to 0 must be
replaced by the vanishing of all partial derivatives.

V, §1. CRITICAL POINTS

Let f be a differentiable function defined on an open set U. Let P be a
point in U.

Definition. We say that P is a critical point of f if all the partial de­
rivatives of fare 0 at P, that is

DJ(P) = 0 for i = 1, ... ,no

In two variables, the point (xo, Yo) is a critical point if and only if

and

In other words, the two partial derivatives

of
ox and of

oy

must be equal to 0 when evaluated at the point P = (xo, Yo).
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In n variables, the condition reads

DJ!(P) = 0, ... ,Dnf(P) = O.

or more concisely, gradf(P) = O.

Example 1. Find the critical points of the function f(x, y) = e-(x
2+ y2>.

Taking the partials, we see that

and af _ 2 -(x2+y2)
ay - - ye .

The only value of (x, y) for which both these quantities are equal to 0 is
x = 0 and y = O. Hence the only critical point is (0, 0).

A critical point of a function of one variable is a point where the de­
rivative is equal to O. We have seen examples where such a point need
not be a local maximum or a local minimum, for instance as in the fol­
lowing picture (Fig. 1):

Figure 1

A fortiori, a similar thing may occur for functions of several variables.
However, once we have found critical points, it is usually not too diffi­
cult to tell by inspection whether they are of this type or not.
Let f be any function (differentiable or not), defined on an open set

U.

Definition. A point P of V is a local maximum for the function if
there exists an open ball (of positive radius) B, centered at P, such that
for all points X of B we have

f(X) ~ f(P).

As an exercise, define local minimum in an analogous manner.
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In the case of functions of one variable, we took an open interval in­
stead of an open ball around the point P. Thus our notion of local
maximum in n-space is the natural generalization of the notion in 1­
space.

Theorem 1.1. Let f be a function which is defined and differentiable on
an open set U. Let P be a local maximum for f in U. Then P is a
critical point of f

Proof The proof reduces to the case of functions of one variable. In
fact, we shall prove that the directional derivative of f at P in any direc­
tion is O. Let H be a non-zero vector. For small values of t, P + tH lies
in the open set U, and f(P + tH) is defined. Furthermore, for small
values of t, tH is small, and hence P + tH lies in our open ball such that

f(P + tH) ~ f(P).

Hence the function of one variable g(t) = f(P + tH) has a local maxi­
mum at t = O. Hence its derivative g'(O) is equal to O. By the chain rule,
we obtain as usual:

grad f(P) .H = O.

This equation is true for every non-zero vector H, and hence

grad f(P) = O.

This proves what we wanted.

Just as in one-variable theory, a critical point may be a maximum, a
minimum, or neither. Remember the possibilities for the graph of a func­
tion of one variable in these three cases, as shown on Fig. 2.

f\V~
(a) (b)

Figure 2

(c)
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In several variables, we have exactly the same situations, and the three
cases might look like this.

(a) (b)

Figure 3

«(')

We shall study these possibilities more systematically in the next chapter.
In the present chapter, we shall determine which possibilities occur by
inspection.

V, §1. EXERCISES

Find the critical points of the following functions.

1. x2 + 4xy - y2 - 8x - 6y 2. x + y sin x

3. x 2 + y2 + Z2

5. xy + xz
7. X 2y2

9. (x - yt
11. x2 + 2y2 - X

4. (x + y)e- XY

6. cos(x2 + y2 + Z2)

8. x 4 + y2

10. x sin y

14. In each of the preceding exercises, find the minimum value of the given func­
tion, and give all points where the value of the function is equal to this mini­
mum. [Do this exercise after you have read §2.]

V, §2. BOUNDARY POINTS

In considering intervals, we had to distinguish between closed and open
intervals. We must make an analogous distinction when considering sets
of points in space.
Let S be a set of points, in some n-space. Let P be a point of S.

Definition. P is an interior point of S if there exists an open ball B of
positive radius, centered at P, and such that B is contained in S. The
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next picture illustrates an interior point (for the set consisting of the
region enclosed by the curve).

Figure 4

We have also drawn an open ball around P.

From the very definition, we conclude that the set consisting of all
interior points of S is an open set.
A point P (not necessarily in S) is called a boundary point of S if

every open ball B centered at P includes a point of S, and also a point
which is not in S. We illustrate a boundary point in the following pic­
ture:

Figure 5

For example, the set of boundary points of the closed ball of radius
a > 0 is the sphere of radius a. In 2-space, the plane, the region consist­
ing of all points with y > 0 is open. Its boundary points are the points
lying on the x-axis.

We define a set to be closed if it contains all its boundary points.

Finally, we define a set to be bounded if there exists a number b > 0
such that, for every point X of the set, we have

IIXII ~b.

We are now in a position to state the existence of maxima and
minima for continuous functions.
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Theorem 2.1. Let S be a closed and bounded set. Let f be a con­
tinuous function defined on S. Then f has a maximum and a minimum
in S. In other words, there exists a point P in S such that

f(P) ~ f(X)

for all X in S, and there exists a point Q in S such that

f(Q) ~ f(X)

for all X in S.

We shall not prove this theorem. It depends on an analysis which is
beyond the level of this course.
When trying to find a maximum (say) for a function f, one should

first determine the critical points of f in the interior of the region under
consideration. If a maximum lies in the interior, it must be among these
critical points.
Next, one should investigate the function on the boundary of the

region. By parametrizing the boundary, one frequently reduces the
problem of finding a maximum on the boundary to a lower-dimensional
problem, to which the technique of critical points can also be applied.
Finally, one has to compare the possible maximum of f on the

boundary and in the interior to determine which points are maximum
points.

Example 1. Find the maximum of the function

on the square drawn in the figure (Fig. 6).

(O,l) ......-~~':"t

Figure 6
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Let U be the interior of the square. We first find the critical points of
f on U. We have:

grad f(x, y) = (2xy, x 2
).

Thus

gran f(x, y) = (0,0) if and only if (x, y) = (0, y)

with an arbitrary value of y. In particular, the x-coordinate of a critical
point must be 0, and when that happens we have

f(O, y) = 0.

Hence the critical points do not occur in the interior of the square.
Hence the maximum of the function must occur on the boundary.
This boundary consists of four segments, and we evaluate the function

on these four segments to test where the maximum lies. The segments
have been labeled 81, through 84 ,
The segment 8 1 is the left vertical segment, with x = 0, and we have

just seen that the value of f is °on this segment.
On the segment 82 , we have y = 1, and

f(x, 1) = x 2 ,

so the maximum occurs when x = 1, with value f(1, 1) = 1.
On the segment 83 we have x = 1, and

f(l, y) = y,

so the maximum occurs when y = 1, with value f(1, 1) = 1 again.
On the segment 84 we have y = 0, and

f(x,O) = 0.

Putting it all together, we see that the maximum is at the point (1, 1)
and the maximum value of f on the square is therefore

f(l, 1) = 1.

Example 2. We now consider another type of example. First remem­
ber something about the exponential function in one variable.
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The graph of the function of one variable e- x
2
looks like this.

Such functions arise naturally in the theory of probability.
Let us pass to one higher dimension and one more variable.
In Example 1 in §1, we observed that the function

becomes very small as x or y becomes large. Consider some big closed
disc centered at the origin. We know by Theorem 2.1 that the function
has a maximum in this disc. Since the value of the function is small on
the boundary, it follows that this maximum must be an interior point,
and hence that the maximum is a critical point. But we found in the
Example in §1 that the only critical point is at the origin. Hence we
conclude that the origin is the only maximum of the function f(x, y).
The value of f at the origin is f(O, 0) = 1. Furthermore, the function
has no minimum, because f(x, y) is always positive and approaches 0 as
x and y become large.
In practice, one meets not only such a function, but a related function

like xe- x2 or xke- x2 with some positive integer k. Let us look at such an
example in two variables.

Example 3. Find the maximum of the function

f( )
2 -X4 _ y 2

x, Y = x e .

You should know from first year calculus that

A proof will be recalled in an appendix of this section. As x becomes
large, x 4 is bigger than x2 , and so e- x4 is smaller than e- x

• Conse­
quently

as x -+ 00.
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Since y2 ~ 0, it follows that e - y2 ~ 1. Hence

f(x, y) -+ 0

Hence any maximum occurs in a bounded region of the plane.
To find it we find the critical points. We have:

of _y2[ 2( 4 3) -x4 + 2 -X
4

]- = e x - x e xeox

of 2 -X4 ( 2) _y2 2 2 -x4 _ y 2- = x e - y e = - x ye .oy

Thus we find:

of =0 <:;> x=Oox or -4x4 + 2 = 0, that is x = ±(1/2)1/4.

of =0
oy x=O or y =0.

The symbol <:;> means "if and only if".
Hence the critical points are the points:

with an arbitrary value of y. But

and (0, y)

f(O, y) = 0 and

Hence the maximum of the function is at (±(1/2)114, 0) and the maxi­
mum value is that given above

APPENDIX

We recall a proof that given a positive integer k, we have
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If you had Taylor's formula in a course on calculus of one variable, then
you know that

and in particular, for any positive integer k we have

x 2 xk+ 1
1 + x + - + ... + :s; eX.

2! (k + 1)! -

Divide by xk
• Then we obtain:

h
. . . x eX

somet mg posItIve + k :s; -';.( + 1)! - x

As x --+ 00 the left-hand side --+ 00, so eX/xk --+ 00. This proves what we
wanted.

All we needed of Taylor's formula is the inequality

for every posItIve integer k. We now give a direct proof of this in­
equality without using Taylor's formula.
The proof is by induction, but before we give the formal step, let us

carry out the first few cases. We prove the following inequalities:

I 1. 1 + x ~ eX for x ~ O.

Proof Let fl(X) = eX - (1 + x). Then

and

Hence fl is increasing, and since fl(O) = 0 it follows that fl(X) ~ 0 for
x ~ 0, thus proving inequality 11.

x 2
I 2. 1 + x + 2! ~ eX for x ~ O.

Proof Let fix) = eX - (1 + x + ~~} Then

and f~(x) = eX - (1 + x) = fl(X).
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By 11, we know that fl(X) ~ 0, so f2 is increasing. Since fiO) = °it
follows that f2(X) ~ °for all x ~ 0, thus proving the inequality 12.

Proof. Let f3(X) = eX - (1 + x + ~~ + ~~} Then

fiO) = ° and f~(x) = f2(X).

By 12, we know that f2(X) ~ 0, so f3 is increasing. Since fiO) = 0, it
follows that fix) ~ °for all x ~ 0, thus proving the inequality 13.
By now the pattern should be clear. We let

f, (x) = eX - (1 + x + ... + x
n

).
n n!

Suppose we have already proved inequality I n, that is fn(x) ~ ° for
x ~ 0. Then

fn+l(O) = ° and

By inequality I n, this shows that fn+l is increasing, and since
fn+l(O) = ° it follows that fn+l(X) ~ ° for x ~ 0. This concludes the
proof of the general inequality.

V, §2. EXERCISES

Find the maximum and minimum points of the following functions in the indi­
cated region

1. x + y in the square with corners at (± 1, ± 1)

2. (a) x + y + z in the region x 2 + y2 + Z2 < 1
(b) x + y in the region x 2 + y2 < 1

3. xy - (1 - x 2 - y2)1/2 in the region x 2 + y2 ~ 1

4. x 3y2(1 - X - y) in the region x ~ 0 and y ~ 0 (the first quadrant together
with its boundary)

5. (x 2 + 2y2)e-(X
2

+y2) in the plane

6. (a) (x2 + y2) -I in the region (x - 2)2 + y2 ~ 1
(b) (x 2 + y2)-1 in the region x 2 + (y - 2)2 ~ 1
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(b) eX
-

y

(d) ex2+ylO

(f) - x 2ex4 + ylO

if (x, y) =f. (0,0)

if (x, y) = (0,0)

7. Which of the following functions have a maximum and which have a mini­
mum in the whole plane?
(a) (x + 2y)e- X2

_
y4

(c) ~2_y2

(e) (3x 2 + 2y2)e-(4x
2

+y2 j

{

X2 + y2

(g) ~xl + Iyl

8. Which is the point on the curve (cos t, sin t, sin(t/2») farthest from the origin?

In the following exercises, find the maximum of the function on the indicated
square.

9. f(x, y) = x 3 + xy on the square (Fig. 7):

lO,I)

o

(1,1)

(1,0)

Figure 7

10. f(x, y) = x 3 + xy on the square (Fig. 8):

(-1,-1) (1,-1)

Figure 8
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11. f(x, y) = 3xy3 on the rectangle (Fig. 9):

(-2,1)

( -2,0)

Figure 9

V, §3. LAGRANGE MULTIPLIERS

(0,0)

In this section, we shall investigate another method for finding the maxi­
mum or minimum of a function on some set of points. This method is
particularly well adapted to the case when the set of points is described
by means of an equation.
We shall work in 3-space. Let g be a differentiable function of three

variables x, y, z. We consider the surface

g(X) = O.

Let U be an open set containing this surface, and let f be a differenti­
able function defined for all points of U. We wish to find those points P
on the surface g(X) = 0 such that f(P) is a maximum or a minimum on
the surface. In other words, we wish to find all points P such that
g(P) = 0, and either

f(P) ~ f(X) for all X such that g(X) = 0,

or

f(P) ~ f(X) for all X such that g(X) = O.

Any such point will be called an extremum for f subject to the constraint
g.
In what follows, we consider only points P such that

g(P) = 0 but grad g(P) #- O.
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Theorem 3.1. Let g be a continuously differentiable function on an open
set U. Let S be the set of points X in U such that g(X) = 0 but

grad g(X) # o.

Let f be a continuously differentiable function on U and assume that P
is a point of S such that P is an extremum for f on s. (In other words,
P is an extremum for f, subject to the constraint g.) Then there
exists a number A. such that

gradf(P) = A. grad g(P).

Proof. Let X(t) be a differentiable curve on the surface S passing
through P, say X(to) = P. Then the function f(X(t» has a maximum or
a minimum at to. Its derivative

d
dt f(X(t»

is therefore equal to 0 at to. But this derivative is equal to

:t f(X(t»II=IO = gradf(P)·X'(to) = O.

Hence grad f(P) is perpendicular to every curve on the surface passing
through P (Fig. 10).

\ grad f (P) = A grad y (P)

grad yep)

Figure 10

Under these circumstances, and the hypothesis that grad g(P) # 0, there
exists a number A. such that

(1) grad f(P) = A. grad g(P).

or in other words, gradf(P) has the same, or opposite direction, as
grad g(P), provided it is not O. This is rather clear, since the direction of
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grad g(P) is the direction perpendicular to the surface, and we have seen
that gradf(P) is also perpendicular to the surface.

Conversely, when we want to find an extremum point for f subject to
the constraint g, we find all points P such that g(P) = 0, and such that
relation (1) is satisfied. We can then find our extremum points among
these by inspection.
(Note that this procedure is analogous to the procedure used to find

maxima or minima for functions of one variable. We first determined all
points at which the derivative is equal to 0, and then determined maxima
or minima by inspection.)

Example 1. Find the maximum of the function f(x, y) = x + y subject
to the constraint x 2 + y2 = 1.

Note. The constraint is the equation of a circle. Hence the problem
can also be stated as: Find the maximum of the function f(x, y) = x + y
on the circle of radius 1.

We let g(x, y) = x 2 + y2 - 1, so that S consists of all points (x, y) such
that g(x, y) = 0. We have

grad f(x, y) = (1, 1),

grad g(x, y) = (2x, 2y).

Let (xo, Yo) be a point for which there exists a number A. satisfying

or in other words

and

Then X o -#° and Yo -# 0. Hence A. = 1/2xo = 1/2yo, and consequently
X o = Yo' Since the point (xo, Yo) must satisfy the equation g(xo, Yo) = 0,
we get the possibilities:

and

It is then clear that (l/fi, l/fi) is a maximum for f since the only
other possibility (-I/fi, -1/fi) is a point at which f takes on a
negative value, and f(l/fi, l/fi) = 2/fi > 0.
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Example 2. Find the extrema for the function x2 + y2 + Z2 subject to
the constraint x2 + 2y2 - Z2 - 1 = O. The function is the square of the
distance from the origin, and the constraint defines a surface, so at a
minimum for f, we are finding the point on the surface which is at mini­
mum distance from the origin.
Computing the partial derivatives of the functions f and g, we find

that we must solve the system of equations

(a) 2x = A' 2x,

(c) 2z = A'( -2z),

(b) 2y = A·4y,

(d) g(X) = x 2 + 2y 2 - Z2 - 1 = O.

Let (xo, Yo, zo) be a solution. If Zo =I- 0, then from (c) we conclude
that A = -1. The only way to solve (a) and (b) with A = -1 is that
x = y = O. In that case, from (d), we would get

z~ = -1,

which is impossible. Hence any solution must have Zo = O.
If X o =I- 0, then from (a) we conclude that A= 1. From (b) and (c) we

then conclude that Yo = Zo = O. From (d), we must have X o = ± 1. In
this manner, we have obtained two solutions satisfying our conditions,
namely

(1,0,0) and (-1,0,0).

Similarly, if Yo =I- 0, we find two more solutions, namely

(0,)t,0) and (0, -)t,0).

These four points are therefore the possible extrema of the function f
subject to the constraint g.

If we ask for the minimum of f, then a direct computation shows that
the last two points

(0, ± )t,0)

are the only possible solutions (because 1 > 1).
So far we have formulated the method of Lagrange multipliers in geo­

metric terms, allowing us to find the extrema of a function on a surface.
In some applications, e.g. economics, the problem is posed in different
terms, as in the next example.

Example 3. Suppose a business has $90 million with which it wants to
buy machines A at $3 m a piece, and also machines B costing $5 m a
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piece. Suppose it buys x machines A and y machines B. To get
maximum utility out of the purchase, it wants the product xy to be
maximum. How many of each should it buy?
The constraint imposed by the company's budget can be written down

by the equation

3x + 5y = 90.

So the problem is to maximize the function f(x, y) = xy subject to the
above constraint. For this we simply follow the previous pattern. Let

g(x, y) = 3x + 5y - 90.

Then

grad g(x, y) = (3, 5),

gradf(x, y) = (y, x).

The maximum occurs for values of A such that

(y, x) = A(3, 5) = (3A, 5A).

so

y = 3A and x = 5A.

We substitute these values back in the constraint equation (*) to get

3 . 5A + 5· 3A = 90.

Solving for A yields A = 3. Hence the extremum of f is at the point

A(5, 3) = 3(5,3) = (15,9).

The answer is that the company must buy 15 machines A and 9 ma­
chines B.

Note. The function f(x, y) = xy which expresses the relation between
how much utility is derived from buying x units of one thing and y units
of another is called the utility function by economists.

V, §3. EXERCISES

1. (a) Find the minimum of the function x + y2 subject to the constraint

(b) Find its maximum.
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2. Find the maximum value of x 2 + xy + y2 + yz + Z2 on the sphere of radius
1. [Hint: replacing x 2 + y2 + Z2 by 1 makes the problem simpler.]

3. Let A = (1, 1, -1), B = (2, 1,3), C = (2,0, - 1). Find the point at which the
function

f(X) = (X - A)2 + (X - B)2 + (X - C)2

reaches its minimum, and find the minimum value.

4. Do Exercise 3 in general, for any three distinct vectors

5. Find the maximum of the function 3x2 + 2j2xy + 4y 2 on the circle of
radius 3 in the plane.

6. Find the maximum of the function xyz subject to the constraints

x ~ 0, y ~ 0, z ~ 0, and xy + yz + xz = 2.

7. By completing the square show that the only solution of

5x2 + 6xy + 5y 2 = °
is the origin in the plane.

8. Find the extreme values of the function cos2 x + cos2 y subject to the con­
straint x - y = n/4 and °~ x ~ n.

9. Find the points on the surface Z2 - xy = 1 nearest to the origin.

10. Find the extreme values of the function xy subject to the condition

x+y=1.

11. Find the shortest distance between the point (1,0) and the curve y2 = 4x.

12. Find the maximum and minimum points of the function

f(x, y, z) = x + Y + z

in the region x 2 + y2 + Z2 ~ 1.

13. Find the extremum values of the function f(x, y, z) = x - 2y + 2z on the
sphere x 2 + y2 + Z2 = 1.

14. Find the maximum of the function f(x, y, z) = x + Y + z on the sphere

15. (a) Find the extreme values of the function f given by f(x, y, z) = xyz sub­
ject to the condition x + y + z = 1.
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(b) A business has $1 miIlion to spend on three products, each costing an
equal amount per unit. How much should be spent on each to maximize
the utility, if the utility function is

f(x, y, z) = xyz?

16. Find the extreme values of the function give by f(x, y, z) = (x + y + Z)2 sub­
ject to the condition x2 + 2y2 + 3z2

= 1.

17. Find the minimum of the function f(x, y, z) = x2 + y2 + Z2 subject to the
condition 3x + 2y - 7z = 5.

18. Maximize the function x - y2 - z2/2 subject to the constraint

19. Maximize the function _x2 + y - 2z2 subject to the constraint

20. Find the point on the parabola y - x2 = 0 that maximizes the function

2x - y.

21. Find the point on the hyperbola xy = 2 that minimizes the function 2x + y.

22. Find the maxima and minima of the function

on the surface x2 + y2 + 2z2 = 2.

23. In general, if a, b, c, d are numbers with not all of a, b, c equal to 0, find the
minimum of the function x2 + y2 + Z2 subject to the condition

ax + by + cz = d.

24. Find the maximum and minimum value of the function

f(x, y) = x 2 + 2y 2 - X

on the closed disc of radius 1 centered at the origin.

25. Find the shortest distance from a point on the ellipse x2 + 4y2 = 4 to
the line x + y = 4. [Hint: At a minimum, gradf(x, y) is parallel to
grad g(x, y).]

26. In working x hours at job A and y hours at job B, it can be determined that
the utility derived can be roughly expressed in terms of the function

f(x, y) = 2j";c + JY.
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How many hours should the person work on each job to maximize this func­
tion if the person works a total of 10 hours?

27. Suppose product A costs $11 per unit and product B costs $3 per unit. Both
are needed to produce product C. When x units of A and y units of Bare
used, the total number of units of C produced by the production process is:

g(x, y) = -3x2 + lOxy - 3y 2.

How many units of A and B should be used to produce 80 units of product
C and minimize the costs?

28. A business has $24 thousand to spend on two types of machines. Machine A
costs $2 thousand per unit, and machine B costs $4 thousand per unit. As­
suming that the utility as a result of buying x units of A and y units of B is
determined by the function

!(x, y) = ..fi + .jY,

find the numbers (x, y) which should be bought to maximize the utility.



CHAPTER VI

Higher Derivatives

VI, §1. THE FIRST TWO TERMS OF TAYLOR'S FORMULA

In the theory of functions of one variable, we derived an expression for
the values of a function f near a point a by means of the derivatives of f
at a, namely

f(a + h) = f(a) + f'(a)h + f~~a) h2 + R 3 ,

where R 3 is a remainder term given by

j<3)(C) 3

R3=~h

for some number c between a and a + h. We review the proof of
Taylor's formula in an appendix to this chapter.
We shall now derive a similar formula for functions of two variables.

The principle applies just as well to several variables, and also to higher
order terms, which you can carry out easily if you understand induction.
For our purposes at first we are mostly interested in the first and second
terms of the formula.
We let

and H = (h, k).

We assume that P is in an open set U and that f is a function on U all
of whose partial derivatives up to order 3 exist and are continuous. We
are interested in finding an expression

f(P + H) = f(P) + ???
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The idea is to reduce the problem to the one variable case. Thus we de­
fine the function

get) = f(P + tH) = f(Pl + th, P2 + tk)

for 0 ~ t ~ 1. We assume that U contains all points P + tH for
o~ t ~ 1. Then

g(1) = f(P + H) and g(O) = f(P).

We can use Taylor's formula in one variable applied to the function 9
and we know that

"(0)
g(l) = g(O) + g'(O) + 92! + R 3 •

Observe here that g'(O) and g"(O) should be multiplied by

(1 - 0) = 1,

so this factor does not show up explicitly in the present case. The re­
mainder term R 3 has the form

for some number" between 0 and 1. We shall now express g'(t), g"(t)
and g"(O) in terms of the partial derivatives of f, and thus obtain the
first two terms of the Taylor formula for f itself.
First we have

d
g'(t) = dt f(P + tH)

= gradf(P + tH)· H

= Dd(P + tH)h + Dd(P + tH)k.

Hence

I g'(O) = Dd(P)h + Dd(P)k. I

Next we have the problem of finding the second derivatives g"(t) and
g"(O). This can be messy if we haven't the right notation. Let us write

(1) g'(t) = hDd(P + tH) + kDd(P + tH).
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If we let 11 = hDd + kDd, then we may rewrite

g'(t) = I1(P + tH).

This is very convenient, because we can take one more derivative exactly
as we took the first derivative:

d d
g"(t) = - g'(t) = - I (P + tH)

dt dt 1

= hDd1(P + tH) + kDd1(P + tH)

by using the chain rule again, or simply by using what we had proved
previously, applied to the function 11 instead of f.

If we now substitute the definition of 11' we find:

hDd1 + kDd1 = hD1(hDd + kDd) + kDz{hDd + kDd)

= h2DU + 2hkD1Dd + k2D~f.

In other words we have proved:

(2)

g"(t) = h2(DU)(P + tH) + 2hk(D1Dd)(P + tH) + k2(D~f)(P + tH).

Remark. There is an even better notation to express this result. Sup­
pose we "factor" and write

Then formula (1) can be written in the form

d
d/(P + tH) = «hD1 + kD2)I)(P + tH) = I1(P + tH).

Therefore, applying what we have just done to the function /1, we let

and we find
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But substituting the definition of fl in terms of f, we find

It is now irresistible to use power notation, and write

Thus (2) can be written in the form,

If you expand out (hD l + kDz)Z as if you were working with numbers or
polynomials, you find

(hD l + kDz)Z = hZDi + 2hkD 1Dz + kZD~.

In §4 and §5 we shall justify working formally like that in general.

In any case, if we now plug in (1) and (2) into the one-variable for­
mula

g"(O)
g(1) = g(O) + g'(O) +~ + R 3 ,

we have found the several variable version concerning f, namely:

Taylor's formula with remainder R 3 :

f(P + H) = f(P) + Dd(P)h + Dz/(P)k

+ HDi!(P)hZ + 2D 1Dz/(P)hk + DU(P)kZ]

+ R 3 ·

This is a convenient way of writing P without coordinates. If we put in
the coordinates with P = (Pl' pz), then the formula reads:

f(Pl + h, Pz + k)

= f(Pl' pz) + Dd(Pl' pz)h + Dz/(Pl' pz)k

+ HhzDi!(Pl' pz) + 2hkD 1Dz/(Pl, pz) + kZDU(Pl' pz)]

+ R 3 ·
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The term

is called the term of degree 1. The second term is called the term of de­
gree 2 in Taylor's formula.

Remark. The above arguments also work quite generally in more
than two variables. We simply let

and

Instead of hD I + kD 2 we then have hlD I + ... + h.D., and so on.

Example 1. Find the terms of degree ~ 2 in the Taylor formula for
the function f(x, y) = log(1 + x + 2y) at the point (2, 1).
We compute the partial derivatives. They are:

f(2, 1) = log 5,

1 aj
DJ(2, 1) = - = -a (2, 1),

5 x

2 af
Dd(2, 1) = - = -a (2, 1),

5 y

2 1 a2f
DJ(2, 1) = - 25 = ax2 (2,1),

2 4 a2f
Dd(2, 1) = - 25 = a

y
2 (2, 1),

2 a2f
D I Dd(2, 1) = - 25 = ax ay (2,1).

DJ(x,y) = 1 + x + 2y'

2
Dd(x,y) = 1 + x + 2y'

2 1
DJ(x, y) = - (l + x + 2y)2 '

2 4
D2f(x, y) = - (1 + x + 2y)2 '

2
D I D 2 f(x y) = - ,

, (1 + x + 2y)2

Hence

f(2 + h, 1 + k) = log 5 +Gh + ~ k)

1 [ 1 2 4 4 2J+- --h --hk--k +R.
2! 25 25 25 3

When h, k are small, then R 3 is very small compared to the terms of
degree 1 and 2 in the middle, so these terms give a good approximation
to the function.
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We are used to writing f(X) = f(x, y), where x, yare the variables in
2-dimensional space. Then we have the relations

X=P+H,

H=X-P,

x = PI + h,

h = x - PI'

y = P2 + k,

k = y.- P2'

Therefore we can rewrite the terms of degree ~ 2 in the Taylor formula
for the function

f(x, y) = log(1 + x + 2y) at the point (2, 1)

in the form:

1 2
f(X) = f(x, y) = log 5 + - (x - 2) + - (y - 1)

5 5

1[ 1 4 4 ]+ - - - (x - 2)2 - - (x - 2)(y - 1) - - (y - 1)2
2! 25 25 25

In terms of general coordinates for P, that is P = (PI, P2), the formula
has the form:

f(x, y) =

f(P) + Dd(P)(x - PI) + D2f(P)(y - P2)

+ t[Di!(P)(x - PI)2 + 2D ID2f(P)(x - PI)(y - P2) + DU(P)(y - P2)2]

+ R 3 ·

Just as we did in one variable, when we work with the point
P = (0, 0), and expand a function near the origin, then we write x, y in­
stead of h, k, and in that case we may rewrite the Taylor formula with
R 3 as follows:

f(x, y) = f(O, 0) + Dd(O, O)x + Dd(O, O)y

+ t[Di!(O, 0)x2 + 2D ID2f(0, O)xy + DU(O, 0)y2]

+ R3 ·

Example 2. Let P = (0,0). Find the Taylor formula with R 3 for the
function

f(x, y) = log(1 + x + 2y).
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We had computed the partial derivatives in general in Example 1.
Here we substitute (0, 0) to find:

DIf(O,O) = 1,

and so forth. Then

Dzf(O, O) = 2,

VI, §1. EXERCISES

Find the terms up to order 2 in the Taylor formula of the following functions
(taking P = 0).

1. sin(xy)

4. sin(x2 + y2)

7. (sin x)(cos y)

2. cos(xy)

8. eX sin y

3. 10g(1 + xy)

6. cos(x2 + y)

9. x + xy + 2y2

10. In each one of Exercises 1 through 9, find the terms of degree ~ 2 in the
Taylor expansion of the function at the indicated point.

1. P = (1, n)

4. P = (-fie,-fie)
7. P = (n/2, n)

2. P = (1, n)

5. P = (1,2)

8. P = (2, n/4)

3. P = (2, 3)

6. P = (0, n)

9. P = (1, 1)

VI, §2. THE QUADRATIC TERM AT CRITICAL POINTS

If the point P is a critical point of f, that is,

DIf(P) = 0 and Dzf(P) = 0,

then the terms involving the first power of hand k vanish, and the
Taylor expansion involves only the terms having the second power of h,
k, so that it reads:

f(Pl + h, P2 + k) = f(Pl' pz) + q(h, k) + R 3

where
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Definition. At a critical point, this expression q(h, k) is called the
quadratic form associated with the function at the point P.

Again letting X = P + Hand H = X - P, at a critical point, we have

f(X) =

f(P) + -HDi!(P)(x - Pl)2 + 2D 1D2f(P)(x - Pl)(Y - P2) + DU(P)(y - P2)2]

+ R 3 •

Example 1. Let f(x, y) = x - x 3y + y2. Find the critical points, and
find the associated quadratic forms.
We have

af
- = 1 - 3x2 y
ax '

A critical point occurs precisely when

af
ay = _x3 + 2y.

and

We can solve for x and y, and get y = x 3/2 so x5 = 2/3. Hence there is
exactly one critical point

P = ((~)1/5, 1 ) = ((~)1/5, !(~)3/5).
3 3(2/3)2/5 3 2 3

To find the quadratic form, we compute further derivatives:

Di!(x, y) = -6xy

DU(x,y) = 2

Then the quadratic form is

so

so

so

(
2)4/

5

Di!(P) = -3"3 '

DU(P) = 2,

(
2)2/

5
D1Dd(P) = -3"3 .

1[(2)4
1
5 (2)2

/
5 ]q(h, k) = 2" - 3"3 h2

- 6"3 hk + 2k
2

.

It is often the case that the origin itself is a critical point. Further­
more, we can always achieve this by a change of coordinates, e.g. by us-
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ing the new coordinates

x' = x - PI and y' = y - Pz·

If P = (0, 0) is the origin itself which is a critical point, then we have

f(x, y) = f(O, 0) + q(x, y) + R 3

where

Definition. This function q(x, y) is called the quadratic form associated
with f at the point 0, whenever 0 is a critical point of f.

Example 2. Let f(x, y) = e-(x
2
+ y2

). Then it is a simple matter to verify
that

grad f(O, 0) = o.

We let P = (0,0) be the origin. Standard computations show that

Di!(O) = -2, DU(O) = -2.

Substituting these values in the general formula gives the expression for
the quadratic form, namely

In general, let P = (PI' pz). Suppose that P is a critical point. Let
x = PI + hand y = pz + k. From the expression

f(x, y) = f(P) + q(h, k) + R 3 ,

it can be shown that the remainder R 3 is much smaller than the quad­
ratic form q(h, k), which gives a good approximation to f near the
point P.

Application to local maxima and minima

Definition. The point P is a local maximum for the function if there
exists some open disc U centered at P such that we have

f(P) ~f(X) for all X in U.
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Similarly we define a local minimum when f(P) ~ f(X) for all X in U.
Taking a small open disc U centered at P amounts to considering the
value

for small numbers h, k.

Suppose that P is a critical point, and

f(x, y) = f(P) + q(x - Pl' Y - P2) + R 3·

After a change of coordinates, suppose P is the origin, so P = (0, 0). Then

f(x, y) = f(O, 0) + q(x, y) + R 3 •

We shall study q(x, y) algebraically in the next section. If q(x, y) is non­
degenerate in a suitable sense, then it represents the function approxi­
mately near the origin, and the behavior of f(x, y) near (0,0) is the same
as the behavior of q(x, y) as far as being a local maximum or minimum.
The precise theorem will be stated in the next section when we have the
terminology.
We shall now describe the level curves for some quadratic forms to

get an idea of their behavior near the origin.

Example 3. q(x, y) = x 2 + y2. Then a graph of the function q and the
level curves look like those in Figs. 1 and 2.

Figure 1

Level curves

Figure 2
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In this example, we see that the origin (0, 0) is a local minimum point
for the form.

Example 4. q(x, Y) = _(x2 + y2
). The graph and level curves look

like Figs. 3 and 4:

Figure 3 Figure 4

The origin is a local maximum for the form.

Example 5. q(x, y) = x2 - y2. The level curves are then hyperbolas,
determined for each number c by the equation x2 - y2 = c:

Figure 5

Of course, when c = 0, we get the two straight lines as shown (Fig. 5).
The origin is called a saddle point in this case.
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(b) x + ysinx
(d) X 2 y2

(f) (x _ y)4
(h) x 2 + 2y2 - X

Example 6. q(x, y) = xy. The level curves look like the following
(similar to the preceding example, but turned around):

Figure 6

In Examples 5 and 6, we see that the origin, which is a critical point,
is neither a local maximum nor local minimum. It is called a saddle
point, because if you think of the graph of the function, it looks like a
saddle.
In the next section, we study more general quadratic forms. The ones

above are typical.

VI, §2. EXERCISES

1. Let f(x, y) = 3x2 - 4xy + y2. Show that the origin is a critical point of f.

2. (a) More generally, let a, b, c be numbers. Show that the function f given by
f(x, y) = ax2 + bxy + cy2 has the origin as a critical point.

(b) Find the quadratic form q(x, y) associated with f(x, y) at the point (0,0).

3. Find the quadratic form associated with the function f(x, y) in the following
cases, at the critical points P.
(a) x2 + 4xy - y2 - 8x - 6y
(c) (x + y) e- xy

(e) x4 + y2
(g) x sin y

4. Sketch the level curves for the following quadratic forms. Determine whether
the origin is a local maximum, minimum, or neither.
(a) q(x, y) = 2x2 - y2 (b) q(x, y) = 3x2 + 4y2
(c) q(x, y) = -(4x2 + 5y2) (d) q(x, y) = y2 - x2
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(e) q(x, y) = 2y2 - x 2

(g) q(x, y) = -(3x2 + 2y2)

(f) q(x, y) = y2 - 4x2

(h) q(x, y) = 2xy

VI, §3. ALGEBRAIC STUDY OF A QUADRATIC FORM

In trying to determine whether a critical point is a maximum or mini­
mum, we are led to study algebraic expressions like

q(x, y) = ax2 + bxy + cy2,

whose coefficients a, b, c are numbers. As we mentioned in the preceding
section, such an expression is called a quadratic form. Its value at (0, 0)
is

q(O,O) = o.

It is easy to see that all the first partial derivatives vanish at the origin
(0,0), i.e.

oq
ox and

evaluated at (0, 0) are equal to O. Thus the origin is a critical point of
q(x, y).
We wish to determine whether the origin is a maximum, minimum, or

neither (in which case it may be a saddle point).
First observe that on the line y = 0 we have the value

q(x,O) = ax2
•

If a "1= 0, then q(x,O) is positive if a > 0 and negative if a < 0 for all
values of x "1= 0 because x 2 > O.
Similarly, on the line x = 0 we have the value q(O, y) = cy2. A similar

behavior occurs if c "1= O. If both a = c = 0, then

q(x, y) = bxy.

If k is a constant "1= 0 then q(x, y) = k represents a hyperbola, which we
know how to graph.
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We shall now analyze the behavior when a#-O by completing the
square. Remember that one can define an ellipse as a stretched out cir­
cle. More precisely, consider the equation

We let

x = au and y = bv.

Then in terms of the (u, v)-coordinates the equation is that of a circle

Thus the ellipse is the dilation of a circle in one direction by a factor of
a, and in the other direction by a factor of b. We shall carry out a simi­
lar analysis to reduce the study of a quadratic form to the standard ex­
amples:

q(x, y) = uv, or or

in terms of suitable coordinates (u, v). First we carry out a numerical ex­
ample.

Example 1. Let q(x, y) = 3x2 - 4xy - 4y2. We want to write

This is known as completing the square. What does s have to be? In­
spection and algebra shows that s = 2yj3. Therefore

( 2)2 4 (2)2 16
q(x, y) = 3 x - 3" y - 3" y2 - 4y 2 = 3 x - 3" y - "3 y2.

Let new coordinates (u, v) be
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Then in terms of (u, v) the quadratic form can be expressed more simply
as

q(x, y) = u2
- v2

In the (u, v) coordinates, the level curves are

u2 - v2 = k with k constant,

and so are hyperbolas, for all values of k, positive or negative. Observe
that the new coordinates (u, v) represent a shearing effect with respect to

the (x, y)-coordinates, as well as a dilation due to the factors J3 and
4/J3. But the origin (0,0) with respect to the (x, y)-coordinates cor­
responds to the origin (0,0) with respect to the (u, v)-coordinates. Since
the level curves are sheared hyperbolas, the function q(x, y) does not
have a local maximum or local minimum at the origin, because the func­
tion u2

- v2 does not. Changes in coordinates of the above type are
studied systematically in courses in linear algebra.
Instead of using special coefficients, we can carry the same argument

in general, with any quadratic form

q(x, y) = ax2 + bxy + cy2.

We suppose a > 0. Then

Therefore

(
b)2 b

2
q(x, y) = a x + - Y - - y2 + cy2

2a 4a

We let:

b2 - 4ac 2

4a y.

arbitrary if b2 - 4ac = 0,

Jb2 - 4ac
--'-------y if b2 - 4ac > 0,

V= 2~

J 4ac - b2
--'--------=-- y if b2 - 4ac < 0.
2~
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Then in terms of the (u, v)-coordinates we have the following table:

Ifa> 0 then:

if b2 - 4ac = 0,

if b2 - 4ac > 0,
if b2 - 4ac < 0, {

minfOr q,

so (0, 0) is saddle point for q,

minfor q.

Definitions. We define the discriminant to be b2 - 4ac.

We define the quadratic form to be non-degenerate if its discriminant
is #- 0, that is if b2 - 4ac #- o.

Theorem 3.1. Let q(x, y) = ax2 + bxy + cy2 be a quadratic form. As­
sume a> o.

Case 1. If b2 - 4ac = 0 then the origin is a local minimum.

Assume next that the discriminant is #- 0, that is q is non-degenerate.

Case 2. If b2 - 4ac > 0 then the origin is neither a local maximum nor
a local minimum. It is called a saddle point.

Case 3. If b2 - 4ac < 0 then the origin is a local minimum.

Proof We can read these properties from the expression of the quad­
ratic form in terms of the (u, v)-coordinates. The square of a non-zero
number is always positive. From the known level curves in the three
cases, the behavior of q(x, y) is precisely as asserted in the theorem.

Observe that in Case 1, the quadratic form has value 0 whenever
u = 0, that is whenever (x, y) lie on the straight line

b
x + 2a Y = O.

In any case, we have q(x, y) ~ 0 for all (x, y), because q(x, y) is a perfect
square. This shows explicitly how the origin is a local minimum.

In Case 3, we have q(x, y) = u2 + v2, so q(x, y) ~ 0 for all (x, y).
Again we see directly that (0, 0) is a local minimum.
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Observe that Case 1 and Case 3 are precisely those cases when we
have

q(x,y) ~ 0 for all (x, y).

In Case 2, we may have q(x, y) > 0 for some values of (x, y), and
q(x, y) < 0 for other values, as one sees in terms of the (u, v)-coordinates.
Thus Theorem 3.1 may be interpreted by saying:

The origin is a local minimum for f if and only if q(x, y) ~ 0 for all
(x, y).

This is analogous to the second derivative test for functions of one vari­
able.
In the above discussion we took, a > 0 for concreteness. If a < 0 we

can apply the discussion to -q(x, y) to obtain the analysis of the behav­
ior. Thus q(x, y) has a local maximum at (0,0) if and only if -q(x, y)
has a local minimum. Furthermore, the discriminant is the same in both
cases, because of the sign relation (- 1)(-1) = + 1.

Example 2. Let

q(x, y) = - 3x2 + 5xy - 7y2.

Here a = - 3 is negative. Put

ql(X, y) = 3x2
- 5xy + 7y2 = -q(x, y).

The discriminant is

b2
- 4ac = 25 - 4· 3 . 7 = - 59 < O.

The quadratic form ql has a local minimum at the origin. Therefore the
quadratic form q = -ql has a local maximum.

Remark. I personally prefer to complete the square each time than to
memorize the conditions under which there is a local max or local min
because of the possibility of getting the signs mixed up. '

Finally suppose we deal with an arbitrary function f(x, y), which has
a critical point at (0,0) and has the Taylor expansion

f(x, y) = f(O,O) + q(x, y) + R 3(x, y).
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For small values of (x y) the error term Rix, y) is very small compared
to q(x, y), provided that q(x, y) is non-degenerate. Thus the level curves
of f will be small perturbations of the level curves of q(x, y). We do not
go into a formal discussion of this, but only state the relevant theorem
after making a definition.

Definition. A critical point P of f is said to be non-degenerate if the
quadratic form q of f at P is non-degenerate.

Theorem 3.2. Let f have continuous partial derivatives of order 3. Let
P be a non-degenerate critical point of f, and let q be the quadratic
form of f at P. Then! has a local maximum or local minimum or sad­
dle point at P according as the quadratic form has a local maximum or
local minimum or saddle point.

Example 3. Let
lex, y) = log(1 + x2 + y2).

Find whether the origin is a local maximum or minimum, or neither.
We compute the first partial derivatives:

and
of _ 2y
oy - 1 + x 2 + y2

We see that the origin is a critical point because

Dt!(O, O) = ° and D2 f(0,0) = 0.

Now we compute the second partial derivatives:

2(1 + x 2 + y2) - (2x)(2x)

(1 + x2 + y2)2

2(1 + x2 + y2) - (2y)(2y)

(1 + x2 + y2)2

o2f -(2x)(2y)

ax oy = (1 + x 2 + y2f

Hence

and

DiI(O, O) = 2 = DU(O, 0).
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The quadratic form is

Either by inspection, or by noting that

b2
- 4ac = - 4 < °

we conclude that the origin is a local minimum.

Example 4. Let f(x, y) = x - x3y + y2. Find the critical points, find
the associated quadratic forms, and determine whether each critical point
is a local maximum, local minimum, or a saddle point.
The first part of this example was already worked out in §2, Example

1. We found that there is only one critical point P, and that the asso­
ciated quadratic form is

1[(2)4/5 (2)2/5 ]q(h, k) = 2. - 3"3 h2
- 6"3 hk + 2k2

The discriminant is

(2)4/5 (2)4/5
b2

- 4ac = 9"3 + 4· 3 . 1"3 > 0.

Therefore the quadratic form has a saddle point at the origin, and f has
neither a local maximum nor a local minimum at the critical point. Ob­
serve in this case that

(
2)4/5

a = -3"3 < 0,

in other words, a is negative. However, whether a is negative or positive,
if the discriminant b2

- 4ac > 0, then it is true in all cases that the origin
is a saddle point for the quadratic form, and hence for the function f
itself at the critical point.

VI, §3. EXERCISES

Determine whether the following quadratic forms have a maximum, minimum, or
neither at the origin.

1. 3x2 - 4xy + y2

3. 6x2 + xy - 2y2

5. 2x2 + 3xy + y2

2. -4x2 + xy + 5y2

4. 3x2 + txy _ y2

6. x 2 + 3xy + 4y2
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7. Find all critical points of the function

and determine whether they are local maxima, local minima, or saddle
points.

8. Let f(x, y) = x3 + x2 - y3 + y2. Find all critical points of f and determine
whether they are maxima, minima, or saddle points.

9. Find the critical points of the function

f(x, y) = 16 + 4x + 7y - 2x2 _ y2.

State whether what you have found is a maximum or a minimum, and why
you think it is (i.e. give a reason for your answer).

10. Find the critical points of the function:
(a) ye-(x 2

+ y2 ) (b) xe-(x2 +y2)/2

and determine whether they are local maxima or minima, or saddle points.

11. Let f(x, y) = x2 + y3 + 3xy2 - 2x. Let P = (1,0). Then P is a critical point.

(a) Find the quadratic form of f at the point P.
(b) Determine whether P is a local maximum, local minimum or neither.
Give reasons for your answer.

VI, §4. PARTIAL DIFFERENTIAL OPERATORS

The main point of this section is to acquaint you with the idea that one
can work with differential operators (having constant coefficients) just as
one works with polynomials. This will be applied in the next section to
Taylor's formula.
We let as usual DI , D 2 , D3 be the partial derivatives with respect to

the 3 variables under consideration. When dealing with two variables,
we then just consider DI , D2 •

In general, suppose that we are given three positive integers ml , m2 ,

and m3 • We wish to take the repeated partial derivatives of f by using
mi times the first partial D I , using m2 times the second partial D2 , and
using m3 times the third partial D 3 . Then it does not matter in which
order we take these partial derivatives, we shall always get the same
answer.
To see this, we make repeated application of Theorem 4.1 of Chapter

III, which says that D2DI = DI D2 , always assuming that f is sufficiently
differentiable, with continuous partial derivatives. This commutative law
applies to any pair of partial derivatives. Suppose we have a sequence of
partial derivatives, for instance



[VI, §4] PARTIAL DIFFERENTIAL OPERATORS 163

Using the commutative law, we can interchange any adjacent pairs of
partials. Thus for instance, using D3 D2 = D2 D3 we can push D3 to the
right, to get

Then we interchange the D 3 which occurs in the second place succes­
sively with D1, D2 , D1, D2 until we push this D3 furthest to the right,
and find

Then we interchange each D2 with an adjacent partial, and push D2 to
the right just before D 3 . We then end up with

In general, we can interchange any occurrence of D3 with D2 or D1 so as
to push D 3 towards the right. We can perform such interchanges until
all occurrences of D 3 occur furthest to the right. Once this is done, we
start interchanging D2 with D1 until all occurrences of D2 pile up just
behind D3 • Once this is done, we are left with D 1 repeated a certain
number of times on the left.
No matter with what arrangement of D1, D2 , D3 we started, we end

up with the same arrangement, namely

with D1 occurring m1 times, D2 occurring m2 times, and D3 occurring m3
times.
Exactly the same argument works for functions of more variables.
We shall now describe a notation for iterated derivatives, which gener­

alizes the notation just given for two derivatives.
For simplicity, let us begin with functions of one variable x. We can

then take only one type of derivative,

d
D=-·

dx

Let j be a function of one variable, and let us assume that all the inter­
ated derivatives of j exist. Let m be a positive integer. Then we can
take the m-th derivative of j, which we once denoted by j(m). We now
write it

DD .. ·Dj or ~(~... (dj) ... ),
dx dx dx
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the derivative D (or d/dx,) being iterated m times. What matters here is
the number of times D occurs. We shall use the notation Dm or (d/dx)m
to mean the iteration of D, m times. Thus we write

or

instead of the above expressions. This is shorter. But even better, we
have the rule

for any pOSItive integers m, n. So this iteration of derivatives begins to
look like a multiplication. Furthermore, if we define DOf to be simply f,
then the rule above also holds if m, n are ~ O.
The expression Dm will be called a simple differential operator of order

m (in one variable, so far).
Let us now look at the case of two variables, say (x, y). We can then

take two partials D 1 and D 2 (or O/ox and %y). Let m 1, m2 be two inte­
gers ~ O. Instead of writing

we shall write

or

or

:x ···(:x (:y ... (~~) .. -)),
'-->-' '-.,-I

m 1 m2

For instance, taking m 1 = 2 and m2 = 5 we would write

This means: take the first partial twice and the second partial five times
(in any order). (We assume throughout that all repeated partials exist
and are continuous.)
An expression of type

will be called a simple differential operator, and we shall say that its
order is m

1
+ m2 • In the example we just gave, the order is 5 + 2 = 7.

It is now clear how to proceed with three or more variables.
If we deal with functions of 3 variables, all of whose repeated partial

derivatives exist and are continuous in some open set U, and if D 1, D2 ,
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D 3 denote the partial derivatives with respect to these variables, then we
call an expression

or

a simple differential operator, m1, m2 , m 3 being integers ~ O. We say that
its order is m1 + m2 + m3 •

Given a function f (satisfying the above stated conditions), and a sim­
ple differential operator D, we write Df to mean the function obtained
from f by applying repeatedly the partial derivatives D1, D2 , D3 , the
number of times being the number of times each D i occurs in D.

Example 1. Consider functions of three variables (x, y, z). Then

is a simple differential operator of order 3 + 5 + 2 = to. Let f be a
function of three variables satisfying the usual hypotheses. To take Df
means that we take the partial derivative with respect to z twice, the
partial with respect to y five times, and the partial with respect to x
three times.
We observe that a simple differential operator gives us a rule which to

each function f associates another function Df.
As a matter of notation, referring to Example 1, one would also write

the differential operator D in the form

We shall show how one can add simple differential operators and
multiply them by constants.
Let D, D' be two simple differential operators. For any function f we

define (D + D')f to be Df + D'f. If c is a number, then we define (cD)f
to be c(Df). In this manner, taking iterated sums, and products with
constants, we obtain what we shall call differential operators. Thus a dif­
ferential operator D is a sum of terms of type

where c is a number and m1, m2 , m3 are integers ~ O.
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Example 2. Dealing with two variables, we see that

D = 3~ + 5(~)2 - n~~
ox ox ox oy

is a differential operator. Let f(x, y) = sin(xy). We wish to find Df. We
compute separately:

of
ox = y cos(xy),

o2f 2 .
ox2= Y (-sm(xy),

o of
oy ox = y( -sin(xy)x + cos xy.

Adding these with the appropriate numbers, we get:

of (0)2 0 ofDf(x, y) = 3 - + 5 - f - n--
ox ox ox oy

= 3y cos(xy) + 5( - y2 sin(xy)

-n[y( -sin(xy)x + cos(xy)].

We see that a differential operator associates with each function f
(satisfying the usual conditions) another function Df.
Let c be a number and f a function. Let D i be any partial deriva­

tive. Then

D;(cf) = cDJ.

This is simply the old property that the derivative of a constant times a
function is equal to the constant times the derivative of the function.
Iterating partial derivatives, we see that this same property applies to dif­
ferential operators. For any differential operator D, and any number c,
we have

D(cf) = cDf.

Further, if f, 9 are two functions (defined on the same open set, and
having continuous partial derivatives of all orders), then for any partial
derivative Di , we have
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Iterating the partial derivatives, we find that for any differential operator
D, we have

D(f + g) = Df + Dg.

Having learned how to add differential operators, we now learn how
to multiply them.
Let D, D' be two differential operators. Then we define the differential

operator DD' to be the one obtained by taking first D' and then D. In
other words, if f is a function, then

(DD')f = D(D,!).

Example 3. Let

a a
D=3-+2­ax ay

Then

and
a a

D'=-+4-·ax ay

DD' = (3~ +2~)(~ + 4~)ax ay ax ay

( a)2 a a (a)2= 3 - + 14 - - + 8 - .ax ax ay ay

Differential operators multiply just like polynomials and numbers, and
their addition and multiplication satisfy all the rules of addition and
multiplication of polynomials. For instance:

If D, D' are two differential operators, then

DD'=D'D.

If D, D', D" are three differential operators, then

D(D' + D") = DD' + DD".

It would be tedious to list all the properties here and to give in detail
all the proofs (even though they are quite simple). We shall therefore
omit these proofs. The main purpose of this section is to insure that you
develop as great a facility in adding and multiplying differential opera­
tors as you have in adding and multiplying numbers of polynomials.
When a differential operator is written as a sum of terms of type

then we shall say that it is in standard form.
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is in standard form, but

(3~+ 2~)(~+4~)ox oy ox oy

is not.
Each term

is said to have degree m 1 + m2 + m3 • If a differential operator is ex­
pressed as a sum of simple differential operators which all have the same
degree, say m, then we say that it is homogeneous of degree m.
The differential operator of Example 2 is not homogeneous. The dif­

ferential operator DD' of Example 3 is homogeneous of degree 2.
An important case of differential operators being applied to functions

is that of monomials.

Example 4. Let !(x, y) = X 3y2. Then

Dd(x, y) = 3X2y2,

DU(x, y) = 6y2,

Also observe that

Di!(x, y) = 2· 3xy2,

Di!(x,y) = o.

DfD~!(x, y) = 3! 21.

Example 5. The generalization of the above example is as follows,
and will be important for Taylor's formula. Let

be a monomial, with exponents i,j ~ O. Then

D~DU(x, y) = i!j1.

This is immediately verified, by differentiating Xi with respec~ to x, i
times, thus getting rid of all powers of x; and differentiating yJ with re­
spect to y, j times, thus getting rid of all powers of y.
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On the other hand, let r, s be integers ~ 0 such that i # r or j # s.
Then

D~D~f(O,0) = O.

To see this, suppose that r # i. If r> i, then differentiating r times the
power Xi yields O. If r < i, then differentiating r times the power Xi yields

i(i - 1) ... (i - r + l)x i
- r ,

and i - r > O. Substituting X = 0 yields O. The same argument works if
j # s.

VI, §4. EXERCISES

Put the following differential operators in standard form.

1. (3D l + 2D 2 )2

3. (D! - D 2 )(D! + D 2 )

5. (D l + D2 )3

7. (2D l - 3D2 )(D! + D 2 )

(0 0)3
9. ox + 4 oy

(0 0)2
11. ox + k ox

2. (D! + D2 + D3 )2

4. (D! + D2)2

6. (D. + D 2t
8. (D! - D3 )(D2 + 5D 3 )

( 0 0)210. 2-+-
ox oy

( 0 0)3
12. h ox + k oy

Find the values of the differential operator of Exercise 10 applied to the follow­
ing functions at the given point.

13. x 2y at (0, 1)

15. sin(xy) at (0, n)

17. Compute D1D~f(x, y) if f(x, y) is
(a) X 5y4

(c) X 4 y 3

18. Compute D;DU(O,O) if f(x, y) is
(a) X 8y7

(c) llx7 y9

14. xy at (1, 1)

16. eXY at (0, 0)

(b) X 4y2

(d) 10x4 y 3

(b) 3X7y9

(d) 25x6yll

19. Let f(x, y) = 3x2 y + 4X 3y4 - 7X9 y4. Find
(a) D~D~f(O,0) (b) DiD~f(O,0)
(c) DiDd(O,O) (d) D~Dd(O,0)
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20. Let f(x, y, z) = 4x2yz3 - 5X3y4 z + 7X6 y l0z7. Find
(a) DiD2D~f(0,0, 0) (b) DiD2D~f(0,0, 0)
(c) D~DioDjJ(O, 0, 0) (d) DiD2D3 f(0, 0, 0)

VI, §5. THE GENERAL EXPRESSION FOR TAYLOR'S
FORMULA

Go back to §1, where we let

get) = f(P + tH) = f(Pl + th, P2 + tk).

We had found

(1) g'(t) = Dd(P + tH)h + D2f(P + tH)k.

We follow the same method as in §1, but with our new notation.
We rewrite (1) in the form

g'(t) = hDd(P + tH) + kD2f(P + tH).

The expression hD 1 + kD 2 looks like a dot product, and thus it is use­
ful to abbreviate the notation and write

With this abbreviation, our first derivative for g can then be written
[from (1)]:

g'(t) = (H· V)f(P + tH).

This of course should read

g'(t) = (H· V)f)(P + tH).

Let us take the second derivative. Let

fl = (H· V)f.

Then

g'(t) = fl(P + tH).

By what we have shown,

(2)
d

g"(t) = - fl(P + tH) = ((H· V)!l)(P + tH)
dt

= (H· V)(H· V)f)(P + tH)

= (H· V)2f)(P + tH).
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Now let

Then

(3)
d

g(3)(t) = - fiP + tH) = (H· V)f2)(P + tH)
dt

= (H· V)(H· V)2f)(P + tH)

= (H· V)3f)(P + tH).

It should be clear that you can keep on going this way. The higher de­
rivatives are determined by induction. We now state the theorem formal­
ly, and prove it by induction.

Theorem 5.1. Let r be a positive integer. Let f be a function defined on
an open set U, and having continuous partial derivatives of orders ~ r.
Let P be a point of U, and H a vector such that the line segment
P + tH with 0 ~ t ~ 1 is contained in U. Then

(:t}f(P + tH) = (H·VYf)(P + tH).

In other words, let g(t) = f(P + tH). Then

g(r)(t) = (H. V)1)(P + tH).

Proof The case r = 1 has already been verified. Suppose our formula
proved for some integer r. Let fr = (H· V)'f. Then

g(r)(t) = fr(P + tH).

Hence by the case for r = 1 we get

g(r+ l)(t) = (H· V)fr)(P + tH).

Substituting the value for fr yields

g(r+l)(t) = (H·V)(H,V)1)(P + tH) = (H·vy+ 1f)(P + tH),

thus proving our theorem by induction.

In terms of the a/ax and a/ay notation, we see that

( a a)rg(r)(t) = h - + k - f(P + tH).
ax ay
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We repeat that this is equal to

(
a a)rh-+k- f
ax ay

evaluated at the point P + tHo

Theorem 5.2. Taylor's formula. Let f be a function defined on an open
set U, and having continuous partial derivatives up to order r. Let P be
a point of U, and H a vector. Assume that the line segment

P+ tH, o~ t ~ 1,

is contained in U. Then there exists a number T between 0 and 1 such
that

f(P + H) = f(P) + (H· V)f(P) + ... + (H·V)'-l f(P)
1! (r - 1)!

(H· V)'!(P + TH)+ .
r!

Proof Taylor's formula in one variable tells us that

(2)(0) (r - 1)(0) (r)(T)
(1)= (0)+ '(o)+-g-+ ... +g +-g-

9 9 9 2! (r - 1)! r!

where 0 ~ T ~ 1. Now let get) = f(P + H). Then by Theorem 5.1,

g(')(O) = (H· V)'f(P)

and
g(r)(T) = (H· V)'!(P + TH).

This proves Taylor's formula as stated.

Rewritten in terms of the a/ax and a/ay notation, we have

1 (a a)f(Pl + h, P2 + k) = f(Pl' P2) + 1! h ax + k ay f(Pl' P2) + ...

1 (a a)r-l
+ (r _ 1)1 h ax + k ay f(Pl,P2)

1 (a a)r+ - h- + k- f(Pl + Th,p2 + Tk).
r! ax ay
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The powers of the differential operators

(
a a)Sh-+k-

ax ay

are found by the usual binomial expansion. For instance:

In many cases, we take P = 0 and we wish to approximate f(x, y) by
a polynomial in x, y. Thus we let H = (x, y). In that case, the notation
a/ax and a/ay becomes even worse than usual since it is very unclear in
taking the square

(
a a)Zx-+y-

ax ay

what is to be treated as a constant and what is not. Thus it is better to
write

and similarly for higher powers. We then obtain a polynomial expres­
sion for f, with a remainder term. The terms of degree ~ 3 are as fol­
lows:

f(x, y) = f(O,O) + DII(O, O)x + Dzf(O, O)y

1
+ 2! [DiI(O, O)XZ + 2D 1Dzf(0, O)xy + DU(O, O)yZ]

1
+ 3! [DiI(O, 0)x3 + 3DiDzf(0, O)XZy + 3D1DU(0, O)xyZ + DU(O, 0)y3]

In general, the Taylor formula gives us an expression

f(x, y) = f(O,O) + G1(x, y) + ... + Gr-1(x, y) + R r ,
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where Gix, y) is a homogeneous polynomial in x, y of degree d, and Rr

is the remainder term. We call

!(O,O) + G1(x, y) + ... + G.(x, y)

the polynomial approximation of f, of degree ~ s.
We write polynomials in one variable as sums

n

L CiX
i = Co + C1x + ... + cnxn.

i=O

In a similar way, we can write polynomials in several variables,

n m

G(x, y) = L L cijxi yj.
i=Oj=O

Let r, s be a pair of integers ~ O. Then

D;DiG(O,O) = r! s! Cr.'

by the example at the end of §4. Hence we have a simple expression for
the coefficients of the polynomial,

D~D~G(O,0)
cij = ., .,

I. J.

On the other hand, from the binomial expansion

and the value of the binomial coefficient,

(m) m!
i = i! (m - i)! '

we find that

Consequently,

(xD1 + yD 2 )m!(0, 0)

m!

m i m-i

" X Y Di Dm - i•
~ "( ')' 1 2i=O I. m - 1 .

m

L Ci,m_iXiym-i = Gm(X, y)
i=O
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is a polynomial in x, y, aU its monomials have the same degree, and the
coefficients are given by

i!m - i!

The general Taylor polynomial of degree ~ s is therefore of the form

G(x, y) = L: CijXiyi,
i+j~s

where the coefficients cij are given by the above formula (*). Again, Ex­
ample 4 at the end of §4 shows that the partial derivatives up to total
order s of this polynomial coincide with the derivatives of f, when eva­
luated at (0,0). Thus we may say:

The Taylor polynomial of a function f up to order s is that poly­
nomial having the same partial derivatives as the function up to order
s, when evaluated at (0, 0).

VI, §S. EXERCISES

1. Let f be a function of two variables. Assume that f(O) = 0, and also that

for all points P in R2 • Show that for all points P we have

f(P) = (p. VW(O).
2!

2. Let m be a positive integer. Let f be a function of two variables. Assume
that f(O) = 0 and also that

for all points P in R2
. Show that for all points P we have

1
f(P) = I (p. v)mf(O).

m.

These exercises are generalizations of Exercises 4, 5, 6 in Chapter IV, §1.
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3. (a) Let f(x, y) = 3x2
- 2xy + 5y2. Verify that

f(tx, ty) = t2f(x, y).

f(tx, ty) = t4j(x, y).

Functions f which satisfy the relation f(tX) = tmf(X) for all t and all X are
called homogeneous of degree m.

4. Compute the Taylor expansion up to degree 3 of the functions
(a) e-(x

2
+y

2
1 (b) sin xy

around the point (0, 0).

5. (a) Find D1DU(0,0) where f(x, y) = X 9y6 - X 3y2 + 5X4 y6 - xy.
(b) Find the Taylor expansion up to the terms of degree 2 for the function

f(x, y) = y~y at the point P = (1, 1).

APPENDIX. TAYLOR'S FORMULA IN ONE VARIABLE

This appendix reproduces a quick proof of Taylor's formula in one vari­
able, for those who need the review.

Theorem. Let f be a function which has n continuous derivatives on an
interval. Let a, b be numbers in the interval. Then there exists a
number c between a and b such that

(b a)2 (b at- 1

feb) = f(a) + f'(a)(b - a) + jl21(a) ~! + ... + f(n-l)(a) (n-- 1)!

(b - at+ jln)(c) .
n!

Proof We shall first prove the formula with a different form of the
remainder term, namely:

(b - a)2 (b - at- 1

feb) = f(a) + f'(a)(b - a) + f(2)(a) 2! + ... + jln-l)(a) (n _ 1)!

where

fb (b tt- 1

R = j(n)(t) dt.
n a (n - 1)!
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We start with n = 1, in other words, we start from the fundamental
theorem of calculus:

f(b) - f(a) =rf'(t) dt,

so

f(b) = f(a) + R 1,

where R 1 has the predicted form. Then we integrate by parts, with

u = f'(t) and dv = dt.

Of course, we can put v = t, but v = t + constant will do just as well,
and one possible constant works better than others to achieve what we
want. We let:

Thus the constant is - b. Then

and v = -(b - t).

R 1 = - f'(t)(b - t)[ +rf(Z)(t)(b - t) dt.

[note that there were two minus signs which cancelled]

= f'(a)(b - a) + R z,

where R z has the desired form.
Now we proceed stepwise, and integrate R z by parts. You should

carry out this step in full, and the similar step going from R 3 to R 4 •

Then you will be ready to follow the general step, which is called induc­
tion, going from step n to step n + 1.
Thus suppose we have proved the theorem up to step n, so we have

proved that

f(b) = the desired expression + R n ,

where

f
b (b t)n-l

R = jln)(t) - dt.
n a (n - I)!

We let

and
(b_t)n-l

dv = dt.
(n - I)!
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Then v = -(b - tt/n! (because n(n - 1)1 = n!), and the mmus sign is
there by the chain rule. Integrating Rn by parts, we find:

Rn= _pn)(t) (b -, tt \b + fb pn+1)(t) (b -, tt dt
n. a a n.

= j<n)(a) (b - at + R
, n+ 1,n.

where Rn + 1 is the desired integral expression for the remainder. This
proves the formula with the integral form of the remainder.
We shall now prove that there is a number c between a and b such

that

Since the n-th derivative pn) is continuous, it has a maximum and a
minimum on the interval. Suppose now for simplicity that a < b. Let M
be the maximum of j(n) on this interval, and let m be the minimum of
pn) on this interval. This means

for all t with a ~ t ~ b.

Then

f

b(b - tt- 1 fb(b - t)n-1
m , dt ~ Rn~ M ( 1)' dt.

a (n-1). a n- .

But the two integrals on the side can be evaluated, just as we found v
from dv in the preceding proof, and we get the inequality

(b - a)n (b - a)n
m , ~ Rn ~ M , .

n. n.

Therefore

< Rn ::;;M.
m=(b_a)njn!-

By the Intermediate Value Theorem, since pn) is continuous, there exists
some number c with a ~ c ~ b such that

<n) _ Rn
j (c) - (b _ a)njn!
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Multiply both sides by (b - a)njn! to get the relation

(b a)n
R = f(n)(c) .

n n!

This concludes the proof.

Remark. Of course, we don't know anything about c except that c
lies between a and b. However, Taylor's formula is used by estimating
the remainder, and it is usually very easy to estimate Rn although we
don't know an exact value for Rn • Such estimates show how good an
approximation the polynomial expression before Rn gives to the func­
tion f.

If we let b - a = h, then we can write Taylor's formula in the form

h2 hn - 1

f(a + h) = f(a) + f'(a)h + jC2)(a) 2! + ... + f(n-l)(a) (n _ 1)! + Rn·
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Curve Integrals
and Double Integrals



CHAPTER VII

Potential Functions

Review of notions which we have had so far.

We have met three types of associations, which we list systemati­
cally.

Functions, which associate numbers to numbers or numbers to
points for functions of several variables. For instance,

f(x, y) = sin xy - x 3y

is a function of two variables, and its values are numbers.

Curves, which associate points in space to numbers. For in­
stance,

is a curve in 3-space. Here t is a number, but C(t) is in R3•

Vector fields, which associate n-tuples to n-tuples (the same n).
For instance,

F(x, y) = (x2 y, sin xy)

is a vector field on R2. Furthermore,

F(x, y, z) = (xz, y + z, eXYZ
)

defines a vector field on R3.

Do not confuse these various notions.

Throughout this chapter, all functions, curves, and vector fields are as­
sumed to have continuous derivatives as needed.
We continue the train of thoughts started in Chapter IV, namely the

potential functions of vector fields.
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VII, §1. EXISTENCE AND UNIQUENESS OF POTENTIAL
FUNCTIONS

Let U be an open set in Rn. Recall that a vector field is an association

which to each point P of U associates a vector F(P) as in Chapter IV,
§5.

I
• .. • •..

~
..........- ~~

Figure 1

If f: U --> R is a function, then

F = gradf

is a vector field, and we have F(X) = grad f(X) for all X.
We are going to deal systematically with the possibility of finding a

potential function for a vector field. We begin with the case of two vari­
ables, which is typical. You should then be able to work out the case of
three variables as an exercise (the answer to which will actually be car­
ried out in the back of the book).

Definition. Let F be a vector field on an open set U. If cp is a differ­
entiable function on U such that F = grad cp, then we say that cp is a
potential function for F.

One can raise two questions about potential functions. Are they
unique, and do they exist?
We consider the first question, and we shall be able to give a satisfac­

tory answer to it. The problem is analogous to determining an integral
for a function of one variable, up to a constant, and we shall formulate
and prove the analogous statement in the present situation.
We recall that even in the case of functions of one variable, it is not

true that whenever two functions f, g are such that

df dg
dx = dx'



[VII, §1] EXISTENCE AND UNIQUENESS OF POTENTIAL FUNCTIONS 185

then f and g differ by a constant, unless we assume that f, g are defined
on some interval. As we emphasized in the First Course, we could for
instance take

{
~ + 5 if x < 0,

f(x) =
1
- - n if x> 0,
x

g(x) =! if x # o.
x

Then f, g have the same derivative, but there is no constant C such that
for all x # 0 we have f(x) = g(x) + C.
In the case of functions of several variables, we shall have to make a

similar restriction on the domain of definition of the functions.
Let V be an open set and let P, Q be two points of u. We shall say

that P, Q can be joined by a differentiable curve if there exists a differenti­
able curve C(t) (with t ranging over some interval of numbers) which is
contained in V, and two values of t, say t 1 and t 2 in that interval, such
that

and

For example, if V is the entire plane, then any two points can be
joined by a straight line. In fact, if P, Q are two points, then we take

C(t) = P + t(Q - P), with 0 ~ t ~ 1.

When t = 0, then C(O) = P. When t = 1, then C(1) = Q.
It is not always the case that two points of an open set can be joined

by a straight line. We have drawn a picture of two points P, Q in an
open set V which cannot be so joined (Fig. 2). Part of the segment lies
outside u.

Figure 2
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An open set U will be said to be connected if, given two points P, Q
in U, there exists a differentiable curve in U which joins the two points.
We are now in a position to state the theorem we had in mind.

Theorem 1.1. Let U be a connected open set. Let f, 9 be two differenti­
able functions on U. If gradf(X) = grad g(X) for every point of U,
then there exists a constant k such that

f(X) = g(X) + k

for all points X of u.

Proof We note that grad(f - g) = grad f - grad 9 = 0, and we must
prove that f - 9 is constant. Letting <p = f - g, we see that it suffices to
prove: If grad <p(X) = ° for every point X of U, then <p is constant.
Let P and Q be any two points of U. Let X(t) be a differentiable

curve joining P to Q, which is contained in U, and defined over an inter­
val. The derivative of the function <p(X(t)) is, by the chain rule,

d<p(X(t)) = grad <p(X(t)) .X'(t).
dt

But X(t) is a point of U for all values of t in the interval. Hence by our
assumption, grad <p(X(t)) = 0, and so the derivative of <p(X(t)) is 0 for
all t in the interval. Hence there is a constant k such that

<p(X(t)) = k

for all t in the interval. In other words, the function <p is constant on
the curve. Hence <p(P) = <p(Q). This proves the theorem.

Our theorem proves the uniqueness of potential functions (within the
restrictions placed by our extra hypothesis on the open set U).
We still have the problem of determining when a vector field F admits

a potential function.
We first make some remarks in the case of functions of two variables.
Let F be a vector field (in 2-space), so that we can write

F(x, y) = (f(x, y), g(x, y))

with functions f and g, defined over a suitable open set. We want to
know when there exists a function <p(x, y) such that

a<p =f
ax

and
a<p
ay =g.
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Such a function would be a potential function for F, by definition. (We
assume throughout that all hypotheses of differentiability are satisfied as
needed.)
Suppose that such a function qJ exists. Then

af a (aqJ)
ay = ay ax

and ag _ ~(aqJ).
ax - ax ay

By Theorem 4.1 of Chapter III, the two partial derivatives on the right
are equal. This means that if there exists a potential function for F, then

that is

This gives us a simple test in practice to tell whether a potential function
may exist.

Theorem 1.2. Let f, 9 be differentiable functions having continuous par­
tial derivatives on an open set U in 2-space. If

af ag
- =1=-'
ay ax

then the vector field given by F(x, y) = (f(x, y), g(x, y») does not have a
potential function.

Example. Consider the vector field given by

F(x, y) = (x 2 y, sin xy).

Then we let f(x, y) = x 2y and g(x, y) = sin xy. We have:

af 2
-=x
ay

and
ag
ax = y cos xy.

Since afjay =1= agjax, it follows that the vector field does not have a po­
tential function.

We shall prove in §3 and §6 that the converse of Theorem 1.2 is true
in some very important cases.

VII, §1. EXERCISES

Determine which of the following vector fields have potential functions. The vec­
tor fields are described by the functions U(x, y), g(x, y)).

1. (l/x, xeX
,) 2. (sin(xy), cos(xy))
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5. (5x4 y, X cos(xy)

POTENTIAL FUNCTIONS [VII, §2]

VII, §2. LOCAL EXISTENCE OF POTENTIAL FUNCTIONS

We shall state a theorem which will give us conditions under which the
converse of Theorem 1.2 is true.

Theorem 2.1 (In dimension 2). Let f, g be differentiable functions on an
an open set of the plane. If this open set is the entire plane, or a rec­
tangle, if the partial derivatives off, g exist and are continuous, and if

that is

then the vector field F(x, y) = (J(x, y), g(x, y)) has a potential function.

We shall indicate how a proof of Theorem 2.1 goes after we have dis­
cussed some examples.

Example 1. Determine whether the vector field F given by

has a potential function.
Here, f(x, y) = e XY and g(x, y) = e X +Y

• We have:

and

Since these are not equal, we know that there cannot be a potential
function.

If the partial derivatives ofjay and ogjox turn out to be equal, then
one can try to find a potential function by integrating with respect to
one of the variables. Thus we try to find

ff(x, y)dx,
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keeping y constant, and taking the ordinary integral of functions of one
variable. If we can find such an integral, it will be a function l/J(x, y),
whose partial with respect to x will be equal to !(x, y) (by definition).
Adding a function of y, we can then adjust it so that its partial with re­
spect to y is equal to g(x, y).

Example 2. Let F(x, y) = (2xy, x2 + 3y 2). Determine whether this vec­
tor field has a potential function, and if it does, find it.
By definition, we have

!(x, y) = 2xy and

We find at once that D 2! = Dlg, so a potential function exists and we
want to find it. We thus want to find q>(x, y) such that

oq>
-=2xy
ox

and

We first solve the problem with respect to x, and thus it is natural to
use the integral

f2xy dx = x 2y.

However, we may add to this integral any function of y alone, because y

behaves like a constant with respect to x. Thus it is natural to let

q>(x, y) = f2xy dx + u(y) = x 2 y + u(y),

with some function u(y) which is unspecified for the moment. Then cer­
tainly

oq>
-=2xy
ox

because ou(y) = 0
ox .

So half of our problem is solved. There remains to check oq>. We have
oy

oq> 2 AU
-=x +-,
oy oy

and we require that oq>joy = x2 + 3y 2. For this it suffices that

AU 2
oy = 3y ,
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and therefore it suffices that

so our final solution is

which is a potential function for F.

The analogue of Theorem 2.1 is also true in arbitrary dimension. We
state it in dimension 3.

Theorem 2.2. Let F = (fl' f2' f3) be a vector field on a rectangular
box in 3-space, such that the functions flJ2J3 have continuous partial
derivatives. Assume that DJj = Djf; for all pairs of indices i, j. This
means

Then F has a potential function.

The same statement is valid replacing 3 by n.

Warning. It is very important that the domain of definition of the vec­
tor field in Theorems 2.1 and 2.2 be a rectangle (or conceivably a quite
special type of open set, as discussed in the proof in §6). We shall see
later that for more general types of open sets, even if DJj = Djf; for all
pairs of indices i, j we cannot necessarily conclude that there exists a po­
tential function.

In practice, suppose we want to find a potential function explicitly
when Theorems 2.1 and 2.2 are applicable, i.e. when the vector field is
defined over a rectangular box. We first integrate fl(X, y, z) with respect
to x, and then the desired potential function qJ will be of the form

qJ(X, y, z) = ffl(X, y, z) dx + t/!(y, z),

where t/!(y, z) is independent of x. Note that we cannot write

t/!(y, z) = u(y) + v(z)



[VII, §2] LOCAL EXISTENCE OF POTENTIAL FUNCTIONS 191

as a sum of a function of y alone plus a function of z alone. It might turn
out that t/!(y, z) might be yZz3 for instance, which cannot be written as
such a sum.

Example 3. Find a potential function of the vector field

F(x, y, z) = (y cos(xy), x cos(xy) + 2yz3, 3yZzZ).

We first find

fy cos(xy) dx = sin xy.

The potential function will have the form

<p(x, y, z) = sin xy + t/!(y, z).

We note that

o . )oy sm xy = x cos(xy .

Hence to satisfy the condition Dz<p(x, y, z) = x cos(xy) + 2yz 3 we need
only that

ot/!- = 2yz3
oy .

Integrating with respect to y yields

t/!(y, z) = f2yz 3 dy = yZz3 + u(z),

where u(z) is the "constant of integration" with respect to y, so

<p(x, y, z) = sin(xy) + yZz3 + u(z),

where u(z) depends only on z. However we now see that

so we can take u(z) = 0, and the desired potential function is
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The hypothesis DJj = DJi guarantees that the above procedure can
be carried out to the end to yield the desired potential function. The
proof of this, i.e. the proof of Theorem 2.1 will be given in §5.
In some cases, we can tell the existence of a potential function from

another principle than that of Theorems 2.1 and 2.2

Example 4. Let r = Jx 2 + y2 and let

(
e

r

e
r

)F(x, y) = --;: x, --;: y .

Then F has a potential function, because we recall from Chapter IV, §4
that if f(X) = g(r), then

grad f(X) = g'(r) X.
r

We wish to solve

er g'(r)
----.
r r

This amounts to solving g'(r) = er
, so g(r) = er

• Then

f(x, y) = er

is the potential function.
Of course this is also compatible with the method of Example 3, be­

cause 8rl8x = xlr and so

f~ x dx = fer
dr = er

.

VII, §2. EXERCISES

Determine which of the following vector fields admit potential functions.

1. (eX, sin xy)

3. (2xy, y2)

2. (2x 2y, y3)

4. (y2x 2, X + y4)

Find potential functions for the following vector fields. We let r = II X II and
X =1= O.

1
5. (a) F(X) = - X

r

(c) F(X) = r"X (if n is an integer).

1
(b) F(X)=2 X

r
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6. (4xy, 2x2)

8. (3X 2y2,2x3y)

7. (xy cos xy + sin xy, x 2 cos xy)

9. (2x,4y3)

10. (a) (ye XY, xeXY ) (b) (y cos xy, x cos xy)
(c) 2xy cos x 2y, x 2 cos x 2y)

11. Let r = IIX II. Let 9 be a differentiable function of one variable. Show that
the vector field defined by

F(X) = g'(r) X
r

in the domain X =I- 0 always admits a potential function. What is this poten­
tial function?

12. Find a potential function <p(x, y) for the vector field

F(x, y) = (3x 2y + 2y2, x3 + 4xy - 1),

with the property that <pel, 1) = 4.

13. Find a potential function <p for the following vector fields F(x, y, z):

(a) (2x, 3y, 4z) (b) (y + z, x + z, x + y)

(c) (e y + 2z, xey + 2z, 2xey + 2z) (d) (y sin z, x sin z, xy cos z)

(e) (yz, xz + z3, xy + 3yz2) (f) (eYZ, xzeYz, xyeYZ )

OO~~~ OO~~~u~~~~

(i) (y3z + y, 3xy2 z + X + z, xy3 + y)

14. Let <p(x, y) = arctan(ylx), defined over any rectangle not containing the line
x = O. What is grad <p(x, y)?

15. Let F be a vector field on an open set in 3-space, so that F is given by three
coordinate functions, say F = (fl' f2' f3)' Define the curl of F to be the vec­
tor field given by

Define the divergence of F to be the function 9 = div F given by

afl af2 8f3
g(x, y, z) = - + - + _.

ax ay az

In terms of the D i notation, we can also write

and
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(a) Prove that div curl F = O.
(b) Prove that curl grad cp = 0, for any function cp.

Remark 1. The condition on the vector field F expressed in Theorem
2.2 (for three variables) is equivalent to the condition

curl F = O.

Indeed, curl F = 0 if and only if its three coordinate functions are 0, and
this is exactly equivalent with

for i,j = 1,2, 3.

Remark 2. The divergence was defined purely algebraically above. It
has a very interesting physical interpretation, but we need more machin­
ery to be able to derive this interpretation. See the chapter on Green's
theorem and the divergence theorem.

VII, §3. AN IMPORTANT SPECIAL VECTOR FIELD

Consider the vector field

(
-y X)

G(x, y) = 2 2' 2 2'
x +y x +y

It can be drawn pictorially as follows. Suppose that we look at its value
on a circle of fixed radius r, and vary e. Substituting

we find that

x = r cos e and y = r sin e,

(
-sine cos e) 1 .

G(x, y) = --,-- = - (-sm e, cos e).
r r r

On the other hand, let us parametrize the circle of fixed radius r by the
usual coordinates

qe) = (r cos e, r sin e),

so that

c(e) = (-r sin e, r cos e).
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Then we see that C(O) and G(x, y) have the same direction, which is tan­
gent to the circle, counterclockwise. Thus the vector field consists of
forces which rotate around the circle, and has been drawn in Fig. 3.

~ .-.-
/ -/ ~ ,

I I /:/ \
t'< ~

" " I
"'- --" /-
Figure 3

Note that

1
because II( -sin 0, cos 0)11 = 1.IIG(x, y)11 = -

r

When r= Jx2 + y2 is very small, then IIG(x, y)11 is very large. The vec­
tor field may be viewed as representing the rotation of a fluid in a sink.
The fluid rotates much more rapidly near the point where the water
flows out, and rotates more slowly further away from that point.
Observe that this vector field is not defined at the origin. Indeed, the

vectors (arrow) have arbitrarily large norms as we get closer to the ori­
gin. The domain of definition is the plane from which the origin has
been deleted.
On the other hand, this vector field can be easily verified to satisfy the

condition

Hence by Theorem 2.1, if R is a rectangle which does not contain the ori­
gin, then G has a potential function on R. It is easy to find this poten­
tial function. We begin by trying the integral

f -y
2 2 dx.
x + Y
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Since - y behaves like a constant when integrating with respect to x, this
amounts to finding

f 2 1 2 dx.
x + Y

You should know how to do this from the first course in calculus, and
by a change of variables, you should know that this integral leads to an
arctangent. In any case, we are led to the function

q>(x, y) = arctan:!:'.,
x

defined at first over any rectangle which does not meet the line x = o.
We assert:

q>(x, y) is a potential function for G on such a rectangle.

Proof Take the partial derivatives. We find:

oq> 1 - y
ox - 1 + (y/X)2 x2

and

Oq> 1 1 x
oy = 1 + (y/X)2 ~ = x2 + y2

Thus q>(x, y) is a potential function for G(x, y).
We emphasize that this potential function has been defined so far by

the above formula only on rectangles which do not meet the line x = O.
However, we can do better than that, for this special vector field.
We recognize y/x = tan (), where () is the usual angle as shown on the

figure (Fig. 4).

(x,Y)

Figure 4
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Let us delete a thin sector from the plane as shown on Fig. 5.

(x,y)

Figure 5

Let us define the function

cp(x, y) = (J,

where (J is not allowed to range over the deleted part, so we can describe
the allowable range of values of (J by an inequality

°~ (J ~ 2n - c,

where c is some small fixed number >0. Then cp(x, y) is a potential func­
tion for G(x, y). For the values of x, y such that x> 0, y ~ °we can use
the formula already given, namely

(J = arctan ylx.

On the line x = °we have, for instance,
cp(O, y) = nl2

cp(O, y) = 3nl2

and we also have the value

cp(x,O) = n

if y > °
if y < 0,

if x < 0.

It can then be easily verified that this function cp(x, y) = (J is a potential
function for the vector field G on the plane from which the shaded re­
gion has been deleted. On the half plane to the left of the vertical line
x = 0, this function (J differs by a constant of integration from the func­
tion

arctan ylx.

When taking partial derivatives, this constant of integration vanishes.
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There is also a formula which will give the potential function () in the
whole half-plane with y ~ 0, excluding (0, 0), namely

x x
tjJ(x, y) = arccos J = arccos -.

x2 + y2 r

A direct differentiation with respect to x, and then with respect to y, will
give the first and second component of the vector field, that is

(
-y X)grad tjJ(x, y) = 2 2' 2 2·
x +y x +y

Do it as an exercise. With this formula no constant of integration is
needed to get the potential function () with 0 ~ () ~ 1t.

Our construction of the potential function has been adapted especially
to the special vector field of this section, which has its own peculiar be­
havior.
The impossibility of finding a potential function for this vector field

over the whole plane from which the origin has been deleted should al­
ready be intuitively apparent, and will be proved in the next chapter by
considering integrals along curves. See Example 3, §3 of the next
chapter. Thus there is no coherent way of defining a potential function
on the whole domain of definition of the vector field.

VII, §3. EXERCISES

1. Verify that the vector field discussed in this section satisfies the condition

2. Verify that the function t{J(x, y) = -arctan x/y is a potential function of a vec­
tor field of this section on any rectangle not intersecting the line y = o.

3. Verify that the function t{J(x, y) = arccos x/r is a potential function for this
vector field in the upper half of the plane, where it is defined.

VII, §4. DIFFERENTIATING UNDER THE INTEGRAL

As already stated, this section gives some background for the proof of
Theorems 2.1 and 2.2.
Let f be a continuous function on a rectangle a ~ x ~ band

c ~ y ~ d. We can then form a function of y by taking

tjJ(y) = rf(x, y) dx.
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Example 1. Let f(x, y) = sin(xy). We can then determine the function
rjJ explicitly, namely:

f" COS(Xy)lx="rjJ(y) = sin(xy) dx = - -~
o Y x=o

cos(ny) - 1

y

Integrating sin xy with respect to x between definite numbers 0 and n
has eliminated the variable x and left us with a function of y only.
We are interested in finding the derivative of rjJ. The next theorem al­

lows us to do this in certain cases, by differentiating with respect to Y
under the integral sign.

Theorem 4.1. Assume that f is continuous on the rectangle

and c ~ Y ~ d.

Assume also that D2 f exists and is continuous. Let

rjJ(y) = ff(x, y) dx.

Then rjJ is differentiable, and

~rjJ = DrjJ(y) = fb D2f(x, y) dx = fb af~, y) dx.
y a a Y

Proof By definition, we have to investigate the Newton quotient for
rjJ. We have

rjJ(y + h~ - rjJ(y) = f [f(X, y +h- f(x, Y)J dx.

We then have to find

lim fb f(x, y + h) - f(x, y) dx.
h~O a h

It can be shown (but we omit the proof) that we can take the limit
under the integral sign, so we get

fblim f(x, y +h- f(x, y) dx = fb Dzf(x, y) dx,
a h-O a

thus proving our theorem.
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Example 2. Letting f(x, y) = sin(xy) as before, we find that

Dd(x, y) = x cos(xy).

If we let

t/J(y) = f: f(x, y) dx,

then

Dt/J(y) = {Dd(X, y) dx = f: x cos(xy) dx.

By evaluating this last integral, or by differentiating the expression found
for t/J at the beginning of the section, the reader will find the same value
namely ,

Dt/J(y) = - [-ny sin(ny) - cos(ny) + ~J.
y2 y2

We can apply the previous theorem using any x as upper limit of the
integration. Thus we may let

t/J(x, y) = f f(t, y) dt,

in which case the theorem reads

at/J IX IX af(t, y)a = D2 t/J(x, y) = Dd(t, y) dt = -a- dt.
Y a a Y

We use t as a variable of integration to distinguish it from the x which
is now used as an end point of the interval [a, x] instead of [a, b].
The preceding way of determining the derivative of t/J with respect to

y is called differentiating under the integral sign. Note that it is completely
different from the differentiation in the fundamental theorem of calculus. In
the fundamental theorem of calculus, we have an integral

g(x) = ff(t) dt,

and

dg
- = Dg(x) = f(x).
dx
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Thus when f(x, y) is a function of two variables, and

l/f(x, y) = rf(t, y) dt,

the fundamental theorem of calculus states that

ol/f
- = DI'fJ(x, y) = f(x, y).ax

For example, if we let

l/f(x, y) = rsin(ty) dt,

then

Dil/f(x, y) = sin(xy),

but by Theorem 2.1,

D2 l/f(x, y) = f: cos(ty)t dt.

VII, §4. EXERCISES

In each of the following cases, find DdJ(x, y) and Dzl{J(x, y), by evaluating the
integrals.

1. l{J(x, y) = relY dt

3. l{J(x, y) = r(y + t)Z dt

5. l{J(x, y) = rey-r dt

f
x log(ty)

7. l{J(x, y) = -- dt
1 t

2. ljJ(x, y) = rcos(ty) dt
_' 0

4. l{J(x, y) = rev+ t dt

6. l{J(x, y) = 1:tZy 3 dt

8. l{J(x, y) = rsin(3ty) dt

VII, §S. PROOF OF THE LOCAL EXISTENCE THEOREM

In this section, we prove Theorem 2.1.

We suppose that the vector field F is defined on a rectangle R and we
select any point (xo, Yo) in the rectangle. We let F = (J, g) and assume
Dd = DIg· We wish to find a potential function <p(x, y).
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Figure 6

We first integrate f(x, y) with respect to x, and add an arbitrary function
of y, so we let

cp(x, y) = IX f(t, y) dt + u(y).
Xo

By the fundamental theorem of calculus, we find

acp = ~ IX f(t, y) dt + au(y)
ax ax Xo ax

= f(x, y)

because au(y)jax = O. So

D 1cp(x, y) = f(x, y)

as wanted. We now have to check Dzcp(x, y). Using Theorem 4.1, and
differentiating with respect to y, we get:

Ix au
Dz cp(x, y) = Dzf(t, y) dt + a

Xo y

I
x au

= D1g(t, y) dt + a
Xo y

I
x au

= get, y) +-
Xo ay

au
= g(x, y) - g(xQ, y) + ay·

au h.
Since we want Dzcp = 9 it suffices that -g(xQ, y) + ay = 0, t at IS:

au
- = g(xQ,y).
ay
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Thus by the fundamental theorem of calculus, we let

u(y) = fY g(xo, y) dy,
Yo

to conclude the proof.

Observe that the additional function u(y) is also obtained as an inte­
gral, so we may write at once our function <p(x, y) in the form

<p(x, y) = fX f(t, y) dt + fY g(xo, t) dt.
XQ Yo

Warning. Suppose that the vector field F is defined on an arbitrary
open set U, and that D 2f = D1g. Then we do not have a theorem assert­
ing the existence of the potential function, in general. It was essential in
the previous theorem to make additional assumptions on U, because we
needed to integrate over intervals when we took for instance

fx Dd(t, y) dt.
Xo

In a more general open set U, the corresponding interval may not be
contained in U, as illustrated on the next picture (Fig. 7).

y

x

Figure 7

In such a case, the proof cannot apply. In the next chapter, we shall
investigate the situation in more general open sets.
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If the open set is a disc, then the same proof does apply, and the cor­
responding picture is as follows (Fig. 8).

!I

Yo

(x,y)1
(XO,Yo) ---.J

x

Figure 8

The proof would apply equally to any open set such that the analo­
gous line segments were contained in U, as drawn on the next figure
(Fig. 9).

Figure 9

The proof of Theorem 2.2 for functions of three variables proceeds
along entirely similar lines. Suppose F = (flJ2J3), and the three vari­
ables are x, y, z. Let (xo, Yo, zo) be some fixed point in the rectangular
box, and define

<p(x, y, z) = fX fl(t, y, z) dt + fY fixo, t, z) dt + fZ f3(xo, Yo, t) dt.
Xo yo Zo
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Then
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by the fundamental theorem of calculus applied to a function of one var­
iable x. We leave it to you as an exercise to verify that D2qJ = 12 and
D3qJ = 13' The complete proof will be given in the answers to the exer­
cises, but it is more profitable for you to try to work it out first without
looking it up.

VII, §S. EXERCISE

Complete the proof of Theorem 2.2.



CHAPTER VIII

Curve Integrals

Let F be a vector field on an open set U in the plane, as shown on the
figure. We interpret F as a field of forces.

I

1

t \
C(t1)

Figure 1

Suppose we move a particle along a curve C(t) in U. It is natural to ask
for the work done when moving the particle from a point C(tI) to a
point C(t2 ) along the curve. For instance the force field may represent
the wind, and the particle may be an airplane flying in the wind's path.
The wind may be blowing in an entirely different direction, thereby hin­
dering the plane.
To find the work done against this force field along the curve, we

shall first take the component of the force along the curve. This is given
by a dot product, which becomes a function of time t. We then integrate
this function along the curve, and interpret the result as the work. We
now discuss this systematically.
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VIII, §1. DEFINITION AND EVALUATION OF CURVE
INTEGRALS

Let U be an open set in n-space. As usual, the important cases will be
when n = 2 or 3 but to cover these two cases, we must leave n unspeci­
fied. Much of what we say will be true in general.
Let F be a vector field on U. We can represent F by components.
When n = 2, we usually write

F(X) = U(x, y), g(x, y)).

When n = 3 we write

F(X) = Ul(X),fiX),f3(X)),

each fi being a function, the i-th coordinate function. If each function
f1(X)" .. ,fiX) is continuous, then we shall say that F is a continuous
vector field. If each function f1 (X), ... ,fn(X) is differentiable, then we
shall say that F is a differentiable vector field.
We shall also deal with curves. Rather than use the letter X to de­

note a curve, we shall use another letter, for instance C, to avoid certain
confusions which might arise in the present context. Furthermore, it is.
now convenient to assume that our curve C is defined on a closed inter­
val I = [a, b], with a < b. For each number t in I, the value C(t) is a
point in space. We shall say that the curve C lies in U if C(t) is a point
of U for all t in I. We say that C is continuously differentiable if its
derivative C(t) = dC/dt exists and is continuous. We abbreviate the
expression "continuously differentiable" by saying that the curve is a
C1-curve, or of class C1.

From now on, all vector fields will be assumed as differentiable as
needed wherever they are defined, and similarly all curves will be as­
sumed of class C1 or as differentiable as needed. This will not be re­
peated to simplify statements of theorems.

Let F be a vector field on U, and let C be a Curve in U. The dot
product

dC
F(C(t)).­

dt

is a function of t.

Example 1. Let F(x, y) = (e xy
, y2), and C(t) = (t, sin t). Then

C(t) = (1, cos t)
and

F(C(t)) = (etsint, sin2 t).
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Hence

CURVE INTEGRALS

F(C(t))· C(t) = etsint + (cos t)(sin2 t).

[VIII, §1]

Definition. Suppose that C is defined on the interval [a, b]. We define
the integral of F along C to be

This integral is a direct generalization of the familiar notion of the inte­
gral of functions of one variable. If we are given a function f(u), and u
is a function of t, then

f
U(b) fb du

f(u) du = f(u(t)) - dt.
uta) a dt

(This is the formula describing the substitution method for evaluating in­
tegrals.) In n-space, let

P = C(a) and Q = C(b).

Then C(a) and C(b) are points, and the curve C is said to join these two
points. Thus the integral Ie F can be interpreted as an integral of the
vector field, along the curve, between the two points. It will also be con­
venient to write the integral in the form

f
Q fc(b)

F = F(C)·dC
p,e C(a) .

to denote the integral along the curve C, from P to Q.

Warning. Do not confuse the numbers a, b which are the ends of the
interval over which the curve is defined, and the points

P = C(a) and Q= C(b),

which are the beginning point and end point of the curve itself.

The integral along the curve C from P to Q may depend on this
curve, and so it is essential to use the symbol for this curve in the nota­
tion of the integral

f
Q

F,
p,e

or
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Example 2. Let F(x, y) = (x 2y, y3). Find the integral of F along the
straight line from the origin to the point (1, 1).
We can parametrize the line segment by

Thus

C(t) = (t, t), with 0 ~ t ~ 1.

Furthermore,

Hence

dC
C(t) = - = (1, 1).

dt

This integral we must find is therefore equal to:

f fl 2t411 1
F = 2t3 dt = - = -.
C 0 4 0 2

It is also convenient to introduce still another symbolic notation for
the integral of F over the curve C. In 2-space, suppose

F = (f, g) and C(t) = (x(t), y(t»),

so f, 9 are the coordinate functions of F. We write

Ie F = f/ dx + 9 dy.

Symbolically, the expression on the right is the dot product

(f, g). (dx, dy).

The meaning of the symbolic notation for the integral is of course the
expression obtained by inserting the dt, namely,

fb[ dx d ]
a f(x(t), y(t») dt + g(x(t), y(t») ~ dt,

which is none other than

fb dC
a F(C(t»)· dt dt.
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Remark 1. Of the two notations,

rF(C(t))· C(t) dt and LfdX + gdy,

the second one is more useful for an actual computation of an integral,
since it exhibits already the dot product explicitly, and we just plug in
dx = (dxjdt)dt, dy = (dyjdt)dt. The first one is more useful in a theoreti­
cal context for the present. However, when we study Green's theorem,
we shall find that the second notation is also more useful in the theoreti­
cal context of Green's theorem. Only practice and experience can con­
vince you which notation should be used most efficiently in which
contexts.

Remark 2. Our integral of a vector field along a curve is defined for
parametrized curves. In practice, a curve is sometimes given in a non­
parametrized way.

The parabola. Consider the curve y = x 2
• We may then set

x = t and y = t2
.

This parametrizes the parabola in a definite way, with a definite orienta­
tion as shown on the figure.

The parabola:

x=t

y = t2

Figure 2

In general, if a curve is defined by a function y = g(x), we select the pa­
rametrization.

x = t, y = g(t).

For a circle of radius r centered at the origin, we select the parametri­

zation
x = r cos t, y = r sin t, o~ t ~ 2n.

whenever we wish to integrate counterclockwise.
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For a straight line segment between two points P and Q, we take the
parametrization C given by

C(t) = P + t(Q - P), O~t~ 1.

The context should always make it clear which parametrization is in­
tended. It can be shown that the integral is independent of the choice of
parametrization.

Example 3. Let us find the integral of the vector field

F(x, y) = (x 2
, xy)

over the parabola x = y2 between (1, -1) and (1,1).
We take the parametrization

y=t and with -1 ~ t ~ 1

as illustrated on the figure (Fig. 3).

-1

Figure 3

Then dx = 2t dt and dy = dt, while f(x, y) = x 2 and g(x, y) = xy. Hence

Ie F = Ief dx + g dy = Ie x 2 dx + xy dy

= f1 t
4
2t dt + t

3
dt

= 2t
6

+ ~ 11 = O.
6 4_ 1
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Example 4. Find the integral of the vector field

(
-y X)

G(x, y) = 2 2' 2 2
X +y x +y

around the circle of radius 3 counterclockwise from the point (3,0) to
the point

We parametrize the circle by

x = 3 cos e and y = 3 sin e,

and the desired arc is given by the values of e such that

o~ e~ n/6.

Figure 4

We know that e ranges from 0 to n/6 because

3/2 1-- = - = tan n/6.
3J3/2 J3
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We then have dx = - 3 sin 0 dO, dy = 3 cos 0 dO, so that

f G = f 2-Y 2 dx + 2 X 2 dy
e eX +y X +y

f"/6 -3 sin 0 3 cos 0
= ( - 3 sin 0) dO +-- (3 cos 0) dO
o 9 9

f
"/6

= 0 dO = n/6.

The vector field of this example is very important, cf. Example 3 of §3.
Write

Also write

X = r cos 0 and y = r sin O.

OX ox .
dx = - dr + - dO = cos 0 dr - r sm 0 dO,

or 00

oy oy .
dy = or dr + 00 dO = sm 0 dr + r cos 0 dO.

We also have x2 + y2 = r2
• Now we get:

-y X
2 2 dx + 2 2 dy = dO.

X +y X +y

You see this directly by making the substitutions

X = r cos 0, y = r sin 0

and using the expressions for dx, dy in terms of dr and dO as above. This
is simple algebra, and two terms will cancel. If you use

sin2 0 + cos2 0 = 1,

you will find that the boxed formula drops out. Do it explicitly for your­
self.

It is worth while keeping this relation in mind when working with in­
tegrals of this vector field. It shows that if you integrate from one point
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P to another point Q, along any curve C, and OP, OQ make angles of
01' O2 with the x-axis, then the integral comes out

The figure is as follows.

if (
-y X)G(x, y) = 2 2' 2 2·

x +y x +y

Q

p

Figure 5

Remark 3. We may be given a finite number of curves forming a path
as indicated in the following figure (Fig. 6):

Figure 6

Definition. We define a path C to be a finite sequence {C 1 , ••• ,Cm}'
where each Ci is a curve, defined on an interval [ai' b;], such that the
end point of Ci is the beginning point of Ci+ 1 • Thus if Pi = Ci(ai) and
Qi = C;(b;), then

We define the integral of F along such a path C to be the sum

fF = f F +f F + ... +f F.
C C, C2 Cm

We say that the path C is a closed path if the end point of Cm is the
beginning point of C1.
In Fig. 7, we have drawn a closed path such that the beginning point

of C 1, namely P 1, is the end point of the path C4 , which joins P4 to Pl·
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Figure 7

Example 5. Let F(x, y) = (x2
, xy). Let the path consist of the segment

of the parabola y = x2 between (0,0) and (1, 1), and the line segment
from (1, 1) and (0,0). (Cf. Fig. 8.)

Figure 8

The segment of parabola can be parametrized by

Thus

x=t

Then dx = dt, dy = 2t dt, and so

with 0 ~ t ~ 1.

and

f F = f x2 dx + xy dy = f1 t2 dt + t 32t dt
c, C, 0

t3 t511=-+2-
3 5 0

1 2
=3+5·
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The line segment can be parametrized by

Thus

C2(t) = (1 - t, 1 - t) with 0 ~ t ~ 1.

Then

x=l-t and y = 1 - t.

f F = f x
2 dx + xy dy = f\1 - 2t + t2

)( -1) dt + (1 - 2t + t2 )( -1) dt
C2 C2 0

2= --.
3

We let the path C = {C l , C2 }. Then

Observe how we integrated F around a closed path, and we found a val­
ue for the integral #0.

VIII, §1. EXERCISES

Compute the curve integrals of the vector field over the indicated curves.

1. F(x, y) = (x2 - 2xy, y2 - 2xy) along the parabola y = x 2 from (- 2,4) to
(1, 1).

2. (x, y, xz - y) over the line segment from (0,0,0) to (1, 2, 4).

3. Let r = (x2 + y2)1/2. Let F(X) = r-lX. Find the integral of F over the circle
of radius 2, taken in counterclockwise direction.

4. Let C be a circle of radius 20 with center at the origin. Let F be a vector
field such that F(X) has the same direction as X. What is the integral of F
around C?

5. Let F(x, y) = (cxy, X 6y2), where c is a positive constant. Let a, b be numbers
>0. Find a value of a in terms of c such that the curve integral of F along
the curve y = axb from (0, 0) to the line x = 1 is independent of b.

Find the values of the indicated integrals of vector fields along the given curves
in Exercises 6 through 9.

6. (y2, -x) along the parabola x = y2/4 from (0,0) to (1,2).

7. (x2 - y2, x) counterclockwise around the circle x 2 + i = 4.
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8. (a) The vector field

THE REVERSE PATH

(
-y X)G(x, y) = -2--2' -2--2

X +y x +y

217

counterclockwise along the circle x2 + y2 = 2 from (1,1) to (-fl, 0).
(b) The same vector field counterclockwise around the whole circle.
(c) Around the circle x2 + y2 = 1.
(d) Around the circle x 2 + y2 = r 2.
(e) Verify that for this vector field, we have oljoy = ogjox. For a continua­
tion of this train of thought, see Green's theorem.

9. Find the integral of the vector field F(x, y) = (xy, x) along the parabola
x = 2y2 from the point (2, -1) to the point (8,2).

VIII, §2. THE REVERSE PATH

Let C(t) be a curve defined over an interval a ~ t ~ b. We think of a
bug travelling along the curve in the indicated direction. The bug may
wish to retrace its steps, and go backward along the curve. Thus if C is
a curve joining a point P to a point Q, the bug may wish to travel back­
ward from Q to P. How shall we parametrize its path? Pictorially, this
is clear, but we want to give the backward curve a parametrization over
some interval, possibly the same interval as for the curve itself.
For this purpose we define the opposite curve C-, or the reverse curve,

by letting
C-(t) = C(a + b - t).

Thus when t = b we find that C-(b) = C(a), and when t = a we find that
C-(a) = C(b). As t increases from a to b, we see that a + b - t decreases
from b to a and thus we visualize C- as going from C(b) to C(a) in re­
verse direction from C (Fig. 9).

P=C(a)

Figure 9

Lemma 2.1. Let F be a vector field on the open set U, and let C be a
curve in U, defined on the interval [a, b]. Then

f F=-fF.
c- c
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Proof This is a simple application of the change of variables formula.
Let u = a + b - t. Then du/dt = -1. By definition and the chain rule,
we get:

f fb dC-
F = F(C-(t))·-d-dt

e- a t

=rF(C(a + b - t»)· C(a + b - t)( -1) dt.

We now change variables, with du = -dt. When t = a then u = b, and
when t = b then u = a. Thus our integral is equal to

rF(C(u»)· C(u) du = - rF(C(u»). C(u) du,

thereby proving the lemma.

The lemma expresses the expected result, that if we integrate the vec­
tor field along the opposite direction, then the value of the integral is the
negative of the value obtained by integrating F along the curve itself.
Therefore, if the curve C is defined on the interval [a, b], the integral of
F over the reverse curve C- will often be written directly as

f F = raF(C(t»). C(t) dt = _fbF(C(t»). C(t) dt.
e- Jb a

For integration over line segments, it is particularly convenient to use
the reverse path, as shown in the following example.

Example. Integrate the vector field F(x, y) = (x 2
, xy) from the point

(1, 1) to the origin (0,0), along the line segment.
Note that this is precisely one of the integrals considered in Example

5 of the preceding section. Instead of parametrizing the segment as we
did in that section, we parametrize the reverse segment, the easy one,
namely we let

C(t) = (t, t) with O~t~1.

Then this segment, with its orientation, looks as on the figure (Fig. 10).
In terms of the variables, we have

x = t and y = t.
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(1,1)

(0,0)

Figure 10

The desired integral is that of F over C-. Consequently:

f F = - f F = - f1 t2 dt + t2 dt
c- C 0

= - f12t2 dt = - ~ .
o 3

Observe that the algebra here is much easier than the algebra in Exam­
ple 5 of §1.

If a path C consists of curves {C 1, ••• ,Cm}' then the reverse path con­
sists of the reverse curves in opposite order:

C- = {C~, ... ,Cn.

Q

C1
p

Figure 11

Q

On Fig. 11 when coming back from Q to P, we start with the reverse
curve Ci and end with the reverse curve Ct.

VIII, §2. EXERCISES

1. Find the integral of the vector field

F(x, y) = (2xy, - 3xy)

clockwise around the square bounded by the lines x = 3, x = 5, y = 1, y = 3.
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2. What is the work done by the force F(x, y) = (x2 - y2, 2xy) moving a particle
of mass m along the square bounded by the coordinate axes and the lines
x = 3, Y = 3 in counterclockwise direction?

Find the integrals of the following vector fields.

3. (x 2 - y2, x) along the arc in the first quadrant of the circle x2 + y2 = 4 from
(0, 2) to (2, 0).

4. (X2y2, xy2) along the closed path formed by parts of the line x = 1 and the
parabola y2 = x, counterclockwise.

VIII, §3. CURVE INTEGRALS WHEN THE VECTOR FIELD
HAS A POTENTIAL FUNCTION

When the vector field F admits a potential function cp, then the integral
of F along a curve has a simple expression in terms of cp.

Theorem 3.1. Let F be a vector field on the open set U and assume that
F = grad cp for some function cp on U. Let C be a path in U, joining
the points P and Q. Then

fQ

F = cp(Q) - cp(P).
P,c

In particular, the integrat of F is independent of the path C joining P
and Q.

Proof. We prove the theorem here when the path consists of single
curve C. Let C be defined on the interval [a, b], so that C(a) = P and
C(b) = Q. By definition, we have

f
Q

F = fbF(C(t))· C(t) dt = fb grad cp(C(t))· C(t) dt.
P,C a a

But the expression inside the integral is the derivative with respect to t
of the function 9 given by get) = cp(C(t)), because of the chain rule. Thus
our integral is equal to

fg'(t) dt = g(b) - g(a) = cp(C(b)) - cp(C(a)).

This proves our theorem for curves.
This theorem is easily extended to paths. See Exercise 1.

In physical terms, the theorem expresses the fact that when a potential
function exists, the work done by moving a particle along a curve be-
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tween points P, Q, is equal to the difference of the potential function at
Q and P.

Corollary 3.2. Let F be a vector field on an open set U. If F has a
potential function, then the integral of F along every closed path in U is
equal to o. If there exists a closed path C in U such that

then F does not have a potential function.

Proof. Let C be a closed path whose beginning point and end point
is the same point P. If cp is a potential function, then

f/ = cp(P) - cp(P) = O.

Therefore, if the integral around C is -=I- 0 then there cannot exist a po­
tential function.
For an example, see Example 3 below.

Example 1. Let

Then F has a potential function cp, namely,

You can check this easily by taking the three partial derivatives

acp acp acp

ax' ay' az

and finding the coordinate functions of F. Let

P = (1, -1,2) and Q= (- 3, 2, 5).

Then

LQF = cp(Q) - cp(P) = 360 - ( - 2) = 362.

Evaluating the integral of the vector field by means of the potential func­
tion (when it exists) avoids the hassle of parametrizing the curve, taking
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the dot product and going through the process of evaluating the integral
in terms of the parameter t. Thus one gets the answer much faster.

Example 2. Let F(X) = kX/r3, where r = IIXII, and k is a constant.
This is the vector field inversely proportional to the square of the dis­
tance from the origin, used so often in physics. Then F has a potential
function, namely the function qJ such that qJ(X) = -k/r. Let P = (1, 1, 1)
and Q = (1,2, -1). Then

On the other hand, if PI' QI are two points at the same distance from
the origin (i.e. lying on the same circle, centered at the origin), then

Example 3. Let C be a closed curve, whose end point is equal to the
beginning point P. In Theorem 3.1 when a vector field F admits a
potential function qJ, it follows that the integral of F over the closed
curve is then equal to 0, because it is equal to

qJ(P) - qJ(P) = O.

This allows us to give an example for a situation when a vector field
F = (f, g) satisfies the condition

but F does not have a potential function. Let

(
-y x)G(x, y) = 2 2' 2 2·

x +y x +y

A simple computation, left as an exercise, shows that it satisfies the
above condition. Compute the integral of G over the closed circle of ra­
dius 1, centered at the origin. You will find a value :F O. This does not
contradict Theorem 2.1 in the preceding chapter, because the vector field
is defined on the open set obtained from the plane by deleting the origin,
so the vector field is not defined at (0,0). The open set has a "hole" in
it (a pinhole, in fact).
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You will see the above vector field come up quite frequently. It is
typical of vector fields F = (f, g) such that Dd = DIg but for which no
potential function exists. In fact, there is a very good reason why you
essentially won't see any other example, because the following result is
true.

Let U be the plane from which the origin has been deleted. Let F be a
vector field on U such that D2 f = DIg. Let

(
-y x)

G(x, y) = 2 2' 2 2'
x +y x +y

Then there exists a constant k and a function cp such that

F = kG + grad cp,

or in terms of (x, y),

F(x, y) = kG(x, y) + grad cp(x, y)

for all (x, y) in U.

The proof will be given in the next section.

Example 4. Let G(x, y) be the same vector field as discussed above.
Find the integral of G along the path shown on Fig. 12, between the
points (1,0) and (0, 1).

(0,1)+-_--, C

(1,0)

Figure 12

Let C be that path. We know from Chapter VII, §3 that the vector
field has a potential function on an open set U containing the path, and
that this potential function is

¢(x, y) = O.
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Consequently, on this particular path, the integral is independent of the
path, and we have

f
n n

G = q>(0, 1) - q>(I, 0) = - - °= -.
c 2 2

We summarize the story on potential functions in a table. We
are given a vector field F on a connected open set U, and

F = (f, g).

Case 1. If D2 f i' Dig, then there is no potential function.

Case 2. If D2 f = Dig and U is a rectangle, then a potential func­
tion exists. It can be found by integrating one variable at a time as
in the proof of Theorem 3.1, Chapter V.

Case 3. If D2 f = Dig but U is not a rectangle, then a potential
function may exist or may not exist.
(a) If there exists some closed curve C in U such that

f/i'O,
Then a potential function does not exist by Corollary 3.2.

(
-y X)Example. G(x, y) = 2 2' 2 2' U is the plane from

x +y x +y
which the origin is deleted, integral around the unit circle> is 2n.

(b) If the integral of F around every closed curve in U is 0, then
there exists a potential function by Theorem 4.2 below. [This
is not a useful test for us since it involves infinitely
many possible closed curves, and we do not apply it].

Case 4. There may be a vector field on an open set U which is
not a rectangle, D2 f = Dig, for which a potential function exists.

Example. F(x, y) = g'(r) (x, y), where g is a function of one vari-
r

able. The potential function is q>(X) = g(r). The proof that this is a
potential function is obtained by taking the gradient directly, and
seeing by the chain rule that it gives F(x, y), see Chapter IV, §4,
Example 1. The test D2 f = Dig is not applicable since the domain
of definition of F is the whole plane from which the origin is de­
leted, not a rectangle.
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Warning. Just because a vector field is not defined at the origin does
not necessarily mean this vector has no potential function. See Case 4 of
the table.

VIII, §3. EXERCISES

1. Let C = (C l , ... ,Cm) be a path in an open set U. Let F be a vector field on
U, admitting a potential function q>. Let P be the beginning point of the
path and Q its end point. Show that

f
Q

F = q>(Q) - q>(P).
p.e

[Hint: Apply Theorem 3.1 to the beginning point Pi and end point Pi+ 1 for
each curve C;.]

2. Find the integral of the vector field F(x, y, z) = (2x, 3y, 4z) along the straight
line C(t) = (t, t, t) between the points (0,0,0) and (1, 1, 1).

3. Find the integral of the vector field F(x, y, z) = (y + z, x + z, x + y) along the
straight line C(t) = (t, t, t) between (0,0,0) and (1, 1, 1).

4. Find the integral of the vector field given in Exercises 2 and 3 between the
given points along the curve C(t) = (t, t2

, t4
). Compare your answers with

those previously found. Is there a general reason why they came out as they
did?

5. Let F(x, y, z) = (y, x, 0). Find the integral of F along the straight line from
(1, 1, 1) to (3,3,3).

6. Let P, Q be points of 3-space. Show that the integral of the vector field
given by

F(x, y, z) = (Z2, 2y, 2xz)

from P to Q is independent of the curve selected between P and Q.

7. Let F(x, y) = (x/r3
, y/r3

) where r = (x2 + y2)l/2. Find the integral of F along
the curve C(t) = (e' cos t, et sin t) from the point (1,0) to the point (e 2n,0).

8. Let F(x, y, z) = (Z3y, Z3 X , 3z2xy). Show that the integral of F between two
points is independent of the curve between the points.

9. Let F(x, y) = (x2y, xy2).
(a) Does this vector field admit a potential function?
(b) Compute the integral of this vector field from 0 to the point P indicated

on the figure, along the line segment from (0,0) to (1/./2,1/./2).
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Figure 13

[VIII, §3]

(c) Compute the integral of this vector field from 0 to P along the path
which consists of the segment from (0,0) to (1,0), and the arc of circle
from (1,0) to P. Compare with the value found in (b).

10. Let

(
(
xcosr ycosr)Fx,y)= --,--,

r r

where r = Jx2 + y2. Find the value of the integral of this vector field:
(a) Counterclockwise along the circle of radius 1, from (1,0) to (0, 1).
(b) Counterclockwise along the entire circle.
(c) Does this vector field admit a potential function? Why?

11. Let

(

X- y x+y)F(x, y) = -2--2' -2--2 .
X +y x +y

(a) Find the integral of this vector field around the circle of radius 1 cen­
tered at the origin, counterclockwise.

(b) Does this vector field admit a potential function on the plane, from
which the origin has been deleted?

12. Let

(
- y + 3x x+ 3Y)

F(x, y) = 2 2' -2--2 .
x +Y x +y

(a) Does this vector field admit a potential function inside the square

and 1 ~ Y ~ 2?

Why?
(b) Find the integral of this vector field around the circle of radius 1 cen­
tered at the origin, counterclockwise.

(c) Does this vector field admit a potential function on the plane from which
the ,origin has been deleted? Why?

13. Let

(
xe' ye')F(x y)= -,-, r r

where r = Jx 2 + y2. Find the value of the integral of this vector field:
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(a) Counterclockwise along the circle of radius 1 centered at the origin.
(b) Counterclockwise along the circle of radius 5 centered at the point
(14, -17).

(c) Does this vector field admit a potential function? Why?

14. Let again

(
xe

r
yer)

F(x, y) = -;:-' -;:- .

Find the value of the integral of this vector field:
(a) From (2, 1) to (- 3,4) along any path not passing through the origin.
(b) From (2,0) to (0,2) along the circle of radius 2.

(c) From (2,0) to (J2, J2) along the circle of radius 2.
(d) All the way around the circle of radius 2.

15. Find the integral of the vector field

(
-y X).G(x, y) = -2--2' -2--2 .

x +y x +y

(a) Along the line x + y = 1 from (0, 1) to (1,0).

(b) From the point (2,0) to the point (-1, J3) along the path shown on
the figure.

(-I,Y'3)
(2,2)

-2 -1 2

Figure 14

16. Find the integral of the vector field (x, y2, 4z3) along the path shown on the
figure, from the point (0,0,0) to the point (1, 1,2).

z-axis

(1,1,2)

y-axis

x-axis

Figure 15
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VIII, §4. DEPENDENCE OF THE INTEGRAL ON THE PATH

By a path from now on, we mean a piecewise C1-path, and all vector
fields are assumed continuous.

Given two points P, Q in some open set U, and a vector field F on U,
it may be that the integral of F along two paths from P to Q depends
on the path. We are going to prove the converse of Theorem 3.1.

Theorem 4.1. Let U be a connected open set and let F be a vector field
on U. Assume that for any two points P, Q in U, the integral

is independent of the path C in U joining P and Q. Then there exists a
potential function for F on u.

Proof. We select some fixed point Po in U, and for an arbitrary point
X in U, we define

<p(X) = fX F,
Po

where the integral is taken along any path from Po to X. By assump­
tion, this integral does not depend on the path, so we don't need to
specify the path in the notation. We must show that the partial deriva­
tives Di<p(X) exist for all P in U, and if the vector field F has coordinate
functions

then Di<p(X) = /;(X).
To do this, let Ei be the unit vector with 1 in the i-th component and
o in the other components. Then we shall use the obvious relation

F(X) .Ei = /;(X).

To determine D;<p(X) we must consider the Newton quotient

<p(X + hE;) - <p(X) = ! [fX+hEiF _ fX FJ

h h Po Po
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and show that its limit as h --+ 0 is fi(X), The integral from Po to
X + hEi can be taken along a path going first from Po to X and then
from X to X + hE; (Fig. 16).

Figure 16

We can then cancel the integrals from Po to X and obtain

q>(X + hE;) - q>(X)

h

H+hEi F(C).dC

h '

taking the integral along any curve C between X and X + hE;. In fact,
we take C to be the parametrized straight line segment given by

C(t) = X + thEi with 0 ~ t ~ 1.

[This is the standard way of parametrizing a line segment between two
points P, Q, namely P + t(Q - P).] Then

C(t) = hE;

and

F(C(t))· C(t) = /;(X + thE;)h,

so

q>(X + hE;) - q>(X) 1f1
h = h 0 /;(X + thE;)h dt.

Change variables. Let u = th and du = h dt. Then

q>(X + hE;) - q>(X) _ ! fh
h - h /;(X + uE;) duo

o

Let g(u) = /;(X + uEJ This is an ordinary function of one variable u,
and our last expression for the Newton quotient of q> has the form

1 fhh 0 g(u) duo
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By the fundamental theorem of calculus, for any continuous function 9
we have (cf. Remark after the proof):

1 fhlim -h g(u) du = g(O).
h-O 0

Applying this to g(u) = fi(X + uEJ we note that g(O) = fi(X), and there­
fore we obtain the limit

1
. cp(X + hE;) - cp(X)
1m =fi(X),

h-O h

This proves what we wanted.

Remark. The use of the fundamental theorem of calculus in the pre­
ceding proof should be recognized as absolutely straightforward. If G is
an indefinite integral for g, then

{g(t) dt = G(h) - G(O),

and hence the ordinary Newton quotient for G is

! fhg(t) dt = G(h) - G(O).
h 0 h

The fundamental theorem of calculus asserts precisely that the limit as
h ~ 0 is equal to G'(O) = g(O).

We can also formulate an equivalent condition III terms of closed
paths.

Theorem 4.2. Let U be an open connected set, and let F be a vector
field on U. If the integral of F around every closed path in U is equal
to 0, then F has a potential function on U.

Proof. Let P, Q be points in U. Let C and D be paths from P to Q
in U. Let D = (D l' ... ,Dk) where each D j is a C1-curve. Then we may
form the opposite path

D- = (Di:, ... ,D1),

and by Lemma 2.1

f F=-fF.
D- D
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p

......--.,.Q

Figure 17

If C = (C l , ... ,Cm)' then the path (C l , ... ,Cm' Di:, ... ,D1) is a closed path
from P to P (Fig. 17). By hypothesis, the integral of F along this closed
path is equal to O. Thus

fF +f F = O.
C D-

From this it follows that

Hence the integral from P to Q is independent of the path. We can now
apply Theorem 4.1 to conclude the proof.

Theorem 4.2 is not useful because the hypothesis involves every closed
path, which amounts to infinitely many paths, so it cannot be verified in
practice. In the next theorem, we find a situation where one closed path
suffices.

Theorem 4.3. Let F be a vector field defined on the plane from which
the origin is deleted, and write F = (f, g). Assume that Dd = Dlg. Let
C be the circle of radius 1 centered at the origin, oriented counterclock­
wise.

Case 1. If

f/=O,
then F has a potential function.
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Then there exists a function cp such that

F = kG + grad cp,

where

(
-y X)G(x, y) = 2 2' 2 2·

x +y x +y

Proof. Assume that the integral of F around C is O. Then we shall
prove that there is a function cp such that F = grad cp. Indeed, for any
point X f= 0, we define

cp(X) = integral of F along the path shown on the figure (Fig. 18).

Figure 18

The assumption shows that cp is well defined, and a similar argument
used in proving Theorem 4.1 then shows that grad cp = F.
For Case 2, let

k=~fF.
2n c

Then

f/ -kG = f/ -k IeG = 2nk - 2nk = O.

Hence Case 1 applies, and there is a function cp such that

F - kG = grad cp.

This shows that F = kG + grad cp, and proves the theorem.



CHAPTER IX

Double Integrals

When studying functions of one variable, we discussed the existence of
an integral of a continuous function over an interval. The investigation
of the integral involved lower sums and upper sums.

It is important to understand the notion of upper and iower sums in
the higher dimensional context. To give complete proofs for the theory
in two or more variables becomes more involved, and hence we shall
omit the proofs. However, the basic theorem that an integral defined
as the unique number between lower sums and upper sums can be
evaluated by repeated integration with respect to the variables succes­
sively allows us to compute integrals in several variables using only one­
variable techniques, combined with a geometric description of the
domain of integration, usually in terms of inequalities. We shall therefore
discuss in detail both of these aspects.
We shall also list various formulas giving double integrals in terms of

polar coordinates, and we give a geometric argument to make them
plausible.

IX, §1. DOUBLE INTEGRALS

We begin by discussing the analogue of upper and lower sums associated
with partitions.
Let R be a region of the plane, and let f be a function defined on R.

We shall say that f is bounded if there exists a number M such that
If(X)1 ~ M for all X in R.
Let a, b be two numbers with a ~ b, and let c, d be two numbers with

c ~ d. We consider the closed interval [a, b] on the x-axis and the
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closed interval [e, dJ on the y-axis. These determine a rectangle R in the
plane, namely:

R = set of all pairs (x, y) such that a ~ x ~ band e ~ y ~ d.

This rectangle will be denoted by

R = [a, b] x [e, dJ.

d

c

a

Figure 1

b

Definition. Let I denote the interval [a, b]. By a partition PI of I we
mean a sequence of numbers

which we also write as PI = (xl' ... ,x".). Similarly, by a partition PJ of
the interval J = [e, d] we mean a sequence of numbers

e = Y1 ~ Y2 ~ ... ~ Yn = d

Each pair of small intervals [Xi' x i + 1] and [Yj, Yj+ 1] determines a rec­
tangle

(Cf. Fig. 2(a).) We denote symbolically by P = PIX PJ the partition of
R into rectangles Sij and we call such Sij a subrectangle of the partition
(Fig. 2(b)).

If R is a rectangle as above, we define its area to be the obvious
thing, namely

Area(R) = (d - e)(b - a).

Thus the area of each subrectangle Sij is (Yj+1 - Y)(Xi +1 - xJ
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d
Sij

Yj+l -- ---r-1
Yj -- ---H

I I
c

a

(a)
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Y2
C

b

Figure 2
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a X2 X3 ... Xm-l xm=b

(b)

Let A be a region in the plane, and let f be a function defined on A.
As usual, we say that f is continuous at a point P of A if

lim f(X) = f(P).
x-p

We say that f is continuous on A if it is continuous at every point of A.
If S is a set and f a function on S which reaches a maximum on S,

we let

denote this maximum value. It is a value f(v) for some point v in S
such that f(v) ~ f(w) for all w in S. Similarly, we let

mins!

be the minimum value of the function on S, if it exists. We recall a fact
which we do not prove, that a continuous function on a closed and
bounded set always takes on a maximum and minimum value. For in­
stance, a continuous function on a closed interval [a, b] always has a
maximum. A continuous function on a rectangle as above also has a
maximum, and a minimum.
We then form sums which are analogous to the lower and upper sums

used to define the integral of functions of one variable.

Definition. If P denotes the partition as above, and f is a continuous
function on R, we define the lower sum and upper sum by

L(P,f) = I. (mins!) Area(S),
s

U(P,f) = I. (maxs!) Area(S).
s
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The symbol Is means that we must take the sum over all subrectangles
of the partition. In terms of the indices i, j, we can rewrite say the lower
sum as

m-1.-1
L(P,f) = I I (minsiJ)(Yj+1 - Y)(Xi +1 - x;)

i=l j=l

= I I (mins,j) Area(Si),
i j

and similarly for the upper sum.

Let vij be a point in the small rectangle Sij such that f(v i) is a maxi­
mum of f on this rectangle. Then the upper sum U(P,f) can be written
also in the form

m-1.-1
U(P,f) = I I f(v i)(Yj+1 - Y)(Xi +1 - x;)

i= 1 j= 1

= I If(vi) Area(Si)'
i j

Definition. If V ij is a point in Sij such that f(vij) is neither a maximum
nor a minimum for f on Sij, then the above sum lies between the upper
and lower sum, and is called a Riemann sum for f

Since the lower sums are defined by taking minima, and the upper
sums are defined by taking maxima of f over certain rectangles, it is
clear that

L(P,f) ~ U(P,f),

and in fact every lower sum is less than or equal to every upper sum.
We define f to be integrable on R if there exists a unique number

which is greater than or equal to every lower sum, and less than or
equal to every upper sum.

If this number exists, we call it the integral of f, and denote it by

fff
R

or ff f(x, y) dy dx.

R

Theorem 1.1. Let R be a rectangle, and let f be a function defined and
continuous on R. Then f is integrable on R.
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Interpretation of the integral as volume

We can interpret the integral as a volume under certain conditions.
Namely, suppose that f(x, y) ~ 0 for all (x, y) in R. The value f(x, y)
may be viewed as a height above the point (x, y), and we may consider
the integral of f as the volume of the 3-dimensional region lying above the
rectangle R and bounded from above by the graph of f (Fig. 3).

(x, y,f(x, y»)

graph of f

Figure 3

Each term
(minsf) Area(S)

is the volume of a rectangular box whose base is the rectangle S in the
(x, y)-plane, and whose height is mins! The volume of such a box is
precisely (mins!) Area(S), where, as we said above, Area(S) is the area of
S. This box lies below the 3-dimensional region bounded from above by
the graph of! Similarly, the term

(maxsf) Area(S)

is the volume of a box whose base is S and whose height is maxs! This
box lies above the above region. This makes our interpretation of the
integral as volume clear.

Interpretation of the integral as mass

Also, as in one variable, a positive function on a region may be viewed
as a density, and thus if f ~ 0 on R, then we also interpret

II f(x, y) dy ax
R

as the mass of R.
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The proof of Theorem 1.1 will be omitted. If fact, we need a some­
what more general discussion to deal with applications which arise
naturally in practice. A function f is usually not given on a rectangle
but on some region A in the plane. We say that A is bounded if there
exists a number M such that IIXII ~ M for all points X in A. Any
bounded region is contained in a rectangle, as shown on Fig. 4.

R

Figure 4

The set of boundary points of the region A will be called the boundary
of A. We shall say that the boundary is smooth if it consists of a finite
number of curves. A curve means a C1 curve, i.e. a curve parametrized
such that the coordinate functions have continuous derivatives, as stud­
ied in Chapter II. The boundary of A in Fig. 4 consists of three such
curves. We draw a finite number of C1 curves in the next figure (Fig. 5).

Figure 5

Suppose the function f is defined on a region A as in Fig. 4, so that
A is bounded and has a boundary which is smooth. If we want to inte­
grate f over the region A, then it is natural to extend the definition of f
to the whole rectangle R, by letting

f(v) = 0

for every point v in R such that v does not lie in A. Then even if we
assume that f is continuous on A, we see that f is not continuous on R.
The points of discontinuity are precisely the points of the boundary of A.
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This situation occurs all the time in the physical world. For instance,
take the density function. The density of a wall is approximately con­
stant, and much bigger than the density of air. The density function is
not continuous on the boundary between the wall and air. Similarly, the
density of water is different from the density of air, and the density func­
tion is discontinuous on the boundary between air and water. Therefore
we cannot apply Theorem 1.1 directly, and we need a minor adjustment
of our definitions to deal with this case, which we now discuss.

Least upper bound and greatest lower bound

Let T be a set of numbers. We say that T is bounded from above if
there is a number b such that t ~ b for all t in T. Then we say that b is
an upper bound for T.

Example. Let T be the set of numbers t such that t2 < 2. Then 5 is
an upper bound for T, and 3 is also an upper bound for T Note that

J2 is an upper bound for T

We say that a number c is a least upper bound for T if c is an upper
bound, and if c ~ b for every upper bound b.

Example. Let T be the set of numbers t such that t 2 < 2. Then J2 is
the last upper bound of T

In a similar way we define a lower bound and the greatest lower
bound.

Example. Let T be the set of numbers {t,~, t, ... ,lin, .. .}. Then every
negative number is a lower bound for T The greatest lower bound is O.

We say that a set of numbers is bounded if it is bounded from above
and from below. It is a property of numbers that if a set T is bounded,
then there exists a unique greatest lower bound, and a unique least
upper bound. We do not go into the proof of this property.

We now return to the question relating to the integral of a function
which is not necessarily continuous. Let f be a function on a set S. We
say that f is bounded from above if the set of values f(X) is bounded
from above as X ranges over the set S. Similarly, we define bounded
from below, and bounded. Thus f is bounded means there is some
number b such that for all X in S we have

If(X)1 ~ b.
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Suppose that instead of being continuous on R the function f is mere­
ly bounded. We take it as a known property of the real numbers that
any bounded set of numbers has a least upper bound, and also a great­
est lower bound. So f has a least upper bound and a greatest lower
bound. Let P be a partition of R, and let S be a subrectangle of the
partition. By

lubsf = lub f(v)
vinS

we mean the least upper bound of all values f(v) for v in S. If Vo is a
point of S such that f(vo) ~ f(v) for all v in S, so Vo is a maximum for f
on S, then

Thus f(vo) is the least upper bound of f on S. Similarly, we denote by

glbsf = glb f(v)
vinS

the greatest lower bound of all values of f on s. We may then form up­
per and lower sums with the least upper bound and greatest lower
bound, respectively, that is:

U(P,f) = L (lubsf) Area(S)
s

and

L(P,f) = L (glbsf) Area(S).
s

Theorem 1.2. Let R be a rectangle and let f be a function defined on R,
bounded, and continuous except possibly at the points lying on a finite
number of curves. Then f is integrable on R.

Again, we shall not prove Theorem 1.2, nor the following routine prop­
erties.

Theorem 1.3. Assume that J, g are functions on the rectangle R, and are
integrable. Then f + g is integrable. If k is a number, then kf is inte­
grable. We have:

ff(f+9) = Iff+ ffg ff(kf) = kIf f.

R R R

and

R R
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Theorem 1.4. Iff, g are integrable on R, and f ~ g, then

R R

Let A be a region in the plane, contained in a rectangle R (Fig. 4).
Let f be a function defined on A. We denote by fA the function which
has the same values as f at points of A, and such that fA(Q) = 0 if Q is
a point not in A. Then fA is defined on the rectangle R, and we define

A R

provided that fA is integrable. By Theorem 1.2 we note that if the
boundary of A is smooth, and if f is continuous on A, then fA is contin­
uous except at all points lying on the boundary of A, and hence fA is
integrable.
We now have one more property of the integral which is convenient

to integrate a function over several regions.

Theorem 1.5. Let A be a bounded region in the plane, expressed as a
union of two regions Al and A 2 having no points in common except
possibly a finite number of curves. Iff is a function bounded on A and
continuous except at a finite number of curves, then

ff f = ff f + ff f.
A

Furthermore, if A is itself some curve, contained in a rectangle R, and if
f is a bounded function on R which has the value 0 except possibly for
points of A, then

fff=O.
A

We shall not give proof of Theorem 1.4, which anyhow is intuitively
clear. In Fig. 6(a) we have drawn a smooth curve in R where f may not
be 0, and such that f(v) = 0 if v lies in R but v is not a point of A.
Then

A
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This is reasonable because the 2-dimensional area of a curve is O. In
Fig. 6(b) we have drawn three regions Ai' A 2 , A 3 which have only
curves in common. The integral of a function f over the three regions is
then the sum of the integrals of f over each region separately.

R

(a)

Figure 6

IX, §2. REPEATED INTEGRALS

R

(b)

To compute the integral we shall investigate repeated integrals.
Let f be a function defined on the rectangle consisting of all points

(x, y) with

and c ~ y ~ d.

Let x be a fixed value. We view y as the variable. Then we can form
the integral in one variable

ff(x,y)dY.

This expression depends on the particular value of x chosen in the inter­
val [a, bJ, and is thus a function of x. We can then take the integral

r[ff(X, y) dyJ dx, also written rff(X, y) dy dx,

which is called the repeated integral of f

Example 1. Let f(x, y) = x 2 y. Find the repeated integral of f over the
rectangle determined by the intervals [1, 2J on the x-axis and [ - 3, 4J on
the y-axis.
We must find the repeated integral

rf/(X, y) dy dx.
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To do this, we first compute the integral with respect to y, namely

f:3 x
2
ydy.

For a fixed value of x, we can take x2 out of the integral, and hence this
inner integral is equal to

f4 y214
x 2 ydy = x 2 -
-3 2 -3

7x2

2

We then integrate with respect to x, namely

f2 7X2 dx = 49.
1 2 6

Thus

f
2f4 49

x 2ydydx =-.
1 -3 6

The repeated integral is useful in computing a double integral because
of the following theorem, whose proof will also be omitted.

Theorem 2.1. Let R be a rectangle [a, b] x [c, d], and let f be integra­
ble on R. Assume that for each x in [a, b] the integral

ff(x,y)dY

exists. Then

In Example 1, we may now write

Geometrically speaking, the inner integral for a fixed value of x gives
the area of a cross section as indicated in the following figure. Then in­
tegrating such areas yields the volume of the 3-dimensional figure
bounded below by the rectangle R, and above by the graph of f.
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Figure 7

ff(X,Y)dY

d

[IX, §2]

The following situation will arise frequently in practice.
Let gl' g2 be two smooth functions on a closed interval [a, b] (a ~ b)

such that gl(X) ~ g2(X) for all x in that interval. Let c, d be numbers
such that

for all x in the interval [a, b]. Then gl' g2 determine a region A lying
between x = a, x = b, and the two curves y = gl(X) and y = g2(X),
namely:

A = set of points (x, y) such that

and

This region is illustrated on Fig. 8.

d -- - -1-----------1

c - - --1----------1

a x

Figure 8

b
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Let f be a function which is continuous on the region A, and define f
on the rectangle [a, b] x [c, d] to be equal to 0 at any point of the rec­
tangle not lying in the region A. For any value x in the interval [a, b]

the integral

ff(X, y) dy

can be written as a sum:

f
g\(X) fg2(X) fd

f(x, y) dy + f(x, y) dy + f(x, y) dy.
e g,(x) g2(X)

Since f(x, y) = 0 whenever c;£ y ;£ gl(x) and gzCx);£ y ;£ d, it follows
that the two extreme integrals are equal to O. Thus the repeated integral
of f over the rectangle is in fact equal to the repeated integral

f
b [fg2(X) ]

f(x, y) dy dx.
a g,(x)

Regions of the type described by two functions gl' g2 as above are the
most common type of regions with which we deal.
From Theorem 2.1 and the preceding discussion, we obtain:

Corollary 2.2. Let gl' g2 be two smooth functions defined on a closed
interval [a, b] (a;£ b) such that gl(x) ;£ g2(X) for all x in that interval.
Let f be a continuous function on the region A lying between x = a,
x = b, and the two curves y = gl(x) and y = gzCx). Then

in other words, the double integral is equal to the repeated integral.

We give examples showing how to apply Theorem 2.1, or rather its
corollary.

Example 2. Let f(x, y) = x2 + y2. Find the integral of f over the
region A bounded by the straight line y = x and the parabola y = x2

(Fig. 9).
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Figure 9

[IX, §2]

In this case, the region A consists of all points (x, y) such that

and

Thus

Now the inner integral is given by

Hence the repeated integral is equal to

(We don't need to simplify the number on the right.)

Given a region A, it is frequently possible to break it up into smaller
regions having only boundary points in common, and such that each
smaller region is of the type we have just described. In that case, to
compute the integral of a function over A we can apply Theorem 1.5.

Example 3. Let I(x, y) = 2xy. Find the integral of lover the triangle
bounded by the lines y = 0, y = x, and the line x + y = 2.
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The region is as shown in Fig. 10.

Figure 10

We break up our region into the portion from 0 to 1 and the portion
from 1 to 2. These correspond to the small triangles A 1, A 2 , as indicated
in the picture. Then

and

Then

fff= fff+ fff.
A

There is no difficulty in evaluating these integrals, and we leave them to
you.
On the other hand, we may also view the region A to be the set of all

points (x, y) satisfying the inequalities

o~ y ~ 1, y ~ x ~ 2 - y.

Hence from this point of View, we do not have to split the integral over
two regions A 1 and A 2 , but we may evaluate it directly as

f1f2-'
0, 2xy dx dy.

The inner integral is

f
2-, 12-'y, 2x dx = y[x2], = y(2 _ y)2 _ y3

= 4y - 4y2.
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Hence the desired double integral is equal to

which we leave to you.

Finally, the area of a region A is the integral of the function lover A,
i.e.

Area(A) = III dy dx.

A

This is obviously true when A is a rectangle, and it follows for general
regions A by using upper and lower sums.

Example 4. Find the area of the region bounded by the straight line
y = x and the curve y = x 2 •

The region has been sketched in Example 2. By definition,

Area(A) = I1

fx dy dx = II (x - x 2 ) dx
o x 2 0

111
- -- =-.
236

We also observe that the same arguments as before apply if we inter­
change the role of x and y. Thus for the rectangle R we also have

II f(x, y) dy dx = II f(x, y) dx dy =r[ff(X, y) dXJ dy.

R R

The same goes for a region consisting of all points (x, y) such that

and

If A is a region in the plane bounded by a finite number of smooth
curves, and f is a function on A such that f(x) ~ 0 for xEA, then in §1
we interpreted f as a density function, and we called the integral HAf the
mass of A.

Example 5. Find the integral of the function f(x, y) = X
2y2 over the

region bounded by the lines y = 1, y = 2, x = 0, and x = y (Fig. 11).
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Figure 11
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We have to compute the integral as prescribed, namely:

We can also say that the preceding integral, namely 7/2, is the mass of A
corresponding to the density given by the function f. Of course the units
of mass are those determined by the units of density.

Example 6. Sketch the region defined by the inequalities

and o~ y ~ Ixl.

Since 0 ~ y the region lies above the x-axis. If x ~ 0, then the condition
o~ y ~ x means that the region lies below the line y = x. Hence for
x ~ 0 the region looks like the piece shaded on the right of the y-axis in
Fig. 12.

Y= -x y=x

-2 -1

Figure 12

2

If x ~ 0, then jxl = -x. The inequality 0 ~ y ~ -x means that the
region lies below the line y = - x for x ~ O. Hence the region looks like
that shaded in the figure, to the left of the y-axis.
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Example 7. Sketch the region defined by the inequalities

-2~x~0 and Iyl ~ Ixl·

For y ~ 0 and y ~ Ixl the point (x, y) will lie above the line y = -x.
Furthermore, we have symmetry in the sense that if (x, y) satisfies the
desired inequalities, then so does the point

(x, -y).

Hence the region is symmetric with respect to the x-axis. Hence the
region looks as on Fig. 13.

o

Figure 13

IX, §2. EXERCISES

1. Find the value of the following repeated integrals.

f2f3 f2fx
Z

(a) Jo 1 (x + y)dxdy (b) Jo 1 ydydx

(c) efY j"";. dx dy (d) f" fXx sin y dx dy
Jo y Z JoJo

(e)rJ:z dx dy (f) J:fnx y dy dx

f"/2f2 f2"fl-eos8
(g) Jo J/2 cos e dr de (h) Jo Jo r

3
cos

2
e dr de

f
aretan 3/2f2see8

(i) r dr de
o 0

2. Sketch the regions described by the following inequalities.
(a) Ixl ;;;;; 1, -1 ;;;;; y ;;;;; 2 (b) Ixl ;;;;; 3, Iyl ;;;;; 4
(c) x + Y ;;;;; 1, x ~ 0, y ~ 0 (d) 0;;;;; Iyl ;;;;; x, 0;;;;; x ;;;;; 5
(e) 0;;;;; x ;;;;; y, 0;;;;; y ;;;;; 5 (f) Ixl + Iyl ;;;;; 1
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(c) f"/2fY sin x dx dy
Jo -Y

(e) L"/2 f:0SYx sin y dx dy

(g) fJ:2(X2 + y) dx dy

3. Find the integral of the following functions.
(a) x cos(x + y) over the triangle whose vertices are (0,0), (n,O), and (n, n).
(b) eX +Y over the region defined by Ixl + Iyl ~ 1.
(c) x 2 - y2 over the region bounded by the curve y = sin x between 0 and n.
(d) x 2 + y over the triangle whose vertices are (- t, t), (1,2), (1, -1).

4. Find the integrals of the following functions over the indicated region.
(a) f(x, y) = x over the region bounded by y = x 2 and y = x 3.
(b) f(x, y) = y over the same region as in (a).
(c) f(x, y) = x 2 over the region bounded by y = x, y = 2x, and x = 2.

5. Let a be a number > O. Show that the area of the region consisting of all
points (x, y) such that Ixl + Iyl ~ a, is (2a)2/2!.

6. Find the following integrals and sketch the region of integration in each case.

(a) f2 rx3 x dy dx (b) ef3 1x - 21 sin y dx dy
lJx2 Jo 1

(d) fJ~X'dYdX

(f) (rx(X + y) dy dx

7. Find the mass of a square plate of side a if the density is proportional to the
square of the distance from a vertex.

8. Integrate the function f over the indicated region.
(a) f(x, y) = 1/(x + y) over the region bounded by the lines y = x, x = 1,

x = 2, y = o.
(b) f(x, y) = x 2 - y2 over the region defined by the inequalities

and

(c) f(x, y) = x sin xy over the rectangle 0 ~ x ~ nand 0 ~ y ~ 1.
(d) f(x, y) = x 2 - y2 over the triangle whose vertices are (-1, 1), (0,0),
(1, 1).

(e) f(x, y) = 1/(x + y + 1) over the square 0 ~ x ~ 1, 0 ~ y ~ 1.

9. Compute the integral of the function f(x, y) = xy over the region sketched
below.

Circle of radius 1

(1,0)

Figure 14
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10. Find the volume of the region in 3-space lying above the triangle with ver­
tices (-1,0), (0, 1), (1,0) and under the graph of the function f(x, y) = x 2y.

11. Find the integral of the function f(x, y) = x - y over the region bounded by
the curve y = sin x and the x-axis between x = 0 and x = n.

12. Find the mass of a plate bounded by one arch of the curve y = sin x, and
the x-axis, if the density is proportional to the distance from the x-axis.

IX, §3. POLAR COORDINATES

Instead of describing a point in the plane by its coordinates with respect
to two perpendicular axes, we can also describe it as follows. We draw a
ray between the point and a given origin. The angle () which this ray
makes with the horizontal axis and the distance r between the point and
the origin determine our point. Thus the point is described by a pair of
numbers (r, ()), which are called its polar coordinates.

y-axis

(r, 0) or (x, y)

y-axis

x

(a)

(r, 0) or (x, y)

x-axis

(b)

x-axis

Figure 15

If we have our usual axes and x, yare the ordinary coordinates of
our point, then we see that

whence

x
- = cos ()
r

x = r cos 0

and

and

y . ()- = SIn ,
r

y = r sin ().

This allows us to change from polar coordinates to ordinary coordinates.
It is to be understood that r is always supposed to be ~ O. In terms of

the ordinary coordinates, we have
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By Pythagoras, r is the distance of the point (x, y) from the origin (0,0).
Note that distance is always ~ o.

Example 1. Find polar coordinates of the point whose ordinary coor­

dinates are (1, )3).
We have x = 1 and y =)3, so that r =.J1+3 = 2. Also

x 1
cos e= - =-

r 2'
sin e= ~ = )3.

r 2

Hence e= n/3, and the polar coordinates are (2, n/3).

We observe that we may have several polar coordinates corresponding
to the same point. The point whose polar coordinates are (r, e+ 2n) is
the same as the point (r, e). Thus in our example above, (2, n/3 + 2n)
would also be polar coordinates for our point. In practice, we usually
use the value for the angle which lies between 0 and 2n.
Suppose a bug is traveling in the plane. Its position is completely

determined if we know the angle e and the distance of the bug from the
origin, that is if we know the polar coordinates. If the distance r from
the origin is given as a function of e, then the bug is traveling along a
curve and we can sketch this curve.

Example 2. The equation of the circle of radius 3 and center at the
origin in polar coordinates is simply

r=3 or or

This expresses the condition that that distance of the point (x, y) from
the origin is the constant 3. The angle e can be arbitrary.

Figure 16
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Let A be the disc of radius 3 centered at the origin, so A is the region
bounded by the circle. Then

A = set of points (x, y) such that the polar coordinates satisfy

o~ () ~ 2n and o~ r ~ 3.

Thus A corresponds to a rectangle A* in the (r, ())-plane, namely:

A* = set of points (r, ()) in the (r, ())-plane satisfying these inequalities.
It is customary to draw the ()-axis horizontal.

y-axis

r-axis transformation

x = rcos e,
y=rsine

e-axis

Figure 17

Example 3. Sketch the graph of the function r = sin () for 0 ~ () ~ n.

If n < () < 2n, then sin () < 0 and hence for such () we don't get a
point on the curve. Next, we make a table of values. We consider
intervals of () such that sin () is always increasing or always decreasing
over these intervals. This tells us whether the point is moving further
away from the origin, or coming closer to the origin, since r is the
distance of the point from the origin. Intervals of increase and decrease
for sin () can be taken to be of length n/2. Thus we find the following
table:

() sin () = r

inc. 0 to n/2 inc. 0 to 1

inc. n/2 to n dec. 1 to 0

n/6 1/2

n/4 lfi
n/3 fi/2

Put in words: as () increases from 0 to n/2, then sin () and therefore r
increases until r reaches 1. As () increases from n/2 to n then sin () and
thus r decreases from 1 to O. Hence the graph looks like this.
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(J=n/2

(I, 7I"/2)

255

(J=n

Figure 18

We have drawn the graph like a circle. Actually, we don't know whether
it is a circle or not. The graph could be flatter in one direction than in
another. In the next example, we shall see that it actually must be a
circle.

Example 4. Change the equation

r = sin f)

to rectangular coordinates.
We substitute the expressions

and

sin f) = yjr = yjJx2 + y2

in the polar equation, to obtain

Of course, this substitution is valid only when r #- 0, i.e. r > O. We can
then simplify the equation we have just obtained, multiplying both sides
by Jx2 + y2. We then obtain

x2 + y2 = y.

You should know that this is the equation of a circle, by completing the
square. We recall here how this is done. We write the equation in the
form

We would like this equation to be of the form
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because then we know immediately that this is a circle of center (0, b)
and radius c. We know that

Therefore we let 2b = 1 and b = 1. Then

because the t cancels. Thus the equation

is equivalent with

This is the equation of a circle of center (0,1) and radius 1. The point
corresponding to the polar coordinate r = °is the point with rectangular
coordinates x = °and y = 0.
Let A be the region whose boundary is the circle, so A is the disc of

radius 1 and center (0,1). Then we can describe A by inequalities involv­
ing its polar coordinates, that is:

A = Set of points (x, y) such that the polar coordinates (r, e) satisfy

and °~ r ~ sin e.

This region A in the (x, y)-plane corresponds to the region A* III the
(r, e)-plane, namely:

A* = set of points (r, e) in the (r, e)-plane such that rand e satisfy

and °~ r ~ sin e.

r-axls

o 1t e-axis

transformation

x = rcos e,
y=rsine

y-axis

x-axis

A* = {(r, e) such that
o~ e~ 1t and 0 ~ r ~ sin e}

Figure 19

The region A in the (x, y)-plane
Disc of radius 1centered at (0, 1)
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Example 5. We want to sketch the curve given in polar coordinates
by the equation

r = 1 + sin e.

We look at the behavior of r when e ranges over the intervals.

[0, nI2], [n12, n], [n, 3nI2], [3n12, 2n].

e sin e r

inc. from 0 to nl2 inc. 0 to 1 inc. 1 to 2
inc. from nl2 to n dec. 1 to 0 dec. 2 to 1
inc. from n to 3nl2 dec. 0 to -1 dec. 1 to O.
inc. from 3nl2 to 2n inc. -1 to 0 inc. 0 to 1

Thus the graph looks roughly like this:

y-axis

2

Graph of r = 1 + sin 9

-+-----+----...+- x-axis

Figure 20

Let A be the region whose boundary is the above curve in polar coor­
dinates. Then:

A = set of points (x, y) whose polar coordinates (r, e) satisfy

o~ e~ 2n and o~ r ~ 1 + sin e.

A* = set of points (r, e) in the (r, e)-plane satisfying these inequalities.

Integration in polar coordinates

We now apply polar coordinates to find the integrals of functions over
regions which are more easily described by polar coordinates than by the
ordinary (x, y)-coordinates.
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At first we shall be interested in somewhat simpler regions, namely
sectors. Arbitrary regions will then be approximated by sectors, or pieces
of sectors.
Let S be the piece of a sector as shown on Fig. 21(b). Then

S = set of points (x, y) whose polar coordinates satisfy

and c ~ r ~ d,

where a, b are numbers chosen such that

a ~ b ~ a + 2n and o~ c ~ d.

Thus S corresponds to a rectangle R in the (r, B)-plane, namely

S* = R = rectangle consisting of the set of points (r, B) in the (r, B)­
plane satisfying these inequalities.

The transformation which transforms the rectangle to the piece of sector
is obtained by setting

x = rcos B and y = r sin B.

r

d

-c

-4----+----+---(J
a b

(r, (J)-plane

(a)

Figure 21

Consider partitions

(x, y)-plane
(b)

of the two intervals [a, b] and [c, d]. Each pair of intervals [B i , Bi + 1]
and [rj , rj + 1] determines a small region as shown in the following figure
(Fig. 22).
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This region is the small sectorial piece Sij consisting of all points whose
polar coordinates (r, 9) satisfy the inequalities

The area of such a region is equal to the difference between the area of
the sector having angle 9i + 1 - 9; and radius r j + l' and the area of the
sector having the same angle but radius rj' The area of a sector having
angle 9 and radius r is equal to

Consequently the difference mentioned above is equal to

(9;+1 - 9;)r;+1
2

We let

and therefore

(9;+1 - 9i)r; = (fl. _ fl.) (r j +1 + r)(. _.)
2 U,+l U, 2 rJ + 1 rJ •

If f is a function on the (x, y)-plane, it determines a function of (r,9)
by the formula

f*(r, 9) = f(r cos 9, r sin 9).
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Example 6. Let f(x, y) = 2x2 y. Then

f*(r, 0) = 2r2 cos2 0 r sin 0 = 2r3 cos2 0 sin O.

This is obtained by substituting r cos 0 for x and r sin 0 for y in the ex­
pression for f(x, y).

We may then take the product of the value of the function f*(rj,O)
and the area of the small sectorial piece Sij consisting of all points (r,O)
whose polar coordinates satisfy the inequalities

Taking the sum for all pairs (i,j) we see that

m-1n-1

L L f*(rj, Oi)rJ{rj+1 - rj)(Oi+ 1 - 0i)
j=l i=l

is a Riemann sum for the function f*(r, O)r on the rectangle

[c, d] x [a, b]

in the (r, 0) plane. Consequently the following theorem is now very
plausible.

Theorem 3.1. Let S be the piece of sector consisting of those points in
the (x, y)-plane whose polar coordinates satisfy the inequalities as above,

and c ~ r ~ d.

Let S* = R be the corresponding rectangle in the (r, O)-plane. Let f be
bounded and continuous on S except possibly on a finite number of
smooth curves. Let f* be the corresponding function of (r, 0). Then

ff f(x, y) dy dx = ff I*(r, O)r dr dO.

s s·

Symbolically, we write

dy dx = r dr dO.
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As with rectangular coordinates, we can deal with more general re­
gions. Let gl' g2 be two smooth functions defined on the interval [a, b]
and assume

Consider the region A of the (x, y)-plane consisting of all points (x, y)
whose polar coordinates (r, e) satisfy the inequalities

and

This region is illustrated in Fig. 23.

Figure 23

It corresponds to the region A* of the (r, e)-plane described by these in­
equalities, and this region A* is of a type considered in the last section,
illustrated in the next figure (Figure 24).

r-axis

a

Figure 24

b 8-axis
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In Theorem 3.1, the integral over the rectangle is just the integral

ff f*(r, O)r dr dO.

Suppose now that we consider a function f which is equal to 0 outside
the region A, so that f* is equal to 0 outside the region A *. We are in
the situation already described in the last section. Hence the integral of
f over A is given by the formula:

ff f(x, y) dy dx = ff f*(r, O)r dr dO

A A*

which in terms of the inequalities can also be written:

If f
bf92(8)

f(x, y) dy dx = f*(r, O)r dr dO.
a 9,(8)

A

Circles in polar coordinates

In dealinOg with polar coordinates, it is useful to remember the equation
of a circle. Let a > 00 Then

r = a cos 0, - nl2 ~o 0 ~ n12,

is the equation of a circle of radius al2 and center (aI2,0). Similarly,

r = a sin 0, o~ 0 ~ n,

is the equation of a circle of radius al2 and center (0, aI2). You can
easily show this, as an exercise, using the relations

x = r cos 0, y = r sin O.

The procedure is the same as in Example 4.
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The circles have been drawn on Fig. 25.

y-axis y-axis

a

r=a cos 8

-1r/2~8~1r/2

a
--_.........:=-1"""""~---- x-axis

r=a sin 8

O~8~1r

Figure 25

(Note. The coordinates of the center above are given in rectangular
coordinates.)

Example 7. Find the integral of the function f(x, y) = x over the
region bounded by the semicircle and the x-axis as shown on the figure
(Fig. 26).

Figure 26

The region A consists of all points whose polar coordinates (r, e)
satisfy the inequalities

o~ e~ n/2 and o~ r ~ 2 cos e.

Hence

ff x dy dx = ff r cos e r dr de

A A·

flt/2 f2COS8

= Jo Jo r
2
cos e dr de.
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The inner integral is

Hence

DOUBLE INTEGRALS

f2COS9 r312cos9 8
r2 dr = - = -cos3 o.

o 3 0 3

If 8 f"/2
x dy dx = 3 0 cos4 0 dO,

A

[IX, §3]

which you should know how to do. One technique is to write

20 1 + cos 20cos = ,
2

and repeat the use of this formula to lower the powers of the cosine
appearing in the integral. Then

1
cos4 0 = (COS

2 0)2 = 4(1 + 2 cos 20 + cos2 20)

= ~ [1 + 2 cos 20 + ~ (l + cos 40)J
Therefore

f "/2 1 [ 2 sin 20 1 ( sin 40)J 1"/
2

cos4 0 dO = - 0 + + - 0 +--
o 4 2 2 4 0

1 [n 1n J=4 2+ 0 +22+ 0

3n
- 16

Hence finally we get the original integral

Example 8. Find the integral of the function f(x, y) = x2 over the
region enclosed by the curve given in polar coordinates by the equation

r = 1 - cos O.
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The function of the polar coordinates (r, e) corresponding to f is
given by

f*(r, e) = r2 cos2 e.

The region in the polar coordinate space is described by the inequalities

o~ r ~ 1 - cos e and °~ e~ 2n.

This region in the (x, y)-plane looks like Fig. 27:

y

Figure 27

The desired integral is therefore the integral

f
21<f1-C056
o 0 r 3 cos2 e dr de.

We integrate first with respect to r, which is easy, and see that our inte­
gral is equal to

f
21<
o !Ci - cos e)4 cos2 e de.

The evaluation of this integral is done by techniques of the first course
in calculus. We expand out the expression of the fourth power, and get
a sum of terms involving cosk e for k = 0, ... ,6. The reader should know
how to integrate 'powers of the cosine, using repeatedly the formula

2 e 1 + cos 2e
cos = ,

2
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or using the recursion formula in terms of lower powers. No matter
what method the reader uses, he will find the final answer to be

49n
32

In dealing with trigonometric integrals, you should remember the fol­
lowing formulas:

. 2 e 1 - cos 2e
SIn = ,

2
cos2 e = 1 + cos 2e .

2

You can also use (but do not memorize, it's too complicated):

fsin" e de = - ~ sin"-t e cos e + n: 1fsin"-2 e de,

f In-Ifcos" e de = ~ cos"-t e sin e + -n- COS"-2 e de.

For low powers of sine and cosine, and even powers, the first two formu­
las give the easiest way of finding the answer. For odd powers, you can
substitute repeatedly

sin2e= 1 - cos2e or cos2e= 1 - sin2 e,
and use a substitution u = sin e, du = cos e de, for instance.

IX, §3. EXERCISES

1. By changing to polar coordinates, find the integral of e
x2

+
y2 over the region

consisting of the points (x, y) such that x2 + y2 ~ 1.

2. Find the volume of the region lying over the disc x 2 + (y - 1)2 ~ 1 and
bounded from above by the function z = x2 + y2.

3. Find the integral of e-(X
2
+ y2

) over the circular disc bounded by

a> O.

4. In Exercise 3, find the limit of the integral as a becomes large. This limit is
interpreted as the integral
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5. Sketch the region defined by x ~ 0, x 2 + y2 ~ 2, and x 2 + y2 ~ 1. Determine
the integral of f(x, y) = x 2 over this region.

6. Find the mass of a circular disk of radius a if the density is proportional to
the square of the distance from a point on the circumference.

7. Let A be the disc of radius 1 and center O. Find

ff(X 2 + y2) e{x2+y2)2 dy dx.

A

Evaluate the following integrals. Take a > O.

faf~8. -a -v'a2 -x2 dy dx

9. J:Lv'a
2
-

Y2
(X2 + y2) dx dy

fal.Jifv'a2-Y2
10. X dx dy

o Y

11. (a) Find the area inside the curve r = a(1 + cos 0) and outside the circle
r = a.

(b) Find the area inside the curve r = a(1 - cos 0) and outside the circle
r= a.

12. The base of a solid is the region of Exercise l1(a) and the top is given by the
function f(x, y) = x. Find the volume.

13. Find the area enclosed by the following curves.
(a) r2 = cos 0 (b) r2 = 2a2 cos 20

14. The base of a solid is the area of one loop in Exercise 13(b) and the top is
bounded by the function (in terms of polar coordinates)

f*(r,O) = J2a2
- r2 •

Find the volume.

15. Find the integral of the function

1
f(x, y) = (x2 + y2 + 1)3/2

over the disc of radius a centered at the origin. Letting a tend to infinity,
show that

lim If f(x, y) dy dx = 2n.
a~oo
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16. Answer the same question for the function

f(x, y) = (x2 + y2 + 2)2·

17. Find the integral of the function

over the region between the two circles of radius 2 and radius 3, centered at
the origin.

18. (a) Find the integral of the function f(x, y) = x over the region bounded in
polar coordinates by r = 1 - cos o.

(b) Let a be a number > O. Find the integral of the function f(x, y) = x 2
over the region bounded in polar coordinates by r = a(1 - cos 0).

19. Sketch the region defined by x ~ 0, x 2 + y2 ;;i; 2 and x 2 + y2 ~ 1. Determine
the integral of the following functions over this region.
(a) f(x, y) = x 2 (b) f(x, y) = x (c) f(x, y) = y.

20. Sketch the region defined by y ~ x, x 2 + y2 ;;i; 2, and x 2 + y2 ~ 1. Find the
integral of the function

xy
f(x,y)=~+2

X Y

over this region.

21. (a) Sketch the region consisting of all points (x, y) satisfying the inequalities:

y ~ 0, x + y ~ O.

(b) Express this region in terms of polar coordinates.
(c) Find the integral of x(x2 + y2)3/2 over this region.

22. (a) Sketch the region defined by

y;;i; x, and

(b) Find the integral of the function f(x, y) = x over this region.

23. (a) Sketch the region inside the curve r = 1 + cos 0 and outside the curve
r = 1.

1 h..(b) Integrate the function f(x, y) = ~ over t IS regIOn.
VX2 + y2

24. A cylindrical hole of radius 1 is bored through the center of a sphere of ra­
dius 2. What volume is removed?

25. Let n be an integer ~ 0, and let f(x, y) = 1/r", where r = J x 2 + y2.
(a) Find the integral of this function over the region contained between two
circles of radii a and 1 respectively, with 0 < a < 1.

(b) For which values of n does this integral approach a limit as a ---> O?



CHAPTER X

Green '5 Theorem

X, §1. THE STANDARD VERSION

Suppose we are given a vector field on some open set U in the plane.
Then this vector field has two components, i.e. we can write

F(x, y) = (p(x, y), q(x, y»,

where p, q are functions of two variables (x, y). In everything that fol­
lows, we assume that all functions we deal with are e1, i.e. that these
functions have continuous partial derivatives, and similarly for vector
fields and curves.
Let e be a curve in U, defined on an interval [a, b]. For the integral

of F over e we use the notation

f/ = rF(C(t». C'(t) dt = Lp(X, y) dx + q(x, y) dy,

and abbreviate this as

f/ = LPdX + qdy.

This is reasonable since the curve gives

as functions of t, and

x = x(t) and y = yet)

de dx dy
F(C(t»'dt = p(x, y) dt + q(x, y) dt'
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Theorem 1.1. Green's theorem. Let p, q be functions on a region A,
which is the interior of a closed path C, parametrized counterclockwise.
Then

The region and its boundary may look as follows (Fig. 1):

Figure 1

It is difficult to prove Green's theorem in general, partly because it is
difficult to make rigorous the notion of "interior" of a path, and also the
notion of counterclockwise. In practice, for any specifically given
region, it is always easy, however. That it may be difficult in general is
already suggested by drawing a somewhat less simple region as follows:

Figure 2

We shall therefore prove Green's theorem only in special cases, where
we can give the region and the parametrization of its boundary explicitly.

Case 1. Suppose that the region A is the set of points (x, y) such that

and

in the same manner as we studied before in Chapter IX, §2.
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a

Figure 3

b

The boundary of A then consists of four pieces, the two vertical seg­
ments, and the pieces C1 and C2 parametrized by

C1(t) = (t, gl(t)),

Cit) = (t, g2(t)),

a ~ t ~ b,

a ~ t ~ b.

Then we can prove one-half of Green's theorem, namely

Lp dx = II -~~ dydx.

A

Proof We have

ff ap fb f g2
(X)a dy dx = D2P(x, y) dy dx

y a gl(X)
A

fb( Ig2(X»)= p(X, y) dx
a gl(X)

= f [p(X, gix)) - p(X, gl(X))] dx

= f p dx - f p dx.
C2 Cl

However, the boundary of A, oriented counterclockwise, consists of four
pieces,

where C2 is the opposite curve to C 2 , and C 3 , C4 are the vertical seg­
ments.
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Figure 4

[X, §1]

The integrals over the vertical segments are equal to O. This is easily
seen as follows. Consider the right vertical segment parametrized by

Cit) = (b, t),

Then x = b (constant!) on this vertical segment, so dx/dt = 0 and there­
fore

f pdx = 0,
C4

thus showing that the interval over this vertical segment is O. A similar
argument applies to the integral over the other vertical segment, and this
concludes the proof of Green's theorem in the present case.

Case 2. Suppose that the region is given by similar inequalities as in
Case 1, but with respect to the y-axis. In other words, the region A is
defined by inequalities

and

Then we prove the other half of Green's theorem, namely

ff :~dYdX = LqdY.

A

Proof We take the integral with respect to x first:

if a fd [f g2(Y) ]-.!1 dx dy = D1q(x, y) dx dy
ax c g.<y)

A
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In this case, the integral of q dy over the horizontal segments is equal to
o because y is constant on the horizontal segments, and so dyjdt = O.
This proves Green's theorem in this second case.

gZ

Figure 5

In particular, if a region is of a type satisfying both the preceding con­
ditions, then the full theorem follows. Examples of such regions are rec­
tangles and triangles and interiors of circles:

D ~o
Figure 6

Other regions of this same type can also be drawn as follows.

Figure 7

We have therefore proved Green's theorem in these cases.
We shall omit the proof of Green's theorem in complete generality.

Example 1. Find the integral of the vector field

F(x, y) = (y + 3x, 2y - x)

counterclockwise around the ellipse 4x2 + y2 = 4.
Let p(x, y) = y + 3x and q(x, y) = 2y - x. Then

JqjJx = -1 and JpjJy = 1.
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By Green's theorem, we get

Lp dx + q dy = ff (-2) dy dx = -2 Area(A),

A

where Area(A) is the area of the ellipse, which is known to be 2n (= nab
when the ellipse is in the form x2/a2 + y2/b2 = 1). Hence

f F = -4n.
ellipse

Example 2. Let F(x, y) = (3xy, x2). Find the integral of F around the
rectangle as shown on the figure, counterclockwise.

2

-1 0 2 3

Figure 8

Let R be the rectangle, and C the boundary. By Green's theorem, the
desired integral is

= f3 f2(2X - 3x) dy dx
-1 0

= f/- x)2dx

= _X2\3 = -(9 - 1) = -8.
-1

It is clear that we could compute the integral of F over the boundary
of the rectangle easier by using Green's theorem than by parametrizing
all four sides and then adding the four integrals over these four sides.
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We shall not prove Green's theorem other than in these special cases.
In any case, the version stated above is insufficient to cover all applica­
tions, and we shall state a somewhat more general version which does
suffice.
Suppose we have a region A whose boundary consists of a finite

number of curves, which meet only in their end points. Let C1 be one of
these curves, so that A lies either to the right or to the left of Cl' as
shown on the figure (Fig. 9).

(a) (b)

Figure 9

We have drawn the curve C1 and its reverse curve Ct. In Fig. 9(a) the
region A lies to the left of C1. If we reverse the orientation of C1 to
obtain Ct , then A lies to the right of Ct.

Green's theorem, general version. Let A be a region in the plane whose
boundary consists of a finite number of curves. Assume that each curve
of the boundary is oriented so that A lies to the left of the curve. Let p,
q be functions on A. Let

be the curves forming the boundary of A. Then

f/ dx + q dy = ffG: -:~) dy dx.
A

Remark 1. In the first version of Green's theorem, making the as­
sumption that the closed path forming the boundary is parametrized
counterclockwise amounts to the assumption made in the general version
that the region lies to the left of the curves forming its boundary. Some
sort of assumption on the orientation of these curves must be made for
the formula of the theorem to come out correctly.
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Remark 2. We do not assume that the curves Cl' ... ,Cm are neces­
sarily connected, i.e. form a path in the sense we used that worked pre­
viously. In applications, these curves may be disconnected, as in the fol­
lowing example.

Example 3. Let A be the region between two concentric circles C 1, C2
as shown, both with counterclockwise orientation (Fig. 10).

Figure 10

The boundary of the region A consists of the two circles C 1, C2 ,

which have both been shown with counterclockwise orientation. Then A
lies to the left of C1 but to the right of C 2 • Therefore, if we wish to ap­
ply our version of Green's theorem, we must use

as the curves describing the boundary, where C; is the circle with
clockwise orientation. Then A lies to the left of C;. Hence Green's for­
mula gives

Since

f p dx + q dy = -f p dx + q dy
Ci C2

we may also rewrite this formula in the form

An important special case arises when F = (p, q) is a vector field on A
satisfying the additional assumption that
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Then the right-hand side in the above relation is equal to 0, and conse­
quently we see that the integral of F over C1 is equal to the integral of
F over C2 , in other words

f p dx + q dy = f p dx + q dy.
C, C2

Of course, if F is the gradient of a function, then both these integrals are
0. However, we saw previously that there exist vector fields satisfying the
condition op/oy = oq/ox, but not having potential functions, e.g.

(
-y X)

F(x, y) = 2 2' 2 2'
x +y x +y

Example 4. Let F(x, y) be the above vector field. We wish to find the
integral of F over the path y shown on Fig. 11.

Figure 11

This path y consists of the three curves Yi' Y2' Y3' It is a mess. But we
can use Green's theorem to simplify our problem. We draw a small cir­
cle C1 around the origin 0, oriented counterclockwise. We let A be the
region between the circle and the path.

Figure 12
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Then the boundary of A consists of the curves {Yl' Y2' Y3' C1"}. Note that
if we use C 1" instead of C1 then the region A lies to the left of each one
of the curves. Therefore by Green's theorem, we get

fF+ f F= ff(oq - oP) dy dx = 0
y c, ax oy

A

because our vector field satisfies the property D2P = D1q. Hence

fF = f F.
y c,

It is now easy to find the integral of F over Cl' and was done in Chapter
VIII where you found 2n. This is the answer.

X, §1. EXERCISES

1. Use Green's theorem to find the integral Ie y2 dx + x dy When C is the fol­
lowing curve (taken counterclockwise).
(a) The square with vertices (0,0), (2, 0), (2, 2), (0, 2).
(b) The square with vertices (± 1, ± 1).
(c) The circle of radius 2 centered at the origin.
(d) The circle of radius 1 centered at the origin.
(e) The square with vertices (±2, 0), (0, ±2).
(f) The ellipse x 2/a2 + y2/b2 = 1.

2. (a) Use Green's theorem to find the integral

counterclockwise around the triangle whose vertices are at (0,0), (0, 1),
(1,0).

(b) Let C be the closed curve consisting of the graphs of

y = sin x and y = 2 sin x for 0;::;; x;::;; n,

and oriented counterclockwise. Find

both directly, and by using Green's theorem.
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3. Find the integral
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2

over the paths shown in Fig. 13.

-1

(a)

Figure 13

(b)

(2,1)

4. Let A be a region, which is the interior of a closed curve C oriented counter­
clockwise. Show that the area of A is given by

(a) Area(A) = ~f -y dx + x dy
2 C

(b) Area(A) = Lx dy.

5. Assume that the function f satisfies Laplace's equation,

on a region A which is the interior of a curve C, oriented counterclockwise.
Show that

f afdx - afdy = O.
cay ax

6. Find the integral

f -y x
---dx+---d

C
1

x 2 + y2 x2 + y2 Y

when C1 is each one of the following two paths.
(a) Let C1 be the closed path consisting of the vertical segment on the line

x = 2, and the piece of the parabola

y2 = 2(x + 2)

lying to the left of this segment, as shown on Fig. 14(a). We assume that
C1 is oriented counterclockwise.
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(b) Let C1 be the square oriented counterclockwise as in Fig. 14(b).

l=2t:r+2)

x=2

-1

-1

(a)

Figure 14

7. Find the integral of the vector field

(
-y+x x+y)

F(x, y) = x 2 + y2 ' x2 + y2

(b)

over the same paths C1 as in Exercise 6, in both cases (a) and (b).

X, §2. THE DIVERGENCE AND THE ROTATION OF A
VECTOR FIELD

We shall investigate two quantities associated with a vector field

F = (p, q).

The divergence of F,

which in (x, y)-coordinates also reads

op oq
(div F)(x, y) = - +-.ox oy

The rotation of F,

which in (x, y)-coordinates also reads

oq op
(rot F)(x, y) = - -_.ox oy
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We note that the rotation of F is exactly the expression which comes
under the double integral sign in Green's theorem. So far these quanti­
ties have been defined purely algebraically, but in this section we shall
derive physical interpretations for them by applying Green's theorem.
Since we have already formulated Green's theorem in the previous

section, we begin with the discussion of the rotation. We shall see that
the name is deserved, because it measures how much the vector field ro­
tates. If we think in terms of a flow of fluid under the influence of the
force field, we can interpret this rotation in terms of how much the fluid
rotates.
Let us repeat Green's theorem. We have

II rot F dy dx = fF(C(t))'C(t) dt

A

if A is a region inside a curve C, oriented counterclockwise.
The norm of the velocity vector is the speed, i.e.

II C(t) II = ds,
dt

where s = s(t) is the distance traveled. Let u be a unit vector in the tan­
gential direction of the curve. We may write

ds
C(t) = u(t) -.

dt

It is then useful to rewrite the expression on the right in Green's
theorem in terms of the unit vector, so that Green's theorem then reads

II rotFdydx= LF,UdS.

A

We shall apply the formula to a special case to derive the following
result.

Theorem 2.1. Corollary of Green's theorem. Let Dr be the disc of
radius r centered at a point P. Let C r be the circle of radius r which
forms the boundary of Dr> oriented counterclockwise. Let F be a vector
field on the closed disc, and let

A(r) = nr2
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be the area of the disc. Let u be the unit tangent vector to the circle.
Then

(rot F)(P) = lim _1_f F· u ds.
r-O A(r) Cr

Proof For an arbitrary point X = (x, y) in the disc, let us write

rot F(X) = rot F(P) + h(X),

where
lim h(X) = O.
x-p

By Green's theorem, we get

_1_ f F·u ds = _1_ if rot F dy dx
A(r) C

r
A(r)

Dr

(*) = A~r) II (rot F)(P)dy dx + A~r) IIh(x, y) dy dx.

Dr Dr

Observe that (rot F)(P) is constant, and can therefore be taken out of
the first integral. Since

II dy dx = area of disc of radius r,

Dr

we find that the first term on the right of (*) is equal to

A~r) (rot F)(P) II dy dx = (rot F)(P).

Dr

Thus to prove the corollary, we need only show that the second term
approaches 0 as r approaches O. This is done as follows. The function
h(x, y) approaches 0, and the integral on the right can be estimated as
follows.

IA~r) II h(x, y) dy dx I~ max Ih(x, y)1 A~r) II dy dx

~ ~

= maxlh(x, y)j,
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where the maximum of Ih(x, y)1 is taken over all points of the disc Dr·
This maximum approaches 0 as r approaches 0 by assumption, and the
corollary is proved. (For a discussion of the estimate, see the appendix.)

This leads to the desired physical interpretation. The dot product

F·u

is the component of F in the tangential direction of the circle, as shown
on Fig. 15.

Figure 15

The integral

f F·uds
Cr

can be interpreted as the rotation of F around this circle. Dividing by
the area of the disc, we obtain this rotation per unit area. Thus we get
the interpretation for the rotation of F:

The rotation (rot F)(P) is the rate at which F rotates
per unit area per unit time at P.

We shall now turn to a similar discussion of the divergence of F. We
need first to make some remarks on normal vectors. Let

C(t) = (x(t), y(t»),

be a curve.

Definition. The right normal vector at t is the vector

(
dY dX)N(t)= -,-- .
dt dt
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It is easily verified that N(t) is a vector perpendicular to the curve (Exer­
cise 1). The picture looks as drawn on Fig. 16.

N(t)

Figure 16

The word "right" is inserted in the definition above because N(t)
points to the right of the curve.

Example. Consider a circle

C(O) = (cos 0, sin 0).

Then

N(O) = (cos 0, sin 0).

N(8)

Figure 17

We see that N(O) points in the same direction as the position vector
C(O), and thus points to the right of the circle.

Previously we integrated a vector field F along the curve by forming
the dot product with the velocity (tangent) vector,

F(C(t). C(t),
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giving the tangential component of the force, in the direction of the
curve. Now we shall form the dot product

F(C(t)· N(t)

with the right normal vector giving the component in the perpendicular
direction. If we want to abbreviate this by eliminating the reference to
the variable t, we simply write

F·N.

We then have:

Theorem 2.2. Divergence theorem. Let A be a region which is the in­
terior of a closed curve oriented counterclockwise. Let F be a vector
field on A. Then

II (div F) dydx = fF .Ndt.

A

Proof Exercise 2.

The integral on the right-hand side is of course supposed to read in
full

fF(C(t). N(t) dt.

Since C(t) = (~: ' ~). it is immediate that

II N(t) II = II C(t) II = v(t).

In other words, N(t) and the velocity vector C(t) have the same norm,
namely the speed of the curve. Since the distance traveled is given by
the integral

s(t) = Iv(t) dt,
ds

so dt = v(t),
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it is customary to rewrite the integral in the divergence theorem in terms
of the variable s. Let

N(t)
n(t) = II N(t) II

be the unit vector in the direction of the normal N(t). Then

ds
N(t) = II N(t) II n(t) = - n(t),

dt

and the formula in the divergence theorem may be rewritten:

ff(diVF)dYdX= LF.nds.

A

Of course, the right-hand side means

fb ds
F(C(t)). n(t) - dt.

a dt

The divergence theorem has an interesting corollary, which will allow
us to give a physical interpretation for the divergence of a vector field.

Theorem 2.3. Let D, be the disc of radius r centered at a point P in the
plane. Let C, be the circle of radius r which forms the boundary of D"
oriented counterclockwise. Let F be a vector field on the closed disc,
and let

A(r) = nr2

be the area of the disc. Let n denote the unit right normal vector on the
circle. Then

(div F)(P) = lim _1_ f F· n ds.
,-0 A(r) Cr

Proof Let 9 = div F = DIP + D 2 q. Our vector fields are assumed
continuous, so 9 is continuous, and we can write

g(X) = g(P) + h(X),
where

lim h(X) = O.
x-p
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By the divergence theorem, we get

_1_f F· n ds = _1_ If div F dy dx
A(r) C

r
A(r)

Dr

= A~r) ff g(P) dy dx + A~r) ff h(x, y) dy dx.

Observe that g(P) is constant, and can therefore be taken out of the first
integral. Since

ff dy dx = area of disc of radius r,

Dr

we find that the first term on the right of (*) is equal to

A~r) g(P) ff dy dx = g(P) = (div F)(P).

Dr

Thus to prove the theorem we need only show that the second term
approaches 0 as r approaches O. This is done exactly in the same way
that we handled the similar situation previously for the rotation, and
concludes the proof.

We now give the physical interpretation for the divergence quite
analogously to that of the rotation.
The dot product

F'n

is the component of F along the right normal vector, pointing outward.
The integral

f F·nds
Cr

can be interpreted as the flow going outside the circle per unit time, in
the direction of the unit outward normal vector. Dividing by the area of
the disc, we obtain the mass per unit area flowing out of the disc. Thus
we get the interpretation for the divergence:

The divergence ofF at P is the rate ofoutward flow
per unit area per unit time at P.
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An analogous theorem will be proved in Chapter XII, §5 for the diver­
gence in 3-space, and also in Chapter XII, §6 for a similar interpretation
of the curl. The patterns of proofs will also be quite analogous.

X, §2. EXERCISES

1. Verify that N(t) is perpendicular to the curve, i.e. perpendicular to C(t).

2. Prove the divergence theorem, by applying Green's theorem to the vector field
G = (- q, p).

3. Let F(x, y) = (y, - x). Let C be the circle of radius 1 oriented counterclock­
wise. Show that

IeF.OdS = O.

4. Let A be a region which is the interior of a closed curve C oriented counter­
clockwise. Let f, g be two functions on A. Define

Let 0 be the unit right normal vector along the curve. Define

Dnf = (grad f). 0,

so that for any value of the parameter t, we have

(Dnf)(t) = grad f(C(t))· o(t).

This is called the right normal derivative of f aloog the curve. It is the di­
rectional derivative of F in the direction of o.

Prove Greeo's formulas:

(a) If [(grad f). (grad g) + g ilf] dx dy = Ie gDnf ds

A

(b) If (g ilf - f ilg) dx dy = Ie(gDnf - fDng) ds

A

[Hint: Apply the divergence theorem to the vector fields f grad g and g gradf
For instance, let

In computing the divergence of F, use the rule for the derivative of a
product.]
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5. Prove the following theorem.

Let f be a harmonic function on the disc of radius 1, that is, assume that f is
differentiable as needed, and satisfies Laplace's equation

Then

112"f(O,O) = - fer cos e, r sin e) de.
2n 0

[Hint: For 0 < r < 1, let

112

"Ip(r) = - fer cos e, r sin e) de.
2n 0

Take the derivative q/(r) by differentiating under the integral sign, with respect
to r. Using the divergence theorem, you will find

Ip'(r) = _1_ If div gradf(x, y) dy dx2nr
Dr

=0.

Hence Ip is constant. Then substitute r = 0 in the definition of Ip to get what
you want.]
The theorem in this exercise is sometimes called the mean value theorem

for harmonic functions. It says that the value of the function at (0,0) is
obtained by averaging the function over a circle (of any radius) centered at O.

APPENDIX

In the proofs of Theorems 2.3 and 2.1 we met a significant estimate of an
integral, so we say a few more words about such estimates here.

Theorem 2.4. Let h be a continuous function on a closed bounded
region A. Then

Jjhi ~ (m;x h) area(A).
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Proof Let M be the maximum of Ihl on A. Then h ~ Ihl ~ M. There­
fore by Theorem 1.4 of Chapter IX, §1 we get

ffh ~ M ffdy dx = M area(A).
A- A-

But we also have -h ~ Ihl ~ M, so

-JJh ~ M JJdy dx = M area(A).
A- A-

The absolute value IfJhi is equal to ±fJh, whence the theorem follow.

Theorem 2.5. Let g be a continuous function on an open set U in R2•

Let P be a point of U. Let Dr be the disc of radius r centered at P.
Let A(r) = area of the disc = nr2• Then

~~ A~r) ffg(x, y) dy dx = g(P).
D.

Proof Let h(X) = g(X) - g(P), so g(X) = g(P) + h(X). Then

A~r)ffg(X) dy dx = A~r) ffg(P) dy dx + A~r) ffh(X) dy dx
~ ~ ~

(**) = g(P) + A~r) ffh(X) dy dx

D.

By the continuity of g, we have

lim h(X) = 0,
x ... p

and therefore the maximum of Ihl on the disc of radius r approaches 0
as r approaches 0, that is

lim max Ihl = O.
r-O Dr

We have the estimate by Theorem 2.4:

IA:r) if h(X) dy dxl :> (m:.x Ihl) A:r) if dy dx ~ mD~x Ihl

Letting r tend to 0 shows that the second term on the right of equation
(**) approaches 0 as r approaches O. Taking the limit as r -+ 0 proves
the desired theorem.

The theorem can be expressed in words, by saying that the value of
g at P is the limit of the average of g taken over shrinking discs centered
at P.
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Integrals



CHAPTER XI

Triple Integrals

In this chapter we carry out the analogue in 3-dimensional space of the
integration theory developed in Chapter IX for 2-dimensional space.

XI, §1. TRIPLE INTEGRALS

The entire discussion concerning 2-dimensional integrals generalizes to
higher dimensions. We discuss briefly the 3-dimensional case.
A 3-dimensional rectangular box (rectangular parallelepiped) can be

written as a product of three intervals:

R = [ai' hlJ x [a 2 , b2J x [a 3 , b3 ].

This means that R is the set of points (Xl' X 2 , x 3 ) such that

It looks like this (Fig. 1).

x

Figure 1
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A partition P of R is then determined by partitions P l' P2' P 3 of the
three intervals respectively, and partitions R into 3-dimensional sub­
boxes, which we denote again by S.

If f is a bounded function on R, we may then form upper and lower
sums. Indeed, we define the volume of the rectangular box R above to
be the 3-dimensional volume

and similarly for the subrectangles of the partition. Then we have

L(P, f) = L (glbsf)Vol(S),
s

U(P, f) = L (lubsf)Vol(S).
s

As before, every lower sum is less than or equal to every upper sum. A
function f is called integrable if there exists a unique number which is
~ every lower sum and ~ every upper sum. If that is the case, this
number is called the integral of j, and is denoted by

fff f = fff f(x, y, z) dz dy dx.

R R

If f ~ 0, then we interpret this integral as the 4-dimensional volume
of the 4-dimensional region lying in 4-space, bounded from below by R,
and from above by the graph of f. Of course, we cannot draw this
figure because it is in 4-space, but the terminology goes right over.
The basic theorems of Chapter IX are still valid here. We repeat

them.

If, f, g are integrable, then so is f + g and kf for any constant k, and
we have:

fff (f + g) = fff f + fff g, fff kf = k fff f.
R R R R R

In two variables, we stated that a function is integrable if it is
bounded and continuous except at a finite number of smooth curves.
We have also an analogue for this, except that instead of curves, we have
to allow for surfaces.

Let R be a 3-dimensional rectangular box, and let f be a function de­
fined on R, bounded and continuous except possibly at the points lying
on a finite number of smooth surfaces. Then f is integrable on R.
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Again we can integrate over a more general region than a rectangle,
provided such a region A has a boundary which is contained in a finite
number of smooth surfaces. If A denotes a 3-dimensional region and f
is a function on A, we define

f(X) = 0 if X is not a point of A.

We always assume our regions are bounded, so we can find a suitable
large rectangular box R which contains A. We define the integral of f
over A to be the integral of the function over R, i.e. we define

A R

or also in terms of the variables

fff f(x, y, z) dz dy dx = fff f(x, y, z) dz dy dx.

A R

Since f(x, y, z) = 0 if (x, y, z) is not a point of A, the integral on the
right represents the desired notion.

If we view A as a solid piece of material, and f is interpreted as a
density distribution over A, then the integral of f over A may be inter­
preted as the mass of A.
To compute multiple integrals in the 3-dimensional case, we have the

same situation as in the 2-dimensional case.
The theorem concerning the relation with repeated integrals holds, so

that if R is the rectangular box given by

then

Of course, the repeated integral can be evaluated in any order.

Example 1. Find the integral of the function f(x, y, z) = sin x over the
rectangular box

o~ x ~ 71:, 2 ~ jJ ~ 3, and -l~z~1.
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The integral is equal to
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f"f3f1 sin x dz dy dx.
o 2 -1

If we first integrate with respect to z, we get

f1 dz = z \1 = 2.
-1 -1

Next with respect to y, we get

We are then reduced to the integral

f: 2 sin xdx = -2 cos x I: = -2(cos n - cos 0) = 4.

We also have the integral over regions determined by inequalities.

Rectangular coordinates. Let a, b be numbers, a ~ b. Let g1' g2 be two
smooth functions defined on the interval [a, b] such that

and let h1(x, y) ~ h2(x, y) be two smooth functions defined on the region
consisting of all points (x, y) such that

and

Let A be the set of points (x, y, z) such that

a ~ x ~ b,

and

Let f be continuous on A. Then

fff f
b[f92(X)(fh2(X,Y) ) ]

f = f(x, y, z) dz dy dx
a 9'(X) h,(x,Y)

A
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For simplicity, the integral on the right will also be written without the

brackets.

Example 2. Consider the tetrahedron T spanned by 0 and the three
unit vectors (Fig. 2).

Figure 2

This tetrahedron is the set of points (x, y, z) such that

o~ x ~ 1, O~y~l-x, o~ z ~ 1 - x - y.

Hence if f is a function on the tetrahedron, its integral over T is given
by

Iff f = I:f -xf -X-Y f(x, y, z) dz dy dx.

T

For the constant function 1, the integral gives you the volume of the
tetrahedron, and you should have no difficulty in evaluating it, finding
the value

Vol(T) = III 1 dz dy dx = i·
T

XI, §1. EXERCISES

1. Find the volume of the region spanned by the following inequalities:

o~ x ~ 1,

2. Find the integral

O~y~j1=?,
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3. Find the integral of the following functions over the indicated region, in 3­
space.
(a) f(x, y, z) = x 2 over the tetrahedron bounded by the plane

12x + 20y + 15z = 60,

and the coordinate planes.
(b) f(x, y, z) = y over the tetrahedron as in (a).

4. Let A be the region in R3 bounded by the planes

y = 1, y= -x, x =0, z = 0, and z= -x.

Find

Iff eX +Y +% dz dy dx.

A

XI, §2. CYLINDRICAL AND SPHERICAL COORDINATES

Cylindrical coordinates

Analogously to the polar coordinates in the plane, we consider cylindri­
cal coordinates in 3-space, given by

x = r cos e,
y = r sin e,

z = z.

We shall abbreviate the association

(r, e, z) f--+ (x, y, z)

by the symbols

(x, y, z) = G(r, e, z) = (r cos e, r sin e, z).

We also call G a mapping, or transformation, from the (r, e, z)-space to
the (x, y, z)-space. The numbers (r, e, z) are called the cylindrical coordin­
ates of the point (x, y, z), and are represented on the following figure
(Fig. 3).
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z-axis

(x,y,z)

z

299

y-axis

x-axis

Figure 3

The cylindrical coordinates of a region are usually taken with values
of (r, e, z) such that

o~ r,

o~ e~ 2n,

z is arbitrary.

Consider the elementary cylindrical region shown on Fig. 4(b).

z

\em\ B
z, \ \

\ I I
\ I

I I
I I I I
1 I I I
1__1_1_8_1_1__!2
I I /( I /'

1"1 V 1./... /----:-·~,7--1--/-r
)/- I~-_y/

:r

(a)

Figure 4

(b)

It is the transform of the rectangular box B in Fig. 4(a). It is the set of
all points whose cylindrical coordinates satisfy the inequalities

o~ e1 ~ () ~ ()2 ~ 2n,

o~ r 1 ~ r ~ r 2 ,

Z1 ~ Z ~ Z2'
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The volume of the elementary cylindrical region G(B) is equal to the
area of the base times the height. The height is (Z2 - ZI)' The area of
the base is the area of a piece of a sector, which we already found when
dealing with polar coordinates in the plane. Consequently, the volume of
G(B) is given by the formula:

This expression can be rewritten in the form

where
_ r2 + r1r=---·

2

Forming upper and lower sums with respect to partitions of the r-axis,
B-axis, and z-axis, we are then led to the formula analogous to the for­
mula for integration with respect to polar coordinates, as follows.

Theorem 2.1. Suppose A is some region in the (x, y, z)-space, and let
A* be the region of the (r, B, z)-space corresponding to A under the
cylindrical coordinates. Then

fff f(x, y, z) dz dy dx = fff f(r cos B, r sin B, z)r dz dr dB.

A A*

Indeed, the same kind of argument applies as with polar coordinates.

In practice, the region A* is described by the same type of inequalities
as with polar coordinates, and we state the relevant theorem as follows:

Theorem 2.2. Let A be the region in the (x, y, z)-space consisting of
points whose cylindrical coordinates (r, B, z) satisfy inequalities

a ~ B ~ b (and b ~ a + 2n),

o~ gl(B) ~ r ~ giB),

h1(B, r) ~ z ~ hiB, r),

where gl' g2' hI' h2 are smooth functions. Let A* be the corresponding
region of points (r, B, z) satisfying these inequalities in the (r, B, z)-space.
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Let

Then

CYLINDRICAL AND SPHERICAL COORDINATES

f*(e, r, z) = f(r cos e, r sin e, z).

Iff I
bIg2(8lih2(8,rl

f = f*(r, e, z)r dz dr de.
a g,(8l h,(8,r)

A

301

The function which we denote by f* may be viewed as the function f
in terms of the cylindrical coordinates.

Example 1. Find the mass of a solid bounded by the polar coordin­
ates - rr/3 ~ e~ rr/3 and r = cos e and by z = 0, z = r, if the density is
given by the function

f*(r, e, z) = 3r.

The mass is given by the integral

f"/3 fc058fr
3r· r dz dr de.

-,,/3 0 0

Integrating the inner integral with respect to z yields 3r2r = 3r3
• Inte­

grating with respect to r between 0 and cos e yields

3r41C058 = 3 cos4e.
4 0 4

Finally we integrate with respect to e, using elementary techniques of
integration: cos 2e = (1 + cos 2e)/2 so that

1
cos4 e = 4(1 + 2 cos 2e + cos2 2e)

1 ( 1 + cos 4e)= 4 1 + 2 cos 2e + 2 .

We can now integrate this between the given limits, and we find

3 f"/3 3 (2rr rr J3)-4 cos4 e de = - - + J3 + - - - .
-,,/3 16 3 3 8
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Note. In the above example, the function is already given in terms of

(r, e, z). It corresponds to the function f(x, y, z) = 3Jx2 + y2. Indeed,
taking f(r cos e, r sin e, z) yields 3r.

Example 2. Let us find the volume of the region inside the cylinder
r = 4 cos e, bounded above by the sphere r2 + Z2 = 16, and below by the
plane z = O. In the (x, y)-plane, the equation r = 4 cos e is that of a
circle, with - nl2 ~ e~ n12. The region is then defined by means of the
other two inequalities

and o~ r ~ 4 cos e.

Therefore the desired volume V is the integral

f"/2 f4COS6fy'16=r2
V = r dz dr de

-"/2 0 0

f"/2 f4COS6
= rJ 16 - r2 dr de

-,,/2 0

64 f"/2 64n 64·4= -- (lsin 3 el-l)de=---.
3 -,,/2 3 9

Spherical coordinates

We consider the region in coordinates (p, e, cp) described by

o~ p, o~ cp ~ n, o~ e~ 2n.

These coordinates can be used to describe a point in 3-space as shown
on the following picture.

(X,Y,z)
z I

I
I
I
I,
o,
I
I
I
I

.k-----:---r--- y
I /
I /
I /
I /

, I ,
........... I ",,"____. ::»t'

x

Figure 5
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In fact, we let

CYLINDRICAL AND SPHERICAL COORDINATES 303

We denote this by p to distinguish it from the polar coordinate r in the
(x, y)-plane. Then p is the distance of (x, y, z) from the origin. Further­
more, e is the same angle as with polar coordinates. We h~ve a new
coordinate cp which denotes the angle with respect to the z-aXIS.
We see that

z = p cos cp.

On the other hand,

so that the polar r is given by

r = Jx 2 + y2 = P sin cp.

In taking the square root, we do not need to use the absolute value
jsin cp\ because we take 0 ~ cp ~ 1t so that sin cp ~ 0 for our values of cp.
From the formulas x = r cos e and y= r sin e, we then obtain the

relationship between (x, y, z) and (p, e, cp), namely:

x = p sin cp cos e,
y = p sin cp sin e,
z = p cos cp.

We can also say that we have a transformation G: R3 ~ R3 given by

G(p, e, cp) = (p sin cp cos e, p sin cp sin e, p cos cp).

Example 3. The equation for the sphere of radius a in spherical coor­
dinates is given by

p = a.

Let A be the solid ball consisting of all points (x, y, z) such that
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Then A corresponds to the region A* consisting of all points (p, 8, qJ)

satisfying
p ~ a.

There is no further restriction on 8, qJ, except those originally put,
namely

and o~ 8 ~ 2n.

Example 4. Consider a cone whose sides form an angle of n/4 with
the (x, y)-plane.

The equation of this cone in spherical coordinates is then

qJ = n/4.

This is much easier to express than in rectangular coordinates.
Let A be the region consisting of all points (x, y, z) which lie above

the cone. Then A is the set of points whose spherical coordinates satisfy

o~ qJ ~ n/4.

There IS no restriction on p or 8 other than the original inequalities

O~p and o~ 8 ~ 2n.

Let R be the 3-dimensional box in the (p, 8, qJ)-space, whose coordin­
ates satisfy the inequalities

81 ~ 8 ~ 82 , (82 ~ 81 + 2n),

o~ P1 ~ P ~ P2'

o~ qJ1 ~ qJ ~ qJ2 ~ n.
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The image of R under the transformation G is then an elementary spher­
ical region G(R) as shown in Fig. 6.

z-axis

02

:f'-'r:EJ\ R
\ I I

: I
I I I I
I I I <PI I <P2
1--1-1r--1-":'7~-
I I ,. 1/

01 1__ "JL'-l---f'
I ,/ I /

___IL I/ x-axis

P2

/
/,-

\
\

Figure 6

We claim:

Theorem 2.3. The volume of the elementary spherical region G(R) just
described is equal to

In order to see this, we shall find the volume of a slightly simpler
region, namely that lying above a cone and inside a sphere as shown on
the next figure (Fig. 7).

Figure 7
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The radius of the sphere is p, and the angle of the cone is qJ, as shown
on the figure. We let a be the height at which the cone meets the
sphere. The volume of this region consists of two pieces. The first is the
volume of a cone of height a, and whose base is

b = p sin qJ.

Volume = t7tab2

Observe that a = p cos qJ. Therefore

Volume of cone = ~ p3 sin2 qJ cos qJ.

The other piece lies below the spherical dome, and can be obtained as
a volume of revolution of the curve Z2 + y2 = p2, letting z range between
a and p.

z-axis

cross section of spherical cap

"'----+-- y-axis

Since y2 + Z2 = p2 is the equation of a circle of radius p, the volume
of the spherical cap is the volume of revolution of the curve

with a ~ z ~ p.

If y = g(z) where 9 is a positive function, and a ~ z ~ b, then from your
first course in calculus you should know that the volume of revolution of
the graph of 9 between z = a and z = p. is given by the integral

nrg(Z)2 dz.
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If you apply this to the present situation, you have an easy integral to
evaluate, and you find

Volume of spherical cap = n(~p3 - p3cos <P + 1p3cos3 <p).

Adding our two volumes together, and noting that

cos3 <P = cos2 <P cos <P,

we have proved:

Let A be the region lying inside the sphere of radius P, and above the
cone making an angle <P with the z-axis. Then

Vol(A) = ~np3 - ~np3 cos <p.

The volume of this region lying between angles <Pi and <P2 is obtained
by subtracting, and is equal to

Considering only the part lying between the spheres of radii Pi and P2'
we obtain its volume again by subtraction, and get

Finally, we have to take that part lying between angles (}i and (}2' that
is, take the fraction

of this last volume. In this way, we obtain precisely the desired volume
of the elementary spherical region of Fig. 6. This proves Theorem 2.3.

Using the mean value theorem, we find that

3 3
P2 Pi -2( )3 - 3 = P P2 - Pi ,

for some number p between Pi and P2. Again by the mean value
theorem, we find that
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Hence
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The volume of the elementary spherical region G(R) is equal to

By forming Riemann sums we already had in polar coordinates, it is
therefore reasonable that the triple integral of a function f over a region
A in the (x, Y, z)-space which corresponds to a region A* in the (p, e, cp)­
space of spherical coordinates is given by the formula:

Iff f(x, Y, z) dz dy dx = ffI f*(p, e, cp)p2 sin cp dp dcp de.

A A*

As usual, f*(p, e, cp) is the value of the function at the given point
(x, y, z) in terms of the spherical coordinates of the point (p, e, cp),
namely,

!*(p, e, cp) = f(p sin cp cos e, p sin cp sin e, p cos cp).

We can also abbreviate this with the notation

f*(p, e, q» = f( G(p, e, cp»).

Symbolically, it is convenient to use a notation which does not con­
tain variables when expressing an integral. Thus we sometimes write

Iff fdV,
A

where dV means, in the various coordinates:

dV = dz dy dx = r dz dr de = p2 sin cp dp dcp de.

Example 5. As a check, let us apply the general formula directly to
see if it gives us the same answer for the volume of the elementary
spherical region G(R). We are supposed to evaluate the integral

III dz dy dx = f,2I:2r: p2 sin cp dp dcp de.

G(Rl



[XI, §2] CYLINDRICAL AND SPHERICAL COORDINATES 309

In this case, the repeated 3-fold integral splits into separate integrals with
respect to p, 1fJ, 8 independently. These integrals are of course very sim­
ple to evaluate. In this case, the limits of integration are constant. Inte­
grating with respect to p yields the factor t(p~ - pi). Integrating with
respect to IfJ yields the factor (cos 1fJ1 - cos 1fJ2)' Integrating with respect
to 8 yields the factor (82 - 81). Thus the evaluation of the integral
checks with the arguments given previously.

Example 6. Find the volume above the cone Z2 = x2 + y2 and inside
the sphere x2 + y2 + Z2 = Z (Fig. 8).

z

---.:!j£-~----y

x

Figure 8

As in dealing with polar coordinates, we substitute

and z = p cos 1fJ.

Therefore the equation of the given sphere in spherical coordinates is

p = cos 1fJ.

The equation of the cone is IfJ = n/4. The region of integration is the
region:

A = set of points (x, y, z) whose spherical coordinates (p, 8, 1fJ) satisfy

o~ 8 ~ 2n, o~ IfJ ~ n/4, o~ p ~ cos 1fJ.

Hence our volume is equal to the integral
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The inside integral with respect to p is equal to

p3ICOS'P
(sin <p) 3 0 = ~ cos3 <p sin <po

This is now easily integrated with respect to <p, using

and yields

u = cos <p, du = - sin <p d<p,

f"/4 1 3' 1 -cos
4

<p 1"/4 1 ( 1 ) 3
o "3 cos <p SIn <p d<p = "3 4 0 = 12 - 4: + 1 = 48 .

Finally, we integrate with respect to 0, and the final answer is therefore
equal to

fs·2n = in.

Example 7. Find the mass of a solid body S determined by the In­
equalities of spherical coordinates:

n
- ~ m ~ arctan 24- 'f' - ,

if the density, given as a function of the spherical coordinates (p, 0, <p), is
equal to 1/p.
To find the mass, we have to integrate the given function over the

region. The integral is given by

f"/2farctan2foJ6 1
- p2 sin <p dp d<p dO.

o ,,/4 0 P

Performing the repeated integral, we obtain

We note that in the present example, the limits of integration are con­
stants, and hence the repeated integral is equal to a product of the inte­
grals

f"/2 farctan 2 fft
dO· sin<pd<p' pdp.

o ,,/4 0

Each integration can be performed separately. Of course, this does not
hold when the limits of integration are non-constant functions.
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As before, we have a similar integral when the boundaries of integra­
tion are not constant. We state the result:

Theorem 2.4. Let A be a region in the (x, y, z)-space which consists of
all points whose spherical coordinates (p, e, cp) satisfy the inequalities:

a ~ e~ b,

gl(e) ~ cp ~ g2(e),

hl(e, cp) ~ p ~ hie, cp),

where:

a, b are numbers such that 0 ~ b - a ~ 2n;

glee), gie) are smooth functions of e, defined on the interval a ~ e ~ b
such that

hl , h2 are functions of two variables, defined and smooth on the region
consisting of all points (e, cp) such that

a ~ e~ b,

gl(e) ~ cp ~ gie)

and such that 0 ~ hl(e, cp) ~ h2(e, cp) for all (e, cp) in this region.
Let f be a continuous function on A, and let

f*(p, e, cp) = f(G(r, e, cp))

be the corresponding function of (p, e, cp). Then

fff f
bfg2(6)i h2(6. '1')

f = !*(e, cp, p)p2 sin cp dp dcp de.
a g,(6) h,(6.'I')

A

XI, §2. EXERCISES

1. Find the volume inside the sphere

by using spherical coordinates.
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2. Find the volume inside the cone

by using spherical coordinates.

3. (a) Find the mass of a spherical ball of radius a > 0 if the density at any
point is equal to a constant k times the distance of that point to the
center.

(b) Find the integral of the function

over the spherical shell of inside radius a and outside radius 1. Assume
o< a < 1. What is the limit of this integral as a -+ O?

4. Find the mass of a spherical shell of inside radius a and outside radius b if
the density at any point is inversely proportional to the distance from the
center.

5. Find the integral of the function

I(x, y, z) = x 2

over that portion of the cylinder

lying between the planes

z=O and z = b > O.

6. Find the mass of a sphere of radius a if the density at any point is propor­
tional to the distance from a fixed plane passing through a diameter.

7. Find the volume of the region bounded by the cylinder y = cos x, and the
planes

z = y, x =0, x = n12, and z = O.

8. Find the volume of the region bounded above by the sphere

and below by the surface
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9. Find the volume of that portion of the ball x 2 + y2 + Z2 ~ a2, which is inside
the cylinder r = a sin e, using cylindrical coordinates.

10. Find the volume above the top half of the cone Z2 = x 2 + y2 and inside the
sphere p = 2a cos ({J (spherical coordinates). [Draw a picture. What is the
center of the sphere? What is the equation of the cone in spherical co­

ordinates?]

11. Find the volumes of the following regions, in 3-space.
(a) Bounded above by the plane z = 1, and below by the top half of

Z2 = x2 + y2.
(b) Bounded above and below by Z2 = x 2 + y2, and on the sides by

(c) Bounded above by z = x 2 + y2, below by z = 0, and on the sides by

(d) Bounded above by z = x, and below by z = x 2 + y2.

12. Find the integral of the function j(x, y, z) = tyz over the region on the posi­
tive side of the (x, z)-plane, bounded by the planes y = 0, z = 0, and z = a
(for some positive number a), and the cylinder x 2 + i = b2 (b> 0).

13. Find the volume of the region bounded by the cylinder r2 = 16, by the plane
z = 0, and below the plane y = 2z.

14. Let n be an integer ~O, and let j(x, y, z) = lip', where

(a) Find the integral of the function

j(x, y, z) = lip'

over the region contained between two spheres of radii a and b respec­
tively, with 0 < a < b.

(b) For which values of n does this integral approach a limit as a -+ O?
Compare with the similar result which you may have worked out in
Chapter IX for a function of two variables.

XI, §3. CENTER OF MASS

Double and triple integrals have an application to finding the center of
mass of a body in the plane or in 3-space. Let A be such a body, say in
the plane, and let f be its density function, giving the density at every
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point. Let m be the total mass. Let (i, y) be the coordinates of the
center of mass. Then they are given by the integrals:

1 Hxf(x, y) dy dx

i = - If xf(x, y) dy dx = AHf d d '
m (x, y) y X

A A

1 Hyf(x, y) dy dx

y =;;; ff yf(x, y) dy dx = AHf(x, y) dy dx '
A A

In 3-space, we would of course use the triple integral of xf(x, y, z) and
yf(x, y, z) over the body. For instance, the third coordinate of the center
of mass of a body of total mass m in 3-space is given by

z= ~ fff zf(x, y, z) dx dy dz.

A

Example 1. Let us find the center of mass of the part of the first
quadrant lying in the disc of radius 1, as shown on Fig. 9. We assume in
this case that the density is uniform, say equal to 1.
The total mass m is equal to n14, and

i = ~ ff x dy dx.

A

Figure 9

The integral is best evaluated by changing variables, i.e. using polar
coordinates. The first quadrant consists of the points whose polar coor­
dinates satisfy the inequalities

o~ () ~ nl2 and O~r~ 1.
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Thus we find:

Hence

CENTER OF MASS

ff x dy dx = f:1

2f r cos () r dr d() = l
A

4x=-·
3n

315

4
Similarly, or by symmetry, we have y = 3n also.

Example 2. Let us find the z-coordinate of the center of mass of the
part of the unit ball consisting of all points (x, y, z) whose coordinates
are ~ o. If A denotes this part of the ball, then we have

z= ~ fff z dx dy dz.

A

The region A consists of those points whose spherical coordinates satisfy
the inequalities

o~ e~ n12, o~ cp ~ n12, O~p~1.

By using spherical coordinates, the integral is equal to

f
1<12f1<12f1
o 0 0 p cos cp p2 sin cp dp dcp de.

Again we easily find the value n/16. We also know that the mass of the
. 1 4n n

total ball is !n. Hence the mass of our part of the ball IS -. - = -, so
836

that
_ n 6 3
z=-.-=-.

16 n 8

XI, §3. EXERCISES

In each of the following cases, find the center of mass of the given body, assum­
ing that the density is equal to 1.

1. The triangle whose vertices are (0,0), (3,0), and (0, 5).

2. The region enclosed by the parabola y = 6x - x 2 and the line y = x.
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3. The upper half of the region enclosed by the ellipse as shown on Fig. 10.

x2 y2
(i2+b2=1.

Figure 10

4. The region enclosed by the parabolas y = 2x - x2 and y = 3x2 - 6x.

5. The region enclosed by one arch of the curve y = sin x.

6. The region bounded by the curves y = sin x and y = cos x, for °~ x ~ n/4.

7. The region bounded by y = log x and y = 0, 1 ~ x ~ a.

8. The inside of a cone of height h and base radius a, as shown on Fig. 11.

~/T
h

I

Figure 11

9. Find (a) mass and (b) the center of mass of a plate bounded by the upper
half of the curve r = 2(1 + cos 8) (in polar coordinates) if the density is pro­
portional to the distance from the origin. The plate is drawn on Fig. 12.

Figure 12
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10. Find (a) the mass and (b) the center of mass of a right circular cylinder of
radius a and height h if the density is proportional to the distance from the
base.

11. (a) Find the mass of a circular plate of radius a whose density is proportion­
al to the distance from the center.

(b) Find the center of mass of this plate.
(c) Find the center of mass of one quadrant of this plate.

12. Find the mass of a circular cylinder of radius a and height h if the density is
proportional to the square of the distance from the axis.

13. Find the center of mass of a cone of height h and radius of the base equal to
a, if the density is proportional to the distance from the base.



CHAPTER XII

Surface Integrals

We assume that you are acquainted with the cross product of Chapter I,
§7. Read that section if you have not already done so.

XII, §1. PARAMETRIZATION, TANGENT PLANE, AND
NORMAL VECTOR

Let us first recall that a curve can be described by an equation, like

or it can be given parametrically, as when we set

x = cos e,
y = sin e,

with 0 ~ e~ 2n. A similar situation will occur for surfaces, and we con­
sider first the parametric representation.
Let R be a region in the plane, whose variables are denoted by (t, u).

Let us associate to each pair (t, u) of R a point X(t, u) in 3-space which
can be written in terms of its coordinate functions

X(t, u) = (xI(t, u), xit, u), X3(t, u)),

where Xl' X 2 , X 3 are functions from R into the real numbers. We say
that such an association is a mapping from R into R3, or also a parame­
trization. This is a higher dimensional analogue of parametrizing curves
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in space. A curve C(t) depends only on one variable t. Here, the para­
metrization X(t, u) depends on the two variables (t, u).

If each coordinate function is differentiable, and if its partial deriva­
tives are continuous, we may view X as parametrizing a surface in R3, as
shown on Fig. 1. We shall always assume that our parametrizations satisfy
all needed assumptions of differentiability and continuity, without usually
repeating such assumptions.

z

d

c

a b

x-

Figure 1

x

r--------y

If x, y, z are the three coordinates of R3 , then we also write the parame­
trization of our surface in the form

x = fl(u, v),

Y = fz(u, v)

z = f3(u, v)

or

or

or

x(u, v),

y(u, v),

z(u, v).

Example 1. We parametrize the sphere of radius p by means of spheri­
cal coordinates, as studied in Chapter XI, namely

x = p sin qJ cos B,

y = p sin qJ sin B,

z = p cos qJ.

The region R in RZ is the rectangle described by the inequalities

and
o~ B < 2n.

Our mapping "wraps" this rectangle around the sphere. If we evaluate
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and use relations like sin2 e+ cos2 e= 1, we get the value p2. This kind
of technique shows us how to get back the equation in rectangular coor­
dinates from the parametrization.

Example 2. A torus (i.e. a doughnut-shaped surface) can be given
parametrically by the functions:

x = (a + b cos cp) cos e,
y = (a + b cos cp) sin e,

z = b sin cp.

The torus is centered at the origin, and a > 0 is the distance from the
origin to the center of a cross section, as shown on Fig. 2. The variables
cp, e satisfy inequalities

o~ cp < 2n

and
o~ e< 2n.

z

f----y

x

Figure 2

The number b > 0 is the radius of a cross section. The angle cp deter­
mines the rotation of a point in this cross section, as shown in Fig. 3.

z

a

Figure 3
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It is clear from this picture that the elevation z of a point is given by
b sin cp. If we project the point on the (x, y)-plane, then the distance of
this projection from the origin is exactly

a + b cos cp.

To get the x-coordinate of this projection, we have to multiply the pro­
jection with cos e, and to get the y-coordinate of this projection, we have
to multiply the projection with sin e, as shown on Fig. 4.

z

(a + b cos cp)sin ()

J-_-2-I__-+-- if

.1'

Figure 4

Let R be a region in R2, and let X(t, u) be the parametrization of a
surface. If

is represented by coordinates, then for each value of u we may consider
the curve

as a curve parametrized by the variable t, and for each value of t, we
may also consider a second curve

Ciu) = X(t, u)

as a curve parametrized by the variable u. These curves lie on the sur­
face. We may then take the partial derivatives

ax
A-­
1 - at and

ax
A 2 =­au

giving the tangent vectors (velocity vectors) of each one of these curves.
They may be viewed as tangent vectors to the surface, as shown on
Fig. 5.
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Figure 5

[XII, §1]

We shall say that (t, u) is a regular point if the two vectors AI, A z span
a plane in R3. The translation of this plane to the point X(t, u) is called
the tangent plane of the surface at the given point. This is illustrated on
Fig. 6. It is the plane passing through the point X(t, u), parallel to the
vectors Al = oX/at and Az = ox/au.

z Tangent plane

)----------.'1

Figure 6

We now assume that you have read the section on the cross product
in Chapter I. Then you realize that if A, B are non-zero vectors in R3,
and are not parallel, their cross product

A x B = (aZb3 - a3 bz, a3 bl - a1b3 , a1bz - aZb l )

is perpendicular to both of them, as illustrated on Fig. 7.

AXB

A

Figure 7
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If we want a vector of norm 1 perpendicular to both A and B, all we
have to do is divide A x B by its norm.
In the case of a parametrized surface, we can do this with the two

vectors Al and A 2 as above. Of course, B x A = - A x B is also per­
pendicular to both A and B, but has opposite direction. We use the no­
tation

ax ax
N=-x-at au

whenever the surface is given parametrically by X(t, u). Then

N = N(t,u)

is a vector perpendicular to the surface, as shown on Fig. 8.

z N

ax
at

J----------- y

x

Figure 8

If we have chosen the orientation, i.e. the order of t, u, such that N
points outwards from the surface, and if we denote by n the outward unit
normal vector to the surface, then we have

ax ax
-x-

N at au
n=--= .

IINII r: x ~~II

Example 3. We compute the above quantities in the case of the pa­
rametrization of the sphere given above in Example 1, that is:

X(<p, 8) = (p sin <p cos 8, p sin <p sin 8, p cos <p).
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We get:

and

Hence

SURFACE INTEGRALS

ax
a<p = (p cos <p cos e, p cos <p sin e, - p sin <p)

axae = (- p sin <p sin e, p sin <p cos e, 0).

[XII, §1]

ax ax
N(<p, e) = a<p x ae = (p2 sin2 <p cos e, p2 sin2 <p sin e, p2 sin <p cos <p)

= p sin <p X(<p, e).

Since sin <p and p are ~ 0, we see that N has the same direction as the
position vector X(cp, e), and therefore points outward. Taking the square
root of the sum of the squares of the coordinates, we find

Il
ax aXilIIN(<p, e)l! = a<p x ae = p2 1sin <pI = p2 sin <po

Hence for the sphere,

1
n = - X(<p, e).

p

XII, §1. EXERCISES

1. Compute the coordinates of the vectors aXlaO and aXlaqJ, when X is the
mapping parametrizing the torus as in Example 2. Compute the norms of
these vectors.

In each one of the following exercises, where you are given a parametrization
ax ax

X(t, u), compute the tangent vectors -,-, their cross product, and the norm
at au

of this cross product. In each case, get an equation in cartesian coordinates for
the surface parameterized by X. Draw the picture of the surface.

2. The cone. Let IX be a fixed number, 0 < IX < n12. Let

X(O, t) = (t sin IX cos 0, t sin IX sin 0, t cos IX),

o~ 0 < 2n and 0 ~ t ~ h sec IX. Describe how you get a cone of height h.
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3. Paraboloid. Let X(t, 0) = (at cos 0, at sin 0, t Z
), with

o~ 0 < 2n and O~t~h.

4. Ellipsoid. Let a, b, c > O. Let 0 ~ qJ ~ n, 0 ~ 0 < 2n, and

X(qJ, 0) = (a sin qJ cos 0, b sin qJ sin 0, c cos qJ).

5. Cylinder. Let a > O. Let

X(O, z) = (a cos 0, a sin 0, z),

with 0 ~ 0 < 2n, and hI ~ z ~ hz·

6. Surface of revolution (around the z-axis). Let f be a function of one variable r,
defined for r l ~ r ~ rz. Let 0 ~ 0 < 2n, and let

X(r,O) = (r cos 0, r sin O,j(r»).

7. The torus, as in Example 2, namely

X(qJ, 0) = (a + b cos qJ) cos 0, (a + b cos qJ) s~n 0, b sin qJ).

XII, §2. SURFACE AREA

Let A, B be a non-zero vectors in R3, and assume that they are not par­
allel. Then they span a parallelogram, as shown on Fig. 9, and this par­
allelogram is contained in a plane.

z

-j---y

x

Figure 9

If 9 is the angle between A and B, then the area of this parallelogram is
precisely equal to

IIAIIIIBIII sin 91,
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as one sees at once from Fig. 10, and as we already mentioned in Chap­
ter I.

Figure 10

We observe that IIAIIIIBilisin 81 is precisely of norm of Ax B. Thus in
3-space, we may say that the area of the parallelogram spanned by A and
B is equal to

IIA x BII.

We apply this to a surface, parametrized by X(t, u) as before. Then the
two tangent vectors

ax
A=­at and

ax
B=­au

span a parallelogram. By the preceding remark, the area of this paral­
lelogram is equal to

Ilaa~ x ~~II'

Figure 11

We don't want the parametrization X(t, u) to be degenerate. Hence
we have to make some assumption that it represents the surface in a
non-degenerate way. To phrase this assumption we need a new word.
We say that the parametrization X is injective if it satisfies the condition:
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In other words, two different values of the parameters correspond to
two different points on the surface.
Assume that X is defined on a region R, and that the parametrization

X(t, u) is injective, except possibly for a finite number of smooth curves
in R. Also assume that the coordinate functions of X(t, u) are contin­
uously differentiable, and that all points of R are regular, except for a
finite number of smooth curves. It is then reasonable to define the area
of the parametrized surface to be the integral

Area = ff du = ffll aa~ x ~~ II dt duo
S R

We write symbolically

Example 1. Let us compute the area of a sphere, whose parametriza­
tion was given in §1. We had already computed that

Consequently for our parametrization of the sphere, we can write

du = p2 sin qJ dqJ dO.

Hence

f2"f"Area of sphere = 0 0 p2 sin qJ dqJ dO.

Since p2 is constant, we take it out of the integral. It is a trivial matter
to carry out the integration, and we find that the desired area is equal to
4np2.

Graph of a function. Sometimes a surface is given by the graph of a
function

z = f(x, Y),
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defined over some region R of the (x, y)-plane. In this case, we use t = x
and u = y as the parameters, so that

X(x, y) = (x, y,f(x, y».

z

z=j(x, y)

r---t-------+---+--y

x

Figure 12

Thus the case when a surface is so defined is a special case of the gen­
eral parametrization. In this case, we find

and

Consequently

and

The area of the surface z = f(x, y) is given by the integral
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Symbolically we may write in this case

J (Of)2 (Of)2da = 1 + ox + oy dx dy.

Example 2. Find the area of the paraboloid

with

The surface looks as on the figure (Fig. 13).

z-axis

x-axis

Figure 13

y-axis

Here f(x, y) = x 2 + y2, and the region R in the (x, y)-plane is the disc of
radius.)2. Hence

Area of paraboloid = ff Jl + (2X)2 + (2y)2 dx dy

R

= ff Jl + 4x2 + 4y2 dx dy.

R

Changing to polar coordinates, this yields

f
21tf../i
o 0 Jl + 4r

2
r dr dO,

which you should know how to integrate by substitution. Let

u = 1 + 4r2

The answer comes out 13n/3.

and du = 8r dr.
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Example 3. It may also happen that a surface is defined by an equa­
tion

g(x, y, Z) = 0,

and that over a certain region R of the (x, y)-plane, we can then solve
for z by a function

z = f(x, y),

satisfying this equation, that is

g(x, y,f(x, y)) = O.

Taking the partials with respect to x and y, we find the relations:

of og/ox
ox = - og/oz and

We can now use the formula for the area obtained in the preceding
example, and thus obtain a formula for the area just in terms of the
given g, namely:

If J(og/OX)2 + (og/oy)2 + (og/OZ)2 d d
log/ozl x y.

R

Example 4. Take the special case of this formula arising from the
equation of a sphere

where a> 0 is the radius. Then g(x, y, z) is the expression on the left,
and the partials are trivially computed:

og
-=2x
ox '

og
oy = 2y,

og
oz = 2z.

We can solve for z explicitly in terms of x, y by letting

z = J a2 - x 2
- y2 = f(x, y),

where (x, y) ranges over the points in the disc of radius a in the plane.
The surface is then the upper hemisphere.



[XII, §2]

Then

SURFACE AREA

z

x

Figure 14
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If J4X2 + 4y2 + 4z
2 If aArea of hemisphere = dx dy = -dx dy,

12z1 z
R R

using the fact that x 2 + y2 + Z2 = a2. The region R is the disc of radius
a in the (x, y)-plane. Using polar coordinates, we know how to evaluate
this last integral. We get

f2ltfa 1
Area of hemisphere = a r dr d().

o 0 Ja2
- r 2

Integrating 1 with respect to () between 0 and 2n yields 2n. The integral
with respect to r is reducible to the form

and is therefore easily found. Thus, finally we obtain the value

for the area of the hemisphere. Naturally, this jibes with the answer
found from the parametrization by means of spherical coordinates.

Remark. Just as in the case of curves, it can be shown that the area
of a surface is independent of the parametrization selected. This amounts
to a change of variables in a 2-dimensional integral, but we shall omit
the proof.



332

XII, §2. EXERCISES

SURFACE INTEGRALS [XII, §2]

Compute the following areas.

1. (a) A cone as shown on the following figure.

Figure 15

(b) The cone of height h obtained by rotating the line z = 3x around the z­
axis.

2. The surface z = x 2 + y2 lying above the disc of radius 1 in the (x, y)-plane.

3. The surface 2z = 4 - x 2 - y2 over the disc of radius .j2 in the (x, y)-plane.

4. z = xy over the disc of radius 1.

5. The surface given parametrically by

X(t, 8) = (t cos 8, t sin 8, 8),

with 0 ~ t ~ 1 and 0 ~ 8 ~ 2n. [Hint: Use t = sinh u = (eU
- e- u)f2.]

6. The surface given parametrically by

X(t, u) = (t + u, t - u, t),

with 0 ~ t ~ 1 and 0 ~ u ~ 2n.

7. The part of the sphere x 2 + y2 + Z2 = 1 between the planes z = 1/.j2 and
z = -1/.j2.

8. The part of the sphere x 2 + y2 + Z2 = 1 inside the upper part of the cone
x2 + y2 = Z2.

9. The torus, using the parametrization in §1, assuming that the cross section has

radius 1.



[XII, §3] SURFACE INTEGRALS 333

XII, §3. SURFACE INTEGRALS

Integral of a function over a surface

Let R be a region in the plane, and let X(t, u) be the parametrization of
a surface by a smooth mapping X. Let S be the image of X, i.e. the sur­
face, and let t/J be a function on S. Then when t/J is sufficiently smooth,
we define the integral of t/J over S by the formula

ff t/J du = ff t/J(X(t, U»)ra~ x ~~ II dt duo

S R

When t/J is the constant 1, then our formula expresses simply the area of
the parametrized surface.

Example 1. Let S be the surface defined by

z = x 2 + y,

with x, y satisfying the inequalities

and -1~y~1.

Find the integral

ff X du.

S

The surface is here given as the graph of a function, so we use the
formula for du given in the preceding section. We let R be the region of
points (x, y) satisfying the above inequalities. Then:

ff X du = ff xJl + (2X)2 + 12 dx dy

S R

= fl fl xJ2 + 4x 2 dx dy.
-1 0

The inner integral
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can be evaluated by substitution, putting

Thus

u = 2 + 4x2 and du = 8x dx.

f
1 1 f1 1
xJ2 + 4x2 dx = - J2 + 4x2 (8x) dx = - (63/2 - 23/2).
o 8 0 12

Hence finally

Heat flux. Suppose that the function ljJ is interpreted as a tempera­
ture. Then the integral

ff ljJ du
s

is called the heat flux across the surface.

Density and mass. Suppose that ljJ is the function representing a posi­
tive density of the surface. Then the integral above is interpreted as the
mass m of the surface, corresponding to this density.
Let ljJ be a density as above, and m the mass. The integrals

x= ~ ffxljJ(x, y, z) du,

s

y = ~ ffyljJ(x, y, z) du,

s

z= ~ ffzljJ(x, y, z) du

s

give the coordinates (x, y, Z) of the center of mass of the surface.

Example 2. Let us find the center of mass of a hemisphere of radius a,
having constant density c. We use the spherical coordinate parametriza­
tion of §1. The hemisphere is the one lying above the (x, y)-plane as in
Fig. 16.
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Figure 16
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By symmetry, it is easy to see that x = ji = O. We have z = acos qJ. The
third coordinate z is given by the integral

c If C f21t f1t/2
Z= ;;; z da = ;;; J0 J0 a cos qJ .a2 sin qJ dqJ dO,

s

which is easily evaluated to be

The total mass is equal to the density times the area, since the density is
constant, and we know that the area of the hemisphere is 2na2

• Hence
we find

z= a12.

Integral of a vector field over a surface. Let X(t, u) parametrize a sur­
face, and suppose that the image of X, that is the surface, is contained in
some open set U in R3• Let F be a vector field on U, so to each point
X of U, F associates a vector F(X) in R3• We assume that F is as
smooth as needed. We define the integral of the vector field along the sur­
face in a manner similar to the integral a vector field along a curve in
the lower dimensional case. Namely, let n be the outward normal unit
vector to the surface, it being assumed that we have agreed on an orien­
tation of the surface which determines its outside and inside. Then

F·n
is the projection of the vector field along the normal to the surface, and
we define the above integral by the formula

ffFonda= ffFonllaa~ x ~~lldtdU.
S R
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By definition, we have
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011 ax x ax II = ax x ax.at au at au

[XII, §3]

Hence our integral for F over the surface can be rewritten

ffF· 0 da = ffF(X(t, u)). Ca~ x ~~) dt duo
S R

Example 3. Consider a fluid flow, subject to a force field G, so that
we may interpret G as a vector field. Let ljJ be the function representing
the density of the fluid, so that ljJ(x, Y, z) is the density at a given point
(x, y, z), and is a number. We call

F(x, y, z) = ljJ(x, y, z)G(x, y, z)

the force field of the flow, and visualize it as in Fig. 17.

Figure 17

The amount of fluid passing through the surface per unit time is then
called the flux, and is given by the integral of the force field over the
surface, namely

Flux = ffF'Oda,
S

where F is the force field.
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It is not true that all surfaces can be oriented so that we can define
an outside and an inside. The well-known Moebius strip gives an exam­
ple when this cannot be done. In all the applications that we deal with,
however, it is geometrically clear what is meant by the inside and out­
side. It is fairly difficult to give a definition in general, and so we don't
go into this.
Observe that when we give a parametrization X(t, u), we could inter­

change the role of t, u as the first and second variable, respectively.
Thus, for instance, if

X(t, u) = (t, U, t2 + u2
),

we could let

Y(u, t) = (t, U, t2 + u2).

Then
ay ay ax ax
-x-= --x-·
au at at au

Interchanging the variables amounts to changing the orientation. The
two normal vectors corresponding to these two parametrizations have
opposite direction. In finding the integral of a vector field with respect
to a given parametrization, one must therefore agree on what is the "in­
side" and what is the "outside" of the surface, and check that the nor­
mal vector obtained from the cross product of the two partial derivatives
points to the outside.

Example 4. Compute the integral of the vector field

F(x, y) = (x, y, 0)

over the sphere x 2 + y2 + Z2 = a2 (a> 0). We use the parametrization
of §1. Then

ax ax
N(cp, e) = acp x iiii = a sin cp X(cp, e).

Thus N(cp, e) is a positive multiple of the position vector X, because

o~ cp ~ n,

and hence N(cp, e) points outward. So we get

F(X(cp, e)). N(cp, e) = (a sin cp)[(a sin cp cos ef + (a sin cp sin e)2],

and

If f2"f" 8na3
F· N dcp de = a3

0 0 sin3 cp dcp de = -3-'
R
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X(tp,8)

Figure 18

N

[XII, §3]

Example 5. Let S be the paraboloid defined by the equation

We can use x, y as parameters, and represent S parametrically by

X(x, y) = (x, y, x2 + y2).

Then

N(x, y) = (1,0, 2x) x (0, 1, 2y)

= (-2x, -2y, 1).

Thus with the parametrization as given, we see from Fig. 19 that N
points inside the paraboloid.

z

-.......;.~-----y

x

Figure 19

For instance, when x, yare positive, say equal to 1, then

N(I, 1) = (-2, -2,1),
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which points inward. Consequently, if we want the integral of a vector
field F with respect to the outward orientation, then we have to take
minus the integral, namely

-IIF·N dxdy.

Example 6. Compute the integral of the vector field

F(x, y, z) = (y, -x, Z2)

over the paraboloid

We have

with O~z~1.

F(X(x, y»). N(x, y) = -2xy + 2xy + Z2 = Z2

= (x2 + y2)2.

Hence

IIF· D dO" = - II(X2 + y2)2 dx dy,

S R

where R is the unit disc in the (x, y)-plane. Changing to polar coordin­
ates, it is easy to evaluate this integral,

IIF .D dO" = - t2ltfr4 r dr dO = - 'Tt/3.
S

Note that in the present case, we have

N
D= ---.

IINII

XII, §3. EXERCISES

Integrate the following function over the indicated surface.

1. (a) The function x 2 + y2 over the same upper hemisphere of radius a as in
Example 2 of this section.

(b) The function (x2 + y2)Z over this same hemisphere.
(c) The function (x 2 + y2)Z2 over this same hemisphere.
(d) The function z(x2 + y2)2 over this same hemisphere.
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2. The function Z2 over the unit sphere

3. The function z over the upper hemisphere of radius a.

4. The function z over the surface

with

5. The function z over the surface

z ~ O.

(Use polar coordinates and sketch the surface.)

6. The function x over the cone x 2 + y2 = Z2, 0 ~ Z ~ a.

7. The function x over the part of the sphere x 2 + y2 + Z2 = a2 contained inside
the cone of Exercise 6.

8. The function x 2 over the cylinder defined by x 2 + y2 = a2
, and 0 ~ z ~ 1, ex­

cluding its top and bottom.

9. The same function x 2 over the top and bottom of the cylinder

10. Theorem of Pappus. Let C be the parametrization of a smooth curve in the
plane, defined on an interval [a, b], say

C(t) = (f(t), z(t).

We view C(t) as lying in the (x, z)-plane, as shown on Fig. 20. We assume
that f(t) ~ O. Let x be the x-coordinate of the center of mass of this curve in
the (x, z)-plane. Prove that the area of the surface of revolution of this curve
is equal to

2nxL,

z

}-------y

x

Figure 20
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where L is the length of the curve. [Hint: Parametrize the surface of revolu­
tion by the mapping

X(t,8) = (J(t) cos 8,f(t) sin 8, z(t».]

What is 8 in Fig. 20? Recall that oX is given by

1 fb
oX = - f(t)IIC'(t)11 dt.

L a

How does this apply to get the area of torus in a simple way?

II. Let S be the sphere of radius a and centered at O. Let P be a fixed point,
either inside or outside the sphere, but not on S. Let

f(X) = IIX - PII·

Show that

{

4na

If7du = 4na2

s lIP II

if P is inside the sphere

if P is outside the sphere.

[Hint: You may assume that the point P is on the z-axis. This will simplify
the direct computation.]

Find the integrals of the following vector fields over the given surfaces.

1
12. F(x, y, z) = ~ (y, - y, 1) over the paraboloid

VX2 + y2

0;;;; z ;;;; 1.

(Draw the picture.)

13. The same vector field as in Exercise 12, over the lower hemisphere of a
sphere centered at the origin, of radius 1. Note: n/2 ;;;; ({J ;;;; n.

14. The vector field F(x, y, z) = (y, -x, 1) over the surface

X(t,8) = (t cos 8, t sin 8, 8),

o;;;; t ;;;; 1 and 0 ;;;; 8 ;;;; 2n.

15. The vector field F(x, y, z) = (x2, y2, Z2) over the surface

X(t, u) = (t + u, t - u, t),

o;;;; t ;;;; 2 and 1 ;;;; u ;;;; 3.
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16. The vector field F(X) = X, over the part of the sphere x2 + y2 + Z2 = 1

between the planes z = 1/-fi and z = -If-fi.

17.. The vector field F(x, y, z) = (x, 0, 0) over the part of the unit sphere inside
the upper part of the cone x 2 + y2 = Z2.

18. The vector field F(x, y, z) = (x, y2, z) over the triangle determined by the
plane x + y + z = 1, and the coordinate planes.

19. The vector field F(x, y, z) = (x, y, Z2) over the cylinder defined by x2 + y2 = a2,
o;£ z ;£ 1,
(a) excluding the top and bottom
(b) including the top and bottom.

20. The vector field F(x, y, z) = (xy, y2, y3) over the boundary of the unit cube

o;£ x ;£ 1, o;£ y ;£ 1, O;£z;£1.

21. The vector field F(x, y, z) = (zx, 0, 1) over the upper hemisphere of radius 1.

22. Let an electric field be given by

F(x, y, z) = (2x, 2y, 2z).

Find the electric flux across the closed surface consisting of the hemisphere

together with the base

and z = O.

[Compute the desired integral over the two surfaces separately.]

23. The force field of a fluid is given by

F(x, y, z) = (1, x, z),

measured in meters/second. Find how many cubic meters of fluid per second
cross the upper hemisphere

XII, §4. CURL AND DIVERGENCE OF A VECTOR FIELD

Let U be an open set in R 3 , and let F be a vector field on U. Thus F
associates a vector to each point of U, and F is given by three co­

ordinate functions,

F(x, y, z) = Ul(X),fiX ),fiX ).

We assume that F is as differentiable as needed.
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We define the divergence of F to be the function

div F = afl + afz + af3 .
ax ay az

Thus the divergence is the sum of the partial derivatives of the coordin­
ate functions, taken with respect to the corresponding variables. It is
scalar valued.

Example 1. Let F(x, y, z) = (sin xy, eXz, 2x + yz4). Then

(div F)(x, y, z) = y cos xy + 0 + 4yz3

= y cos xy + 4yz3.

As a matter of notation, one sometimes writes symbolically

where D l , Dz, D3 are the partial derivative operators with respect to the
corresponding variables. Then one also writes

We shall interpret the divergence geometrically later. Similarly, we
now define the curl of F, and interpret it geometrically later. We define

curl F = (af 3 _ afz, afl _ af3, afz _ afl)
ay az az ax ax ay

= (Dzf3 - D3fz, D3fl - DJ3' DJz - Dzfl)·

The curl of F is therefore also a vector field.
Again, we use the symbolic notation

curl F = V x F.

Example 2. Let F be the same vector field as in the preceding exam­
ple. Then

curl F = (Z4 - xexZ, 0 - 2, zeXY - x cos xy)

= (Z4 - xexz, - 2, zeXY - x cos xy).
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Remark on notation. If you look at Chapter XV, §2, giving the expan­
sion of a 3 x 3 determinant according to the first row, then you see that
we may write the curl symbolically as a "determinant"

Indeed, expanding symbolically this determinant, we find

which yields exactly the expression of the definition of curl F. Writing
the curl in this fashion makes it easier to remember in which order the
indices occur in the components.

XII, §4. EXERCISES

Compute the divergence and the curl of the following vector fields.

1. F(x, y, z) = (x2, xyz, yz2)

2. F(x, y, z) = (y log x, x log y, xy log z)

3. F(x, y, z) = (x2, sin xy, eXyz)

4. F(x, y, z) = (e XY sin z, eXZ sin y, eYZ cos x)

5. Let ({J be a smooth function. Prove that curl grad ({J = o.

6. Prove that div curl F = o.

7. Let V2 = V·V = Di + D~ + D~ = (:xy + (:yy + (:zr A function f is
said to be harmonic if V 2f = O. Prove that the following functions are har­
monic.

1
(a) (b)x 2 - y2+2z

Jx2 + y2 + Z2

(c) If f is harmonic, prove that div grad f = O.

8 Let F(X) = c~, where c is constant. Prove that div F = 0 and that
. IIXII
curl F = o.

9. Prove that div(F x G) = G· curl F - F· curl G, if F, G are vector fields.

10. Prove that div(gradf x grad g) = 0, if 1, 9 are functions.
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XII, §5. DIVERGENCE THEOREM IN 3-SPACE

In this section, we let U be a 3-dimensional region in R3, whose bound­
ary is a closed surface which is smooth, except for a finite number of
smooth curves. For instance, a 3-dimensional rectangular box is such a
region. The inside of a sphere, or of an ellipsoid is such a region. The
region bounded by the plane z = 2, and inside the paraboloid z = x 2 + y2
is such a region, illustrated in Fig. 21.

~-----y

x

Figure 21

Note that the boundary consists of two pieces, the surface of the parabo­
loid and the disc on top, each of which can be easily parametrized.

Theorem 5.1. Divergence theorem. Let U be a region in 3-space, form­
ing the inside of a surface S which is smooth, except for a finite number
of smooth curves. Let F be a vector field on an open set containing U
and S. Let n be the unit outward normal vector to S. Then

ff F· n du = fff div F dV,

s u

where the expression on the right is simply the triple integral of the
function div F over the region U.

It is not easy to give a proof of the divergence theorem in general, but
we shall give it in a special case of a rectangular box. This makes the
general case very plausible, because we could reduce the general case to
the special case by the following steps:

(i) Analyze how surface integrals change (or rather do not change)
when we change the variables.
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(ii) Reduce the theorem to a "local one" where the region admits
one parametrization from a rectangular box. This can be done
by various chopping-up processes, some of which are messy,
some of which are neat, but all of which take up a fair amount
of space to establish fully.

(iii) Combine the first and second steps, reducing the local theorem
concerning the region to the theorem concerning a box, by
means of the change of variables formula.

We now prove the theorem for a box, expressed as a product of inter­
vals:

[a 1, b1J x [a 2 , b2J x [a 3 , b3J,

and illustrated in Fig. 22.

z

C2 ""Q@
Cl ......... I I

.......... I I
I I I I

I I btl : b2
~--+:-+:-/-.-'+:-+:-/+-- y

a1 ----:-~.,l<--+~;"
1/ 1/a2 -lL .Y

x

Figure 22

The surface surrounding the box consists of six sides, so that the inte­
gral over S will be a sum of six integrals, each one taken over one of the
sides.
Let Sl be the front face. We can parametrize Sl by

X(y, z) = (a2 , Y, z),

with y, z satisfying the inequalities

and

Let 01 be the unit outward normal vector on Sl' Then

01 = (1,0,0).

If F = (f1,f2,f3)' then F· 01 = /1' and hence

ff F· °da = f2f 2/1(a2 , y, z) dy dz.

8,
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Similarly, let S2 be the back face, parametrized by

X(y, z) = (a 1, Y, z),

with y, z satisfying the same inequalities as above. Then

O2 = -(1,0,0),

the geometric interpretation being that the outward unit normal vector
points to the back of the box drawn on Fig. 22. Hence

II F· 0 dIJ = f2(2 -f1(a1, y, z) dy dz.
S2

Adding the integrals over S1 and S2 yields

II + IIF·o dIJ = f2 f2U1(a2, Y, z) - f1(a 1,Y, z)] dy dz
S, S2

= IIIDd1 dV.
u

We now carry out a similar argument for the right side and the left
side, as well as the top side and the bottom side. We find that the sums
of the surface integral taken over these pairs of sides equal to

u

and

u

respectively. Adding all three volume integrals yields

II F·odlJ = III(Dd1 + D2f2 + D3f3)dV,
S u

which is precisely the integral of the divergence, thus proving what we
wanted.
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Example 1. Let us compute the integral of the vector field

over the unit cube by using the divergence theorem. The divergence of F
is equal to 2x + 2y + 2z, and hence the integral is equal to

f: J: J: (2x + 2y + 2z) dx dy dz,

which is easily evaluated to give the value 3.

Example 2. Let us compute the integral of the vector field

F(x, y, z) = (x, y, z)

that is F(X) = X over the sphere of radius a. The divergence of F is
equal to

ax ay az
-+-+-=3.
ax ay az

The ball B is the inside of the sphere. By the divergence theorem, we get

s B

Note that the volume integral over the ball B of radius a is the integral
of the constant 3, and hence is equal to 3 times the volume of the ball.

The divergence theorem has an interesting application, which can be
used to interpret the divergence geometrically. It is the 3-dimensional
analogue of the interpretation given in Chapter X, §2 for the 2-dimen­
sional case, and the proof will be entirely similar.

Corollary 5.2. Let B(t) be the solid ball of radius t > 0, centered at a
point P in R 3 . Let S(t) denote the boundary of the ball, i.e. the sphere
of radius t, centered at P. Let F be a vector field, and let V(t) denote
the volume of B(t). Let n denote the unit normal vector pointing out
from the spheres. Then

(div F)(P) = lim _1_ IfF. n du.
1-0 V(t)

SIt)



[XII, §5] DIVERGENCE THEOREM IN 3-SPACE 349

Proof Let g = div F. Since g is continuous by assumption, we can
write

g(X) = g(P) + heX),

where

lim heX) = 0.
X~P

Using the divergence theorem, we get

_1 ffF. n d(J = _1 fffdiV F dV
Vet) Vet)

8(1) B(I)

= _1 fffg(p) dV + _1 . fffh dV
Vet) Vet)

B(I) B(I)

Observe that g(P) = (div F)(P) is constant, and hence can be taken out
of the first integral. The simple integral of dV over B(t) yields the
volume vet), which cancels, so that the first term is equal to (div F)(P),
which is the desired answer.
There remains to show that the second term approaches °as t ap­

proaches 0. But this is clear: The function h approaches 0, and the inte­
gral on the right can be estimated as follows:

1

_1 fffh dvi ~ Max Ih(X)I~) fffdV
Vet) IIX-PII &1 Vet

B(I) B(I)

~ Max Ih(X) I·
IIX-PII&I

As t -+ 0, the maximum of Ih(X)1 for IIX - PII ~ t approaches 0, thus
proving what we wanted.

The integral expression under the limit sign in the corollary can be in­
terpreted as the flow going outside the sphere per unit time, in the direc­
tion of the unit outward normal vector. Dividing by the volume of the
ball B(t), we obtain the mass per unit volume flowing out of the sphere.
Thus we get an interpretation:

The divergence ofF at P is the rate ofchange ofmass
per unit volume per unit time at P.
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As in the case of Green's theorem, whose general form was stated for
regions which are more general than interiors of closed curves, we have
an analogue in the higher dimensional case for the divergence theorem.

Theorem 5.3. Divergence theorem, general case. Let U be an open set
whose boundary consists of a finite number of surfaces,

oriented so that U lies to the left of each surface Si' Let F be a vector
field on an open set containing U and S. Let n be the unit outward nor­
mal vector to 8. Then

ff F· n du = fff div·F dV.
s u

In the formula the integral over 8 is of course the sum of the integrals
over the pieces 8i for i = 1, ... ,m.

Example 3. Suppose that U is the region between two concentric
spheres, 8 1 and 82, and that div F = O. Then the integral on the right­
hand side is O. Hence

ffF . n du + ffF . n du = O.
s,

Figure 23

The outer sphere 8 1 is oriented so that the unit outward normal vector
points outward. The inner sphere has to be oriented so that unit normal
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vector points toward the common center, in order for the region between
the spheres to lie to the left of the inner sphere. Thus, if S2 denotes the
inner sphere with its standard orientation, we have to take Sz with op­
posite orientation to apply the divergence theorem. Consequently, we
find that

Of course, we did not need to assume S1 to be a sphere. The same
argument proves the following corollary.

Corollary 5.4. Let Sl' S2 be closed surfaces such that S2 is contained in
the interior of Sl' and let U be the region between them. Let F be a
vector field such that div F = 0 on a region containing U and its
boundary. Then the integral of F over S1 is equal to the integral of
F over S2.

Example 4. Gauss' law. In 3-space, let q be a constant, and let

q
f(x, y, z) = 4­

np

Let E = - grad f. We interpret f as the potential energy associated with
a point charge of electricity q at the origin, and we interpret E as the
corresponding electric field. Verify that (Exercise 16)

div E = O.

Let S1 be any closed surface whose interior contains the origin. The in­
tegral

ffE·ndu

8,

is interpreted as the total electric flux over the surface, due to that point
charge. Whereas it is probably difficult to evaluate the integral over S1

directly, we can use the corollary which tells us that the flux can be
computed as the integral

ff E·ndu = q
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where 82 is a small sphere centered at the origin. It is then easy to find
the value q on the right-hand side (Exercise 16). Thus the flux is equal
to the point charge of electricity. This is known as Gauss' Law.

XII, §S. EXERCISES

1. Compute explicitly the integrals over the top, bottom, right, and left sides of
the box to check in detail the remaining steps of the proof of the divergence
theorem, left to the reader in the text, as "similar arguments".

2. Let S be the boundary of the unit cube,

o~ x ~ 1, o~ y ~ 1, O~z~1.

Compute the integral of the vector field F(x, y, z) = (xy, y2, y2) over the sur­
face of this cube.

3. Calculate the integral

H(curl F) .n da

s

where F is the vector field

and S is the surface

Don't make things more complicated than they need be.

4. Find the integral of the vector field

X
F(X) = IIXII

over the sphere of radius 4.

Find the integral of the following vector fields over the indicated surface.

5. (a) F(x, y, z) = (yz, xz, xy) over the cube centered at the origin and with sides
of length 2.

(b) F(x, y, z) = (x2, y2, Z2) over the same cube.
(c) F(x, y, z) = (x - y, y - z, x - y) over the same cube.
(d) F(X) = X over the same cube.
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6. Let F(x, y, z) = (2x, y2, Z2). Compute the integral of F over the unit sphere.

7. Let F(x, y, z) = (x3, y3, Z3). Compute the integral of F over the unit sphere.

8. Let F(x, y, z) = (x, y, -z). Compute the integral of F over the unit cube,
consisting of all points (x, y, z) with

o~ x ~ 1, 0 ~ y ~ 1, and O~z~1.

9. F(x, y, z) = (x + y, y + z, x + z) over the surface bounded by the paraboloid

and the disc of radius 2 centered at the origin in the (x, y)-plane.

10. F(x, y, z) = (2x, 3y, z) over the surface bounding the region enclosed by the
cylinder

and the planes z = 1 and z = 3.

11. F(x, y, z) = (x, y, z), over the surface bounding the region enclosed by the
paraboloid z = x2 + y2, the cylinder x 2 + y2 = 9, and the plane z = O.

12. F(x, y, z) = (x + y, y + z, x + z) over the surface bounding the region defined
by the inequalities

and o~ z ~ 5.

13. F(x, y, z) = (3x2, xy, z) over the tetrahedron bounded by the coordinate
planes and the plane x + y + z = 1.

14. Let! be a harmonic function, that is a function satisfying

Let S be a closed smooth surface bounding a region U in 3-space. Let! be
a harmonic function on an open set containing the region and its boundary.
If D is the unit normal vector to the surface pointing outward, let D

n
! be the

directional derivative of ! in the direction of D.
(a) Prove that

ffDn ! du = O.
s

[Hint: Let F = gradf.]
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(b) Prove that

SURFACE INTEGRALS

HfDnf dCT = HI IIgradfll 2 dV.

s u

[XII, §5]

[Hint: Let F =fgradf.]

15. (a) Let U be the interior of a closed surface S. Show that

HX· n dCT = 3 Vol(U).

s

(b) Show that

H:~n dCT = HI :2 dV.
s u

As usual in this exercise, X = (x, y, z) and p = IIXII = Jx 2 + y2 + Z2.

16. Let q be a constant, and let

q
f(X) = f(x, y, z) = -4

np
where p = IIXII.

(a) Verify that div grad f = O. [Cf. Exercise 7(a) of §4.]
(b) Compute the integral of E = - grad f over a sphere centered at the origin
to find the value stated in the text in the last example, namely q.

17. Let U be the interior of a closed surface S.
(a) Assume that the origin 0 does not lie in U or its boundary. Show that

If X·n7 dCT =0.

s

As usual, X = (x, y, z). How is this exercise related to Exetcise 14?
(b) If the origin 0 is contained in U, show that

If X·n7 dCT =4n.

s

How is this related to Exercise 16?

18. Let P l' . .. ,Pm be fixed points in 3-space, and let q l' ... ,qm be numbers, which
we call charges. Let
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(This is interpreted as the potential function associated with the finite
number of charges at the given points.) Let S be a closed surface not con­
taining any of the points Pj' Let q be the sum of the charges inside S. Let
E = - grad f. Show that

ff E·ndO' = q.
s

19. Let U be the interior of a closed surface S. Let f, 9 be functions. Prove the
formulas known as Green's identities:

(a) ff f grad g. n dO' = Iff[fV2g+ VI· Vg] dV

s u

(b) ffUVg - 9 Vf)·n dO' = ffIUV2g - 9 V2f) dV.

s u

[Note: VI means grad f, and V 2f = div grad f by definition. Compare
with Exercise 4 of Chapter X, §2.]

XII, §6. STOKES' THEOREM

We recall Green's theorem in the plane. It stated that if S is a plane
region bounded by a closed path C, such that S lies to the left of C, and
F is a vector field on some open set containing the region, F = (fl' f2),
then

If(DJ2 - Ddl) da = IeF· de.

s

Of course in the plane with variables (x, Y), da = dx dy.
We can now ask for a similar theorem iIi 3-space, when the surface

lies in 3-space, and the surface is bounded by a curve in 3-space. The
analogous statement is true, and is called Stokes' theorem:

Theorem 6.1. Stokes' Theorem. Let S be a smooth surface in R3,
bounded by a closed curve e. Assume that the surface is orientable, and
that the boundary curve is oriented so that the surface lies to the left of
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the curve. Let F be a vector field in an open set containing the surface
S and its boundary. Then

ff(CUrl F)·n dO" = IcF.dC.

s

Figure 24

When the surface consists of a finite number of smooth pieces, and
the boundary also consists of a finite number of smooth curves, then the
analogous statement holds, by taking a sum over these pieces.
We shall not prove Stokes' theorem. The proof can be reduced to

that of Green's theorem in the plane by making an analysis of the way
both sides of the formula behave under changes of variables, i.e. changes
of parametrization. Note that Green's theorem in the plane is a special
case, because then the unit normal vector is simply (0, 0, 1), and the curl
of F dotted with the unit normal vector is simply the third component of
the curl, namely

Thus Green's theorem In the plane makes the 3-dimensional analogue
quite plausible.

Example 1. Suppose that two surfaces 8 1 and 82 are bounded by a
curve C, and lie on opposite sides of the curve, as on Fig. 25. Then

ff(curl F) . n dO" = - ff(curl F) . n dO"

s, ~

because the integral over 8 1 is equal to the integral of F over C, whereas
the integral over 8 2 is equal to the integral of F over C-, which is the
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same as C but oriented in the opposite direction. We have also drawn
separately the surfaces 81 and 82 having C as boundary. Observe that
taken together, 8 1 and 82 bound the inside of a 3-dimensional region.

(u)

(b) (c)

Figure 25

Example 2. Similarly, consider a ball, bounded by a sphere. The two
hemispheres have a common boundary, namely the circle in the plane as
on Fig. 26. Note that C is oriented so that 8 1 lies to the left of C, but
82 lies to the right of C.

z

---i'---+---------.::J--y

x

Figure 26

By the divergence theorem, we know that if 8 denotes the union of 8 1

and 82 , then

ff<cUrlF)·ndO" = Iff divcurlFdY.

s u
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However, div curl F = O. Since

we obtain in another way that

H(curl F). n du = - H(curl F)· n du.

s, S2

Example 3. We shall verify Stokes' theorem for the vector field

F(x, y, z) = (z - y, x + z, -(x + y)),

and the surface of the paraboloid

with 0 ~ z ~ 4, as on Fig. 27.

z

/"--+---y

x

Figure 27

First we compute the integral over the boundary curve, which is just
the circle

z =0.

We parametrize the circle by x = 2 cos e and y= 2 sin e, z = O. Then

F· de = (z - y) dx + (x + z) dy - (x + y) dz

= -2 sin e( -2 sin e de) + 2 cos e(2 cos e) de

=4de.
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Consequently,

STOKES' THEOREM 359

Now we evaluate the surface integral. First we get the curl, namely

£3
D3 =(-2,2,2).

-x-y

The surface is parametrized by (x, y) 1-+ (x, y, 4 - x2 - y2) = X(x, y), with
x2 + y2 ~ 4. Compute oX/ox and oX/oy. Their cross product is

N(x, y) = (2x, 2y, 1)

so F· N = -4x + 4y + 2. Let D be the disc of radius 2. Then

ff curlF·nda= ff(-4X+4y +2)dXdY

S D

f 2" f2
= 0 0 (-4r cos () + 4r sin () + 2)r dr d()

= 8n,

which is the same value as the integral of F over the curve in the first
part of the example.

Remark. Green's and Stokes' theorems are special cases of higher
dimensional theorems expressing a relation between an integral over a
region in space, and another integral over the boundary of the region.
To give a systematic treatment requires somewhat more elaborate foun­
dations, and lies beyond the bounds of this course.

Stokes' theorem allows us to give an interpretation for the curl of a
vector field similar to that given for the divergence.
Let P be a point on a surface S (smoothly parametrized), and for each

small positive number r, let Cr be the closed curve consisting of the
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points on the surface at distance r from P. We assume without proof
that this curve is smooth, and we take it with counterclockwise orienta­
tion, as shown on the figure (Fig. 28).

Figure 28

We let Dr be the portion of the surface in the interior of Cr. Then Cr
and Dr constitute the analogue of a circle and a disc centered at P, but
of course since the surface may bend in 3-space, Cr is not actually a cir­
cle, and Dr is not actually a disc. We let A(r) be the surface area of Dr.

Corollary 6.2. Let Op be the unit normal vector to the surface at P.
Then

. 1 f(curl F(P)). Op = hm -) F· de.
r--+O A(r Cr

Proof Our vector fields are always assumed continuously differentiable,
and the surface is also parametrized by continuously differentiable func­
tions, so the dot product

(curl F)(X)· Ox

is a continuous function of X. Thus we can write

(curl F)(X)· Ox = (curl F)(P)· Op + heX)

where

lim heX) = o.
x--+p
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Substituting in the left-hand side of Stokes' theorem yields

II(CUrlF)'DdO" = II(cUrlF(P))'DPdO" + IIhdO"

= (curl F(P))'D p IIdO" + IIh dO"

(because (curl F(P))· Dp is constant and can be taken out of the integral)

= A(r)(curl F(P))'Dp + IIh dO"

because the integral

IIdO" = A(r)

is the area of the surface lying inside Cr'
Now apply Stokes' theorem, and divide by A(r). We then find

(curl F(P))· Dp +~() ffh dO" = _1_f F· de.
A r A(r) C

r

Dr

Let r approach O. The integral remaining on the left-hand side IS

bounded in absolute value by

where maxDJh\ is the maximum of the absolute value of h over the
region D" and tends to 0 as r tends to O. Hence

lim~) ffh dO" = O.
r~O A(r

Dr

This proves the corollary.
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Physical interpretation for the curl. The curve integral

f F·dC
Cr

along the curve Cr represents the integral along Cr of the tangential com­
ponent of F along the curve. This tangential component is interpreted as
the amount by which F is rotating, or as we appropriately could say,
curling around the point, rather than the normal component

F·n,

which is the amount by which the vector field F points outward from
the curve. Thus F· n represents the flow outward from the curve, while
F .dC represents the flow remaining inside the curve.
Dividing by A(r) is a normalizing procedure, which determines the

amount by which F is curling around the point per unit area. Hence the
limit on the right-hand side, equal to the left-hand side, gives the follow­
ing interpretation for the curl:

The curl F(P) is the amount by which the vector field F (or the fluid
flow determined by F) rotates (curls) around the point P.

This is illustrated on Fig. 29.

Figure 29

XII, §6. EXERCISES

Verify Stokes' theorem in each one of the following cases.

1. F(x, y, z) = (z, x, Y), S defined by z = 4 - x 2 - y2, Z ~ O.
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2. F(x, y, z) = (x2 + y, yz, x - Z2) and S is the triangle defined by the plane

2x+y+2z=2

and x, y, z ~ O.

3. F(x, y, z) = (x, z, - y) and the surface is the portion of the sphere of radius 2
centered at the origin, such that y ~ O.

4. F(x, y, z) = (x, y, 0) and the surface is the part of the paraboloid z = x 2 + y2
inside the cylinder x 2 + y2 = 4.

5. F(x, y, z) = (y + x, x + Z, Z2), and the surface is that part of the cone
Z2 = x 2 + y2 between the planes z = 0 and z = 1.

Compute the integral ff curl F· n da by means of Stokes' theorem.

s

6. F(x, y, z) = (Y, z, x) over the triangle with vertices at the unit points (1,0,0),
(0, 1, 0), (0, 0, 1).

7. F(x, y, z) = (x + y, Y - z, x + Y + z) over the hemisphere

8. (a) Let C be the curve given by

C(t) = (cos t, sin t, sin t)

Find

with 0:;;; t :;;; 21t.

Ie z dx + 2x dy + y2 dz

directly from the definition of curve integrals.
(b) Find the integral of (a) by using Stokes' theorem.

[Hint: The curve C is the boundary of the graph of the function
f(x, y) = y, defined on the disc of radius 1.]

9. Let F(x, y, z) = (ye Z
, xe z

, xye Z
). Let C be a simple closed curve which is the

boundary of a surface S. Show that the integral of F along C is equal to O.

10. Let C be a closed curve which is the boundary of a surface S. Prove the
following:

(a) Ieugradg).dC= ff[(gradf) x (gradg)]·nda

s

(b) IeUgrad 9 + 9 gradf)·dC = O.
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11. Let S be a surface bounded by a curve C. Let F be a vector field on an
open set containing the surface and its boundary, and assume that F is per­
pendicular to the boundary (i.e., at every point of the boundary, the value of
the vector field is perpendicular to the tangent line of the curve). Show that

If(curl F)· D da = O.

s



Part Five

Mappings,
Inverse Mappings,

and Change of
Variables Formula



I include three brief chapters which treat basic notions of linear algebra,
in order to make this book self contained. Usually, these chapters can be
omitted, since most students by now take a one term course in linear
algebra before taking calculus of several variables. My Introduction to
Linear Algebra provides a suitable text for such a course, but only spe­
cial cases are needed here. Hence it is worth while to include here only
the needed material, without any attempt at completeness.



CHAPTER XIII

Matrices

XIII, §1. MATRICES

We consider a new kind of object, matrices.
Let n, m be two integers ~ 1. An array of numbers

C
a 12 a 13

a.. )a 21 a 22 a 23 a 2n

amI a m2 a m3 a mn

is called a matrix. We can abbreviate the notation for this matrix by
writing it (a i), i = 1, ... ,m and j = 1, ... ,no We. say that it is an m by n
matrix, or an m x n matrix. The matrix has m rows and n columns. For
in~tance, the first column is

and the second row is (a 2I , a 22 , ... ,a2J. We call a ij the ij-entry or ij­
component of the matrix.
Look back at Chapter I, §1. The example of 7-space taken from eco­

nomics gives rise to a 7 x 7 matrix (au) (i,j = 1, ... ,7), if we define au to
be the amount spent by the i-th industry on the j-th industry. Thus
keeping the notation of that example, if a25 = 50, this means that the
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auto industry bought 50 million dollars worth of stuff from the chemical
industry during the given year.

Example 1. The following is a 2 x 3 matrix:

1
4
-2)
-5 .

It has two rows and three columns.
The rows are (1, 1, - 2) and (-1,4, - 5). The columns are

Thus the rows of a matrix may be viewed as n-tuples, and the columns
may be viewed as vertical m-tuples. A vertical m-tuple is also called a
column vector.
A vector (Xl"" ,xn) is a 1 x n matrix. A column vector

is an n x 1 matrix.
When we write a matrix in the form (a i), then i denotes the row and

j denotes the column. In Example 1, we have for instance

all = 1, a23 = -5.

A single number (a) may be viewed as a 1 x 1 matrix.
Let (au), i = 1, ... ,m and j = 1, ... ,n be a matrix. If m = n, then we

say that it is a square matrix. Thus

~) and ( ~ -~ -~)
3 1-1

are both square matrices.
We define the zero matrix to be the matrix such that au = 0 for all

i, j. It looks like this:
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We shall write it O. We note that we have met so far with the zero
number, zero vector, and zero matrix.
We shall now define addition of matrices and multiplication of ma­

trices by numbers.
We define addition of matrices only when they have the same size.

Thus let m, n be fixed integers ~ 1. Let A = (aij) and B = (b i) be two
m x n matrices. We define A + B to be the matrix whose entry in the
i-th row and j-th column is aij + bij. In other words, we add matrices of
the same size componentwise.

Example 2. Let

A=G
-1

~) B=G
1 -1}and

3 1 -1
Then

A + B = (~
0 -1)
4 3 .

If A, B are both 1 x n matrices, i.e.- n-tuples, then we note that our
addition of matrices coincides with the addition which we defined in
Chapter I for n-tuples.

If 0 is the zero matrix, then for any matrix A (of the same size, of
course), we have 0 + A = A + 0 = A.

This is trivially verified. We shall now define the multiplication of a
matrix by a number. Let c be a number, and A = (a i) be a matrix. We
define cA to be the matrix whose ij-component is caij . We write

Thus we multiply each component of A by c.

Example 3. Let A, B be as in Example 2. Let c = 2. Then

2A = (~

We also have

-2
6 ~) and 2B=C~

2
2
-2)
-2 .

(
-1

(-1)A = -A =
-2

1

-3
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For any matrix A we let - A be the matrix obtained by multiplying
each component of A with -1. If A = (aij)' then

- A = ( - 1)A = ( - aij).

For instance, if

A=G
is the matrix of Example 2, then

-1

3 ~)

(
-1

-A = (-1)A =
-2

Observe that for any matrix A we have

1
-3

A + (- A) = A - A = O.

The matrix - A is called the additive inverse of A.
We define one more notion related to a matrix. Let A = (aij) be an

m x n matrix. The n x m matrix B = (b ji) such that bji = aij is called the
transpose of A, and is also denoted by l A. Taking the transpose of a
matrix amounts to changing rows into columns and vice versa. If A is
the matrix which we wrote down at the beginning of this section, then its
transpose is

(

all

lA = a~2

a ln

To take a special case:

then

If A = (2, 1, - 4) is a row vector, then

is a column vector.
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The transpose notation is very useful for typography. It occupies ver­
tical space to write a vertical vector

Thus to denote such a vertical vector, we write more efficiently

x = t(x, y, z),

where the superscript t denotes the transpose. This allows us to write
the symbols horizontally, which fits typesetting more easily.
For a square matrix, the transpose is the reflection of the matrix

across the diagonal.
A matrix A which is equal to its transpose, that is A = tA, is called

symmetric. Such a matrix is necessarily a square matrix.
For example, the following matrix is symmetric:

( 3 1-2)-~ ~-:
Remark. Some authors write At instead of tAo One advantage of writ­

ing the superscript t on the left is that we also shall define multiplication
of matrices, and powers, like A 2 , A 3, etc. Then with our notation we
write for instance

This avoids writing down parentheses, and so is more efficient notation.
There is, however, no consensus in the mathematical community where
to put the transpose sign.

XIII, §1. EXERCISES

1. Let

A = ( 1
-1

2

o ~) and
(

-1B= 1

5

1
-2)
-1 .

Find A + B, 3B, - 2B, A + 2B, 2A + B, A - B, A - 2B, B - A.

2. Let

and B=(-1 1)o -3·

Find A + B, 3B, - 2B, A + 2B, A - B, B - A.
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3. (a) Write down the row vectors and column vectors of the matrices A, B in
Exercise 1.

(b) Write down the row vectors and column vectors of the matrices A, B in
Exercise 2.

4. (a) In Exercise 1, find 'A and lB.
(b) In Exercise 2, find 'A and I B.

5. If A, B are arbitrary m x n matrices, show that

'(A + B) = 'A + 'B.

6. If c is a number, show that '(eA) = e'A.

7. If A = (au) is a square matrix, then the elements aj ; are called the diagonal
elements. How do the diagonal elements of A and 'A differ?

8. Find '(A + B) and 'A + 'B in Exercise 2.

9. Find A + 'A and B + 'B in Exercise 2.

10. Show that for any square matrix, the matrix A + 'A is symmetric.

XIII, §2. MULTIPLICATION OF MATRICES

We shall now define the product of matrices. Let A = (a i), i = 1, ... ,m
and j = 1, ... ,n be an m x n matrix. Let B = (b jk), j = 1, ... ,n and let
k = 1, ... ,s be an n x s matrix:

We define the product AB to be the m x s matrix whose ik-coordinate is

n

L ajjbjk = ailb lk + a j2 b 2k + .,. + ainbnk ·
j= 1

If A l' ... ,Am are the row vectors of the matrix A, and if B 1
, •.. ,BS are the

column vectors of the matrix B, then the ik-coordinate of the product
AB is equal to Ai' Bk

• Thus

Multiplication of matrices is therefore a generalization of the dot
product.
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Example. Let

MULTIPLICATION OF MATRICES 373

A=G
1

3

Then AB is a 2 x 2 matrix, and computations show that

AB=G

Example. Let

1

3
15)
12 .

( 1 3)C= -1 -1·

Let A, B be as in Example 1. Then

( 3 4) 1 (-1 5)
BC = - ~ ~ (-1 _~) = - ~ - ~

and

A(BC) =G 1

3
30)
0·

Compute (AB)G. What do you find?

If X = (Xl' ... ,Xm) is a row vector, i.e. a 1 x m matrix, then we can
form the product XA, which looks like this:

where

In this case, XA is a 1 x n matrix, i.e. a row vector.
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On the other hand, if X is a column vector,

then AX = Y where Y is also a column vector, whose coordinates are
given by

n

Yi = L aijx j = ailx 1 + ... + ainxn·
j= 1

Visually, the multiplication AX = Y looks like

If A is a square matrix, then we can form the product AA, which will
be a square matrix of the same size as A. It is denoted by A 2

• Similarly,
we can form A3, A4

, and in general, An for any positive integer n. Thus
An is the product of A with itself n times.
We can define the unit n x n matrix to be the matrix having diagonal

components all equal to 1, and all other components equal to O. Thus
the unit n x n matrix, denoted by In, looks like this:

1 0 0 0
0 1 0 0
0 0 1 0

I =n

0 0 0 0

0 0 0 1

We can then define AD = I (the unit matrix of the same size as A). Note
that for any two integers r, S ~ 0 we have the usual relation

A'AS = ASA' = A'+s.

Warning. It is not always true that AB = BA. For instance, compute
AB and BA in the following cases:

You will find two different values. This is expressed by saying that mul­
tiplication of matrices is not necessarily commutative. Of course, in some
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special cases, we do have AB = BA. For instance, powers of A commute,
i.e. we have ArAS = ASAr as already pointed out above.

We now prove other basic properties of multiplication.

Distributive law. Let A, B, C be matrices. Assume that A, B can be
multiplied, and A, C can be multiplied, and B, C can be added. Then A,
B + C can be multiplied, and we have

A(B + C) = AB + AC.

If x is a number, then

A(xB) = x(AB).

Proof Let Ai be the i-th row of A and let B\ Ck be the k-th column
of Band C, respectively.... Then Bk + Ck is the k-th column of B + C.
By definition, the ik-component of A(B + C) is Ai' (Bk + Ck

). Since

our first assertion follows. As for the second, observe that the k-th
column of xB is xBk

• Since

our second assertion follows.

Associative law. Let A, B, C be matrices such that A, B can be multi­
plied and B, C can be multiplied. Then A, BC can be multiplied. So
can AB, C, and we have

(AB)C = A(BC).

Proof Let A = (a i) be an m x n matrix, let B = (b jk) be an n x r
matrix, and let C = (Ckl) be an r x s matrix. The product AB is an m x r
matrix, whose ik-component is equal to the sum

We shall abbreviate this sum using our L notation by writing
n

L aijbjk •
j= 1
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By definition, the ii-component of (AB)C is equal to

t [f. aijbjk]Ckl = t [f. aijbjkCkl]'
k=1 j=1 k=1 j=1

The sum on the right can also be described as the sum of all terms

where j, k range over all integers 1 ~ j ~ nand 1 ~ k ~ r, respectively.
If we had started with the jl-component of BC and then computed the

ii-component of A(BC) we would have found exactly the same sum,
thereby proving the desired property.
A similar, but easier argument using the definitions, can also be used

to prove a formula for the transpose of a product, namely:

'(AB) = 'B!A.

Thus the tranpose of a product is the product of the tranpose in reverse
order. We omit the proof.
Unlike division with non-zero numbers, we cannot divide by a matrix,

any more than we could divide by a vector (n-tuple). Under certain
circumstances, we can define an inverse as follows. We do this. only for
square matrices. Let A be an n x n matrix. An inverse for A is a matrix
B such that

AB = BA = I.

Since we multiplied A with B on both sides, the only way this can make
sense is if B is also an n x n matrix. Some matrices do not have in­
verses. However, if an inverse exists, then there is only one (we say that
the inverse is unique, or uniquely determined by A). This is easy to prove.
Suppose that B, C are inverses, so we have

AB = BA = I and AC = CA = I.

Multiply the equation BA = I on the right with C. Then

BAC = IC = C

and we have assumed that AC = I, so BAC = BI = B. This proves that
B = C. In light of this, the inverse is denoted by

A-I.

Then A -I is the unique matrix such that

and AA- I = I.

It can be proved that if A, B are square matrices of the same size
such that AB = I then it follows that also

BA =1.
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In other words, if B is a right inverse for A, then it is also a left inverse.
You may assume this. Thus in verifying that a matrix is the inverse of
another, you need only do so on one side.
Let c be a number. Then the matrix

(

c 0 ...... 0)
o cO .. · 0

cI = .. ... ... .
o .......... c

having component c on each diagonal entry and 0 otherwise is called a
scalar matrix. We can also write it as cI, where I is the unit n x n
matrix. Cf. Exercise 6.
As an application of the formula for the transpose of a product, we

shall now see that:

The transpose of an inverse is the inverse of the transpose, that is

Proof Take the transpose of the relation AA -1 = I. Then by the rule
for the transpose of a product, we get

because I is equal to its own transpose. Similarly, applying the transpose
to the relation A - 1A = I yields

Hence I(A -1) is an inverse for IA, as was to be shown.

In light of this result, it is customary to omit the parentheses, and to
write

for the inverse of the transpose, which we have seen is equal to the
transpose of the inverse.

We end this section with an important example of multiplication of
matrices.

Example. Rotations. A special type of 2 x 2 matrix represents rota­
tions. For each number 0, let R(O) be the matrix

R(O) = (c~S 0
smO

-sin 0\.
cos OJ
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Let X = (;) be a point on the unit circle. We may write its coordin­

ate x, y in the form

x = cos <p, y = sin <p

for some number <p. Then we get, by matrix multiplication:

R(O)(x) = (C~s 0 - sin0)(C~s <p)
y sm 0 cos 0 sm <p

= (CoS(O + <p))
sin(O + <p) .

This follows from the addition formula for sine and cosine, namely

cos(O + <p) = cos 0 cos <p - sin 0 sin <p,

sin(O + <p) = sin 0 cos <p + cos 0 sin <p.

An arbitrary point in R2 can be written in the form

(
r cos <p)rX= . ,
r sm <p

where r is a number ~ O. Since

R(O)rX = rR(O)X,

we see that multiplication by R(O) also has the effect of rotating rX by
an angle O. Thus rotation by an angle 0 can be represented by the
matrix R(O).

x = '(cos q>, sin q»

Figure 1
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Note that for typographical reasons, we have written the vector IX
horizontally, but have put a little t on the upper left superscript, to
denote transpose, so X is a column vector.

Example. The matrix corresponding to rotation by an angle of nl3 is
given by

(

COS nl3
R(nI3) = . 13smn

(
112

= J3/2

-sin n13)
cos nl3

-J3/2).
112

Example. Let X = t(2, 5). If you rotate X by an angle of n13, find the
coordinates of the rotated vector.
These coordinates are:

(
1/2 - J3/2)(2)

R(nI3)X = J3/2 1/2 5

= (1 - 5J3/2).
J3 + 512

Warning. Note how we multiply the column vector on the left with
the matrix R(O). If you want to work with row vectors, then take the
transpose and verify directly that

(2, 5)( 1/~ J3/2) = (1 - 5J3/2, J3 + 512).
-y 3/2 1/2

So the matrix R(O) gets transposed. The minus sign is now in the lower
left-hand corner.

XIII, §2. EXERCISES

The following exercises give mostly routine practice in the multiplication of ma­
trices. However, they also illustrate some more theoretical aspects of this multip­
lication. Therefore they should be all worked out. Specifically:
Exercises 7 through 12 ilIustrate multiplication by the standard unit vectors.
Exercises 14 through 19 illustrate multiplication of triangular matrices.
Exercises 24 through 27 illustrate how addition of numbers is transformed

into multiplication of matrices.
Exercises 27 through 32 illustrate rotations.
Exercises 33 through 37 illustrate elementary matrices, and should be worked

out before studying §S.
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1. Let I be the unit n x n matrix. Let A be an n x r matrix. What is I A? If A
is an m x n matrix, what is AI?

2. Let 0 be the matrix all of whose coordinates are O. Let A be a matrix of a
size such that the product AO is defined. What is AO?

3. In each one of the following cases, find (AB)C and A(BC).

(a) A=G 1) =(-1 ~} c=G ~)l' B 1

(b) A=G 1 -~). B~(~ ~} c~G)1
3 -1

/

(c) A=G 4 _:). B~ (: -~} c~ ( : :)0
5 -1

4. Let A, B be square matrices of the same size, and assume that AB = BA.
Show that

and

using the distributive law.

5. Let

B=G
Find AB and BA.

6. Let

Let A, B be as in Exercise 5. Find CA, AC, CB, and Be. State the general
rule including this exercise as a special case.

7. Let X = (1,0,0) and let
1

o
1

What is XA?

8. Let X = (0, 1, 0), and let A be an arbitrary 3 x 3 matrix. How would you
describe XA? What if X = (0,0, 1)? Generalize to similar statements con­
cerning n x n matrices, and their products with unit vectors.

9. Let

A =(~
1

1
3)5 .
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Find AX for each of the following values of X.

10. Let
7

-1

1

Find AX for each of the values of X given in Exercise 9.

11. Let

What is AX?

and
_(a: 1

•.. a: 4
)

A-: :.
am1 am4

12. Let X be a column vector having all its components equal to 0 except the
j-th component which is equal to 1. Let A be an arbitrary matrix, whose size
is such that we can form the product AX. What is AX?

13. Let X be the indicated column vector, and A the indicated matrix. Find AX
as a column vector.

(,j X ~~} A~ (i 0

-:) ~J x~(i} A~G ~)1

0

(oj X ~ (::} A = (~
1

~) (djX{} A~G 0

~)0 0

14. Let A = (: :} Find the product AS for each one of the following ma-

trices S. Describe in words the effect on A of this product.

(a) S = (~ ~) (b) S = G
15. Let A = (: :) again. Find the product SA for each one of the following

matrices S. Describe in words the effect of this product on A.

(a) S = (~ ~) (b) S = G 0)1 .



382

16. (a) Let A be the matrix

MATRICES [XIII, §2]

1
o
o

Find A 2
, A 3

. Generalize to 4 x 4 matrices.

(b) Let A be the matrix
1
1
o

17. Let
o
2

o

18. Let A be a diagonal matrix, with diagonal elements a1, •.• ,an' What is A 2 ,

A 3, Ak for any positive integer k?

19. Let
1

o
o

Find A 3

20. (a) Find a 2x 2matrix A such that A 2 = -I = (-01 0)-1 .

(b) Determine all 2 x 2 matrices A such that A 2 = O.

21. Let A be a square matrix.
(a) If A2 = 0 show that I - A is invertible.
(b) If A 3 = 0, show that I - A is invertible.
(c) In general, if An = 0 for some positive integer n, show that I - A is
invertible. [Hint: Think of the geometric series.]

(d) Suppose that A 2 + 2A + I = O. Show that A is invertible.
(e) Suppose that A 3 - A + I = O. Show that A is invertible.

22. Let A, B be two square matrices of the same size. We say that A is similar
to B if there exists an invertible matrix T such that B = TAT - 1. Suppose
this is the case. Prove:
(a) B is similar to A.
(b) A is invertible if and only if B is invertible.
(c) IA is similar to IE.
(d) Suppose An = 0 and B is an invertible matrix of the same size as A.
Show that (BAB- 1)n = O.
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*

23. Let A be a square matrix which is of the form

Exercises 24 through 27 give examples where addition of numbers is trans­
formed into multiplication of matrices.

24. Let a, b be numbers, and let

and

What is AB? What is A 2 , A 3 ? What is An where n is a positive integer?

25. Show that the matrix A in Exercise 24 has an inverse. What is this inverse?

26. Show that if A, Bare n x n matrices which have inverses, then AB has an
Inverse.

27. Rotations. Let R(O) be the matrix given by

(

COS 0
R(O) = . Ll

SInu

-sin 0).
cos 0

(a) Show that for any two numbers 01, O2 we have

[You will have to use the addition formulas for sine and cosine.]
(b) Show that the matrix R(O) has an inverse, and write down this inverse.
(c) Let A = R(O). Show that

2 (COS 20A =
sin 20

-sin 20).
cos 20

(d) Determine An for any positive integer n. Use induction.

28. Find the matrix R(O) associated with the rotation for each of the following
values of O.
(a) rr./2 (b) rr./4 (c) rr. (d) -rr. (e) -rr./3
(f) rr./6 (g) 5rr./4
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29. In general, let fJ > O. What is the matrix associated with the rotation by an
angle - fJ (i.e. clockwise rotation by fJ)?

30. Let X = '(1,2) be a point of the plane. If you rotate X by an angle of 11./4,
what are the coordinates of the new point?

31. Same question when X = I( -1,3) and the rotation is by an angle of 11./2.

32. For any vector X in R2 let Y = R(fJ)X be its rotation by an angle fJ. Show
that II Y\I = IIXII·



CHAPTER XIV

Linear Mappings

We shall first define the general notion of a mapping, which generalizes
the notion of a function. Among mappings, the linear mappings are the
most important. A good deal of mathematics is devoted to reducing
questions concerning arbitrary mappings to linear mappings. For one
thing, they are interesting in themselves, and many mappings are linear.
On the other hand, it is often possible to approximate an arbitrary map­
ping by a linear one, whose study is much easier than the study of the
original mapping. This is done in the calculus of several variables. See
Chapter XVI.

XIV, §1. MAPPINGS

As usual, a collection of objects will be called a set. A member of the
collection is also called an element of the set. It is useful in practice to
use short symbols to denote certain sets. For instance we denote by R
the set of all numbers. To say that "x is a number" or that "x is an
element of R" amounts to the same thing. The set of n-tuples of
numbers will be denoted by Rn. Thus"X is an element of Rn" and"X
is an n-tuple" mean the same thing. Instead of saying that u is an ele­
ment of a set S, we shall also frequently say that u lies in S and we write
u E S. If Sand S' are two sets, and if every element of S' is an element of
S, then we say that S' is a subset of S. Thus the set of rational numbers
is a subset of the set of (real) numbers. To say that S is a subset of S' is
to say that S is part of S'. To denote the fact that S is a subset of S', we
write S c S'.
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If Sl' S2 are sets, then the intersection of Sl and S2' denoted by
Sin S2' is the set of elements which lie in both Sl and S2. The union of
Sl and S2' denoted by SlU S2' is the set of elements which lie in Sl or
S2·
Let S, Sf be two sets. A mapping from S to Sf is an association which

to every element of S associates an element of S'. Instead of saying that
F is a mapping from S into Sf, we shall often write the symbols

F:S~S'.

A mapping will also be called a map, for the sake of brevity.
A function is a special type of mapping, namely it is a mapping from

a set into the set of numbers, i.e. into R.
We extend to mappings some of the terminology we have used for

functions. For instance, if T: S ~ S' is a mapping, and if u is an element
of S, then we denote by T(u), or Tu, the element of Sf associated to u by
T. We call T(u), the value of T at u, or also the image of u under T.
The symbols T(u) are read "T of u". The set of all elements T(u), when
u ranges over all elements of S, is called the image of T. If W is a subset
of S, then the set of elements T(w), when w ranges over all elements of
Jv, is called the image of Wunder T, and is denoted by T(W).
Let F: S ~ S' be a map from a set S into a set S'. If x is an element

of S, we often write

X 1--+ F(x)

with a special arrow 1--+ to denote the image of x under F. Thus, for in­
stance, we would speak of the map F such that F(x) = x 2 as the map
x 1--+ x 2

•

Example 1. Let Sand S' be both equal to R. Let I: R ~ R be the
function I(x) = x 2 (i.e. the function whose value at a number x is x 2

).

Then I is a mapping from R into R. Its image is the set of numbers
~O.

Example 2. Let S be the set of numbers ~ 0, and let Sf = R. Let

g:S~S'

be the function such that g(x) = X
1

/
2

. Then g is a mapping from S

into R.

Example 3. Let S be the set R3, i.e. the set of 3-tuples. Let
A = (2, 3, -1). Let L: R3 ~ R be the mapping whose value at a vector
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x = (x,Y,z) is A·X. Then L(X) = A·X. If X = (1, 1, -1), then the
value of L at X is 6.

Just as we did with functions, we describe a mapping by giving its
values. Thus, instead of making the statement in Example 3 describing
the mapping L, we would also say: Let L: R3 --+ R be the mapping
L(X) = A . X. This is somewhat incorrect, but is briefer, and does not
usually give rise to confusion. More correctly, we can write X f--+ L(X)
or X f--+ A .X with the special arrow f--+ to denote the effect of the map L
on the element X.

Example 4. Let F: R2 --+ R2 be the mapping given by

F(x, y) = (2x,2y).

Describe the image under F of the points lying on the circle x 2 + y2 = 1.
Let (x, y) be a point on the circle of radius 1.
Let u = 2x and v = 2y. Then u, v satisfy the relation

(U/2)2 + (V/2)2 = 1,

or in other words,

Hence (u, v) is a point on the circle of radius 2. Therefore the image
under F of the circle of radius 1 is a subset of the circle of radius 2.
Conversely, given a point (u, v) such that

let x = u/2 and y = v/2. Then the point (x, y) satisfies the equation

and hence is a point on the circle of radius 1. Furthermore,

F(x, y) = (u, v).

Hence every point on the circle of radius 2 is the image of some point
on the circle of radius 1. We conclude finally that the image of the circle
of radius 1 under F is precisely the circle of radius 2.

Note. In general, let S, S' be two sets. To prove that S = S', one fre­
quently proves that S is a subset of S' and that S' is a subset of S. This
is what we did in the preceding argument.
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Observe that the association

(x, y) H (2x, 2y)

is a dilation, i.e. a stretching by a factor of 2. Each point (x, y) is
mapped on the point (2x,2y) which lies on the same ray from the origin,
at twice the distance from the origin, as illustrated on Fig. 1.

(0,0)

Figure 1

Example 5. In general, let r be a positive number. The association

(x, y) H (rx, ry)

is called dilation by the factor of r. We can also define it in 3-space, by

(x, y, z) H (rx, ry, rz).

We shall study such dilations later when we take up area and volume,
and we shall see how these change under dilations.

Example 6. A curve in space as we studied in Chapter II was a map­
ping. For instance, we can define a map

by the association

Thus F(t) = (2t, lOt, t 3
), and the value of F at 2 is

F(2) = (4, 100,8).

In such a mapping we call

the coordinate functions of the mapping.
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In general, a mapping F: R --. R3 can always be expressed in terms of
such functions, and we write

F(t) = (I1(t), fit), fit).

Example 7. Polar coordinate mapping. Let F: R2 --. R2 be the mapping
defined by

F(r, e) = (r cos e, r sin e).
Thus we may put

x = r cos e,
y = r sin e.

Then F is a mapping, which is called the polar coordinate mapping. We
see that x and y depend on r, e, and x, yare the coordinate functions of
the mapping. We studied this mapping when we changed coordinates in
a double integral. You should get well acquainted with this mapping,
and we work out one example of what it does. Let S be the rectangle
consisting of all points (r, e) such that

and o~ e~ n/2.

We want to describe the image of S under the polar coordinate mapping.

r-axis

F
•

Figure 2

y

x

The image of S under the polar coordinate map F consists of all points
(x, y) whose polar coordinates (r, e) satisfy the above inequalities. We
see that the image is just the sector of radius 2 in the first quadrant as
shown on Fig. 2.

Example 8. Translations. Let A be a vector, say in the plane. We let

be the mapping such that
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We call TA the translation by A. On Fig. 3 we have drawn the transla­
tions of various points P, Q, M under translation by A. We may de­
scribe the image of a point P under translation by A as the point
obtained from P by moving P in the direction of A, for a distance equal
to the distance between 0 and A. Of course, the same notion also works
in higher dimensional space. If A is an n-tuple, then

is the mapping defined by the same equation as above, namely

You can visualize the picture (at least in R3) similarly.

o

Figure 3

Example 9. You should not forget the identity mapping l, defined on
any set S, and such that lex) = x for all x in S.

XIV, §1. EXERCISES

1. Let L(X) = A·X, where A = (2, 3, -1). Give L(X) when X is the vector:
(a) (1,2, -3) (b) (-1,5,0) (c) (2,1,1)

2. Let F: R ---+ R2 be the mapping such that F(t) = (e l
, t). What is F(1), F(O),

F( -1)?

3. Let A = (1, 1, -1, 3). Let F: R4 ---+ R be the mapping such that for any vector
X = (Xl' X 2 , X 3 , X 4 ) we have F(X) = X· A + 2. What is the value of F(X)
when (a) X = (1, 1,0, -1) and (b) X = (2, 3, -1, 1)?

In each case, to prove that the image is equal to a certain set S, you must prove
that the image is contained in S, and also that every element of S is in the
image.

4. Let F: R2 ---+ R2 be the mapping defined by F(x, y) = (2x, 3y). Describe the
image of the points lying on the circle x 2 + y2 = 1.
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5. Let F: R2 -+ R2 be the mapping defined by F(x, y) = (xy, y). Describe the
image under F of the straight line x = 2.

6. Let F be the mapping defined by F(x, y) = (eX cos y, eX sin y). Describe the
image under F of the line x = 1. Describe more generally the image under F
of a line x = c, where C is a constant.

7. Let F be the mapping defined by F(t, u) = (cos t, sin t, u). Describe geometri­
cally the image of the (t, u)-plane under F.

8. Let F be the mapping defined by F(x, y) = (x/3, y/4). What is the image
under F of the ellipse

x2 y2
-+-= I?
9 16

9. Draw the images of the following sets S under the polar coordinate mapping.
In each case, the set S consists of all points (r, 8) satisfying the stated inequa­
lities.
(a) 0 ~ r ~ 1 and 0 ~ 8 ~ n/3
(b) 0 ~ r ~ 3 and 0 ~ 8 ~ 3n/4
(c) 1 ~ r ~ 2 and n/4 ~ 8 ~ 3n/4
(d) 1 ~ r ~ 2 and n/3 ~ 8 ~ 2n/3
(e) 2 ~ r ~ 3 and n/6 ~ 8 ~ n/4
(f) 2 ~ r ~ 3 and n/6 ~ 8 ~ n/3
(g) 3 ~ r ~ 4 and n/2 ~ 8 ~ 2n/3

10. In general, let S be the rectangle defined by the inequalities

and

Describe the image of S under the polar coordinate mapping.

11. Let A = ( -1, 2). Draw the image of the point X under translation by A
when
(a) X = (2, 3) (b) X = (-5,2) (c) X = (1, 1)

12. The identity mapping of R" is equal to a translation TA for some vector A.
True or false? If true, which vector A?

13. Draw the image of the following figures under translation T
A

, where
A = (-1,2).
(a) The circle as shown:

Figure 4
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(b) The square as shown:

LINEAR MAPPINGS

Figure 5

[XIV, §2]

(c) The circle as shown:

(d) The square as shown:

3

2

o

o

-1

-2

o
Figure 6

Figure 7

XIV, §2. LINEAR MAPPINGS

Consider two Euclidean spaces Rn and Rm. In the applications, the val­
ues for m and n are 1, 2, or 3, but they can all occur, so it is just as easy
to leave them indeterminate for what we are about to say.
A mapping
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is called a linear mapping if it satisfies the following properties:

LM 1. For any elements X, Y in Rn we have

L(X + Y) = L(X) + L(Y).

LM 2. If c is a number, then

L(cX) = cL(X).

These properties should remind you of properties of multiplication of
matrices and also of the dot product of n-tuples. These in fact provide
us with the examples which interest us for this course.

Example 1. Let A = (3, 1, - 2). Then we have a linear map

defined by the dot product,

whe,e X is a oolumn vcow in R'. If X ~ G) ,theo
LA(X) = 3x + y - 2z.

In general, let

... a )1n

amn

be an m x n matrix. We can then associate with A a map

by letting

for every column vector X in Rn
. Thus LA is defined by the association

X H AX, the product being the product of matrices. That LA is linear is
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simply a special case of the distributive law, namely the theorem con­
cerning properties of multiplication of matrices. Indeed, we have

A(X + Y) = AX + A Y and A(cX) = cAX

for all vectors X, Y in Rn and all numbers c. We call LA the linear map
associated with the matrix A. We also say that A is the matrix repre­
senting the linear map LA'

Example 2. If

then

A = ( 2 1)
-1 5

and X=G}

L X_( 21)(3) _( 6+ 7) _(13)
A( ) - -1 5 7 - - 3 + 35 - 32 .

Theorem 2.1. If A, Bare m x n matrices and if LA = L B , then A = B.
In other words, if matrices A, B give rise to the same linear map, then
they are equal.

Proof By definition, we have Ai'X = Bi ·X for all i, if Ai is the i-th
row of A and Bi is the i-th row of B. Hence (Ai - B;)· X = 0 for all i
and all X. Hence Ai - Bi=0, and Ai=B i for all i. Hence A=B.

Theorem 2.2. Let L: Rn ~ Rm be a linear map. Then there exists a
matrix A such that L = LA" In other words, every linear map from Rn

into Rm is of the type described above.

Definition. The matrix A such that L = LA is called the matrix asso­
ciated with the linear map L.

We omit the proof of Theorem 2.2 in general, but give it when
n = m = 2.

Let E 1 = (~) and E 2 = (~) be the standard unit vectors. Let

L: R2 ~ R2 be a linear map such that

and

We shall prove that the matrix associated with L is precisely



[XIV, §2]

First note that

and
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Let X = (;). so that X = xE 1 + yE2
• Then

L(X) = L(xE1
) + L(yE2

) = xL(E1
) + yL(E2

)

= xAE1 + yAE2

= A(xE1 + yE2
)

= AX.

This proves that L(X) = AX, and therefore that A is the matrix repre­
senting L. A similar proof can be given for R3, or Rn.

Example 3. Let L: R2 -+ R2 be a linear map such that

and

Then the matrix associated with L is the matrix

You can check that it has the desired effect on the unit vectors, namely:

and

Theorem 2.3. Let L: Rn-+ Rm be a linear map. Then L(O) = o.

Proof. You can see this by using a matrix. Suppose L = LA. Then
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Or you can give a direct argument as follows. We have

L(O) = L(O + 0) = L(O) + L(O).

Add - L(0) to both sides to find 0 = L(0), as was to be shown.

XIV, §2. EXERCISES

1. In each case, find the vector LA(X).

(a) A = G
(c) A =G

(b) A = G
(d) A =G

2. Let r be a number. Let F,: Rn -> Rn be the dilation mapping, defined by the
formula

F,(X) = rX.

Exhibit a matrix A such that F,(X) = AX.

3. Let a, b be numbers. Let Fa,b: R2 -> R2 be the mapping such that

Exhibit a matrix A such that Fa,b(X) = AX.

4. Let ai' a2, a3 be numbers. Let

Let F(X) = '(alx, a2y, a3z). Exhibit a matrix A such that F(X) = AX.

5. Let X = 'ex, y, z). Let F(X) = 'ex, y). Exhibit a matrix A such that
F(X) = AX.

6. Let X = 'ex, y, z). Let F(X) = x. Exhibit a matrix A such that F(X) = AX.

7. Let X = 'ex, y, z). Let F(X) = 'ex, z). Exhibit a matrix A such that
F(X) = AX.

8. Same question as Exercise 7 if F(X) = 'cy, z).

9. Let X = '(X l , x 2, x 3, x4). Let F: R4 -> R2 be the mapping such that

Exhibit a matrix A such that F(X) = AX.
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10. Let F: R4 -> R3 be the mapping such that

11. Let A be an element of R3 . Suppose that the translation by A is a linear
map. What is the only possibility for A? If A i' 0, can TA be a linear map ?

Proof?

12. Let L: R2 t-+ R2 be the linear map such that

and

What is the matrix associated with L?

13. Same question if

and

14. Let L: R3 t-+ R3 be a linear map such that

Here

and

What is the matrix associated with L? Verify that it has the desired effect on
the unit vectors.

15. Write out the proof that if E I, E2
, E3 are the standard unit vectors in R3,

and if L: R3 t-+ R 3 is the linear map such that

then the matrix A associated with L is the matrix (ai), that is

16. Let L: R3 t-+ R 3 be the linear map such that
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What is the matrix associated with L? Verify directly that it has the desired
effect on the unit vectors.

17. Let L: R f-+ R" be a linear map. Prove that there exists a vector A in R"
such that for all t in R we have

L(t) = tAo

18. Let L: R2 f-+ R3 be a linear map. Let

and

be the unit vectors in R2• Suppose that

In terms of the aij, what is the matrix A associated with L?

19. Let L: R2 f-+ R3 be a linear map, and suppose that Et, E2 are the unit vec­
tors in R2

• Let

L(E')~ CD and L(E') = CO
What is the matrix A associated with L?

XIV, §3. GEOMETRIC APPLICATIONS

Let P, A be elements of Rn
• We define the line segment between P and

P + A to be the set of all points

P + tA, O~t~1.

This line segment is illustrated in Fig. 8.

P+A

P+tA

P

Figure 8
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For instance, if t = t, then P + tA is the point midway between P
and P + A. Similarly, if t = !, then P + !A is the point one-third of the
way between P and P + A (Fig. 9).

P

P+tA

(a)

P+A

Figure 9

P

P+~A

(b)

P+!A

P+A

If P, Q are elements of R", let A = Q- P. Then the line segment be­
tween P and Q is the set of all points P + tA, or

P + t(Q - P).

p

O~t~1.

Q

P+t(Q-P)

Figure 10

Observe that we can rewrite the expression for these points in the form

(1) (1 - t)P + tQ, o~ t ~ 1,

and letting s = 1 - t, t = 1 - s, we can also write it as

sP + (1 - s)Q, O~s~1.

Finally, we can write the points of our line segment in the form

(2)

with t 1, t 2 ~ 0 and t 1 + t 2 = 1. Indeed, letting t = t 2 , we see that every
point which can be written in the form (2) satisfies (1). Conversely, we
let t 1 = 1 - t and t2 = t and see that every point of the form (1) can be
written in the form (2).
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Let L: Rn --+ Rm be a linear map. Let S be the line segment in Rn be­
tween two points P, Q. Then the image L(S) of this line segment is the
line segment in Rm between the points L(P) and L(Q). This is obvious
from (2), because

We shall now generalize this discussion to higher dimensional figures.
Let P, Q be elements of Rn, and assume, that they are =I 0, and Q is not
a scalar multiple of P. We define the parallelogram spanned by P and Q
to be the set of all points

with

for i = 1,2.

P+Q

Figure 11

This definition is clearly justified since tIP is a point of the segment be­
tween 0 and P (Fig. 11), and t 2 Q is a point of the segment between 0
and Q. For all values of t l , t 2 ranging independently between 0 and 1,
we see geometrically that tIP + t 2Q describes all points of the parallelo­
gram.
At the end of §1 we defined translations. We obtain the most general

parallelogram (Fig. 12) by taking the translation of the parallelogram just
described. Thus if A is an element of Rn

, the translation by A of the
parallelogram spanned by P and Q consists of all points

with

for i = 1,2.
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O~A

Figure 12

401

As with line segments, we see that if

is a linear map, and if S is a parallelogram as described above, then the
image of S is again a parallelogram, provided that L(P) and L(Q) do not
lie on the same line through the origin (i.e. L(P) is not a scalar multiple
of L(Q)). This is immediately seen, because the image of Sunder L con­
sists of all points

with

for i = 1,2.

We see again the usefulness of the conditions for linearity LM 1 and
LM2.

Example. Let S be the parallelogram spanned by the vectors
P = '(1,2) and Q= t( -1,5). Let L: R2 f--+ R2 be the linear map LA'
where A is the matrix

Then, writing P, Q as vertical vectors, we obtain

L(P) = AP = ( - ~ ~)G) =G}
L(Q)=AQ=(_~ ~)(-~)=(2~}
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Hence the image of Sunder L is the parallelogram spanned by the vec­
tors '(5,9) and '(2,26).
On the next figure, we have drawn a typical situation of the image of

a parallelogram under a linear map.

L ..

L(Q)

Figure 13

A similar discussion can be carried out in 3-space. It is good practice
for you to write it up yourself. Do Exercise 5.

XIV, §3. EXERCISES

1. Let L be the linear map represented by the matrix

Let S be the line segment between P and Q. Draw the image of Sunder L,
indicating L(P) and L(Q) in each of the following cases.
(a) P = '(2, 1) and Q = '( -1, 1)
(b) P = '(3, -1) and Q = '(I, 2)
(c) P = '(1, 1) and Q = '(1, -1)
(d) P = '(2, -1) and Q = '(1,2)

2. In cases (a), (b), (c), and (d) of Exercise 1, let T be the parallelogram
spanned by P and Q. Draw the image of T by the linear map L of Exercise
1, indicating in each case L(P) and L(Q).

3. Let E 1 = (~) and E2 = (~) be the standard unit vectors. Write down their
images under the linear map L represented by the matrix

Let S be the square spanned by E1 and E2
• Draw the image of this square

under L, indicating L(E1 ) and L(E2
).
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4. Let E1, E2 again be the standard unit vectors, drawn vertically. Let L be the
linear map represented by the matrix

Let S be the square spanned by E1, E 2 • Draw the image L(S), again indicat­
ing L(E1

) and L(E2
).

5. (a) Give a definition of the box (parallelepiped) spanned by three vectors A,
B, C in R3.

(b) Let L: R3 -+ R3 be a linear map. Prove that the image of such a box
under L is again a box, spanned by L(A), L(B), L(C) (provided that the
segments from 0 to L(A), L(B), L(C), respectively, do not all lie in a
plane, otherwise you get a "degenerate" box).

(c) Draw a picture for this in 3-dimensional space.

6. Let L be the linear map of R3 into itself represented by the matrix

1

2

-2

Let S be the cube spanned by the three unit vectors E1, E 2
, E 3

. Give explic­
itly three vectors spanning L(S).

7. Same questions as in Exercise 6, if L is represented by the matrix

( ~ ~ -:).
-1 2-8

8. Let X(t) = P + tA, with t in R, be the parametrization of a straight line in
R". Let L: R" -+ Rm be a linear map. Suppose that L(A) # O. Prove that the
image of the straight line is a straight line.

9. Let S be a line passing through two distinct points P and Q, in R". Let
L: R" -+ Rm be a linear map, such that L(P) # L(Q).
(a) Give a parametric representation of the line S.
(b) Give a parametric representation of the line L(S).

10. Let A, B be non-zero vectors in R" and assume that neither is a scalar multi­
ple of the other. Such vectors are called independent. We define the plane
spanned by A and B to be the set of all points

tA + sB,

for all real numbers t, s. Observe that this is the 2-dimensional analogue of
the parametrization of a line. Let L: R" -+ Rm be a linear map. Assume that
L(A) and L(B) are independent. Prove that the image of the plane spanned
by A and B is a plane (spanned by which vectors?).
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11. Let A, B be independent vectors in R", and let P be a point. We define the
plane through P parallel to A, B to be the set of all points

P + tA + sB,

where t, s range over all real numbers. Let L: R" ---+ Rm be a linear map such
that L(A) and L(B) are independent. Prove that the image of the preceding
plane is also a plane.
The plane of Exercise 11 looks like this.

A B

Figure 14

It is the translation by P of the plane in Exercise 10.

XIV, §4. COMPOSITION AND INVERSE OF MAPPINGS

This section will be useful for Chapter XVI, §2, §3 and Chapter XVII.

Before we discuss linear mappings, we have to make some more remarks
on mappings in general. You recall that in studying functions of one
variable, you met composite functions and the chain rule for differentia­
tion. We shall meet a similar situation in several variables.
In one variable, let

and g:R--+R

be functions. Then we can form the composite function 9 0 f, defined by

(g 0 f)(x) = g(f(x)).

Let U, V, W be sets. Let

F: U --+ V and G: V --+ W
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be mappings. Then we can form the composite mapping from U into W,
denoted by Go F. It is by definition the mapping defined by

(G 0 F)(u) = G(F(u»

for all u in U.

Example 1. Let G: R2 --+ R2 be the mapping such that

G(Y) = 3Y.

Let F: R2 --+ R2 be the mapping such that F(X) = X + A, where

A = (1, -2).

Then

G(F(X» = G(X + A) = 3(X + A) = 3X + 3A.

Our mapping Go F is the composite of a translation and a dilation.

Example 2. Let G: R2 --+ R3 be the mapping such that

G(x, y) = (x 2
, xy, sin y).

If (u, v, w) are the coordinates of R3 , we may set

v = xy, w = SIllY.

Let F: R3 --+ R3 be the mapping such that

F(u, v, w) = (u 3
, uv, vw)

Then

F(G(x, y» = (x 6
, x 3y, xy sin y).

The composition of mappings is associative. More precisely, let U, V,
J¥, S be sets. Let

F: U --+ V,

be mappings. Then

G: V --+ W, and H:W--+S

Ho(GoF) = (HoG)oF.
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Proof Here again, the proof is very simple. By definition, we have,
for any element u of U:

(H 0 (G 0 F))(u) = H((G 0 F)(u)) = H(G(F(u))).

On the other hand,

((H 0 G) 0 F)(u) = (H 0 G)(F(u)) = H((G(F(u))).

By definition, this means that (H 0 G) 0 F = H 0 (G 0 F).

If S is any set, the identity mapping Isis defined to be the map such
that Is(x) = x for all XES. If we do not need to specify the reference to
S (because it is made clear by the context), then we write I instead of Is.
Thus we have I(x) = x for all XES.

Finally, we define inverse mappings. Let F: S --+ Sf be a mapping from
one set into another set. We say that F has an inverse if there exists a
mapping

G: Sf --+ S

such that

GoF = Is and FoG = Is"

By this we mean that the composite maps G 0 F and FoG are the iden­
tity mappings of S and Sf respectively.

Example 3. Let S = Sf be the set of all numbers ~ O. Let

f: S --+ Sf

be the map such that f(x) = x 2
• Then f has an inverse mapping,

namely the map g: S --+ S such that g(x) = .;-;,.

Example 4. Let R + be the set of numbers > 0 and let f: R --+ R + be
the map such that f(x) = eX. Then f has an inverse mapping which is
nothing but the logarithm.

Example 5. Let A be a vector in R 3 and let

be the translation by A. By definition, we recall that this means
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If B is another vector in R3 , then the composite mapping TB 0 TA has the
value

(TBo TA)(X) = TB(TA(X))

= TB(X + A)

=X+A+B.

If B = -A, we see that

and similarly that TiT-A(X)) = X. Hence T -A is the inverse mapping
of T

A
. In words, we may say that the inverse mapping of translation by

A is translation by - A. Of course, the same holds in Rn
•

A

Figure 15

Let
f:S-+S'

be a map. We say that f is injective if whenever x, yES and x =/= y, then
f(x) =/= f(y)· In other words, f is injective means that f takes on dis­
tinct values at distinct elements of S. For example, the map

f: R -+ R

such that f(x) = x 2
, is not injective, because f(l) = f( -1) = 1. Also the

function x 1--+ sin x is not injective, because sin x = sin(x + 2n). However,
the map f: R 1--+ R such that f(x) = x + 1 is injective, because if x + 1 =
y + 1, then x = y.
Again, let f: S -+ S' be a mapping. We shall say that f is surjective if

the image of f is all of S'. Again, the map

f: R -+ R

such that f(x) = x 2
, is not surjective, because its image consists of all

numbers ~ 0, and this image is not equal to all of R. On the other
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hand, the map of R into R given by x ~ x 3 is surjective, because given a
number y there exists a number x such that y = x 3 (the cube root of y).
Thus every number is in the image of our map.
Let R + be the set of real numbers ~ O. As a matter of convention,

we agree to distinguish between the maps

and

given by the same formula x ~ x 2
• The point is that when we view the

association x ~ x 2 as a map of R into R, then it is not surjective, and it
is not injective. But when we view this formula as defining a map from
R + into R +, then it gives both an injective and surjective map of R +
into itself, because every positive number has a positive square root, and
such a positive square root is uniquely determined.

In general, when dealing with a map f: S ~ S', we must therefore
always specify the sets Sand S', to be able to say that f is injective, or
surjective, or neither. To have a completely accurate notation, we should
write

fs.s'

or some such symbol which specifies Sand S' into the notation, but this
becomes too clumsy, and we prefer to use the context to make our
meaning clear.

Let
f:S~S'

be a map which has an inverse mapping g. Then f is both injective and
surjective.

Proof Let x, yES and x =1= y. Let g: S' ~ S be the inverse mapping of
f. If f(x) = f(y), then we must have

x = g(f(x)) = g(f(y)) = y,

which is impossible. Hence f(x) =1= f(y), and therefore f is injective. To
prove that f is surjective, let Z E S'. Then

f(g(z)) = z

by definition of the inverse mapping, and hence z = f(x), where x = g(z).

This proves that f is surjective.

The converse of the statement we just proved is also true, namely:

Let f: S ~ S' be a map which is both injective and surjective. Then f
has an inverse mapping.
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Proof Given Z ES', since f is surjective, there exists XES such that
f(x) = z. Since f is injective, this element x is uniquely determined by z,
and we can therefore define

g(z) = x.

By definition of g, we find that f(g(z») = z, and g(f(x») = x, so that g is
an inverse mapping for f.

Thus we can say that a map f: S --+ S' has an inverse mapping if and
only if f is both injective and surjective.

Using another terminology, we can also say that a map

f: S --+ S'

which has an inverse mapping establishes a one-one correspondence
between the elements of S and the elements of S'.

We shall be mostly concerned with linear mappings.

Let F: Rn--+ Rm and G: Rm --+ RS be linear maps. Then the composite
map G 0 F is also a linear map.

Proof This is very easy to prove. Let u, v be elements of Rn. Since F
is linear, we have F(u + v) = F(u) + F(v). Hence

(G 0 F)(u + v) = G(F(u + v») = G(F(u) + F(v»).

Since G is linear, we obtain

G(F(u) + F(v») = G(F(u») + G(F(v»).

Hence

(G 0 F)(u + v) = (G 0 F)(u) + (G 0 F)(v).

Next, let c be a number. Then

(G 0 F)(cu) = G(F(cu»)

= G(cF(u»)

= cG(F(u»)

(because F is linear)

(because G is linear).

This proves that Go F is a linear mapping.
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We can also see this with matrices. Suppose that A is the matrix
associated with F, and B is the matrix associated with G. Then by defin­
ition, we have

F(X) = AX

and

G(Y) = BY

Hence

for Yin Rm.

G(F(X») = B(AX) = (BA)X,

and we see that the product BA is the matrix associated with the linear
map Go F. In other words, the product of the matrices associated with
G and F, respectively, is the matrix associated with Go F.
Let F: Rn ~ Rn be a linear mapping. We shall say that F is invertible

if there exists a linear mapping

such that Go F = I and FoG = I. [It can be shown that if an inverse for
F exists as a mapping, then this inverse is necessarily linear, but we don't
give the proof. It is an easy exercise.] Similarly, let A be an n x n
matrix. We say that A is invertible if there exists an n x n matrix B such
that AB = BA = In is the unit n x n matrix. We denote B by A - 1.

If F is a linear mapping as above, then we know that it has an asso­
ciated matrix A, such that

F(X) = AX for all X in Rn
•

Suppose that F is invertible, and that G is its inverse linear mapping.
Then G also has an associated matrix B, and since G(F(X») = X, we
must have

BAX=X,

for all X in Rn. Similarly, we must also have ABX = X for all X in Rn.
In particular, this must be true if X is anyone of the standard unit vec­
tors, and from this we see that AB = BA = In is the unit n x n matrix.
Thus B=A- 1. In other words:

If A is the matrix associated with an invertible linear mapping

then A - 1 is the matrix associated with the inverse of L.
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It is usually a tedious process to find the inverse of a matrix, and this
process involves linear equations. For 2 x 2 matrices, however, the pro­
cess is short. We shall discuss it in connection with determinants.

XIV, §4. EXERCISES

1. Let F: R3 --+ R3 be the map such that F(X) = 7X. Prove that F has an in­
verse mapping, and that this inverse is linear. Do the same if F: R" --+ R" is
defined by the same formula.

2. Let F: R" --+ R" be the map such that F(X) = -8X. Prove that F is invertible,
and write down its inverse explicitly.

3. Let e be a number # 0 and let L: R" --+ R" be the map such that F(X) = eX.
Prove that L has an inverse linear map, and write it down explicitly.

4. Let A, B, C be square matrices of the same size and assume that they are in­
vertible. Prove that AB is invertible, and express its inverse in terms of A-I
and B- 1

• Also show that ABC is invertible.

5. Let A be a square matrix such that A 2 = O. Show that I - A is invertible. (l
is the unit matrix of the same size as A.)

6. Let A be a square matrix such that A2 + 2A + I = O. Show that A is invert­
ible.

7. Let A be a square matrix such that A 3 = O. Show that I - A is invertible.



CHAPTER XV

Determinants

In this chapter we carry out the theory of determinants for the case of
2 x 2 and 3 x 3 matrices. Those interested in the general case of n x n
matrices can look it up in my Linear Algebra.

XV, §1. DETERMINANTS OF ORDER 2

Let

A = (: ~)

be a 2 x 2 matrix. We define its determinant to be ad - be. Thus the
determinant is a number. We denote it by

I: ~I = ad - be.

For example, the determinant of the matrix

is equal to 2·4 - 1· 1 = 7. The determinant of

is equal to (- 2)·5 - (- 3)·4 = -10 + 12 = 2.
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Theorem 1.1. If A is a 2 x 2 matrix, then the determinant of A is equal
to the determinant of the transpose of A. In other words,

D(A) = D('A).

Proof This is immediate from the definition of the determinant. We
have

IAI = I: ~I and la cdl'I/AI = b

and
ad - bc = ad - cb.

Of course, the property expressed in Theorem 1.1 is very simple. We
give it here because it is satisfied by 3 x 3 determinants which will be
studied later.
Consider a 2 x 2 matrix A with columns AI, A 2

• The determinant
D(A) has interesting properties with respect to these columns, which we
shall describe. Thus it is useful to use the notation

to emphasize the dependence of the determinant on its columns. If the
two columns are denoted by

and

then we would write

D(B, C) = I:~

We may view the determinant as a certain type of "product" between
the columns Band C. To what extent does this product satisfy the same
rules as the product of numbers? Answer: To some extent, which we
now determine precisely.
To begin with, this "product" satisfies distributivity. In the determi­

nant notation, this means:

D 1. If B = B' + B", i.e.

then
D(B' + B", C) = D(B', C) + D(B", C).
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Similarly, if C = C + C, then

D(B, C + C") = D(B, C) + D(B, C).

Proof Of course, the proof is quite simple using the definition of the
determinant. We have

D(B' + B" C) = \b'l + b'{ Cll
' b~ + b~ C2

= (b'l + b'Dc2 - (b~ + b~)Cl

= D(B', C) + D(B", C).

Distributivity on the other side is proved similarly.

D 2. If x is a number, then

D(xB, C) = x .D(B, C) = D(B, xC).

Proof We have

D(xB, C) = I::: ~:I = xb lc2 - xb2 cl = x(b lc2 - b2 cl )

= xD(B, C).

Again, the other equality is proved similarly.

Properties D 1 and D 2 may be expressed by saying that the determi­
nant is linear as a function of each column.

D 3. If the two columns of the matrix are equal, then the determinant is
equal to O. In other words,

D(B, B) = O.

Proof. This is obvious, because

The two vectors

and
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are the standard unit vectors. The matrix formed by them, namely

is the unit matrix. We have:

D 4. If E is the unit matrix, then D(E) = D(E I
, E2

) = 1.

This is obvious.

These four basic properties are fundamental, and other properties can
be deduced from them, without going back to the definition of the deter­
minant in terms of the components of the matrix.

D 5. If we add a multiple of one column to the other, then the value of
the determinant does not change. In other words, let x be a number.
Then

D(B + xC, C) = D(B, C) and D(B, C + xB) = D(B, C).

Written out in terms of components, the first relation reads.

I
bl + XCI cil = Ib l cil.
b2 + XC 2 c2 b2 c2

Proof Using D 1, D 2, D 3 in succession, we find that

D(B + xC, C) = D(B, C) + D(xC, C)

= D(B, C) + xD(C, C) = D(B, C).

A similar proof applies to D(B, C + xB).

D 6. If the two columns are interchanged, then the value of the deter­
minant changes by a sign. In other words, we have

D(B, C) = -D(C, B).

Proof Again, we use D 1, D 2, D 3 successively, and get

0= D(B + C, B + C) = D(B, B + C) + D(C, B + C)
= D(B, B) + D(B, C) + D(C, B) + D(C, C)

= D(B, C) + D(C, B).

This proves that D(B, C) = -D(C, B), as desired.
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Of course, you can also give a proof using the components of the
matrix. Do this as an exercise. However, there is some point in doing it
as above, because in the study of determinants in the higher-dimensional
case later, a proof with components becomes much messier, while the
proof following the same pattern as the one we have given remains neat.

XV, §1. EXERCISES

1. Compute the following determinants.

(a) I~ -~I

(d) I-~ ~I

I
2 -11(b) -3 4

(e) I_~ _~I

(C)I-~ _;1

(f) I-~ -:1
2. Compute the determinant

I
cos 0 -sin 01
sin 0 cos 0

for any real number O.

3. Compute the determinant

when
(a) 0 = n, (b) 0 = n/2, (c) 0 = n/3, (d) 0 = n/4.

4. Prove:
(a) The other half of D 1.
(b) The other half of D 2.
(c) The other half of D 5.

5. Let c be a number, and let A be a 2 x 2 matrix. Define cA to be a matrix
obtained by multiplying all components of A by c. How does D(cA) differ
from D(A)?

XV, §2. DETERMINANTS OF ORDER 3

We shall define the determinant for 3 x 3 matrices, and we shall see that
it satisfies properties analogous to those of the 2 x 2 case.
Let



[XV, §2] DETERMINANTS OF ORDER 3 417

be a 3 x 3 matrix. We define its determinant according to the formula
known as the expansion by a row, say the first row. That is, we define

(1)

and we denote D(A) also with the two vertical bars

all a 12 a 13

D(A) = a 2l a 22 a 23

a 3l a 32 a 33

We may describe the sum in (1) as follows. Let Aij be the matrix ob­
tained from A by deleting the i-th row and the j-th column. Then the
sum for D(A) can be written as

In other words, each term consists of the product of an element of the
first row and the determinant of the 2 x 2 matrix obtained by deleting
the first row and the j-th column, and putting the appropriate sign to
this term as shown.

Example 1. Let

A=(~ ~ ~).
-3 2 5

Then

A 12 = ( 14),-3 5
A 13 = ( 11)-3 2

and our formula for the determinants of A yields

D(A)=21~ ~1-11_~ ~1+ol_~ ~I
= 2(5 - 8) - 1(5 + 12) + 0
= -23.

Thus the determinant is a number. To compute this number in the
above example, we computed the determinants of the 2 x 2 matrices ex­
plicitly. We can also expand these in the general definition, and thus we
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find a six-term expression for the determinant of a general 3 x 3 matrix
A = (a i), namely:

(2)

Do not memorize (2). Remember only (1), and write down (2) only
when needed for specific purposes.
We could have used the other rows to expand the determinant, in­

stead of the first row. For instance, the expansion according to the
second row is given by

Again, each term is the product of a2j with the determinant of the 2 x 2
matrix obtained by deleting the second row and j-th column, together
with the appropriate sign in front of each term. This sign is determined
according to the pattern:

(~ + ~)
If you write down the two terms for each one of the 2 x 2 determinants
in the expansion according to the second row, you will obtain six terms,
and you will find immediately that they give you the same value which
we wrote down in formula (2). Thus expanding according to the second
row gives the same value for the determinant as expanding according to
the first row.
Furthermore, we can also expand according to anyone of the col­

umns. For instance, expanding according to the first column, we find
that

yields precisely the same six terms as in (2), if you write down each one
of the two terms corresponding to each one of the 2 x 2 determinants in
the above expression.
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Example 2. We compute the determinant

3 0 1
1 2 5
-1 4 2

by expanding according to the second column. The determinant is equal
to

21_~ ~1-41~ ~1=2(6-(-1))-4(15-1)= -42.

Note that the presence of 0 in the first row and second column elimi­
nates one term in the expansion, since this term is equal to O.

If we expand the above determinant according to the third column,
we find the same value, namely

Theorem 2.1. If A is a 3 x 3 matrix, then D(A) = DCA). In other
words, the determinant of A is equal to the determinant of the transpose
of A.

Proof This is true because expanding D(A) according to rows or col­
umns gives the same value, namely the expression in (2).

XV, §2. EXERCISES

1. Write down the expansion of a 3 x 3 determinant according to the third row,
the second column, and the third column, and verify in each case that you get
the same six terms as in (2).

2. Compute the following determinants by expanding according to the second
row, and also according to the third column, as a check for your computa­
tion. Of course, you should find the same value.

2 1 2 3 -1 5

(a) 0 3 -I (b) -1 2 I

4 1 1 -2 4 3

1 2 -1 -1 5 3

(d) 0 1 1 (e) 4 0 0

0 2 7 2 7 8

(c)

(f)

2 4 3

-1 3 0

0 2 1

3 1 2

4 5 1
-1 2 -3
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3. Compute the following determinants.

4 0 0 -3 0 0 6 0 0
(a) 0 5 0 (b) 0 5 0 (c) 0 5 0

0 0 7 0 0 -8 0 0 -2

4. Let a, b, c be numbers. In terms of a, b, c, what is the value of the determi-
nant

a 0 0
0 b o ?
0 o c

5. Find the determinants of the following matrices.

(a) G
2

D ~{~
5 2:)1 4

0 0

(e)G-6 n (d{: 98 54)1 2 46
0 0 -1

(e) G
4

D (n (-:
0 n0 2

0 79 54

~)G
5

D (h) (-~
0 n2 2

0 -9 4

6. In terms of the components of the matrix, what is the value of the determi­
nant:

all a l2 a 13

(a) 0 an a23 ?

o 0 a33

all 0 0
(b) a21 a22 0 ?

XV, §3. ADDITIONAL PROPERTIES OF DETERMINANTS

We shall now see that 3 x 3 determinants satisfy the properties D 1
through D 6, listed previously for 2 x 2 determinants. These properties
are concerned with the columns of the matrix, and hence it is useful to
use the same notation which we used before. If AI, A 2, A 3 are the col­
umns of the 3 x 3 matrix A, then we write
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For the rest of this section, we assume that our column and row vectors
have dimension 3; that is, that they have three components. Thus any
column vector B in this section can be written in the form

D l. Suppose that the first column can be written as a sum,

Ai = B + C,

that is,

Then

and the analogous rule holds with respect to the second and third
columns.

Proof We expand the determinant according to the first column. We
see that each term splits into a sum of two terms corresponding to Band
C. For instance:

la
22 a231 = blla22 a

23
\ la

22 a231,all + Cla31 a33 a31 a33 a31 a33

\a
12 al31 = b2la12 al31 la 12 al3l,a21 + c2a31 a33 a31 a33 a31 a33

\a
12 al31 = b2la12 a

l3
\ la

12 al3l·a31 + c2
a21 a23 a21 a23 a21 a23

Summing with the appropriate sign yields the desired relation.

D 2. If x is a number, then

and similarly for the other columns.
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Proof We have
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The proof is similar for the other columns.

D 3. If two columns of the matrix are equal, then the determinant is
equal to O.

Proof. Suppose that A I = A 2, and look at the expansion of the deter­
minant according to the first row. Then all = a12 , and the first two
terms cancel. The third term is equal to 0 because it involves a 2 x 2
determinant whose two columns are equal. The proof for the other cases
is similar. (Other cases: A 2 = A 3 and Al = A 3 .)

In the 3 x 3 case, we also have the unit vectors, namely

and the unit 3 x 3 matrix, namely

o 0)
1 0 .

o 1

D 4. If E is the unit matrix, then D(E) = D(E I
, E2

, E 2
) = 1.

Proof This is obvious from the expansion according to the first row.

Observe that to prove our basic four properties, we needed to use the
definition of the determinant, i.e. its expansion according to the first
row. For the remaining properties, we can give a proof which is not
based directly on this expansion, but only on the formalism of D 1
through D 4. This has the advantage of making the arguments easier,
and in fact of making them completely analogous to those in the 2 x 2
case. We carry them out.

D 5. If we add a multiple of one column to another, then the value of
the determinant does not change. In other words, let x be a number.
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Then for instance,

and similarly in all other cases.

Proof We have

D(A 1
, A 2 + xA1, A 3

) = D(A1, A 2
, A 3

) + D(Al, xA1, A 3
) (by D 1)

= D(A1, A 2
, A 3

) + x·D(A 1
, A!, A 3

) (by D 2)

= D(A 1, A 2
, A 3

) (by D 3).

This proves what we wanted. The proofs of the other cases are similar.

D 6. If two adjacent columns are interchanged, then the determinant
changes by a sign. In other words, we have

and similarly in the other case.

Proof We use the same method as before. We find

0= D(A 1
, A 2 + A3, A2 + A 3

)

= D(A 1
, A 2

, A 2 + A 3
) + D(A1, A 3

, A 2 + A 3
)

= D(A 1
, A 2

, A 2
) + D(A1, A 2

, A 3
) + D(A1, A 3

, A 2
) + D(A 1

, A3, A 3
)

= D(A 1
, A 2

, A 3
) + D(A 1

, A 3
, A 2

),

using D 1 and D 3. This proves D 6 in this case, and the other cases are
proved similarly.

Using these rules, especially D 5, we can compute determinants a little
more efficiently. For instance, we have already noticed that when a 0
occurs in the given matrix, we can expand according to the row (or col­
umn) in which this 0 occurs, and it eliminates one term. Using D 5
repeatedly, we can change the matrix so as to get as many zeros as pos­
sible, and then reduce the computation to one term.
Furthermore, knowing that the determinant of A is equal to the deter­

minant of its transpose, we can also conclude that properties D 1
through D 6 hold for rows instead of columns. For instance, we can
state D 6 for rows:

If two adjacent rows are interchanged, then the determinant changes by
a sign.
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As an exercise, state all the other properties for rows.

Example 1. Compute the determinant

3

1
-1

o
2

4

1

5

2

We already have 0 in the first row. We subtract two times the second
row from the third row. Our determinant is then equal to

3 0 1
1 2 5
-3 0-8

We expand according to the second column. The expansion has only
one term #0, with a + sign, and that is:

The 2 x 2 determinant can be evaluated by our definition of ad - be,
and we find the value

2( -24 - (-3)) = -42.

Example 2. We compute the determinant

4 7 10
3 7 5 .

5 -1 10

We subtract two times the second row from the first row, and then from
the third row, yielding

-2 -7 0
3 7 5 ,

-1 -15 0

which we expand according to the third column, and get

- 5(30 - 7) = - 5(23)

= -115.

Note that the term has a minus sign, determined by our usual pattern of

signs.
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Determinants can also be defined for n x n matrices, satisfying analo­
gous properties to D 1 through D 6. The proofs are similar, but involve
sometimes more complicated notation, so we shall not go into them.

XV, §3. EXERCISES

1. (a) Write out in full and prove property D 1 with respect to the second col­
umn and the third column.

(b) Same thing for property D 2.

2. Prove the two cases not treated in the text for property D 3.

3. Prove D 5 in the case
(a) you add a multiple of the third column to the first;
(b) you add a multiple of the second column to the first;
(c) you add a multiple of the third column to the second.

4. If you interchange the first and third columns of the given matrix, how does
its determinant change? What about interchanging the first and third row?

5. Compute the following determinants.

3 -1

(b) -1 2

-2 4

1 2

5 1

2 -3

2

(a) 0

4

1

(d) 0

o

1 2

3 -1

1 1

2 -1

1 1

2 7

-1

(e) 4

2

5

o
7

5

1

3

3

o
8

2

(c) -1

o
3

(f) 4

-1

4

3

2

3

o
1

6. Compute the following determinants.

o 0
1 0

o 27

4 -1

(e) 2 0

1 5

2 -1

(i) 3 1

1 2

1
(a) -1

1

4 -9

(d) 4 -9

3 1

4

(g) 0

o

1
1

2

2

2

o

3

o
5

3
(b) 4

1

5

(h) 0

o

2

1

5

o
3

o

1

2

7

1

o
7

o
o
9

3

(c) 2

8

2

(f) 1

8

1

5
7

o
1
5

1

5

7

o
o
7

4

5

3

7. In general, what is the determinant of a diagonal matrix

all 0 0

o a22 0 ?

o 0 a33
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8. Compute the following determinants, making the computations lis easy as
you can.

4 -9

(a) 4 -9

3 1

2

2

5

4 -1

(b) 2 0

1 5

1

o
7

2 -1

(c) 1 1

1 2

4

5

3

3

(d) 2

8

1

5

7

1

5

7

2 1

(e) 3 1

4 -2

1

5

3

-4
(f) 5

2

4

1

1

2

3

4

7 3

(g) 1 -1

2 1

2

1

3

3

(h) 1

-1

2

1
3

1

1

4

-2 -1 1
(i) 3 1-1

-1 2 3

2
(j) 1

2

1

1

2

1

1

2

-4 1

(k) 3 2

-1 -1

2

1

1

-1 3
(I) 3-1

6 -2

2
1

2

9. Let c be a number and multiply each component aij of a 3 x 3 matrix A by
c, thus obtaining a new matrix which we denote by cA. How does D(A)
differ from D(cA)?

10. Let Xl' X 2 , X 3 be numbers. Show that

1 Xl xi
1 X 2 x~ = (x2 - X l )(X3 - X 2)(X3 - Xl)'

1 x 3 x~

11. Suppose that A 1 is a sum of three columns, say

Using D 1 twice, prove that

Using summation notation, we can write this in the form

3

D(B l + B2 + B 3, A 2, A 3) = I D(Bj, A 2
, A 3

),
j= 1

which is shorter. In general, suppose that
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is a sum of n columns. Using the summation notation, express similarly

as a sum of (how many?) terms.

12. Let xi (j = 1,2,3) be numbers. Let

Prove that
3

D(A 1 A 2 A 3
) = " x.D(Ci A 2 A 3

)" L..J)'"
i=l

State and prove the analogous statement when

13. State the analogous property to that of Exercise 12 with respect to the
second column. Then with respect to the third column.

14. If a(t), b(t), c(t), d(t) are functions of t, one can form the determinant

l
a(t) b(t)!,
c(t) d(t)

just as with numbers. Write out in full the determinant

I
sin t cos tl
-cos t sin t

15. Write out in full the determinant

I
t +t 1 t - 1 I

2t + 5

16. Let f(t), g(t) be two functions having derivatives of all orders. Let q>(t) be
the function obtained by taking the determinant

I
f(t) g(t) I

q>(t) = f'(t) g'(t)'

Show that

't _I f(t) g(t) \,
q> ( ) - f"(t) g"(t)

i.e. the derivative is obtained by taking the derivative of the bottom row.
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17. Let

DETERMINANTS [XV, §4J

be a 2 x 2 matrix of differentiable functions. Let B(t) and C(t) be its column
vectors. Let

cp(t) = Det(A(t)).

Show that
cp'(t) = D(B'(t), C(t)) + D(B(t), C'(t)).

XV, §4. INDEPENDENCE OF VECTORS

In the geometric applications of Chapter XIV, we studied parallelograms
and parallotopes spanned by vectors. Let us look at the situation in
3-space. Let A, B, C be vectors in R3, and suppose that A, B are inde­
pendent. We define the plane spanned by A and B to be the set of all
points

xA + yB,

with all real numbers x, y. When x = y = 0 we obtain the origin, so the
plane passes through the origin and looks like Fig. 1.

B

Figure 1

We say that C is independent of A and B if C does not lie in the above
plane, i.e. if C cannot be written in the form

C = xA + yB

with some numbers x and y. Geometrically, this means that C points in
a direction outside the plane, as shown on Fig. 2.
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B

Figure 2

More generally, let A, B, C be vectors in R3 . We say that A, B, Care
independent, or linearly independent, if there is no relation

xA + yB + zC = 0

with numbers x, y, z not all equal to O. We shall now see that the deter­
minant gives us a criterion when A, B, C are linearly independent.

Theorem 4.1. Let A, B, C, be in R3. If D(A, B, C) =1= 0 then A, B, C
are linearly independent.

Proof Let x, y, z be numbers such that xA + yB + zC = O. Then

0= D(O, B, C) = D(xA + yB + zC, B, C)

= xD(A, B, C) + yD(B, B, C) + zD(C, B, C)

= xD(A, B, C).

Since D(A, B, C) =1= 0 by assumption, it follows that x = O. A similar ar­
gument computing D(A, 0, C) and D(A, B, 0) shows that y = 0 and z =
O. This concludes the proof.

Remark. The converse is also true, that is:

Let A, B, C be vectors in R3. Then D(A, B, C) =1= 0 if and only if A, B,
C are linearly independent.

For a proof, see a book on linear algebra.

XV, §4. EXERCISES

In the following exercises, let A, B, C be in R 3 and assume that the determinant
D(A, B, C) is i:- O. Prove

1. There is no number x such that B = xA.

2. There is no number x such that B = xc.



430 DETERMINANTS [XV, §5]

3. A is independent of Band C.

4. B is independent of A and C.

5. Draw a picture of the set of all points

xA + yB + zC,

with 0 ~ x ~ 1, 0 ~ y ~ 1, and 0 ~ z ~ 1, in 3-space. This set is called the box
(or parallelotope) spanned by A, B, C.

XV, §5. DETERMINANT OF A PRODUCT

Theorem 5.1. Let A, B be 3 x 3 matrices. Then

D(AB) = D(A)D(B).

In other words, the determinant of a product is the product of the deter­
minants.

Proof Let AB = e and let em be the m-th column of C. From the
definition of the product of matrices, one sees that if X is a column vec­
tor, then

Apply this remark to each one of the columns of B successively, that is,
X = B\ X = B2

, and X = B3 to find the respective columns of C. We
conclude that

Therefore

Here we have used repeatedly linearity with respect to each column.
Any term on the right in the sum will be 0 of i = j, or i = k, or j = k.
The other terms will correspond to a permutation of A 1, A 2, A 3, and
there will be six such terms. If you write them out, and interchange col­
umns making the appropriate sign change, you will find that the sum is
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equal to the six-term expansion for the determinant of B times the deter­
minant of A, in other words

D(AB) = D(B)D(A).

This proves our theorem.

Observe that if A is invertible and AB = I, then we necessarily have
D(A) =F 0, because according to Theorem 5.1,

1 = D(I) = D(A)D(B).

The converse is also true, that is: If D(A) =F 0, then A is invertible. We
shall discuss it in the next section.

XV, §6. INVERSE OF A MATRIX

Theorem 6.1. Let A be a square matrix sueh that D(A) =F O. Then A is
invertible.

Let us consider the 2 x 2 case. Let

A = (: ~)

be a 2 x 2 matrix, and assume that its determinant ad - be =F O. We
wish to find an inverse for A, that is a 2 x 2 matrix

X=G ~)
such that

AX=XA=I.

Let us look at the first requirement, AX = I, which, written out in full,
looks like this:

Let us look at the first column of AX. We must solve the equations

ax + bz = 1, ex + dz = O.
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This is a system of two equations in two unknowns, x and z, which we
know how to solve. Similarly, looking at the second column, we see that
we must solve a system of two equations in the unknowns y, w, namely

Example. Let

ay+bw=O, ey + dw = 1.

We seek a matrix X such that AX = I. We must therefore solve the sys­
tems of linear equations

2x + z = 1,
4x + 3z = 0, and

2y + w = 0,
4y + 3w = 1.

By the ordinary method of solving two equations in two unknowns, we
find

X - 1
- 2' z =-2 and w=1.

Thus the matrix

X = ( ~ -!)
-2 1

is such that AX = 1. The reader will also verify by direct multiplication
that XA = I. This solves for the desired inverse.
The same procedure, of course, works for the general systems (*) and

(**). Consider (*). Multiply the first equation by d, multiply the second
equation by b, and subtract. We get

(ad - be)x = d,

whence

d
x= .

ad - be

We see that the determinant of A occurs in the denominator. You can
solve similarly for y, z, wand you will find similar expressions with only
D(A) in the denominator. This proves Theorem 6.1 in the 2 x 2 case.
The proof in the 3 x 3 case is also done by solving linear equations,

but we shall omit it.
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XV, §6. EXERCISES

INVERSE OF A MATRIX 433

1. Find the inverses of the following matrices.

(2 -1)(a) 5 2 ~) (c) G
2. Write down the general formula for the inverse of a 2 x 2 matrix



CHAPTER XVI

Applications to Functions
of Several Variables

XVI, §1. THE JACOBIAN MATRIX

Throughout this section, all our vectors will be vertical vectors. We let
Dl,· .. ,Dn be the usual partial derivatives. Thus Di = a/ox;.
Let F: Rn ~ Rm be a mapping. We can represent F by coordinate

functions. In other words, there exist functions fl, ... ,fm such that

fl(X)

f2(X)
F(X) = = IUl (X), ... ,fm(X)),

To simplify the typography, we shall sometimes write a vertical vector as
the transpose of a horizontal vector, as we have just done.
We view X as a column vector, X = I(X l ,··. ,xn)·

Let us assume that the partial derivatives of each function
f;(i = 1, ... ,m) exists.

Definition. We define the Jacobian matrix J F(X) to be the matrix of
partial derivatives:

afl afl afl

aX l OX2 oXn

Of2 af2 af2 ~CNX)
... D.r~(x)

(a~.) oXl aX 2 aXnJF(X) = -' =
aX j

Ddm(X) Dnfm(X)...

afm afm ofm

aX l OX2 OXn
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In the case of two variables (x, y), say F is given by functions (1, g),
so that

F(x, y) = U(x, y), g(x, y)),

then the Jacobian matrix is

JF(x, y) =

of
oy
og
oy

(As we have done just now, we sometimes write the vectors horizontally,
although to be strictly correct, they should be written vertically.)

Example 1. Let F: R2 -> R2 be the mapping defined by

F(x, y) = (X
2

+ y2) = (!(x, y)).
e XY g(x, y)

Find the Jacobian matrix JF(P) for P = (1, 1).
The Jacobian matrix at an arbitrary point (x, y) is

(

of Of)
ox oy = (2X
og og yeXY

ox oy

Hence when x = 1, y = 1, we find:

(2 2e)'J F (1, 1) = e

Example 2. Let F: R2 -> R3 be the mapping defined by

Find JF(P) at the point P = (n, n/2).
The Jacobian matrix at an arbitrary point (x, y) is
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Hence

APPLICATIONS TO FUNCTIONS [XVI, §1]

Example 3. Let f: Rn --+ R be a function of n variables. Then its Jaco­
bian matrix is simply the row vector

and this is just the gradient grad f(X) studied in the early chapters.

For an arbitrary mapping

we observe that the row vectors of the Jacobian matrix are the gradients
of the coordinate functions fl"'" fm' so we may rewrite the Jacobian
matrix as

(

grad ~l(X))

JF(X) = : .

grad fm(X)

Thus the Jacobian matrix is a generalization of the gradient.
Let U be open in Rn and F: U --+ Rn be a map into the same dimen­

sional space. Then the Jacobian matrix JF(X) is a square matrix.

Definition. We define the Jacobian determinant to be the determinant
of the Jacobian matrix, that is

Example 4. Let F be as in Example 1, F(x, Y) = (x 2 + y2
, eXY

). Then
the Jacobian determinant is equal to

In particular,
d F (1, 1) = 2e - 2e = 0,

d F(1,2) = 2e2
- 8e2

•



[XVI, §1] THE JACOBIAN MATRIX 437

Example 5. Polar coordinate mapping. An important map is given by
the polar coordinates,

such that

F(r, e) = (r cos e, r sin e),

We can view the map as defined on all of R2
, although when selecting

polar coordinates, we take r ~ O. We see that F maps a rectangle into a
circular sector (Fig. 1).

y

F •
x

Figure 1

In Exercise 6 you can easily find the Jacobian matrix, and then you
can see that the Jacobian determinant is given by

~F(r, e) = r.

XVI, §1. EXERCISES

1. In each of the following cases, compute the Jacobian matrix of F.
(a) F(x, y) = (x + y, x 2y) (b) F(x, y) = (sin x, cos xy)
(c) F(x, y) = (e XY

, log x) (d) F(x, y, z) = (xz, xy, yz)
(e) F(x, y, z) = (xyz, x 2z) (f) F(x, y, z) = (sin xyz, xz)

2. Find the Jacobian matrix of the mappings in Exercise 1 evaluated at the fol­
lowing points.
(a) (1,2) (b) (n, n/2) (c) (1,4)
(d) (1, 1, - 1) (e) (2, - 1, - 1) (f) (n, 2,4)

3. Find the Jacobian matrix of the following maps.
(a) F(x, y) = (xy, x 2

) (b) F(x, y, z) = (cos xy, sin xy, xz)

4. Find the Jacobian determinant of the map in Exercise l(a). Determine all
points where the Jacobian determinant is equal to O.

5. Find the Jacobian determinant of the map in Exercise l(b).
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6. Let F: R2 -> R2 be the map defined by

F(r, e) = (r cos e, r sin e),

in other words the polar coordinates map

x = rcos e, y = r sin e.

Find the Jacobian matrix and Jacobian determinant of this mapping. Deter­
mine all points (r, e) where the Jacobian determinant vanishes.

7. Let F: R3 -> R3 be the mapping defined by

F(r, e, qJ) = (r sin qJ cos e, r sin qJ sin e, r cos qJ)

or in other words

x = r sin qJ cos e, y = r sin qJ sin e, z = r cos qJ.

Find the Jacobian matrix and Jacobian determinant of this mapping.

8. Find the Jacobian matrix and determinant of the map

F(r, e) = (e r cos e, er sin e).

Show that the Jacobian determinant is never O. Show that there exist two
distinct points (r 1 , ( 1) and (r2 , ( 2 ) such that

XVI, §2. DIFFERENTIABILITY

Let U be an open set in Rn
• Let

be a mapping. Let X be a point of U. Let

(

fl(X»)
F(X) = rUl(X), ... ,fm(X») = :

fn(X)

be the coordinate functions of F. We shall say that F is differentiable at
X if all the partial derivatives



[XVI, §2] DIFFERENTIABILITY 439

exist (so the Jacobian matrix JF(X) exists), and if there exists a mapping
G, defined for sufficiently small vectors H such that

F(X + H) = F(X) + JF(X)H + IIHIIG(H)

and

lim G(H) = o.
IIHII~O

Observe tha~ this definition is entirely analogous to the definition of dif­
ferentiability of a function given in Chapter III. In writing

JF(X)H,

we must of course view H as a column vector,

H=

Then we see that

(

grad f1 (X)· H)
JF(X)H = : .

grad fm(X)· H

Theorem 2.1. Let U be an open set in R". Let F: U --. Rm be a map­
ping, having coordinate functions f1' ... ' fm. Assume that each function /;
is differentiable at a point X of U. Then F is differentiable at X.

Proof For each integer i between 1 and n, there is a function gi such
that

lim gi(H) = o.
IIHII~O

and such that we can write

/;(X + H) = /;(X) + grad /;(X) . H + II H II gi(H).

We view X and F(X) as vertical vectors. By definition, we can then
write

F(X + H) = tU1(X + H), ... ,fm(X + H»).
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Hence
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(

Fl:X)) (grad fl.(X).H) (91:H))
F(X + H) = : + : + II H II : .. . .

F m(X) grad f m(X), H gm(H)

The term in the middle, involving the gradients, is precisely equal to the
product of the Jacobian matrix, times H, i.e. to

Jp(X)H.

Let G(H) = t(gl(H), ... ,gm(H)) be the vector on the right. Then

F(X + H) = F(X) + Jp(X)H + II H II G(H).

As IIHII approaches 0, each coordinate of G(H) approaches 0. Hence
G(H) approaches 0; in other words,

lim G(H) = O.
IIHII->O

This proves the theorem.

Observe that the Jacobian matrix J p(X) when applied to H may be
viewed as a linear map.

It is convenient to use the standard notation for the derivative in one
variable, and write

F'(X) instead of Jp(X)

when we interpret the Jacobian matrix as a linear map.

XVI, §3. THE CHAIN RULE

In the First Course, we proved a chain rule for composite functions.
Earlier in this book, a chain rule was given for a composite of a function
and a map defined for real numbers, but having values in Rn. In this
section, we give a general formulation of the chain rule for arbitrary
compositions of mappings.
Let U be an open set in Rn, and let V be an open set in Rm. Let

F: U ~ Rm be a mapping, and assume that all values of F are contained
in V. Let G: V~ RS be a mapping. Then we can form the composite
mapping Go F from U into RS (Fig. 2).
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Figure 2

eC(F(X))

441

The next theorem tells us what the derivative of Go F is in terms of
the derivative of F at X, and the derivative of G at F(X).

Theorem 3.1 Let U be an open set in Rn, let V be an open set in Rm.
Let

F: U --+ V and G:V--+RS

be mappings. Let X be a point of U such that F is differentiable at X.
Assume that G is differentiable at F(X). Then the composite mapping
Go F is differentiable at X, and its derivative is given by

(G 0 F)'(X) = G'(F(X)) 0 F'(X).

Proof By definition of differentiability, there exists a mapping <1>1
such that

lim <1>1(H) = 0
IIHII-O

and
F(X + H) = F(X) + F'(X)H + IIHII<1>1(H).

Similarly, there exists a mapping <1>2 such that

lim <1>2(K) = 0,
IIKII-O

and
G(Y + K) = G(Y) + G'(Y)K + 1\ K II <1>2(K).

We let K = K(H) be

K = F(X + H) - F(X) = F'(X)H + 1\ H II <1>l(H).
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Then
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G(F(X + H)) = G(F(X) + K)

= G(F(X)) + G'(F(X))K + II K II <Il2(K).

[XVI, §3]

Using the fact that G'(F(X)) is linear, and

K = F(X + H) - F(X) = F'(X)H + IIHII<Il1(H),

we can write

(GoF)(X + H) = (GoF)(X) + G'(F(X))F'(X)H

+ IIHIIG'(F(X))<Il 1(H) + 11K II <Il2(K).

Using simple estimates which we do not give in detail, we conclude that

(GoF)(X + H) = (GoF)(X) + G'(F(X))F'(X)H + IIHII<Il3(H).

where
lim <Il 3(H) = O.

IIHII-O

This proves the theorem.

Observe how the proof follows the same pattern as the old proof for
the chain rule in Chapter IV. We used the notation F'(X) and G'(F(X))
to be as close as possible to the old notation for the derivative in the
calculus of one variable. We could of course write down the Jacobian
matrices instead of this notation, and we obtain the formula:

Thus the Jacobian matrix of the composite mapping G 0 F is the product
of the Jacobian matrices of G and F respectively, evaluated at the ap­
propriate points, namely

and

The discussion of inverse mappings and implicit functions, which follows
in the next two sections, is independent of the discussion of the Hessian
in §6. They may thus be covered in any order at the discretion of the
instructor. Furthermore §6 is not necessary for the considerations which
follow.
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XVI, §4. INVERSE MAPPINGS

Let U be open in Rn and let F: U -> Rn be a map, given by coordinate
functions:

F(X) = (II (X), ... ,fn(X)).

If all the partial derivatives of all functions Ii exist and are continuous,
we say that F is a CI-map.

Definition. We say that F is CI-invertible on U if the image F(U) is
an open set V, and if there exists a CI-map G: V -> U such that Go F and
FoG are the respective identity mappings on U and V (Fig. 3).

F

..
G

..

Figure 3

Example 1. Let A be a fixed vector, and let F: Rn -> Rn be the transla­
tion by A, namely F(X) = X + A. Then F is CI-invertible, its inverse
being translation by - A.

Example 2. Let U be the subset of R2 consisting of all paIrS (r, e)
with r > °and 0< e< n. Let

F(r, e) = (r cos e, r sin e).

Let x = r cos e and y= r sin e. Then the image of U is the upper half­
plane consisting of all (x, y) such that y > 0, and arbitrary x (Fig. 4).

6

r

..
F ...

G

Figure 4
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We can solve for the inverse map G, namely:

so that

and
x

8 = arccos­
r

G(x, y) = ( Jx2 + y2, arccos~}

In many applications, a map is not necessarily invertible, but has still
a useful property locally. Let P be a point of U. We say that F is
locally Cl-invertible at P if there exists an open set U 1 contained in U
and containing P such that F is C1-invertible on U 1.

Example 3. If we view F(r, 8) = (r cos 8, r sin 8) as defined on all of
R
2
, then F is not C1-invertible on all of R2 , but given any point other

than the origin, it is locally invertible at that point. One could see this
by giving an explicit inverse map as we did in Example 2. At any rate,
from Example 2, we see that F is C1-invertible on the set r > 0 and
0< 8 < n.

In most cases, it is not possible to define an inverse map by explicit
formulas. However, there is a very important theorem which allows us
to conclude that a map is locally invertible at a point.

Theorem 4.1. Inverse mapping theorem. Let F: U --+ R" be a C 1-map.
Let P be a point of u. If the Jacobian determinant AF(P) is not equal
to 0, then F is locally C 1-invertible at P.

A proof of this theorem is too involved to be given in this book.
However, we make the following comment. The fact that the determi­
nant AF(P) is not 0 implies (and in fact is equivalent with) the fact that
the Jacobian matrix is invertible. Since it is usually very easy to deter­
mine whether the Jacobian determinant vanishes or not, we see that the
inverse mapping theorem gives us a simple criterion for local invertibility.

Example 4. Consider the case of one variable, y = f(x). In the First
Course, we proved that if f'(x o) =F 0 at a point x o, then there is an
inverse function defined near Yo = f(xo). Indeed, say f'(xo) > O. By con­
tinuity, assuming that f' is continuous (i.e. f is C 1

), we know that
f'(x) > 0 for x close to x o. Hence f is strictly increasing, and an inverse
function exists near X o. In fact, we determined the derivative. If g is the
inverse function, then we proved that
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Example 5. The formula for the derivative of the inverse function in
the case of one variable can be generalized to the case of the inverse
mapping theorem. Suppose that the map F: U ~ V has a CI-inverse
G: V~ U. Let X be a point of U. Then Go F = I is the identity, and
since I is linear, we see directly from the definition of the derivative that
I'(X) = I. Using the chain rule, we find that

1= (G 0 F)'(X) = G'(F(X)) 0 F'(X)

for all X in U. In particular, this means that if Y= F(X), then

G'(Y) = F'(X)-l,

where the inverse in this last expression is to be understood as the in­
verse of the linear map F'(X). Thus we have generalized the formula for
the derivative of an inverse function.

Example 6. Let F(x, y) = (eX cos y, eX sin y). Show that F is locally in­
vertible at every point.
We find that

_eX sin y)
eX cos y , whence ~F(X, y) = elX i= 0.

Since the Jacobian determinant is not 0, it follows that F is locally in­
vertible at (x, y) for all x, y.

XVI, §4 EXERCISES

1. Deter~ine whether the following mappings are locally CI-invertible at the gi­
ven pomt.
(a) F(x, y) = (x2 - y2, 2xy) at (x, y) =f. (0,0)
(b) F(x, y) = (x3y + 1, Xl + y2) at (1,2)
(c) F(x, y) = (x + y, yl/4) at (1, 16)

(d) F(x, y) = ( 1 +x 2'~) at (x, y) =f. (0,0)
x y x + y

(e) F(x, y) = (x + x2 + y, x2 + y2) at (x, y) = (5, 8)

2. Determine whether the following mappings are locally C1-invertible at the in­
dicated point.
(a) F(x, y) = (x + y, x2y) at (1, 2)
(b) F(x, y) = (sin x, cos xy) at (n, n/2)
(c) F(x, y) = (e XY

, log x) at (1,4)
(d) F(x, y, z) = (xz, xy, yz) at (1, 1, - 1)
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3. Show that the map defined by F(x, y) = (eX cos y, eX sin y) is not invertible on
all of R2, even though it is locally invertible everywhere.

XVI, §5. IMPLICIT FUNCTIONS

Let U be an open set in 2-space, and let

be a C1-function. Let (a, b) be a point of U, and let

f(a, b) = c.

We ask whether there is some differentiable function y = cp(x) defined
near x = a such that cp(a) = band

I(x, cp(x)) = c

for all x near a. If such a function cp exists, then we say that y = cp(x) is
the function determined implicitly by f

Theorem 5.1. Implicit function theorem. Let U be open in R 2 and
let f: U ~ R be a C1-function. Let (a, b) be a point of U, and let
f(a, b) = c. Assume that D2 f(a, b) -# 0. Then there exists an implicit
function y = cp(x) which is C1 in some interval containing a, and such
that cp(a) = b.

Proof. Let F be the mapping

F(x, y) = (x, f(x, y)).

We claim that F is locally invertible at (a, b). All we have to do is com­
pute the Jacobian matrix and determinant. We have

so that

JF(a, b) = (D
1
f

1
(a, b) D fO( b))2 a,

and hence
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By assumption, this is not 0, and we can apply the inverse mapping
theorem. We know that F(a, b) = (a, c) and there exists a C1-inverse G
defined locally near (a, c). The inverse map G has two coordinate func­
tions, and we can write G(x, z) = (x, g(x, z» for some function g. Thus
we put y = g(x, z), and z = f(x, y). We define

<p(x) = g(x, c).

Then on the one hand,

F(x, <p(x» = F(x, g(x, c» = F(G(x, c» = (x, c),

and on the other hand,

F(x, <p(x» = (x, f(x, <p(x»).

This proves that f(x, <p(x» = c. Furthermore, by definition of an inverse
map, G(a, c) = (a, b) so that <p(a) = b. This proves the implicit function
theorem.

Example 1. Let f(x, y) = x2 + y2 and let (a, b) = (1, 1). Then
c = f(l, 1) = 2. We have Dl!(x, y) = 2y so that

so the implicit function y = <p(x) near x = 1 exists. In this case, we can
of course solve explicitly for y, namely

y = J2 - x2
•

Example 2. We take f(x, y) = x2 + / as in Example 1, and

(a, b) = ( - 1, - 1).

Then again c = f( -1, -1) = 2, and

D2 f(-I, -1)= -2#0.

In this case we can still solve for y in terms of x, namely

y= -J2-x2
•

In general, the equation f(x, y) = c defines some curve as in the fol­
lowing picture (Fig. 5).
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Figure 5

[XVI, §5]

Near the point (a, b) as indicated in the picture, we see that there is an
implicit function (Fig. 6):

(a,y

Figure 6

but that one could not define the implicit function for all x, only for
those x near a.

Example 3. Let f(x, y) = x 2 y + 3y3x 4 - 4. Take (a, b) = (1, 1) so that
f(a, b) = O. Then Dz/(x, y) = x2 + 9y2x4 and

Dz/Cl, 1) = 10 =I O.

Hence the implicit function y = <p(x) exists, but there is no simple way to
solve for it. We can also determine the derivative <p'(1). Indeed, differen­
tiating the equation f(x, y) = 0, knowing that y = <p(x) is a differentiable
function, we find

whence we can solve for y' = <p'(x), namely
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Hence

IMPLICIT FUNCTIONS

2 + 12 7
ep'(1) = - --= --.

1 + 9 5

449

In Exercise 1 we give the general formula for an arbitrary function f

Example 4. In general, given any function f(x, y) = 0 and y = ep(x) we
can find ep'(x) by differentiating in the usual way. For instance, suppose

x3 + 4y sin(xy) = o.

Then taking the derivative with respect to x, we find

3x2 + 4y'sin(xy) + 4y cos(xy)(y + xy').

We then solve for y' as

, 4y 2 cos(xy) + 3x2

y=-
4 sin(xy) + 4xy cos(xy)

whenever 4 sin(xy) + 4xy cos(xy) "# O. Similarly, we can solve for y" by
differentiating either of the last two expressions. In the present case, this
gets complicated.

XVI, §S. EXERCISES

1. Let y = tp(x) be an implicit function satisfying J(x, tp(x)) = 0, both J, tp being
C1. Show that

tp'(x) = _ Dt/(x, tp(x))
Dd(x, tp(x))

wherever Dd(x, tp(x)) ¥= O.

2. Find an expression for tp"(x) by differentiating the preceding expression for
tp'(x).

3. Let J(x, y) = (x - 2)3y + xe y
-

1
• Is Dd(a, b) ¥= 0 at the following points (a, b)?

(a) (1,1) (b) (0,0) (c) (2,1)

4. For each of the following functions J, show that J(x, y) = 0 defines an implicit
function y = tp(x) at the given point (a, b), and find tp'(a).
(a) J(x, y) = x 2

- xy + y2 - 3 at (1, 2)
(b) J(x, y) = x cos xy at (1, n/2)
(c) J(x, y) = 2e x +y

- x + y at (1, -1)
(d) J(x, y) = xeY - y + 1 at (-1,0)
(e) J(x, y) = x + Y + x sin y at (0,0)
(f) J(x, y) = x 5 + yS + xy + 4 at (2, - 2)
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5. Let f be a Cl-function of 3 variables (x, y, z) defined on an open set U of R3.
Let (a, b, c) be a point of U, and assume f(a, b, c) = 0, Dd(a, b, c) =f. 0. Show
that there exists a Cl-function qJ(x, y) defined near (a, b) such that

f(x, y, qJ(x, y») = ° and qJ(a, b) = c.

We call qJ the implicit function z = qJ(x, y) determined by f at (a, b).

6. In Exercise 5, show that

DlqJ(a, b) = _ Dtf(a, b, c).
D 3 f(a, b, c)

7. For each of the following functions f(x, y, z), show that f(x, y, z) = °defines
an implicit function z = qJ(x, y) at the given point (a, b, c) and find DlqJ(a, b)
and D2 qJ(a, b).

(a) f(x, y, z) = x + Y + z + cos xyz at (0,0, -1)
(b) f(x, y, z) = z3 - Z - xy sin z at (0,0,0)
(c) f(x, y, z) = x 3 + y3 + z3 - 3xyz - 4 at (1, 1,2)
(d) f(x, y, z) = x + Y + z - eXYZ at (0, t, t)

8. Let f(x, y, z) = x 3 - 2y2 + Z2. Show that f(x, y, z) = °defines an implicit func­
tion x = qJ(y, z) at the point (1, 1, 1). Find DI qJ and D2 qJ at the point (1, 1).

9. If possible, show that f(x, y, z) = °in Exercise 7 also determines y as an im­
plicit function of (x, z) and x as an implicit function of (y, z). Find the partial
derivatives of these functions at the given point.

XVI, §6. THE HESSIAN

Let U be an open set in Rn and let

f: U-+R

be a function which is twice continuously differentiable. Let P be a
point of U. We have already defined P to be a critical point if

grad f(P) = 0,

or in other words,

DJ(P) = 0 for i = 1, ... ,no

It is then interesting to look at the analogue of the second derivative,
which for functions of several variables is called the Hessian. If f is a
function of X = (Xl"" ,Xn), then its Hessian HJ(X) is the matrix
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Example. Suppose n = 2 and the variables are x, y. Then

= (Di/(X) DID2 !(X»).

DID2 !(X) D~!(X)

When we discussed relative maxima and minima in Chapters V and
VI, we encountered quadratic forms. We may now use matrix notation
to express quadratic forms. Suppose we have a quadratic form

q(x, y) = ax2 + 2bxy + cy2.

We may write this in terms of matrices as the product

q(x, y) = (x, y>(~ ~)G)

The partial product.

(x, y)(~ ~) = (ax + by, bx + cy)

is a .row vector, which, when multiplied by the column vector (~) yields
precIsely the value q(x, y), which is a number. The matrix

is called the matrix associated with the quadratic form.
Let us apply this to the Hessian. Let P = (PI' P2)' Then

where

Thus the quadratic form associated with the Hessian is precisely
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If the reader now looks back at Chapter VI, §2, he will see that this is
exactly the same quadratic form considered in that chapter. All we have
done here is to show how to express it in terms of a matrix multiplica­
tion, and introduced a name for that matrix, namely the Hessian.

Remark on notation. In studying the Hessian, the associated quadratic
form has the type

ax2 + 2bxy + cy2 = ax2 + b'xy + cy2

where
b' = 2b.

Of course it does not matter what we write for the coefficient of xy in
the quadratic form, we must just be clear which letters denote what. In
terms of b', the matrix of the quadratic form can be written as

_ (a b'/2)A- .
b'/2 c



CHAPTER XVI I

The Change of
Variables Formula

If you have not already done so, you should now read the section on
cross products, Chapter I, §7 because we are going to use it.

XVII, §1. DETERMINANTS AS AREA AND VOLUME

We shall study the manner in which area changes under an arbitrary
mapping by approximating this mapping with a linear map. Therefore,
first we study how area and volume change under a linear map, and this
leads us to interpret the determinant as area and volume according as
we are in R2 or R3 .
Let us first consider R2• Let

A = (;) and B=G)
be two non-zero vectors in the plane, and suppose that they are not
scalar multiples of each other. We have already seen that they span a
parallelogram, as shown on Fig. 1.

Figure 1
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Theorem 1.1 in R2 • Let A, B be non-zero elements of R2 , which are not
scalar multiples of each other. Then the area of the parallelogram
spanned by A and B is equal to the absolute value of the determinant
ID(A,B)I.

Proof We assume known that this area is equal to the product of the
lengths of the base times the altitude, and this is equal to

IIAII IIBllisin 81,

where 8 is the angle between A and B (i.e. between 01 and OR). This is
illustrated on Fig. 2.

Figure 2

Note that

Isin 81 = Jl - cos2 8,
and recall from the theory of the dot product that

A·B
cos 8 = IIAIIIIBIl

We have

J
(A:B)2

Area of parallelogram = IIAIIIIBIl 1 - IIAI1 2 11BI1 2

= JIIAII 2
11 B II 2 - (A ·B)2.

All that remains to be done is to plug in the coordinates of A and B to
see what we want come out. Indeed, the above expression is equal to
the square root of

If you expand this out, you will find that this last expression is equal to
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Consequently, the area of the paralleogram is equal to

J(ad - be)2 = lad - bel = ID(A, B)I.

This proves our assertion.

Example 1. Let A = (3, 1) and B = (2, - 5). Then the area of the par­
alleogram spanned by A and B is equal to the absolute value of the de­
terminant

I~ 11 = -15-2= -17.
-5

Hence this area is equal to 17. Note: We wrote our vectors horizontally.
We get the same determinant as if we write them vertically, namely

I~ 2\ = -17
-5 '

because we know that the determinant of the transpose of a matrix is
equal to the determinant of the matrix.
We interpret Theorem 1.1 in terms of linear maps. Given vectors A, B

in the plane, we know that there exists a unique linear map

such that L(E1
) = A and L(E2

) = B. In fact, if

then the matrix associated with the linear map is

Definition. The determinant of a linear map is the determinant of its
associated matrix. Then

det L = ad - be,

and we see that this is the same thing as the determinant

D(A,B).

Let S be the unit square, so S consists of all points

with 0 ~ t 1 ~ 1 and 0 ~ t2 ~ 1 as shown on Fig. 3(a).
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(a)

L--

Figure 3

(b)

Let P be the parallelogram spanned by A and B. Then P consists of all
combinations

with 0 ~ t 1 ~ 1 and 0 ~ t2 ~ 1 as shown on Fig. 3 (b). Since

we conclude that the image of the unit square by L is precisely that par­
alellogram. Furthermore,

Area of P = IDet(L) I.

Example 2. The area of the parallelogram spanned by the vectors
(2,1) and (3, -1) (Fig. 4) is equal to the absolute value of

and hence is equal to 5.

. (2,1)

(3, -I)

Figure 4
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We can also obtain a formula showing how the area of an arbitrary
parallelogram changes under a linear map.

Theorem 1.2. Let P be a parallelogram spanned by two vectors in R2 •
Let L: R2 -4 R 2 be a linear map. Then

Area of L(P) = IDet LI(Area of P).

Proof Suppose that P is spanned by two vectors A, B. Then L(P)
is spanned by L(A) and L(B). (Cf. Fig. 5.) There is a linear map
L 1 : R2 -4 R2 such that

and

(a) (b)

Figure 5

L(A)

L-
(c)

L(B)

Then P = L1(S), where S is the unit square, and

By what we proved above, we obtain

Area L(P) = IDet(LoL1)1 = IDet(L) Det(L1) I = IDet(L)IArea(P),

thus proving our assertion.

Corollary 1.3. For any rectangle R with sides parallel to the axes, and
any linear map

we have

Area L(R) = IDet(L)IArea(R).
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Figure 6

[XVII, §1]

Proof. The rectangle R is equal to the translation of a rectangle R 1 as
shown on Fig. 6, with one corner at the origin, that is

R = R 1 + A.

Then

L(R) = L(R 1 ) + L(A).

The area of L(R 1) is the same as the area of L(R 1 ) + L(A) (i.e the trans­
lation of L(R 1 ) by L(A)). All we have to do is apply Theorem 1.2 to
complete the proof.

Shearing. Let

For any vector X = I(X, y) we have

Thus the effect of LA algebraically is to add a multiple of y to x, but the
y-coordinate stays the same.

y x y AX

Figure 7
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Thus the effect of LA is to "stretch" sideways, along the x-axis. This is
called a sbearing transformation.
Let us look at the effect of shearing on the two basic unit vectors E 1

and E 2
:

AE
1
=G~)(~) = G) = E1,

AE
2
=G~)(~) = G) = A

2
,

where A 2 is the second column of A.

Figure 8

The y-coordinate is unchanged by LA and the x-coordinate gets
"stretched". Observe that the perpendicular height of the parallelogram
spanned by E 1

, E 2 is the same as the perpendicular height of the paral­
lelogram spanned by E1, A 2

• By ordinary plane geometry, the areas of
the parallelograms are equal. This confirms what we now see with deter­
minants, because

det(A) = 1.

Thus a shearing transformation does not change area.

Next we consider volumes of boxes in 3-dimensional space. The box
spanned by three independent vectors A, B, C in 3-space is also called a
parallelotope.

Tbeorem 1.4. Let A, B, C be vectors in R 3, and assume that the seg­
ments 01, 75B, DC do not all lie in a plane. Then the volume of the
box spanned by A, B, C is equal to the absolute value of the determi­
nant.

ID(A, B, C)I.
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Proof Similar arguments to those which applied in R2 show us that
the area of the base of the box, spanned by A and B, is equal to

Look at Fig. 9.

Figure 9

The volume of the box is equal to the area of this base times the alti­
tude, and this altitude is equal to the length of the projection of C along
a vector perpendicular to A and B. You should now have read the sec­
tion on cross products, because the simplest way to handle the present
situati-on is to use the cross product. We know that A x B is such a
vector, perpendicular to A and B. The projection of C on A x B is
equal to

C·(A x B)
---'-----'-- A x B,
(A x B)·(A x B)

where the number in front of Ax B is the component of C along A x B
as studied in Chapter I. Therefore the length of this projection is equal
to

(**)
IC·(AxB)1

IIA x BII

On the other hand, if you look at property CP 6 of the cross product in
Chapter I, §7 you will find that (*) is equal to IIA x BII. Therefore, the
volume of the box spanned by A, B, C, which is equal to the product of
(*) and (**), is seen to be equal to

jC·(A x B)I
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All that remains to be done is for you to plug in the coordinates, to see
that this is equal to the absolute value of the determinant. You let

use the definition of the cross product of Ax B, and then dot with C.
You will find precisely the six terms which give the determinant
D(A, B, C), up to a sign, which is killed by the absolute value. This
proves Theorem 1.4.

Example 3. The volume of the box spanned by the vectors

(3,0, 1), (1,2, 5), (-1,4,2)

is equal to 42, because the determinant

3 ° 1
125
-1 4 2

has the value -42.

Let E 1, E Z, E 3 be the standard unit vectors in the direction of the
coordinate axes in 3-space. Then the unit cube S in 3-space consists of
all points

with °~ t; ~ 1 for i = 1, 2, 3. Let L: R3 --+ R3 be a linear map such that
the vectors

do not lie in a plane, i.e. are independent. Then the image of the unit
cube under L is the set of points

L(t 1E 1 + tzEZ + t3 E 3
) = t1L(E1) + tzL(EZ

) + t 3 L(E3
)

= t1A + tzB + t 3 c.

This image is therefore the parallelotope spanned by A, B, C. Further­
more, the linear map L is represented by the matrix
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Again we define the determinant of the linear map to be the determinant
of its matrix. Then we see that:

The volume of the parallelotope L(S) is equal to the determinant of
L, if S is the unit cube.

L-

(b) (-3,2), (1,4), (-2, -7)
(d) (1, 1), (1,0), (2,3)

Figure 10

Theorem 1.5. Let P be a parallelotope (box) in 3-space, spanned by
three vectors. Let L: R3 ..... R3 be a linear map. Then

Volume of L(P) = IDet LI(Volume ofP).

Corollary 1.6. For any rectangular box R in 3-space and any linear
map L: R3 ..... R 3, we have

Vol L(R) = IDet(L)IVol(R).

The proofs are exactly like those in 2-space, drawing 3-dimensional
boxes instead of 2-dimensional rectangles.

XVII, §1. EXERCISES

1. Find the area of the parallelogram spanned by
(a) (-3,5) and (2, -1). (b) (2,3) and (4, -1).

2. Find the area of the parallelogram spanned by the following vectors.
(a) (2,1) and (-4,6) (b) (3,4) and (-2, -3)

3. Find the area of the paralleogram such that three corners of the parallelogram
are given by the following points
(a) (1, 1), (2, -1), (4,6)
(c) (2,5), (-1,4), (1,2)
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(b) (1, -1,4), (1,1,0), (-1,2,5)
(d) (-2,2, 1), (0, 1,0), (-4,3,2)

4. Find the volume of the parallelotope spanned by the following vectors in 3­
space.
(a) (1, 1, 3), (1,2, -1), (1,4, 1)
(c) (-1,2, 1), (2,0,1), (1,3,0)

XVII, §2. DILATIONS

This section will serve as an introduction to the general change of
variables formula, and the interpretation of determinants as area and
volume.
Let r be a positive number. If A is a vector in Rn (in practice, R 2 or

R3) we call rA the dilation of A by r. Thus dilation by r is a linear map­
ping,

At---+rA.

We wish to analyze what happens to area in R2
, and volume in R3,

under a dilation. We start with the simplest case, that of a rectangle.
Consider a rectangle whose sides have lengths a, b, as on Fig. 11(a). If
we multiply the sides of the rectangle by r, we obtain a rectangle with
sides ra, rb as on Fig. 11(b). The area of the dilated rectangle is equal to

This dilation by r changes the area of the rectangle by r 2
•

(a)

ra

(b)

Figure 11

In general, let S be an arbitrary region in the plane R2, whose area
can be approximated by the area of a finite number of rectangles. Then
the area of S itself changes by r2 under dilation by r, in other words,

Area of rS = r2(area ofS).

For instance, let D be the disc of radius r, so that D 1 is the disc of
radius 1, centered at the origin (Fig. 12). Then Dr = rD 1•
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Dr

r

Figure 12

If n is the area of the disc of radius 1, then nr2 must be the area of the
disc of radius r. Of course, we knew this already, but we find this result
here again from another point of view. More generally, consider a
region S inside a curve as in Fig. 13(a), and let us draw the dilation of S
by r in Fig. 13(b). To justify that the area changes by r2 , we draw a
grid, approximating the areas by squares.

(a) (b)

Figure 13

Under dilation by r, the area of each square gets multiplied by r2
, and

so the sum of the areas of these squares, which approximates the area of
S, also gets multiplied by r2

•

The question, of course, arises as to whether the squares lying inside
S, and formed by a sufficiently fine grid, actually approximate S. We can
see that they do, as follows. Let the sides of the squares in the grid have
length c. (Fig. 14a.) Suppose that a square intersects the curve which
bounds S. Let Z be this curve. Then any point in the square is at dis-

tance at most cfi from the curve Z. This is because the distance be­
tween any two points of the square is at most cfi (the length of the
diagonal of the square). Let us draw a band of width cfi on each side
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of the curve, as shown on Fig. 14(b). Then all the squares which inter­
sect the curve must lie within that band. It is very plausible that the
area of the band is at most equal to

2cJ2 times the length of the curve.

(a)

Figure 14

(b)

Thus if we take c to be very small, i.e. if we take the grid to be a very
fine grid, we see that the area of the region S is approximated by the
area covered by the squares lying entirely inside the region. This ex­
plains why the area of S will get multiplied by r 2 under dilation by r.

We can also make a mixed dilation. Let r, s be two positive numbers.
Consider the mapping of R2 given by

(x, Y) H (rx, sy).

Thus we dilate the first coordinate by r and the second by s. If a rectan­
gle R has sides of lengths a, b respectively, then the image of the rectan­
gle under this mapping will be a rectangle with sides of lengths ra, sb.
Hence the area of the image will be

rasb = rsab.

Thus the area changes by a factor of rs under our mapping.
An argument as before shows that if we submit a region S to the

mapping F r•s such that

Fr,lx, y) = (rx, sy),

then its area will change by a factor of rs.
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Example 1. We now have a very easy way of finding the area of an
ellipse defined by an equation

x2 y2
-+-=1.
9 16

Indeed, let u = x/3 and v = y/4. Then

and the ellipse is equal to the image of the circle under the mapping

(u, v) 1---+ (3u, 4v).

Hence the area of the ellipse is equal to 3· 4n = 12n. Note how we did
this without integration! However, the technique of the small grid is for
course exactly the same technique which was used in the theory of the
integral.

In the above discussion, we have given direct arguments, without the
terminology of linear algebra. But these are directly related to what we
found in the preceding section. Indeed, the linear map

is represented by the diagonal matrix

and its determinant is rs. Thus we have seen from a new point of view
how a linear map represented by a diagonal matrix changes area by its
determinant.
We can also develop the same ideas in 3-space. Consider dilation by

r in 3-space; namely consider the mapping

(x, y, z) 1---+ (rx, ry, rz).

If P is a rectangular box with sides a, b, e, then its dilation by r will be
a box with sides ra, rb, re, and the dilated box will have volume

rarbre = r3abe.

Thus the volume of a box changes by r 3 under dilation by r.
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Similarly, let r, s, t be positive numbers, and consider the linear map

such that

Fr,s,I(X, y, z) = (rx, sy, tz).

We view this as a mixed dilation. If a rectangular box has sides of
lengths a, b, c, then under Fr,s,l it gets transformed into a box with sides
ra, sb, tc whose volume is

rasbtc = rstabc.

Thus the volume gets multiplied by rst.
If we approximate an arbitrary region in 3-space by cubes, then we

see in a manner analogous to that of 2-space that the volume of the
region changes by a factor of r3 under dilation by r, and changes by a
factor of rst under the mixed dilation Fr,s,l'

Example 2. Find the volume of the region bounded by the surface

X 2 y2 Z2

-+-+-=1.
9 16 25

To do this, let

The inequality

x
u =-,
3

y
v =-,
4

z
w=-·

5

defines the unit ball in R3, and our given region is obtained from this
unit ball by the mixed dilation

Assuming that the volume of the unit ball in R3 is equal to 11t, we con­
clude that the volume of our region is equal to

3 . 4 . 5 '11t = 801t.
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Again in this 3-dimensional case, the linear map F r•s•t is represented
by the diagonal matrix

The determinant of this matrix is rst. Thus the present discussion con­
firms the result of the preceding section, that a linear map changes
volume by the determinant.

In the next section, we investigate how area and volume change under
general mappings, not just linear mappings.

XVII, §2. EXERCISES

1. Find the area of the region bounded by the ellipse

2. Find the volume of the region bounded by the surface

In both exercises, a, b, c are positive numbers. Use the ideas of this section.

3. Let A be the region in 3-space defined by the inequalities

O~ Xi and xi + xi + x~ ~ 1.

Let k be the volume of this region.
(a) In terms of k, what is the volume of the region defined by the inequalities

O~ Xi and xi + xi + x~ ~ 29?

(b) Same question if instead of 29 on the right you have a positive number r.

4. Let A be the region in 3-space defined by the inequalities

O~Xi

Let k be the volume of this region.

and
3

L Xf ~ 1.
i=l



[XVII, §3] CHANGE OF VARIABLES FORMULA 469

(a) In terms of k, what is the volume of the region defined by the inequalities

and
3

I x; ~ 33?
i= 1

(b) Same question if instead of 33 you have an arbitrary positive number r on
the right.

XVII, §3. CHANGE OF VARIABLES FORMULA IN TWO
DIMENSIONS

Let R be a rectangle in R2 and suppose that R is contained III some
open set U. Let

be a C1-map. If G has two coordinate functions,

this means that the partial derivatives of gl' g2 exist and are continuous.
We let G(u, v) = (x, Y), so that

and Y = gz{u, v).

Then the Jacobian determinant of the map G is by definition

ag 1 ag 1
au av

AG(u, v) =
ag2 ag2

au av

This determinant is nothing but the determinant of the linear map
G'(u, v).

Theorem 3.1. Assume that G is C1-invertible on the interior of the rect­
angle R. Let f be a function on G(R) which is continuous except on a
finite number of smooth curves. Then

II (fa G)IAGI = II f
R G(Rl

or in terms of coordinates,

II f(G(u, v)) IAG(u, v)1 du dv = II f(x, y) dy dx.

R ~m
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The proof of Theorem 3.1 is not easy to establish rigorously. How­
ever, we can make it plausible in view of Theorem 1.2.

v y

--.!..-.R

-+--------u --t-----------x

Figure 15

Indeed, suppose first that f is a constant function, say f(x, y) = 1 for
all (x, y). Then the integral on the right, over G(R), is simply the area of
G(R), and our formula reduces to

R G(R)

As we pointed out before, AG is the determinant of the approximating
linear map to G. If G is itself linear, then G'(u, v) = G for all u, v and in
this case, our formula reduces to Theorem 1.2, or rather its corollary. In
the general case, one has to show that when one approximates G by its
Jacobian matrix, which depends on (u, v), and then integrates IAGI one
still obtains the same result (Fig. 15). Cr., for instance, my Undergradu­
ate Analysis for a complete proof. A special case will be proved in the
next section.
When f is not a constant function, one still has the problem of reduc­

ing this case to the case of constant functions. This is done by taking a
partition of R into small rectangles S, and then approximating f on each
G(S) by a constant function. Again, the details are out of the bounds of
this book.
We shall now see how we recover the integral in terms of polar coor­

dinates from the general Theorem 3.1.

Example 1. Let x = r cos e and y = r sin e, r ~ O. Then III this case,
we have computed previously the determinant, which is

AG(r, e) = r.
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Thus we find again the formula

ff f(r cos e, r sin e)r dr de = ff f(x, y) dy dx.

R G(R)

Of course, we have to take a rectangle for which the map

G(r, e) = (r cos e, r sin e)

is invertible on the interior of the rectangle. For instance, we can take

and

The image of the rectangle R is the portion G(R) of the sector as shown
in Fig. 16.

T y

T2

--.!L- I
I

T1 I
/I I /

I I
/

/

I '// 81
8 X

81 82

Figure 16

For the next example, we observe that if G is a linear map L, repre­
sented by a matrix M, then a Jacobian matrix of G is equal to this
matrix M, and hence its Jacobian determinant is the determinant of M.

Example 2. Let T be the triangle whose vertices are (1,2), (3, -1),
and (0, 0). Find the area of this triangle (Fig. 17)

(1,2) =A

(3, -l)=B

Figure 17
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The triangle T is the image of the triangle spanned by 0, E l' E2 under
a linear map, namely the linear map L such that

and

L(E2 ) = (3, -1).

It is verified at once that IDet(L) I = 7. Since the area of the triangle
spanned by 0, E1, E2 is t, it follows that the desired area is equal to l

Example 3. Let (x, y) = G(u, v) = (e U cos v, eU sin v). R be the rectangle
in the (u, v)-space defined by the inequalities 0 ;£ u ;£ 1 and 0 ;£ v ;£ n. It
is not difficult to show that G satisfies the hypotheses of Theorem 3.1,
but we shall assume this. The Jacobian matrix of G is given by

(
eU cos v
eU sin v

_eU sin v)
eU cos v

so that its Jacobian determinant is equal to

L\G(u, v) = e2u
•

Let f(x, y) = x 2
• Then f 0 G(u, v) = e2u cos2 v. According to Theorem 3.1,

the integral of f over G(R) is given by the integral

which can be evaluated very simply by integrating e4u with respect to u
and cos2 v with respect to v, and taking the product. The final answer is
then equal to

(e4
- 1)

n--'
8

Example 4. Let S be the region enclosed by ellipse defined by the
equation

a,b >0.

Its area is nab. (Why?) Let L be the linear map represented by the
matrix

Its determinant is equal to -11. Hence the area of the image of Sunder
L is I1nab.
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XVII, §3. EXERCISES

In the following exercises, you may assume that the map G satisfies the hypoth­

eses of Theorem 3.1.

1. Let (x, y) = G(u, v) = (u2 - v2 , 2uv). Let A be the region defined by
u2 + v2 ~ 1 and 0 ~ u, 0 ~ v. Find the integral of the function

over G(A).

2. (a) Let (x, y) = G(u, v) be the same map as in Exercise 1. Let A be the
square 0 ~ u ~ 2 and 0 ~ v ~ 2. Find the area of G(A).

(b) Find the integral of f(x, y) = x over G(A).

3. (a) Let R be the rectangle whose corners are (1,2), (1,5), (3,2), and (3,5).
Let G be the linear map represented by the matrix

Find the area of G(R).

(b) Same question if G is represented by the matrix G _~}

4. Let (x, y) = G(u, v) = (u + v, u2
- v). Let A be the region in the first quad­

rant bounded by the axes and the line u + v = 2. Find the integral of the

function f(x, y) = I/Jl + 4x + 4y over G(A).

5. Let R be the unit square in the (u, v)-plane, defined by the inequalities

and O~v~1.

(a) Sketch the image F(R) of R under the mapping F such that

F(u, v) = (u, u + v2
).

In other words, x = u and y = u + v2 •

(b) Compute the integral of the function f(x, y) = x over the region F(R) by
using the change of variables formula.

6. Compute the area enclosed by the ellipse, defined by

Take a, b > O. Use the change of variables formula.
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7. Let (x, y) = G(u, v) = (u, v(1 + u2»)' Let R be the rectangle 0 ~ u ~ 3 and
o~ v ~ 2. Find the integral of f(x, y) = x over G(R).

8. Let G be the linear map represented by the matrix

G~}
If A is the interior of a circle of radius 10, what is the area of G(A)?

9. Let G be the linear map of Exercise 8, and let A be the ellipse defined as in
Exercise 6. What is the area of G(A)?

10. Let T be the triangle bounded by the x-axis, the y-axis, and the line x + y =
1. Let cp be a continuous function of one variable on the interval [0, 1]. Let
m, n be positive integers. Show that

II cp(x + y)xmyn dy dx = Cm,nf cp(t)tm+n+ 1 dt,

T

where cm.n is the constant given by the integral t1 (1 - t)mtndt. [Hint: Let

x = u - v and y.= v.]

11. Let B be the region bounded by the elIipse x2/a2+ y2/b2 = 1. Find the inte­
gral

If ydydx.

B

12. Let A be the parallelogram with vertices

(0,0), (1, 1), (1, -1), and (2,0).

Find

If (x + y)2 + (x - y)2) dx dy.

A

XVII, §4. APPLICATION OF GREEN'S FORMULA TO THE
CHANGE OF VARIABLES FORMULA

When a region R is the interior of a closed path, then we can use
Green's theorem to prove the change of variables formula in special
cases. Indeed, Green's theorem reduces a double integral to an integral
over a curve, and change of variables formulas for curves are easier to
establish than for 2-dimensional areas. Thus we begin by looking at a
special case of change of variables formula for curves.
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Let C: [a, b] -. U be a C1-curve in an open set of R2• Let G: U -. R2

be a C2-map, given by coordinate functions,

G(u, v) = (x, y) = (f(u, v), g(u, v»).

Thus

x =!(u, v) and y = g(u, v).

Then the composite Go C is a curve. If C(t) = (a(t), pet»), then

Go C(t) = G(C(t») = (f(a(t), pet»), g(a(t), pet»)).

In other words, if

u = aCt)

then

x = !(a(t), pet))

and

and

v = pet)

y = g(a(t), pet»).

Example 1. Let G(u, v) = (u, -v) be the reflection along the horizontal
axis. If C(t) = (cos t, sin t), then

GoC(t) = (cost, -sint).

Thus Go C again parametrizes the circle, but observe that the orientation
of Go C is opposite to that of C, i.e. it is clockwise! (Fig. 18.)

Figure 18

The reason for this reversal of orientation is that the Jacobian deter­
minant of G is negative, namely it is the determinant of

Thus a map G is said to preserve orientation if AG(u, v) > 0 for all (u, v)
in the domain of definition of G. For simplicity, we only consider such
maps G.
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Green's theorem leads us to consider the integral

f xdy.
GoC

By definition and the chain rule, we have

f fb (ay du ay dV)
GOC

xdy = a f(C(t») audt + avdt dt

f
ay ay

= cf(u, v) au du + f(u, v) av dv.

This is true for any curve as above. Hence it remains true for any path,
consisting of a finite number of curves.
We are now ready to state and prove the change of variables formula

in the case to which Green's theorem applies.

Let U be open in R 2 , and let R be a region which is the interior of a
closed path C (piecewise C1 as usual) contained in U. Let

be a C2-map, which is C 1-invertible on U and such that AG > O. Then
G(R) is a region which is the interior of the path Go C. (Fig. 19.) We
then have

If dy dx = ff AG(u, v) du dv.

G(R) R

G ..

Figure 19
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Proof Let G(u, v) = (J(u, v), g(u, v)) be expressed by its coordinates.
We have, using Green's theorem:

If dy dx = f x dy = f f og du + f ~g dv
GoC C OU uV

G(Rl

_ ff[Of og + oZg _ oZg _ of OgJ du dv
- OU ov f ou ov f ou ov ou OU

R

= If [Of og - og Of] du dv
OU OV ou OV

R

= If ~du, v) du dv,

R

thus proving what we wanted.

XVII, §4. EXERCISES

1. Under the same assumptions as the theorem in this section, assume that
cp = cp(x, y) is a continuous function on G(R), and that we can write
cp(x, y) = aqjax for some continuous function q. Prove the more general for­
mula

If cp(x, y) dy dx = If cp(G(u, v»)AG(u, v) du dv.

G(R) R

[Hint: Let p = 0 and follow the same pattern of proof as in the text.]

2. Let (x, y) = G(u, v) as in the text. We suppose that G: U -+ R2, and that F is a
vector field on G(U). Then FoG is a vector field on U.
Let C be a curve in U. Show that

f f aG aG
F = (FoG)·-du + (FoG)·-dv.

GoC C au av

[Let F(x, y) = (p(x, y), q(x, y») and apply the definitions.]
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XVII, §5. CHANGE OF VARIABLES FORMULA IN THREE
DIMENSIONS

The formula has the same shape as in two dimensions, namely:

Change of variables formula. Let A be a bounded region in R3 whose
boundary consists of a finite number of smooth surfaces. Let A be con­
tained in some open set U, and let

be a C1-map, which we assume to be C1-invertible on the interior of A.
Let f be a function on G(A), bounded and continuous except on a finite
number of smooth surfaces. Then

fff f(G(u, v, w»)IAG(u, v, w)1 du dv dw = fff f(x, y, z) dz dy dx.

A G(A)

In the 3-dimensional case, the Jacobian matrix of G at every point is
then a 3 x 3 matrix.

Example 1. Let R be the 3-dimensional rectangle spanned by the three
unit vectors E 1, E 2 , E 3 • Let AI' A 2 , A 3 be three vectors in 3-space, and
let

be the linear map such that G(Ej ) = Ai' Then G(R) is a parallelotope
(not necessarily rectangular). (Cf. Fig. 20.)

Figure 20

The Jacobian matrix of the map is constant, and is equal to the deter­
minant of the matrix representing the linear map.
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The volume of the unit cube is equal to 1. Hence the volume of G(R)
is equal to 1Det(G) I.
For instance, if

A l = (3, 1,2),

A z = (1, -1,4),

A 3 = (2, 1,0),

then

3

Det(G) = 1

2

so the volume of G(R) is equal to 2.

1 2

-1 4 = 2
1 0

Example 2. Tetrahedrons. Let A l , A z, A 3 be three points in R
3
, and

assume that they are independent, in other words there is no relation

with numbers Xl' x z, x 3 not all O. The tetrahedron spanned by 0, A l ,
A z, A 3 is the set of all points

The tetrahedron T

Figure 21

Find the volume of the tetrahedron spanned by the origin and the
three vectors

A l = (3, 1,4), A z = (-1,2, 1), A 3 = (5, -2,1).

In Example 2 of Chapter XI, §1 we computed the volume of the tetra­
hedron spanned by the unit vectors, and found!. There is a unique lin­
ear map L which carries E; on Ai' Hence the volume of our tetrahedron
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is equal to i times the absolute value of the determinant of this linear
map, that is to i times the absolute value of the determinant

The answer is 14/6.

3 1
-1 2
5 -2

4

1 = -14.
1

Example 3. The tetrahedron of Example 2 is located at the origin.
More generally, let Bo, B I , B z , B 3 be four points and let

Assume that AI' A z , A 3 are independent. Let:

T = tetrahedron spanned by 0, AI, A z , A 3 •

Then the tetrahedron spanned by Bo, B I , B z, B 3 is the translation
T+Bo·

The tetrahedron T + Bo

B./15:r'
B1

o~ _

Figure 22

Then the volume of the tetrahedron spanned by Bo, B I , Bz , B 3 is the
same as the volume of the tetrahedron spanned by 0, AI' A z , A 3 •

Hence this volume is

For a numerical example, let us find the volume of the tetrahedron
spanned by the four points

Bo = (1,2, -3), B I = (4, 3,1), B z = (0,4, -2), B3 = (6,0, -2).
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If we take B I - Bo, B 2 - Bo, B 3 - Bo we find precisely the three vectors
AI' A 2 , A 3 of Example 2. Hence the volume of the tetrahedron spanned
by the four points Bo, B I , B2 , B3 is again 14/6.

Example 4. Consider the cylindrical coordinates map, given by

G(r, e, z) = (r cos e, r sin e, z).

Compute its Jacobian matrix, and its Jacobian determinant. You will
easily find

so that the general formula for changing variables gives you the same
result that was found in Chapter XI by looking at the volume of an
elementary region, image of a box under the map G.

Example 5. Let G be the map of spherical coordinates, given by

G(p, e, cp) = (p sin cp cos e, p sin cp sin e, p cos cp).

Again you should compute the Jacobian matrix and the Jacobian deter­
minant. You will find:

This gives a justification for the formula of Chapter XI in terms of the
change of variables formula, which in the present case reads just like the
result of Chapter XI, namely:

fff f(G(p, e, cp»)p2 sin cp dp dcp de = fff f(x, y,z)dz dydx.

A G(A)

Exercise. Carry out In detail the computation of the preceding two
examples.

XVII, §S. EXERCISES

1. (a) Let G: R3 -+ R3 be the map which sends spherical coordinates (0, <p, p) into
cylindrical coordinates (0, r, z). Write down the Jacobian matrix for this
map, and its Jacobian determinant.

(b) Write down the change of variables formula for this case.

2. Let A be a region in R3 and assume that its volume is equal to k. Let
G: R3 -+ R3 be the map such that G(x, y, z) = (ax, by, cz), where a, b, care
positive numbers. What is the volume of G(A)?
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3. Find the volume of the ellipsoid

by the change of variables formula, and by the method of dilations.

4. Find the volume of the solid which is the image of a ball of radius a under
the linear map represented by the matrix

-1

2

o

5. (a) Find the volume of the tetrahedron T determined by the inequalities

o~ x, 0 ~ y, 0 ~ Z and X+Y+Z~1.

(b) This tetrahedron can also be written in the form

If L is the linear map such that L(E j) = A j , show that L(T) is described
by similar inequalities. We call it the tetrahedron spanned by 0, A l , A 2 ,

A 3 ·

(c) Determine the volume of the tetrahedron spanned by the origin and the
three vectors (1, 1,2), (2,0, -1), (3, 1,2).

(d) Using the fact that the volume of a region does not change under transla­
tion, determine the volume of the tetrahedron spanned by the four points
(1, 1,1), (2,2,3), (3, 1,0), and (4,2,3).

6. (a) Determine the volume of the tetrahedron spanned by the four points
(2, 1,0), (3, -1, 1), (-1, 1,2), (0,0, 1).

(b) Same question for the four points (3, 1,2), (2,0,0), (4, 1,5), (5, -1, 1).

7. Let L: R3 -+ R3 be the linear map given by

(
X) (4X + 4y + 8Z)

L Y = 2x + 7y + 4z .
Z X + 4y + 3z

(a) Find the matrix of L.
(b) Find the determinant of the matrix of L.
(c) Suppose D is a region in R3 with volume 5. Find the volume of L(D).

8. (a) Let A be the matrix

Why is it so that if D is a region in R3, then

Vol(LA(D) = Vol(D)?
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(b) Let A be any upper triangular matrix with 1 on the diagonal, that is

(

1 a b)
A= Ole.

001

If D is a region in R3, how does Vol(LA(D» compare with Vol(D)? Why?
Remark. Matrices in parts (a) and (b) generalize the notion of shearing
matrices.

9. Let G be an invertible mapping of the unit cube in R3 such that ~G(x, y, z) =
3xyez

. What is the volume of the image of the unit cube under G?

XVII, §6. VECTOR FIELDS ON THE SPHERE

Let S be the ordinary sphere of radius 1, centered at the origin. By a
tangent vector field on the sphere, we mean an association

which to each point X of the sphere associates a vector F(X) which is
tangent to the sphere (and hence perpendicular to OX\ The picture may
be drawn as follows (Fig. 23).

Figure 23

For simplicity of expression, we omit the word tangent, and from now
on speak only of vector fields on the sphere. We may think of the
sphere as the earth, and we think of each vector as representing the wind
at the given point. The wind points in the direction of the vector, and
the speed of the wind is the length of the arrow at the point.
We suppose as usual that the vector field is smooth. For instance, the

vector field being continuous would mean that if P, Q are two points
close by on the sphere, then F(P) and F(Q) are arrows whose lengths are
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close, and whose directions are also close. As F is represented by coor­
dinates, this means that each coordinate is continuous. We shall actually
consider vector fields such that the coordinates are of class C1, without
further repeating this assumption.

Theorem 6.1. Given any vector field on the sphere, there exists a point
P on the sphere such that F(P) = O.

In terms of the interpretation with the wind, this means that there is
some point on earth where the wind is not blowing at all.
To prove Theorem 6.1, suppose to the contrary that there is a vector

field such that F(X) =F 0 for all X on the sphere. Define

EX = F(X) ,
() IIF(X) II

that is, let E(X) be F(X) divided by its norm. Then E(X) is unit vector
for each X. Thus from the vector field F we have obtained a vector field
E such that all the vectors have norm 1. Such a vector field is called a
unit vector field. Hence to prove Theorem 6.1, it suffices to prove:

Theorem 6.2. There is no unit vector field on the sphere.

Until recently, I did not know any relatively simple proof for this
classical theorem. The proof which follows is due to Milnor. (Math.
Monthly, October 1978.)
Suppose that there exists a vector field E on the sphere such that

IIE(X)II = 1

for all X. We call this a unit vector field. For each small real number t,
define

Gt(X) = X + tE(X).

Geometrically, this means that GlX) is the point obtained by starting at
X, going in the direction of E(X) with magnitude t. The distance of
X + tE(X) from the origin 0 is then obviously

Ji+f.
Indeed, E(X) is parallel (tangent) to the sphere, and so perpendicular to
X itself. Thus

since both X and E(X) are unit vectors.
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Lemma 6.3. For all t sufficiently small, the image G,(S) of the sphere

under Gt is equal to the whole sphere of radius j1+t2.

Proof This amounts to proving a variation of the inverse mapping
theorem, and the techniques for such proofs are omitted from this
course. Any technique which you would know for proving the inverse
mapping theorem would also allow you to prove the present lemma. We
shall assume the lemma.

We now extend the vector field E to a bigger region of 3-space,
namely the region A between two concentric spheres, defined by the
inequalities

a ~ IIXII ~ b.

This extended vector field is defined by the formula

E(rU) = rE(U)

for any unit vector U and any number r such that a ~ r ~ b.

Figure 24

It follows that the formula

G,(X) = X + tE(X),

also given in terms of unit vectors U by

Gt(rU) = rU + tE(rU) = rG,(U)

defines a mapping which sends the sphere of radius r onto the sphere of

radius rj1+t2 by the lemma, provided that t is sufficiently small.
Hence it maps A onto the region between the spheres of radius

aj1+t2 and
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By the change of volumes under dilations, it is then clear that

Observe that taking the cube of j1+t2 still involves a square root, and
is not a polynomial in t.
On the other hand, the Jacobian matrix of G, is

as you can verify easily by writing down the coordinates of E(X), say

E(X) = (gl(X, y, z), gzCx, y, z), g3(X, y, z»).

Hence the Jacobian determinant has the form

~G,(X) = det{I + tJE(X»),

and is therefore a polynomial in t of degree 3, that is we can write

where <Po, ... ,<P3 are functions. Given the region A, this determinant is
then positive for all sufficiently small values of t, by continuity, and the
fact that the determinant is 1 when t = O.
For any region A in 3-space, the change of variables formula shows

that the volume of GtCA) is given by the integral

Vol G,(A) = fff ~G.cx, y, z) dy dx dz.

A

If we perform the integration, we see that

where

Ci = fff <Pi(X, y, z) dy dx dz.

A

Hence Vol G,(A) is a polynomial in t of degree 3. Taking for A the
regIOn between the spheres yields a contradiction which concludes the
proof.



APPENDIX

Fourier Series

In this appendix, we discuss a little more systematically the scalar pro­
duct in the context of spaces of functions. This may be covered at the
same time that Chapter I is discussed, but I place the material as an ap­
pendix in order not to interrupt the discussion of ordinary vectors after
Chapter I.

APP., §1. GENERAL SCALAR PRODUCTS

Let V be the set (also called the space) of continuous functions on some
interval, say the interval [- n, n] which is of interest in Fourier series.
We define the scalar product of functions f, g in V to be the number

(f, g) = f/(X)g(X) dx.

This scalar product satisfies conditions analogous to those of Chapter I,
namely:

SP 1. We have (v, w) = (w, v) for all v, w in V.

SP 2. If u, v, ware elements of V, then

(u, v + w) = (u, v) + (u, w).

SP 3. If x is a number, then

(xu, v)o = x(u, v) = (u, xv).



488 FOURIER SERIES [APP., §1]

SP 4. For all v in V we have <v, v) ~ 0, and <v, v) > 0 if v #- O.

The verification of these properties amounts to recalling simple pro­
perties of the integral. For instance, for SP 1, we have

<f, g) = f/(X)g(X) dx = f,,9(X)f(X) dx = <g, f).

We leave the verification of SP 2 and SP 3 as exercises. To prove SP 4,
suppose that f is a non-zero function. This means that there exists some
point c in the interval [-n, n] such that f(c) #- O. Then

<f, f) = f/(X)2 dx,

and f(X)2 is a function which is always ~ 0, and such that

f(cf > O.

Thus the graph of f(X)2 may look like this.

y=f(X)2

Figure 1

Let p(x) = f(X)2. Geometrically, the integral of p(x) from -n to n is the
area under the curve y = p(x) between - nand n, and this area cannot
be 0 since p(c) > 0, so the area is> O. We can give a more formal argu­
ment by observing that by continuity, there is an interval of radius r
around c and number s > 0 such that

p(x) ~ s

for all x in this interval. Then by the definition of the integral according
to lower sums,

f"p(X) dx ~ rs> O.
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All the discussion of Chapter I which was carried out using only the
four properties SP 1 through SP 4 is now seen to be valid in the present
context. For instance, we define elements v, w in V to be orthogonal, or
perpendicular, and write vl-w, if and only if <v, w) = O. We define the
norm of v to be

IIvll = J <v, v).

Remark. In analogy with ordinary Euclidean space, elements of V are
also sometimes called vectors. More generally, one can define the general
notion of a vector space, which is simply a set whose elements can be
added and multiplied by numbers in such a way as to satisfy the basic
properties of addition and multiplication (e.g. associativity and commuta­
tivity). Continuous functions on an interval form such a space. In an
arbitrary vector space, one can then define the notion of a scalar product
satisfying the above four conditions. For our purposes, which is to con­
centrate on the calculus part of the subject, we work right away in this
function space. However, you should observe throughout that all the ar­
guments of this section use only the basic axioms. Of course, when we
want to find the norm of a specific function, like sin 3x, then we use spe­
cifically the fact that we are working with the scalar product defined by
the integral.

We shall now summarize a few properties of the norm.
If e is any number, then we immediately get

lIevll = lelllvll,
because

Ilevll = J<ev, ev) = Je2 <v, v) = lelllvil.

Thus we see the same type of arguments as in Chapter I apply here. In
fact, any argument given in Chapter I which does not use coordinates
applies to our more general situation. We shall see further examples as
we go along. .
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As before, we say that an element VE V is a unit vector if Ilvll = 1. If
VE V and v # 0, then v/llvll is a unit vector.
The following two identities follow directly from the definition of the

length.

The Pythagoras theorem. If v, ware perpendicular, then

The parallelogram law. For any v, w we have

The proofs are trivial. We give the first, and leave the second as an
exercise. For the first, we have

Ilv + wl1 2
= <v + w, v + w) = <v, v) + 2<v, w) + <w, w)

= IIvll 2 + IIw11 2 .

Let w be an element of V such that Ilwll # O. For any v there exists a
unique number c such that v - cw is perpendicular to w. Indeed, for
v - cw to be perpendicular to w we must have

<v - cw, w) = 0,

whence <v, w) - <cw, w) = 0 and <v, w) = c<w, w). Thus

<v, w)
c=---·

<w,w)

Conversely, letting c have this value shows that v - cw is perpendicular
to w. We call c the component of v along w. This component is also
called the Fourier coefficient of v with respect to w, to fit the applications
in the theory of Fourier Series.
In particular, if w is a unit vector, then the component of v along w is

simply
c = <v, w).

Example. Let V be the space of continuous functions on [ -n, n]. Let
I be the function given by I(x) = sin kx, where k is some integer> O.
Then

(f" )1/2
11111 =J<I,f) = _"sin2 kxdx

=fi·
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If g is any continuous function on [-n, n], then the Fourier coefficient
of g with respect to 1 is

<g,f) =! f" g(x) sin kx dx.
<1,/) n_"

Let e be the component of v along w. As with the case of n-space, we
define the projection of v along w to be the vector ew, because of our
usual picture (Fig. 3):

v-cw

w

Figure 3

Theorem 1.1. Schwarz inequality. For all v, WE V we have

I<v, w)1 ~ Ilvllllwll·

Proof If w = 0, then both sides are equal to 0 and our inequality is
obvious. Next, assume that w = u is a unit vector, that is u E V and
Ilull = 1. If e is the component of v along u, then v - cu is perpendicular
to u, and also perpendicular to eu. Hence by the Pythagoras theorem,
we find

IIvl1 2 = IIv - cul1 2 + lIeull 2

= IIv - cul1 2 + e2
•

But Ilv - eull 2 ~ O. Hence e2 ~ Ilv11 2 , so that lei ~ Ilvll. Finally, if w is
arbitrary # 0, then

u = w/llwll

is a unit vector, so that by what we just saw,

This yields

I<v, w)1 ~ IIvllllwll,
as desired.
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Theorem 1.2. If v, WE V, then

Ilv + wlI ~ Ilvll + Ilwll·

Proof We have:

IIv + wll 2= <v + W,V + W)
= <v, v) + 2<v, W) + <W, W)

~ <v, v) + 21<v, w)1 + <W, W)

~ IIvI1 2+ 211vllllwll + IIwll 2

= (IIvll + IIwll)2.

Taking square roots proves the theorem.

Let VI"" ,Vn be non-zero elements of V which are mutually perpendi­
cular, that is <Vi' V) = 0 if i i= j. Let cj be the component of v along Vi'
Then

is perpendicular to VI"" 'Vn' To see this, all we have to do is to take the
product with vj for any j. All the terms involving <Vi' V) will give 0 if
i i= j, and we shall have two remaining terms

which cancel. Thus subtracting linear combinations as above orthogona­
lizes V with respect to VI"" 'Vn' The next theorem shows that

gives the closest approximation to V as a linear combination of VI"" 'Vn'

Theorem 1.3. Let VI"" ,Vn be vectors which are mutually perpendicular,
and such that Ilvill i= 0 for all i. Let V be an element of V, and let Ci be
the component of V along Vi' Let a l , .•• ,an be numbers. Then

Proof We know that
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is perpendicular to each Vi' i = 1, ... ,no Hence it is perpendicular to any
linear combination of VI' ... ,Vn. Now we have:

Ilv - I ak vkll 2 = IIv - I CkVk + I (Ck - ak)vk l1
2

= Ilv - I ckvkll 2 + II I (Ck - ak)vk l1
2

by the Pythagoras theorem. This proves that

and thus our theorem is proved.

The next theorem is known as the Bessel inequality.

Theorem 1.4. If VI' ... ,Vn are mutually perpendicular unit vectors, and if
ci is the Fourier coefficient of V with respect to Vi' then

n

I c? ~ IIv1I 2
•

i= I

Proof We have

o~ <V - I CiVi' V - I civ;)

= <v, v) - I 2c;(v, v;) + I c?

= <v, v) - Ict.
From this our inequality follows.

APP., §1. EXERCISES

1. Prove SP 2 and SP 3, using simple properties of the integral.

2. Let fl' ... 'j" be functions in V which are mutually perpendicular, that is

if i oF j,

and assume that none of the functions fi is O. Let CI' ... 'Cn be numbers such
that

CJI + ... + cnfn = 0

(the zero function). Prove that all Ci are equal to o.
3. Let f be a fixed element of V. Let W be the subset of elements h in V such
that h is perpendicular to.f. Prove that if hI' hz lie in W, then hI + hz lies in
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W. If c is a number and h is perpendicular to f, prove that ch is also perpen­
dicular to f.

4. Write out the inequalities of Theorem 1.1 and Theorem 1.2 explicitly in terms
of the integrals. Appreciate the fact that the notation of the text, following
that of Chapter I, gives a much neater way, and a more geometric way, of
expressing these inequalities.

5. Let m, n be positive integers. Prove that the functions

1, sin nx, cos mx

are mutually orthogonal. Use formulas like

sin A cos B = t[sin(A + B) + sin(A - B)],

cos A cos B = t[cos(A + B) + cos(A - B)].

6. Let CP.(x) = cos nx and I/I.(x) = sin nx, for a positive integer n. Let CPo be the
function such that CPo(x) = 1, i.e. the constant function 1. Verify by performing
the integrals that

IIcp.1I = 111/1.11 = .fie and

7. Let V be the set of continuous functions on the interval [0, 1]. Define the sca­
lar product in V by the integral

<f, g) = f f(x)g(x) dx.

(a) Prove that this satisfies conditions SP 1 through SP 4. How would you
define Ilfll in the present context?

(b) Let f(x) = x and g(x) = x 2
• Find <f, g).

(c) With f, g as in (b), find Ilfll and Ilgll.
(d) Let h(x) = 1, the constant function 1. Find <f, h), <g, h), and Ilhll.

APP., §2. COMPUTATION OF FOURIER SERIES

In the previous section we used continuous functions on the interval
[ -n, n]. For many applications one has to deal with somewhat more
general functions. A convenient class of functions is that of piecewise
continuous functions. We say that f is piecewise continuous if it is con­
tinuous except at a finite number of points, and if at each such point c
the limits

lim f(c - h)
h .... O
h>O

and lim f(c + h)
h.... O
h>O
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both exist. The graph of a piecewise continuous function then looks like
this (Fig. 4):

Figure 4

Let V be the set of functions on the interval [-11:,11:] which are
piecewise continuous. If I, g are in V, so is the sum 1 + g.

If c is a number, the function cl is also in V, so functions in V can be
added and multiplied by numbers, to yield again functions in V. Fur­
thermore, if I, g are piecewise continuous then the ordinary product Ig is
also piecewise continuous. We can then form the scalar product (I, g)
since the integral is defined for piecewise continuous functions, and the
three properties SP 1 through SP 3 are satisfied. However, the scalar
product is not positive definite. A function 1 which is such that I(x) = 0
except at a finite number of points has norm O.
Thus it is convenient, instead of SP 4, to formulate a slightly weaker

condition:

Weak SP 4. For all v in V we have (v, v) ~ O.

We then call the scalar product positive (not necessarily definite).
We define the norm of an element as before, and we ask: For which

elements of V is the norm equal to O? The answer is simple.

Theorem 2.1. Let V be the space of functions which are piecewise con­
tinuous on the interval [-11:,11:]. Let f be in V. Then IIfll = 0 if and
only if f(x) = 0 for all but a finite number of points x in the interval.

Proof First, it is clear that if I(x) = 0 except for a finite number of x,
then

(Draw the picture of I(X)2.) Conversely, suppose 1 is piecewise contin­
uous on [-11:,11:] and suppose we have a partition of [ -11:,11:] into inter­
vals such that 1 is continuous on each subinterval [ai' ai+1] except
possibly at the end points ai' i = 0, ... ,r - 1. Suppose that 1If11 = 0, so
that also 11/11 2 = 0 = (I, I). This means that
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and the integral is the sum of the integrals over the smaller intervals, so
that

Each integral satisfies

and hence each such integral is equal to O. However, since f is contin­
uous on an interval [a;, a;+l] except possibly at the end points, we must
have f(X)2 = 0 for a; < x < a;+l' whence f(x) = 0 for a; < x < ai +1.

Hence f(x) = 0 except at a finite number of points.

The space V of piecewise continuous functions on [ -n, n] is not finite
dimensional. Instead of dealing with a finite number of orthogonal vec­
tors, we must now deal with an infinite number.
For each positive integer n we consider the functions

qJn(x) = cos nx,

and we also consider the function

IjJn(x) = sin nx,

It is verified by easy direct integrations that

IlqJnll = II IjJn II =.fie

IIqJoli = Jbr.
if n # 0,

Hence the Fourier coefficients of a function f with respect to our func­
tions 1, cos nx, sin nx are equal to:

1 f"ao = - f(x) dx,
2n _"

1 f"an = - f(x) cos nx dx,
n _"

1 f"bn = - f(x) sin nx dx.
n _"

Furthermore, the functions 1, cos nx, sin mx are easily verified to be
mutually orthogonal. In other words, for any pair of distinct functions f,
g among 1, cos nx, sin mx we have <f, g) = O. This means:
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If m "# nand n ~ 0, then

f:" cos nx cos mx dx = 0,

and for any m, n:

f:" sin nx sin mx = 0;

f:" cos nx sin mx dx = 0.

The verifications of these orthogonalities are mere exercises in elementary
calculus, which you should have already done in §1.
The Fourier series of a function f (piecewise continuous) is defined to

be the series

00

ao + L (ak cos kx + bk sin kx).
k=l

The partial sum

n

sn(x) = ao + L (ak cos kx + bk sin kx)
k=l

is simply the projection of the function f on the space generated by the
functions 1, cos kx, sin kx for k = 1, ... ,no In the present infinite dimen­
sional case, we write

00

f,...., ao + L (ak cos kx + bk sin kx).
k=l

The sense in which one can replace the sign ,...., by an equality depends
on various theorems whose proofs go beyond this course. One of these
theorems is the following:

Theorem 2.2. Assume that the piecewise continuous function f on
[ -n, n] is orthogonal to everyone of the functions 1, cos nx, sin nx.
Then f(x) = °except at a finite number of X. If f is continuous, then
f=O.

Theorem 2.2 shows at least that a continuous function is entirely de­
termined by its Fourier series. There is another sense, however, in which
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we would like f to be equal to its Fourier series, namely we would like
the values f(x) to be given by

00

f(x) = Go + L (ak cos kx + bk sin kx)
k=l

n

= ao + lim L (ak cos kx + bk sin kx).
n-oo k=l

It is false in general that if f is merely continuous then f(x) is given by
the series. However, it is true under some reasonable conditions, for in­
stance:

Theorem 2.3. Let -n < x < n and assume that f is differentiable in
some open interval containing x, and has a continuous derivative in this
interval. Then f(x) is equal to the value of the Fourier series.

Example 1. Find the Fourier series of the function f such that

f(x) = 0

f(x) = 1

if -n < x < 0,

if 0 < x < n.

The graph of f is as follows (Fig. 5).

Figure 5

Since the Fourier coefficients are determined by an integral, it does not
matter how we define f at -n, 0, or n. We have

1 fn 1 fnao = - f(x) dx = -2 dx = t,
2n -n n 0

1 fnan = - cos nx dx = 0,
n 0

1 fn 1 Inbn= - sin nx dx = - (-cos nx)
no nn 0

_{O if n is even,

- 2 'f . dd- 1 n IS 0 .
nn
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Hence the Fourier series of f is:

1 00 2
f(x) '" - + L sin(2m + 1)x.

2 m=O (2m + 1)11:

By Theorem 2.3, we know that f(x) is actually given by the series except
at the points - 11:, 0, and 11:.

Example 2. Find the Fourier series of the function f such that

f(x) = -1

if -11: < x < °and f(x) = x if°< x < 11:.

The graph of f is as follows (Fig. 6).

Figure 6

Again we compute the Fourier coefficients. We evaluate the integral
over each of the intervals [- 11:,0] and [0,11:] since the function is given
by different formulas over these intervals. We have

1 fO 1 I" 1 11:ao = - (- 1) dx + - x dx = - + -,
211: _" 211: 0 2 4

1 fO 1 I"an = - (- 1) cos nx dx + - x cos nx dx
11: -" 11: 0

{
°

= 2
- 1I:n2

if n is even,

if n is odd,

1 fO 1 I"bn = - (-1) sin nx dx + - x sin nx dx
11: _" 11: 0

if n is even,

if n is odd.
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Thus we obtain:
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1 n n

f(x) = 2+ "4 + k~l (ak cos kx + bk sin kx).

The equality is valid for - n < x < 0 and 0 < x < n by Theorem 2.3

Example 3. Find the Fourier series of the function sin2 x. We have

. 2 1 - cos 2x 1 1
SIll X = 2 = 2- 2cos 2x.

This is already written as a Fourier series, so the expression on the right
is the desired Fourier series.

A function f is said to be periodic of period 2n if we have

f(x + 2n) = f(x)

for all x. For such a function, we then have by induction

f(x + 2nn) = f(x)

for all positive integers n. Furthermore, letting t = x + 2n, we see also
that

f(t - 2n) = f(t)

for all t, and hence f(x - 2nn) = f(x) for all x and all positive integers n.
Given a piecewise continuous function on the interval - n ~ x < n, we

can extend it to a piecewise continuous function which is periodic of
period 2n over all of R, simply by periodicity.

Example 4. Let f(x) = x on -n ~ x < n. If we extend f by periodi­
city, then the graph of the extended function looks like this (Fig. 7):

Figure 7
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Example 5. Let f be the function on the interval - n ~ x < n given
by:

f(x) = °
f(x) = 1

if -n ~ x ~ 0,

if 0< x < n.

Then the graph of the function extended by periodicity looks like this
(Fig. 8):

---r=----
Figure 8

Example 6. Let f be the function on the interval - n ~ x < n given
by f(x) = eX. Then the graph of the extended function looks like this
(Fig. 9):

-511" -411" -311" -211" -11"

Figure 9

I I
11" 211" 311" 411" 511"

On the other hand, we may also be given a function over the interval
[0,2n] and then extend this function by periodicity.

Example 7. Let f(x) = x on the interval °~ x < 2n. The graph of the
function extended by periodicity to all of R looks like this (Fig. 10):

-211"

Figure 10
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This is different from the function in Example 4, since in the present
case, the extended function is never negative. When the function is given
on an interval [0,2n], we compute the Fourier coefficients by taking the
integral from 0 to 2n. In the present case, we therefore have:

1 f2"ao = - xdx = n,
2n 0

1 f2"an = - X cos nx dx = 0
n 0

1 f2" 2bn = - x sin nx dx = --.
non

Hence we have, for 0 < x < 2n:

for all n,

(
. sin 2x sin 3x )

x = n - 2 sm x + -2- + -3- + ... .

APP., §2. EXERCISES

1. (a) Let f(x) be the function such that f(x) = 2 if 0 ~ x < 1t and f(x) = -1 if
-1t ~ x < O. Compute IlfII.

(b) Same question, if f(x) = x for 0 ~ x < 1t and f(x) = -1 for -1t ~ X < O.

2. If f is periodic of period 21t and a, b are numbers, show that

f
b fb+2lt f b-2K
f(x) dx = f(x) dx = f(x) dx.

a a+21t a-2lt

[Hint: Change variables, letting u = x - 21t, du = dx.] Also, prove:

f/(X + a) dx = f/(X) dx = f::/(X) dx.

[Hint: Split the integral over the bounds -1t + a, -1t, 1t, 1t + a.]

3. Let f be an even function, that is f(x) = f( -x), for all x. Assume that f is
periodic of period 21t. Show that all its Fourier coefficients with respect to
sin nx are O. Let g be an odd function (that is g( -x) = -g(x)). Show that
all its Fourier coefficients with respect to cos nx are O.

4. Compute the Fourier series of the functions, given on the interval -1t < X < 1t

by the following f(x):
(a) x (b) x 2 (c) Ixl (d) sin2 x
(e) Isin xl (f) Icos xl (g) sin3 x (h) cos3 x



[APP., §2] COMPUTATION OF FOURIER SERIES 503

5. Show that the following relations hold:
(a) For 0 < x < 2n and a #- 0,

2

(

1 ~ a cos kx - k sin kX)
nea

" = (e an - 1) - + L... .
2a k=l k2 + a2

(b) For 0 < x < 2n and a not an integer,

sin 2an ~ a sin 2an cos kx + k(cos 2an - 1) sin kx
n cos ax = --- + L... .

2a k=l a2
- e

(c) Letting x = n in part (b), conclude that

an <Xl (-1t
--= 1 +2a2

" --.
sin an k~l a2

- k2

(d) ForO < x < 2n,



Answers to Exercises

I, §1, p. 10

A+B A-B 3A -2B

1. (1,0) (3, -2) (6, -3) (2, -2)

2. (-1,7) (-1,-1) (-3,9) (0, -8)

3. (1,0,6) (3, -2,4) (6, -3,15) (2, -2, -2)

4. (-2,1,-1) (0, -5,7) (-3, -6,9) (2, -6,8)

5. (3n, 0, 6) (-n,6, -8) (3n,9, -3) (-4n,6, -14)

6. (15 + n, 1,3) (15 - n, -5,5) (45, -6,12) (-2n, -6,2)

I, §2, p. 14

1. No 2. Yes 3. No 4. Yes 5. No 6. Yes 7. Yes 8. No

I, §3, p. 17

1. (a) 5 (b) 10 (c) 30 (d) 14 (e) n2 + 10 (f) 245

2. (a) -3 (b) 12 (c) 2 (d) -17 (e) 2n2 - 16 (f) 15n - 10

4. (b) and (d)

I, §4, p. 31

1. (a) J5 (b) JiG (c) J30 (d) J14 (e) JlO + n2 (f) Jill
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2. (a) v'2 (b) 4 (c) -fi (d) J26 (e) J58 + 4n2 (f) JlO + n2

3. (a) (1, -t) (b) (0, 3) (c) (-~, ~,~) (d) m, -*, 11)

n2 - 8 15n - 10
(e) 2n2 + 29 (2n, - 3, 7) (f) 10 + n2 (n, 3, -1)

4. (a) (-~,~) (b) (-~, ll) (c) Us, -115 ,1) (d) -ill-I, -2,3)

2n2
- 16 3n - 2

(e) n2 + 10 (n, 3, -1) (f) 49 (15, - 2, 4)

-1 -2
5. (a) ;; r:;; (b) ;;

y5 y 34 y5

35 6
6. (a) ~' 1"A1£'0

y41·35 y41·6

7. Let us dot the sum

with Ai' We find

(c) 10 (d) 13 ()-1
Ji4j35 ftJileJi2

(b 1 16 25
) ..jff26'~' J26.41

Since Aj·A; = 0 if j '# i we find

ciAi·Ai = o.

But A;· Ai '# 0 by assumption. Hence Ci = 0, as was to be shown.

8. (a) IIA + BII 2 + IIA - BII 2 = (A + B)·(A + B) + (A - B)·(A - B)

= A 2 + 2A . B + B2 + A 2
- 2A . B + B2

= 2A 2 + 2B2 = 211AI1 2 + 211BII 2

9. IIA - BI1 2 = A 2
- 2A·B + B2 = IIAI1 2

- 211AII IIBIlcos e+ IIBI1 2

I, §5, p. 36

1. (a) Let A = P2 - P 1 = ( - 5, - 2, 3). Parametric representation of the line is
X(t)=P 1 +tA=(l, 3, -1) + t(-5, -2,3).

(b) (-1, 5, 3) + t( -1, -1, 4)

2. X = (1, 1, -1) + t(3, 0, -4) 3. X = (-1, 5, 2) + t( -4, 9, 1)

4. (a) (-t, 4, t) (b) (-~, 131,0), (-1, 133, 1) (c) (0, 157, -~) (d) (-1, It,!)

P+Q
5. P + t(Q - P) = -2-



I, §6, p. 42

ANSWERS TO EXERCISES A3

1. The normal vectors (2, 3) and (5, - 5) are not perpendicular because their dot
product 10 - 15 = - 5 is not O.

2. The normal vectors are (-m, 1) and (-m', 1), and their dot product is
mm' + 1. The vectors are perpendicular if and only if this dot product is 0,
which is equivalent with mm' = - 1.

3.y=x+S 4. 4y = 5x - 7 6. (c) and (d)

18. (a) x + 2y = 3 (c) 6/J"S

7. (a) x-y+3z= -1 (b) 3x+2y-4z=2n+26 (c) x-5z= -33

8. (a) 2x + y + 2z= 7 (b) 7x - Sy - 9z = -29 (c) y + z = 1

9. (3, -9, - 5), (1, 5, -7) (Others would be constant multiples of these.)

10. ( - 2, 1, 5) 11. (11, 13, -7)

12. (a) X=(I, 0, -1)+t(-2, 1, 5)
(b) X = (-10, -13, 7) + tell, 13, -7) or also (1, 0, 0) + tell, 13, -7)

I 2 4 2
13. (a) -3 (b) -- (c) - (d) --

fl2 J66 fi8
14. (a) (-4, Ii, ID (b) m, ~~, - (3) 15. (1, 3, -2)

S 13
16. (a) r:;c (b) ~

v 35 v 21
17. (a) -2/j40 (b) (41/17,23/17)

19. -12/7j6

I, §7, p.47

1.(-4,-3,1) 2.(-1,1,-1) 3.(-9,6,-1) 4.allzero

5. E3 , E I , E 2 in that order

7. (0, -1,0) and (0,0,0); no

9. (a) J494 (b) J245 (c) J470 (d) J381
d d d

11. -d [X(t) x X'(t)] = X(t) x - X'(t) + - X(t) x X'(t)
t ~ ~

= X(t) x X"(t)

dY d
12. Y'(t) = -;it = at [X(t). (X'(t) x X"(t»)]

d
= X'(t)· (X'(t) x X"(t») + X(t)· at [X'(t) x X"(t)]

= X(t)· (X'(t) x X"'(t»)
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II, §1, p. 59

ANSWERS TO EXERCISES

1. (e', -sint,cost) 2. (2cos2t,_I_, 1) 3. (-sin t,cos t)
1 + t

4. (-3 sin 3t, 3 cos 3t) 6. B

7. G, f) + {~, f} (-1, 0) + t(-I, 0), or y = fix, y = 0

8. (a) ex + y + 22 = e2 + 3 (b) x + y = 1

11. J(X(t) - Q). (X(t) - Q).

If to is a value of t which minimizes the distance, then it also minimizes
the square of the distance, which is easier to work with because it does not
involve the square root sign. Let f(t) be the square of the distance, so

f(t) = (X(t) - Q)2 = (X(t) - Q). (X(t) - Q).

At a minimum, the derivative must be 0, and the derivative is

f'(t) = 2(X(t) - Q). X'(t).

Hence at a minimum, we have (X(to) - Q) . X'(to) = 0, and hence X(to) - Q
is perpendicular to X'(to), i.e. is perpendicular to the curve. If X(t) = P + tA
is the parametric representation of a line, then X'(t) = A, so we find

(P + toA - Q). A = O.

Solving for to yields (P - Q). A + toA· A = 0, whence

(Q - P)·A
to = .

A·A

13. Differentiate X'(t)2 = constant to get

2X'(t) . X"(t) = O.

14. Let v(t) = IIX'(t)lI. To show v(t) is constant, it suffices to prove that V(t)2 is
constant, and V(t)2 = X'(t) . X'(t). To show that a function is constant it suf­
fices to prove that its derivative is 0, and we have

~ V(t)2 = 2X'(t) . X"(t).
dt

By assumption, X'(t) is perpendicular to X"(t), so the right-hand side is 0, as
desired.

15. Differentiate the relation X(t)· B = t, you get

X'(t)· B = 1,
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so 1IX'(t)III1BII cos e= 1. Hence 11X'(t)1I = 1/IIBII cos e is constant. Hence the
square X'(t)2 is constant. Differentiate, you get

2X'(t)· X"(t) = 0,

so X'(t)· X"(t) = 0, and X'(t) is perpendicular to X"(t), as desired.

16. (a) (0, 1, n/8) + t( -4, 0, 1) (b) (1, 2, 1) + t(1, 2, 2)

(c) (e3 , e- 3 , 3J2) + t(3e- 3 , -3e- 3
, 3J2) (d) (1, 1, 1) + t(l, 3, 4)

18. Let X(t) = (e' , e21, 1 - e- l
) and Y(e) = (1 - e, cos e, sin e). Then the two

curves intersect when t = 0 and e= o. Also

so

X'(O) = (1, 2, 1)

and

and

Y'(e) = (-1, -sin e, cos e)

Y'(O) = (-1, 0, 1).

The angle between their tangents at the point of intersection is the angle
between X'(O) and Y'(O), which is n/2, because

. X'(O)· Y'(O)
cosme of the angle = IIX'(O)IIII Y'(O)II = o.

19. (18, 4, 12) when t = - 3 and (2, 0, 4) when t = 1.
By definition, a point X(t) = (x(t), y(t), z(t») lies on the plane if and only if

3x(t) - 14y(t) + z(t) - 10 = O.

In the present case, this means that

3(2t2) - 14(1 - t) + (3 + t2) - 10 = O.

This is a quadratic equation for t, which you solve by the quadratic formula.
You will get the two values t = -3 or t = 1, which you substitute back in
the parametric curve (2t2, 1 - t, 3 + t2) to get the two points.

20. (a) Each coordinate of X(t) has derivative equal to 0, so each coordinate is
constant, so X(t) = A for some constant A.

(b) X(t) = tA + B for constant vectors A * 0 and B.

21. Let E = (0,0,1) be the unit vector in the direction of the z-axis. Then
X'(t) = (-a sin t, a cos t, b) and

X'(t)· E b
cos e(t) = 11X'(t)1I = J a2 + b2'

23. Differentiate the relation X(t)· B = e21, you get

X'(t)· B = 2e21 = IIX'(t)IIIIBII cos e.
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Both B and cos (J are constant, divide to get (a). Then
1IX'(t)1I = 2e2t/IIBII cos (J. Square this and differentiate. You find

8e4t

X'(t) . X"(t) = --.
cos2 (J

25. (a) To say that B(t) lies on the surface means that the coordinates of B(t)
satisfy the equation of the surface, that is

Differentiate. You get

2z(t)z'(t) = 2x(t)x'(t) - 2y(t)y'(t),

which after dividing by 2 yields

z(t)z'(t) = x(t)x'(t) - y(t)y'(t).

Now

B(t) . B'(t) = x(t)x'(t) + y(t)y'(t) + z(t)z'(t).

= 2x(t)x'(t) by (*).

(b) Given any point (x ,y, z) the distance of this point to the yz-plane is just
Ixl. So if x is positive, the distance is x itself. We use the derivative test:
if x'(t) ~ 0 for all t then x is increasing. We have:

2x(t)x'(t) = B(t)· B'(t) by (a)

= IIB(t)IIIIB'(t)111 cos (J(t).

By assumption, cos (J(t) is positive, and the norms IIB(t)ll, IIB'(t)1I are ~ 0,
so if x(t) > 0, dividing by 2x(t) shows that x'(t) ~ 0, whence x(t) is
increasing, as was to be shown.

26. (a) (1, 1, t) + t(l, 2, 2) (b) x + 2y + 2z = 1

27. We have C(t) = (_et sin t + et cos t, et cos t + et sin t). Let (J be the angle be­
tween CCt) and C(t) (the position vector). Then

CCt)· C(t)

cos (J = II CCt) II II C(t) II

and a little algebra will show you it is independent of t.

n, §2, p. 63

1. J2 2. (a) 2Ji3 (b) i fi7
3 5 ( 6+j4i)3. (a) 2 (j4i - 1) + 4 log 5

1
(b) e -­

e
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4. (a) 8 (b) 4 - 2fi
The integral for the length is L(t) = rJ2 - 2 cos t dt. Use the formula

.2 l-cos2u
sm U= 2 '

with t = 2u.

IC M 2 + 2fi M 1 (J5 - 1 fi + 1)
5. (a) y5- y 2+log J5 =J5- y 2+-2 10g~~ .

1+ 5 y5+1 y 2-1

The speed is 11X'(t)11 = Jl + (1/t)2 so the length is

f2 1 f./5 u
2

L = - j1+t2 dt = --2-- du
1 t j2 u - 1

_f./5~-I+1 -f./5 f./5 1- 2 1 du - du + -2--1 duo
j2 u- .fi j2u-

But

These last integrals give you logs, with appropriate numbers in front.

(b) -/26 - JiO +! log (-/26 - 1. JiO + 1)
2 -/26+1 JiO-l

= -/26 - JiO + log ~ (1 + ~)
3 1 + 26

6. log(fi + 1) 7. 5/3 8. 8

ill, §I, p. 70

I.

Ellipses

2.

Parabolas
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4. 6.

~~
~r=

Parabolas Hyperbolas

10. 11.

12.

Lines

c<o

Circles

c>o

c<o

Hyperbolas

c>o



Ill, §2, p. 76

ANSWERS TO EXERCISES A9

oJ/ax of/oy

1. y x

2. 2xy5 5X2 y4

3. ycos(xy) x cos(xy)

4. -y sin(xy) -x sin(xy)

5. yz cos(xyz) xz cos(xyz)

6. yze xyz xze XYZ

7. 2x sin(yz) x 2z cos(xz)

8. yz xz

9. z+y z+x

Y x
10. cos(y - 3z) + -x sin(y - 3z) +

J1 - X 2 y2 J1 - X 2 y2

oJ/oz

o
-sin(z)

o
xy cos(xyz)

xy

x+y

3x sin(y -- 3z)

11. (1) (2, 1, 1) (2) (64, 80, 0) (6) (6e6 , 3e6 , 2e6 ) (8) (6, 3, 2) (9) (5, 4, 3)

12. (4) (0, 0, 0) (5) (n 2 cos n2 , n cos n 2 , n cos n2 )

(7) (2 sin n 2
, n cos n 2 , n cos n2 )

16. (t, t, - 5f)
13. (-1, -2,1)

ill, §3, p. 82

oxY oxY

14. - = yxy
-

l
- = x y log x

ax oy

1. 2, -3 2. a, b 3. a, b, c

S. Select first H = (h,O) = hE I • Then A· H = hal if A = (al> a
2
). Divide both

sides of the relation

f(X + H) - f(X) = a1h + Ihlg(H)

by h =F- 0 and take the limit to see that a l = Dd(X). Similarly use
H = (0, h) = hE2 to see that a2 = D 2 f(x, y). Similar argument for three
variables.
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III, §4, p. 86

ANSWERS TO EXERCISES

a2flax 2 a2f/a y2 a2f/ax ay

1. y2exy x 2exy yxeXY + eXY

2. _y2 sin xy _x2 sin xy -xy sin xy + cos xy

3. 2y3 6x2y 6xi + 3
4. 0 2 2

5. 2ex2+y2 + 4x2ex2+y2 eX2 +y2(2 + 4y2) 4xyex2 +y2

6. 2 cos(x2 + y) -sin(x2 + y) -2x sin(x2 + y)
-4x2 sin(x2 + y)

7. -(3x2 + y)2 cos(x3 + xy) _x2 cos(x3 + xy) -(3x2 + y)x cos(x3 + xy)
-6x sin(x3 + xy) -sin(x3 + xy)

8 a2f _ 2(1 + (x 2 - 2xy)2) - 2(2x - 2y)2(X2 - 2xy)
• ax2 - (1 + (x2 - 2xy)2)2 '

a2f -8X2(X 2 - 2xy)

ay2 = [1 + (x 2 - 2xy?J2'

a2f _ -2[1 + (x 2 - 2xy)2J - (2x - 2y)(x2 - 2xy)( -2x)2

ax ay - [1 + (x2 - 2xy)2J2

9. All three = eX +Y

11. 1

14. (1 - X2y2Z2) cos xyz - 3xyz s'1n,:xyz

15. sin(x + y + z)
48xyz

17 -~_-----=:_~

• (x2 + y2 + Z2)4

10. All three = -sin(x + y)

13. eXyz(l + 3xyz + X2y2Z2)

16. -cos(x + y + z)

20. From Dd = -D2 g we get Dif = -DiD2 g. From Dzf = Dig we get
DU = D2 Di g· Adding yields O.

21. Remember that d(arctan u)/du = 1/(1 + u2
). Using the chain rule, we get

a 1 -y -y
ax arctan(Ylx) = 1 + (ylx)2 x 2 = x 2 + y2'

Take the derivative with respect to x again to get:

Then take the partial derivatives with respect to y, be careful about the chain
rule and add to the previous expression. You will get O.
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ANSWERS TO EXERCISES All

1. ft (P + tA) = A, so this follows directly from the chain rule.

2. 5. Indeed, C(t) = (2t, -3t- 4 , 1) and C(l) = (2, -3,1). Dot this with given
grad f(l, 1, 1) to find 5.

3. C'(O) = (0, 1).
Let C(O) = (a, b). Now gradf(C(O) = (9,2) and gradg(C(O) = (4, 1), so
using the chain rule on the functions f and g, respectively, we obtain

2 = ~ f(C(t) \ = (9, 2)·(a, b) = 9a + 2b,
dt .=0

1 = ~g(C(t)1 = (4, l)·(a, b) = 4a + b.
dt .=0

Solving for the above simultaneous equations yields C(O) = (0, 1).

4. (a) grad f(tP) . P.
(b) Use 4(a) and let t = O.

5. Viewing x, y as constant, put P = (x, y) and use Exercise 4(a). Then put
t = 1. If you expand out, you will find the stated answer.

7. (a) af/ax = x/r and af/ay = y/r if r = Jx2 + y2.

If x If y If
(b) -a = ( 2 + 2 2)1/2' -a = (2 2 2)1/2' -a = guess what?x x y +z y x +y +z z

ar x·
8.-=~

ax; r

9. (a) af/ax = (3x2y + 4x) cos(x3y + 2x2)

af/ay = x 3 cos(x3y + 2x2)

(b) af/ax = -(6xy - 4) sin(3x2y - 4x)

af/ay = -3x2 sin(3x2y - 4x)

(c) af/ax = 2xy ,af = x
2

+ 5 = ~
(x 2y + 5y) ay x 2y + 5y y

(d) af/ax = t(2xy + 4)(x2y + 4X)-1/2

af/ay = tx2(X2y + 4X)-1/2

IV, §2, p. 97

1.

(a)
(b)
(c)
(d)
(e)
(f)

Plane

6x + 2y + 3z = 49
x+y+2z=2
13x + 15y + z = -15
6x - 2y + 15z = 22
4x + y + z = 13
z=O

Line

x = (6, 2, 3) + t(12, 4, 6)
X = (1, 1, 0) + t(l, 1, 2)
X = (2, -3, 4) + t(13, 15, 1)
X = (1,7,2) + t(-6, 2, -15)
X = (2, 1, 4) + t(8, 2, 2)
X = (1, rr./2, 0) + teO, 0, rr./2 + 1)
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2. (a) (3,0,1) (b) X=(IOg3,3;,-3)+t(3,0,1)

(c) 3x + z = 3 log 3 - 3

3. (a) X = (3, 2, -6) + t(2, -3, 0) (b) X = (2, 1, -2) + t( -5,4, -3)
(c) X = (3, 2, 2) + t(2, 3, 0)

4. lIC(t) - QII and see Exercise 11 of Chapter II, §l.

5. (a) 6x + 8y - z = 25 (b) 16x + 12y - 125z = -75
(c) nx + y + z = 2n 6. x - 2y + z = 1

7. (b) x + y + 2z = 2 8. 3x - y + 6z = 14

9. (cos 3)x + (cos 3)y - z = 3 cos 3 - sin 3.

13. (a) 0 (b) 6

10. 3x + 5y + 4z = 18

-10
12. r,;::,
3y 12

IV, §3, p. 102

1
11. (a) r-v7 (5, 1, 1) (b) 5x + y + z - 6 = 0

y27

14. 4ex + 4ey + 4ez = 12e

(b) (1,2, -1,1)

7. (-1, 1), J2

1. (a) ~ (b) max = jiO, min = -jiO
3 48 !1""«2. (a) /C (b) 13 (c) 2y 145
2y 5

Note: In the answers for the direction of maximal increase, we give one vec­
tor in this direction. Any positive scalar multiple of this vector is also a cor­
rect answer.

. (9J3 3J3) (9ft 3J3)3. Increasmg - --, - -- , decreasing -- --
2 2 2 ' 2

(
9 3 6 )

4. (a) 2.67/4 ' 2.67/4 ' - 2.67/4 or also (3,1, -2)

5. (a) -2/.j5 (b) Jli6 6. (10,4,10), 6fi
1

8. J3(2e - 5) 9. (a) 0 (b) -)1 + 2n2

10. For any unit vector A, the function of t given by f(P + tA) has a maximum
at t = 0 (for small values of t), and hence its derivative is 0 at t = O. But its
derivative is gradf(P + tA)· A, which at t = 0 is gradf(P)· A. Hence
gradf(P)· A = O. This is true for all A, whence gradf(P) = O.
For another proof, fix all but one variable, and say XI is the variable. Let

where P = (aI' ... ,an)'

Then g is a function of one variable, which has a maximum at x = a l .
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Hence g'(a]) = 0 by last year's calculus. But

g'(a]) = Dtf(a t , .. · ,an)'

Similarly DJ(P) = 0 for all i, as asserted.

IV, §4, p. 109

A13

aj dg ar dg x
1. -a = -d -a = -d -. Replace x by y and z. Square each term and add. You

x r x r r
can factor

2. (a) -X/r3 (b) 2X (c) -3X/r5 (d) _2e- r2X (e) -X/r2

(f) -4mX/rm+ 2 (g) -(sin r)X/r

3. F(t)2 = (cos thA2 + 2(cos t)(sin t)A· B + (sin t)2B2 = 1,
because A 2 = B2 = 1 since A, B are unit vectors and A· B = 0 by assump­
tion. Hence IIF(t)11 = 1, so F(t) lies on the sphere of radius 1.

___F(t) = (cos t)A + (sin t)B

4. Note that L(t) = (1 - t)P + tQ. If L(t) = 0 for some value of t, then

(1 - t)P = -tQ.

Square both sides, use p 2 = Q2 = 1 to get (1 - t)2 = t2. It follows that
1 -1

t = 1/2, so "i P = 2 Q, whence P = -Q.

5. By Exercise 4, L(t) # 0 if 0 ~ t ~ 1. Then L(t)/IIL(t)1I is a unit vector, and
this expression is composed of differentiable expressions so is differentiable.
Furthermore, we have

L(O) = P and L(1) = Q.

Thus if we put C(t) = L(t)/IIL(t)ll, then lIC(t)1I = 1 for all t, and the curve
C(t) lies on the sphere. Also

C(O) = P and C(1) = Q.

Hence C(t) is a curve on the sphere which joins P and Q.
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The picture looks as follows.

"----~~--
o

On the sphere cross section

Note that C(t) is the unit vector in the direction of L(t).

6. Suppose P, Q are two points on the sphere, but P = - Q. In this case we
cannot apply Exercise 5, but we can apply Exercise 3. We let

C(t) = (cos t)P + (sin t)A,

where A is a unit vector perpendicular to P. Then C(t)2 = 1, so C(t) lies on
the sphere, and we have

C(O) = P, C(n) = -Po

Thus C(t) is a curve on the sphere joining P and - P.

7. Let x = a cos t and y = b sin t.

9. Let P, Q be two points on the sphere of radius a. It suffices to prove that
f(P) = f(Q)· By Exercises 5 and 6, there exists a curve C(t) on the sphere
which joins P and Q, that is C(t) is defined on an interval, and there are two
numbers t 1 and t 2 such that C(tt) = P and C(t2) = Q. In those exercises,
we did it only for the sphere or radius 1, but you can do it for a sphere of
arbitrary radius a by considering aC(t) instead of the C(t) in Exercises 5 or
6. Now, it suffices to prove that the function f(C(t)) is constant (as function
of t). Take its derivative, get by the chain rule

d
- f(C(t)) = grad f(C(t))· C(t) = h(C(t))C(t)· C(t).
dt

But C(t)2 = a2 because C(t) is on the sphere of radius a. Differentiating this
with respect to t yields 2C(t)· C(t) = 0, so C(t)· C(t) = 0, which you plug in
above to see that the derivative of f(C(t)) = O. Hence f(C(tt)) = f(C(t 2)) so
f(P) =f(Q)·
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(

X y Z) g'(r) . h . bl) d10. gradf(X) = g'(r) -, g'(r) -, g'(r) - = - X (say In tree vana es, an
r r r r

g'(r)/r is a scalar factor of X, so grad f(X) and X are parallel.

12. First of/ax = g'(r)x/r. Using the rule for the derivative of a product, and a
quotient, we then get:

o2f [r - xx/rJ x x- = g'(r) + g"(r) --.
ox2 r2 r r

Replace x by y to get o2f/oy2. Then add. Things will cancel to give the
desired answer.

13. Same method as in Exercise 12.

IV, §5, p. 113

1. klog IIXII
k

2. - 2r2 {

IOgr,

3. 1
(2 - k),.J<-2'

k=2

Exercises 1 and 2 are special cases of 3. Let.

1
F(X)=;;;X.

We have to find a function g(r) such that if we put f(X) = g(r) then
F(X) = gradf(X). This means we must solve the equation

1 g'(r)
;;;X =-r-X'

or in other words

Then

g(r) = fr1
-

k dr,

which is an integral in one variable. You should know how to find it,
namely:

f 1 - k d {log r if 1 - k = - 1.
g(r) = r r = r2-k/(2 _ k) if 1 _ k #- -1 .

The condition 1 - k = - 1 is equivalent with k = 2. This solves the problem.
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af
- = 3xz - 2yz
ay

az af au af av
1.-=--+--

ar ax ar ayar

af 2
2. (a) ax = 3x + 3yz,

and
az af au af av
-=--+-­
at ax at ay at

af 2 .
as = (3x + 3yz) + (3xz - 2yz)( -1) + (3xy - y2)2s

af
at = (3x2 + 3yz)2 + (3xz - 2yz)( -1) + (3xy - y2)2t

(b) af = y2 + 1, af x
2 + 1

ax (1 - xy)2 ay (1 - xy)2

af (x2 + 1) sin(3t - s)
as - (1 - xy)2

af 2(y2 + 1) cos 2t - 3(x2 + 1) sin(3t - s)
at - (1 - xy)2

3. 8, because when u = 1, v = 1 we have g(1, 1) = f(O, 0, 0) so

ax ay az
D1g(u, v) = Dd(x, y, z) au + Dd(x, y, z) au + D3 f(x, y, z) au

so

D1g(1, 1) = Dd(O, 0, 0)1 + Dd(O, 0, 0)2 + D3 f(0, 0, 0)0 = 8.

4. Differentiate the relation with respect to t to get

D1f(tx, ty)x + Dd(tx, ty)y = mtm-1f(x, y).

Then differentiate once more, to get

= m(m - 1)tm
-

2f(x, y).

Then put t = 1.

5. Put s = x - y and t = Y - x. Then as/ax = 1, etc. Use the formulas

au af as af at
-=--+-­
ax as ax at ax

and
au af as af at
-=--+--.
ay as ay at ay
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6. (a) Let u = x + y and v = x - y. Given g(x, y) = f(u, v), the chain rule says

ag af au af av af af
-=--+--=-+-,
ax au ax av ax au av

ag = af au + af av = af + af ( -1).
ay au ay av ay au av

Multiply to get the answer.

ag
(b) ay = f'(2x + 7y)7 and

(c) Let g(x, y) = f(2x 3 + 3y2).

ag
ax = f'(2x + 7y)2.

Let u = 2x3 + 3y2. Then

ag af au 3 2 2
- = -- =f'(2x + 3y )6x ,
ax au ax

ag af au
- = - - = f'(2x 3 + 3y2)6y.
ay au ay

Multiply the first relation by y and the second by x 2 to get the answer.

7. Let x = u cos IJ - v sin IJ and y = u sin IJ + v cos IJ with IJ constant. Let
f(x, y) = g(u, v). Then

ag afax af ay af af .
au = ax au + ay au = ax cos IJ + ay SIn IJ,

ag afax af ay af . af
av = ax av + ayav = ax (-SIn IJ) + ay (cos IJ).

Take the sum of the squares on the left equal to the sum of the squares on
the right. Things will cancel to give the answer.

8. We have

Dig = (DJ) cos IJ + (Dd) sin IJ,

D2g = (DJ)( -r sin IJ) + (Dd)(r cos IJ.

Multiply (*) by r sin IJ and (**) by cos IJ. Then add. You get

. ag ag
r SIn IJ ar + cos IJ aIJ = rDd(x, y) because sin2 IJ + cos2 IJ = 1.

Multiply (*) by r cos IJ and (**) by sin IJ and subtract. You get the other
formula

ag ag sin IJ ag
-=coslJ-----·
aIJ ar r aIJ
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az = cos(x + ct)c - sin(2x + 2ct)2c,
at

a2z
-2 = -sin(x + ct)c2

- cos(2x + 2ct)4c2
,

at

az
ax = cos(x + ct) - sin(2x + 2ct)2,

a2 z
ax2 = -sin(x + ct) - cos(2x + 2ct)4.

So a2zjat2 = c2a2zjax2
•

10. This is entirely similar to Problem 9 but with arbitrary functions j and g in­
stead of sine and cosine. For instance,

az
at = f'(x + ct)c + g'(x - ct)( -c),

We leave the derivative c2(a 2zjax2
) to you.

11. Let z = j(u, v) and u = x + y, v = x - y. Then

az au av
- = Dd(u, v) -a + Dd(u, v) -a'
ax x x

= Dd(u, v) + Dd(u, v).

Then

a2 au av
_%- = D1Dd(u, v)-a + D2 Dd(u, v)-a
ayax y y

au av
+ D1Dd(u, v) ay + D2 Dd(u, v) ay

= Di/(u, v) - DU(u, v)

because aujay = 1, avjay = -1 and the two middle terms cancel.

12. Entirely similar to Problem 11.

13. (a) Let g(r,O) = r n cos nO. Then

ag
- = nrn- 1cos nO,
ar

ag = rn( _ sin nO)n
ao '

a2
g ( 1) .-2 0-=nn- r cosn,

ar2

a2
g n( 0) 2-= r -cosn n.ao2

If you take the sum as stated in the exercise, you will find o.
(b) Similar to 13(a).
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14. ag = (DJ) cos 8 + (Dd) sin 8,
ar

a2g
- = [(Dif) cos 8 + (D2 DJ) sin 8] cos 8
ar2

+ [(D 1D2 f) cos 8 + (D~f) sin 8] sin 8,

! ag = ! [(DJ) cos 8 + (D2 f)(sin 8],
r ar r

1 a2 1 .
-~ = - [(Dif)( -r sin 8) + (D2 DJ)(r cos 8)](-r sm 8)
r 2 a82 r 2

+! [(D 1Dd)( -r sin 8) + (D~f)(r cos 8)](r cos 8)
r2

+ ~ [(DJ)( -r cos 8) + (Dd)( -r sin 8)].
r

A19

Take the sum on the right-hand sides. Cancel as much as you can. Keep
calm, cool and collected, and you will end up with Di! + D~f.

V, §1, p.126

1. (2,1), neither max nor min.
Let f(x, y) = x 2 + 4xy - y2 - 8x - 6y. Then

af
-= 2x +4y-8ax and

af
-=4x-2y-6.ay

Hence the critical points are the solutions of

or

2x + 4y = 8

x + 2y = 4

and

and

4x - 2y = 6,

2x - y = 3.

We solve these equations simultaneously. For instance, multiply the second
by 2 and add the first. This yields

5x = 10 so x = 2 and then y = 1.

So there is just one critical point (2,1).
This point is neither a max nor min, because for instance, when y = 0

then f(x,O) = x 2 - 8x becomes very large positive when x becomes large,
and on the other hand, f(O, y) = - y2 - 6y becomes large negative when y is
large, so f has no max or min in the whole plane.
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2. (2n + l)n, 1) and (2nn, -1), neither max nor min.
Let f(x, y) = x + y sin x. Then

af
- = 1 + ycosx
ax

and
af .
-=SIllXay .

Hence the critical points are the solutions of

sinx=O and y cos x = -1.

The solutions of sin x = 0 are just when x = (2n + l)n or 2nn, with n equal
to an integer. Then cos (2n + l)n = -1 and cos (2nn) = 1, so y = 1 or
y = -1 accordingly. This determines all critical points.

If y = 0 then f(x,O) = x takes on large positive and negative values, so
there is no max or min for f in the plane.

3. (0, 0, 0), min, value O.
The function f(x, y, z) = x2 + y2 + Z2 takes on values which are all ;?; 0, and
f(O, 0, 0) = 0, so 0 is a minimum value.

4. ±(1/}2,1/}2), neither max nor min.
Let f(x, y) = (x + y)e- XY . Then

af = (x + y)( _ y)e-XY + e-XY = (-xy _ y2 + l)e-XY
ax '

~~ = (x + y)( -x)e- XY + e- xy = (-xy - x2 + l)e- XY.

The critical points are the solutions of

xy + y2 = 1 and xy + x 2 = 1.

This occurs if and only if x 2 = y2 so X = ±y. Substituting back in either
equation, we cannot have x = - y otherwise 0 = 1, so x = y and 2y2 = 1 so

y = ± 1/}2, thus giving the answer.
Again, f(x,O) = x, so f takes on large positive and negative values, so f

has no max or min in the plane.

5. All points of the form (0, t, - t), neither max nor min.
Let f(x. y, z) = xy + xz. Then

af
ax = y + z,

af
-=x,
ay

af
az = x.

The critical points are the solutions of

y + z = 0, x= 0,

so (0, t, -t) as stated with arbitrary values for t.
Since f(x, 1,0) = x, again f takes on arbitrarily large positive and negative

values, so f has no max or min in the plane.
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6. All (x, y, z) with x 2 + y2 + Z2 = 2nn are max, value 1.
All (x, y, z) with x 2 + y2 + Z2 = (2n + I)n are min, value -1.
Let J(x, y, z) = cos(x2 + y2 + Z2). The values of cos u range between -I and
I, and for instance cos u = -I precisely when u = (2n + I)n, with some inte­
ger n. Also cos u = 1 precisely when u = 2nn, with some integer n. This gives
the answer as stated.

7. All points (x, 0) and (0, y) are mins, value O.
Let J(x, y) = X 2y 2. Then all values of J are ~ o. So the minimum value is 0
itself, and occurs when X

2y2 = O. This is the case if and only if x = 0 or
y = 0, as stated.

8. (0,0), min value O.
Let J(x, y) = x 4 + y2. Again all values of J are ~ 0, and the minimum value
is 0 at (0, 0).

9. (t, t), min value O.
Let J(x, y) = (x - y)4. All values of J are ~ 0, and the minimum value is 0
when (x - y)4 = 0, which is equivalent with x - y = 0, that is x = y.

10. (0, nn), neither max nor min.
Let J(x, y) = x sin y. The critical points are the solutions of

aJ
- = siny = 0ax and

aJ
-= xcosy = O.ay

The solutions of the first equation are nn, with n equal to an integer. For
such n we have cos(nn) = ± I, so the solutions of the second equation must
be x = O. These are the critical points as stated.
Since J(x, n/2) = x, it follows that J takes on arbitrarily large positive and

negative values, so has no max or min in the plane.

11. (1/2,0), min, value -1/4.
Let J(x, y) = x 2 + 2y 2 - x. Then

aJ
- = 2x - 1 = 0 if and only if x = 1/2,ax

~ = 4y = 0 if and only if y = o.

So the critical points are as stated, and J(I/2, 0) = -1/4.
We can write

J(x, y) = ( x - ~)
2

+ 2y2 - 1/4 by completing the square.

The sum of the two square terms is always ~ 0, so the values of J are
always ~ -1/4. Since J(I/2,0) = -1/4, it follows that this is a minimum
value for J in ·the plane.
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12. (0, 0, 0), max, value 1.
Let f(x, y, z) = e-(x

2+y2+ z 2). Then all values of fare > 0, because eU> o.
Also if u ~ 0 then e- U

~ 1, and e- U = 1 if and only if u = O. Therefore the
maximum occurs when u = 0, that is x 2 + y2 + Z2 = 0, so x = y = z = O.
Since (0,0,0) is a maximum for f in the plane, it is a critical point by
Theorem 1.1. But you can of course also see it directly by taking the first
partial derivatives and setting them equal to O.

13. (0, 0, 0), min, value 1.
The argument is similar to Exercise 12.

V, §2, p.133

1. Min value -2 at (-I, -I); max value 2 at (1,1).
Let U be the interior of the square. Let f(x, y) = x + y. Then

of
-=1;60ox and

of
-=1;60oy

so there is no critical point in the interior. Hence a maximum or minimum
for f must occur on the boundary of the square.

1)

1,1) (1,1)

, -1) (1, -

(-

(-

We test f on each segment of the boundary. For instance, on the top seg­
ment,

f(x, 1) = x + 1 has a maximum value 2 when x = 1, minimum 0
when x = -1.

Test similarly the other three sides. You will find the given answer.

2. (a) None. Let f(x, y, z) = x + Y + z. All partial derivatives are equal to
1 ;6 0, so there is no critical point in the open ball, whence there is no
max or min in the open ball by Theorem 1.1.

(b) None, for the same reason that there is no critical point in the open disc.
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3. Max ! at (,j2/2, ,j2/2) and (- ,j2/2, - ,j2/2), min - 1 at (0, 0). . .
Let U be the interior of the circle of radius 1. We first determme the crItIcal
points in U. Let f(x, y) = xy - (1 - x 2 - y2)1/2. Then

af x
ax = y - (1 - x 2 _ y2)1/2 and

Abbreviate r2 = x 2 + y2 as usual. Then both partials are equal to 0 if and
only if

x

If y *0 this is equivalent with

and

and

But in the interior, 0 ~ r < 1, so 1 - r2 < 1, and 1/(1 - r2
) > 1, so these rela­

tions are impossible. Thus at a critical point we must have y = 0, and then
x = 0 also. This means that the only critical point is the origin (0, 0), and
at the origin we have

f(O,O) = -1.

Next we investigate the values of f on the boundary of the disc, namely
the circle of radius 1. Then we have r2 = 1. We put

Then

x = cos (J and y = sin (J.

f(x, y) = sin (J cos (J = ! sin 2(J.

The maximum for f on the boundary is when sin 2(J = 1, and this occurs at
the two points:

PI when () = n/4

At these points, we have the values

and P 2 when () = 5n/4.

A maximum for f occurs either in the interior, at the critical point, or on
the boundary at P I or P 2' Comparing values, we conclude that the maxi­
mum is at PI and P 2 because -1 < 1/2.
Similarly, you can see that the minimum of f on the boundary occurs at

two points, with value -1/2, and since - 1 < -1/2, it follows that the mini­
mum for f is at the origin with value -1.
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4. Max at (1, t), no min.
Let [(x, y) = X3y2(1 - x - y) on the first quadrant, that is x ~ 0 and y ~ O.
Find all maxima and minima.
Write [(x, y) = X 3y2 - X 4 y2 - X 3y3. Then:

The critical points occur when x = 0, or y = 0 (which are on the boundary,
so irrelevant here), or xy *- 0 but

4x + 3y = 3,

and 2x + 3y = 2.

The solution of the simultaneous system is (t, t), and Jet, t) > O.
If x or y ~ 1, then [(x, y) ~ O. Hence outside the square as shown, [(x, y)

is ~ O. On the square, [ has a maximum. Since f(t, t) > 0, and the values
of [ on the boundary of the square are ~ 0, it follows that (t, t) is the only
maximum point of [ on the square, whence the maximum point for [ on the
whole first quadrant.

If x has a fixed value *- 0 and y ---> ro then [(x, y) ---> - ro. Hence [ has
no minimum in the first quadrant. Done.

(0, 1) ......---1 (1,1)

(0,0) (1,0)

5. Min value 0 at (0,0); max value 2/e at (0, ±1).
Let [(x, y) = (x2 + 2y2)e-(';'Z+yZ)= x2e-xZe-Yz + 2y2e-yZe-xz. If u ~ 0 then
e- U ~ 1, so e- Yz ~ 1 for all values of y. Also we have seen at the end of the
section that x 2e- xZ ---> 0 as x becomes large. Hence

as x ---> ± ro.

Similarly,

as y ---> ±ro.
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Now consider a large square.

A

-A A

-A

A25

Let S be the boundary of the square, and U its interior. By what we have
just seen, the value of J on the boundary S and outside the square ap­
proaches 0 as A -+ 00. On the other hand, J has both a maximum and a
minimum value on the union of U and its boundary. Since for instance
J(l, 1) > 0, it follows that the maximum must be an interior point, and is
therefore a critical point. We have:

oj 2( 2) -x2 _y2 + 2 -x2 _y2 + 2 2 _y2( 2) -x2
ox = X - x e e xe eye - x e

= (-2x3 + 2x _ 4xy2)e-X2_y2

= 0 ¢> - 2x2 + 2x - 4xy2 = 0

¢> x( -2x + 2 - 4y2) = 0

¢> x=O or -2x+2-4y2=0.

oj = x2e-X2( _2y)e-y2 + 2y2( _2y)e-y2e-X2 + 4ye- y2e- X2
oy

= (-2x2y _ 4y 3 + 4y)e- x2 _y2

= 0 ¢> -2x2y - 4y 3 + 4y = 0

¢> y( -2x2 - 4y2 + 4) = 0

¢> Y = 0 or - 2x2 - 4y2 + 4 = O.

Thus we find the following critical points:

Pi = (0,0), and J(P1) = J(O, 0) = O.
x = 0, y is a solution of 4y2 = 4, so y = ±1, which yields two points

(0, ±1), and J(O, ±1) = 2/e.
y = 0 and x is a solution of - 2x + 2 = 0, so x = 1. At this point,

J(l,O) = lie.
x and yare simultaneous solutions of

-2x + 2 - 4y2 = 0 and - 2x2 + 2 - 4y2 = O.
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This implies that
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We have already listed the cases when x = 0, so here x # 0, whence x = 1.
But then y = 0, and we have already listed those cases. So no new point
comes from these two simultaneous equations.
We now compare the three values 0, 21e and lie in the first three cases,

and we see that 0 is a minimum while 21e is a maximum. Since f has a
positive maximum in the whole plane, we have found it at the points (0, ±1)
with value f(O, ± 1) = 21e.
As to a minimum, we observe that f(x, y) ;;; 0 for all (x, y), and therefore

j(O,O) = 0 is the minimum for f in the whole plane.

6. (a) Max 1 at (1,0), min 1/9 at (3,0) (b) Max 1 at (0, 1), min 1/9 at (0,3).
(a) Let f(x, y) = (x2 + y2)-1 = r- 2. Iff has a minimum point P in the inter­
ior of the region, (x - 2)2 + y2 < 1, then gradf(P) = 0 for such P. But

Then gradf(x, y) # (0,0) since f(O,O) is not even defined. Hence a mini­
mum point P must lie on the boundary, which is defined by the equation
(x - 2)2 + y2 = 1. This is a circle, which can be parametrized by

x = 2 + cos t, y = sin t.

Then f(x, y) = 1/(4 + 4 cos t + cos2 t + sin2 t) = 1/(5 + 4 cos t). Note that
cos t ranges from -1 to 1. The value of the function is a maximum
when the denominator on the right is smallest, so when cos t = - 1, so
sin t = 0, which give the point PI = (1,0), and f(P 1) = 1. The value of
the function is a minimum when the denominator on the right is biggest,
so when cos t = 1, sin t = 0, which give the point P2 = (3, 0), and
f(P 2 ) = 1/9. You can check these formal arguments by inspection of the
picture as follows. The function is the reciprocal of the distance squared
from the origin.

(x - 2)2 + y2 = 1
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2 4 x2 - y4 2 - y4 - x 2
f(x, y) = (x + 2y)e- X -Y = xe- e + ye e .

7. (a) Both (b) Neither (c) Neither (d) Min (e) Both (f) Max (g) Min.
We shall now work out (a), (b), (c), (g).

(a) Let

The function of x given by xe- x2 tends to 0 as x becomes large positive
or negative. Also, 0;;;; e- y4

;;;; 1. Hence

as max(lxl, Iyl) becomes large.

Similarly, 2ye- X2 - y4 --+ 0 as max(lxl,lyl) becomes large. Hence
f(x, y) = (x + 2y)e- X2 _y4

--+ 0 as max(lxl, Iyl) becomes large, so f is small
outside a large square. On any given square as on the figure, f is contin­
uous, and so has a maximum and a minimum.

, y)1 is small
(x, y) outside a large square.

If(x
for

We have for instance f(l, 1) > 0 and f( -1, -1) < 0, so the function is
positive at some points and negative at some points. Since the function
is near 0 outside a large square, it follows that the maximum inside the
square must be a maximum for the values of the function taken in the
whole plane. Similarly for a minimum.

(b) Let f(x, y) = eX- Y= eXleY. Then f(x, 0) =~. Since

f(x, 0) --+ 00 if x --+ 00

if follows that f has no maximum. On the other hand, f(x, y) ~ 0 for all
x, y, and

f(x, 0) --+ 0 as x --+ -00.

Since f does not take on the value 0 for any (x, y) it follows that f has
no minimum.

(c) Let .r(x) = ex2 - y2 = ex2/eY2. The analysis is similar to (b). Look at .r(x, 0)
as x --+ 00 and look at f(O, y) as y --+ 00. Also use the fact that f(x, y) > 0
for all (x, y).
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(g) The function is ~ 0 for all (x, y) and j(O,O) = 0, so (0,0) is a minimum
point, with minimum value O. If y = 0, then j(x, y) = x2/lxl. If x is large
positive, then j(x, y) = x, so j has no maximum.

8. t = (2n + l)n, so (-1,0,1) and (-1,0, -1).
Let Jet) be the square of the distance from the origin. Then

Jet) = cos2 t + sin2 t + sin2(t/2) = 1 + sin2(t/2).

A point at maximal distance is such that sin2(t/2) takes on its maximal value,
which is 1. This value is taken when sin(t/2) = ± 1, which means that
t/2 = ±n/2 + nn, whence t = ±n + 2nn, with an arbitrary integer n. These
are precisely the odd integer multiples of n, which we can also write as
(2n + l)n, with an arbitrary integer n. For these values we get the two
points (-1,0, 1) and (-1,0, -1), depending on whether sin(t/2) = 1 or -1.

9. Max at (1,1), value 2.
Let j(x, y) = x 3 + xy. Then gradj(x, y) = (3x 2 + y, x). The gradient is

(0, 0) if and only if 3x2 + y = 0 and x = 0, so both x = 0 and y = 0, which
is a boundary point of the square. Hence a maximum or minimum cannot
occur in the interior, so the maximum and minimum of j on the square must
be on the boundary.
Now the boundary consists of four segments as shown.

The segment 8 1 is the set of points (0, y) with 0 ~ y ~ 1, and for such points,
j(O, y) = O. Similarly, on 82 , j(x,O) = x 3

, which ranges from 0 to 1, and
j(I,O) = 1 is a maximum for j on 82 , On 83 , we have j(l, y) = 1 + y which
ranges from 1 to 2, with a maximum at j(l, 1) = 2. On 84 , we have
j(x, 1) = x 3 + x which is increasing (because its derivative is 3x2 + 1 > 0), so
j(x, 1) has a maximum at (1, 1) with value j(l, 1) = 2. Hence (1, 1) is a max­
imum point for j on the boundary, with value j(l, 1) = 2. The minimum is
at (0,0) with value 0 since j(x, y) ~ 0 on the square.

10. Max at (1, 1), value 2.

11. Max at (x, 0) for -2 ~ x ~ 0 and at (0, y) for 0 ~ y ~ 1.
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V, §3, p.139

1. (a) -1/.ji (b) 9/8.
Let f(x, y) = x + y2 and g(x, y) = 2x2 + y2. The constraint is

g(x, y) = 1.

A29

We have iJg/iJx = 4x and iJg/iJy = 2y. These partials are 0 only for x = y = 0,
and the point (0,0) is not on the curve g(x, y) = 1, so many maximum or
minimum for f subject to the constraint is an L.M. point. Since iJf/iJx = 1
and iJf/iJy = 2y, the L.M. points are those such that there exists a number A.
for which

1 = A.4x and 2y = A.2y.

Case 1. y = O. Then the constraint 2x2 + y2 = 1 yields 2x2 = 1 so

x = ± 1/.ji,

and f(± 1/.ji) = 1/.ji or -1/.ji.
Case 2. y i= O. Then A. = 1 so x = 1/4. From the constraint equation we

get

y2 = 1 - 2(1/4)2 = 7/8.

Then f(I/4, ±7/8) = 1/4 + 7/8 = 9/8.
We now compare the three values 1/.ji, -1/.ji and 9/8, and conclude

that the maximum value is 9/8, while the minimum value is -1/.ji.

2. 1 + 1/.ji.
Let f(x, y, z) = x 2 + y2 + Z2 + xy + yz. Note that x 2 + y2 + Z2 = 1 on the
sphere of radius 1, so instead of the above f, we may assume for the problem
that

f(x, y, z) = 1 + xy + yz.

We have gradf(x, y, z) = (y, x + z, y). Let g(x, y, z) = x 2 + y2 + Z2. Then
grad g(x, y, z) = (2x, 2y, 2z), and this is never (0,0,0) unless x = y = z = 0,
which is not a point on the sphere. Hence at a maximum or minimum point
(x, y, z) for f on the sphere, there is a number A. such that

y = A.2x, x + z = A.2y, y = A.2z.

Case 1. A. = O. Then y = 0 and x = - z from the second equation. Since
(x, y, z) is a point on the sphere, we have 2x2 = 1 so x = ± 1/.ji = -z. Let

P 1 = (1/.ji, 0, - 1/.ji) and P 2 = (- 1/.ji, 0, 1/.ji). Then

f(P 1) = f(P 2) = 1.
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Case 2. A. *o. If x = 0 then y = 0 from the first equation, and z = 0 from
the other equations. But (0, 0, 0) is not a point on the sphere, so xyz *0
since (x, y, z) is a maximum or minimum point for f on the sphere. From
the first and third equation we get x = z, so from the second and third we
get x + z/2y = y/2z so y2 = zx + Z2 = 2x2. Substituting back in the equation
x 2 + y2 + Z2 = 1, we find 4x2 = 1 so x = ± 1/2 = z. These conditions
y2 = 2x2 and x = ± 1/2 = z determine four points:

QI = (1/2, 1/.fi, 1/2),

Q3 = (1/2, -1j.fi, 1/2),

Q2 = (-1/2, 1/.fi, -1/2),

Q4 = (-1/2, -1j.fi, -1j2).

Evaluating f at each of these points, one sees that the maximum value of f is
f(QI) = f(Q4) = 1+ 1/.fi. This is bigger than the value obtained in Case 1,
so is the maximum value of f.

3. At (1, i, t) min = 12. See 4 for the general case.

4. X = t(A + B + C), min value is i(A2 + B 2 + C2 - AB - AC - BC).
We work this one out. We have

f(X) = (X - A)2 + (X - B)2 + (X - C)2.

If IIXII is large, then f(X) is large, because

and some coordinate Xi is large positive or negative, so (Xi - ai)2 is large
positive. On a big circle of large radius, the function f is large on the
boundary, and large outside the circle. The function f(X) is ~ 0 for all X
and therefore has a minimum on the closed disc, and this minimum must be
inside the disc, so the minimum is a critical point. We now determine the
critical points. We have

= 0 if and only if 3xI = a l + bl + CI

if and only if Xl = (a l + bl + cl )/3.

Similarly for the other coordinates. Thus there is exactly one critical point P
and we have

P = t(A + B + C).

Thus P is the (unique) minimum point of the function. Substitute back to
get the value

(
A+B+ C)

f(P) = f 3 '

which comes out as stated by using the basic rules of the dot product.



ANSWERS TO EXERCISES A31

5. 45 at ±(j3, ,j6).
Let f(x, y) = 3x2 + 2-fixy + 4y2 and let g(x, y) = x2 + y2. We are supposed
to maximize f subject to the constraint

x 2 + y2 = g(x, y) = 9.

Since og/ox = 2x and og/oy = 2y, these two partials derivatives are 0 only at
(0,0) which is not a point on the curve g(x, y) = 9. Hence a maximum for f
on the circle of radius 3 occurs at an L.M. point. We have

of/ax = 6x + 2-fiy

so an L.M. point is such that

6x + 2-fiy = A,2x

or simplifying and using algebra

and

and

of/oy = 2-fix + 8y,

2-fix + 8y = A,2y

(3 - A,)x + -fiy = 0,

-fix + (4 - A,)y = O.

Multiply the first equation by (4 - A,), the second by 2 and subtract. We get

(4 - A,)(3 - A,)x - 2x = O.

We cannot have x = 0, otherwise from either equation we also have y = 0,
and (0, 0) is not a point on the circle. Hence

(4 - A,)(3 - A,) - 2 = 0, that is A,2 - n + 10 = 0

and we can solve, to get A, = 5 or A, = 2.
Suppose A, = 5. Using the L.M. equations, we then get

6x + 2-fiy = lOx so that x = y/-fi.

Plugging in the constraint equation x2 + y2 = 9 we find y2 = 6 so y = ±,j6,
and then x = ± j3. This gives us the two points

and

and f(P 1) = f(P 2) = 45.

Suppose A, = 2. Then x = --fiy so y2 = 3, y = j3 or -j3, so
x = -,j6 or x =,j6. This gives us the L.M. points

and

Then f(P3) = f(P4) = 18.
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Since 45> 18, it follows that P l , P 2 are maximum points, with the value
45.

6. (t)3/2 at A (1,1,1). We work it out.
Let f(x, y, z) = xyz and let

g(x, y, z) = xy + yz + xz,

so that the surface is the set of solutions of g(x, y, z) = 2, with x, y, z ~ O.
The boundary occurs when one of the coordinates x or y or z is O. If for
instance x = 0, then

f(O, y, z) = 0,

so f has a minimum value of 0 on the boundary because f(x, y, z) ~ 0 for all
x, y, z ~ O. The situation is symmetric for the other variables.
Now suppose (x, y, z) is not on the boundary, so assume xyz =1= O. Then a

maximum for f occurs in the interior of the region. We compute:

grad g(x, y, z) = (y + z, x + z, x + y).

Since xyz =1= 0 we must have x > 0, y > 0, z > 0 so g has no critical point on
the interior of the region. Hence a maximum for f must occur at a Lagrange
Multiplier point. At such a point, there is some number 2 such that

yz = 2(y + z),

xz = 2(x + z),

xy = 2(x + y).

Then 2 =1= 0 because xyz =1= O. Taking the ratio of the first two equations, we
get

Y y+z
-=--,
x x+z

which after simple algebra, is equivalent with yz = xz, so x = y. Again by
symmetry, we must also have x = z. Thus the only L.M. point occurs when
x = y = z and g(x, y, z) = 2, in other words

and x =.j2;3.

We take the positive square root since we assumed x> O. Thus there is
exactly one L.M. point

This is the desired maximum point, and the value is f(P) = (2/3)3/2.
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7. We want to write 5x2 + 6xy = 5(x + a)2 - 5a2 for some a. What is a? We
must have 6xy = lOxa so a = 3y/5. Now

(
3Y)25x2 + 6xy + 5y2 = 5(x + a)2 - 5 5" + 5y2

16
= 5(x + a? + 5" y2.

This is a sum of squares, which is 0 if and only if y = 0 and x + a = 0, so
x = 0 also since a = 3y/5.

8. Max at (rr./8, -rr./8), value 2 cos2(rr./8); min at (5rr./8,3rr./8),
value cos2(5rr./8) + cos2(3rr./8).
Let f(x, y) = cos2 X + cos2 y and let g(x, y) = x - y. Then

and ag/ay = -1,

so these partials are never O. Hence a max or min of f on the curve
x - y = rr./4 must occur at an L.M. point. For such a point, there exists A
such that

2cosxsinx=A,

2 cos y sin y = - A.

These equations can be rewritten

sin 2x = A= -sin 2y.

Since y = x - rr./4, we thus find

sin 2x = - sin(2x - rr./2) = cos 2x.

Thus tan 2x = 1 and x = rr./8 or x = 5rr./8 since it was stated in the problem
that 0 ~ x ~ rr.. Since y = x - rr./4, we then get the two points

P 1 = (rr./8, - rr./8) and P 2 = (5rr./8, 3rr./8).

Then f(P 1) = 2 cos2(rr./8) and f(P 2) = cos2(5rr./8) + cos2(3rr./8). But

and

so f(P 1) is the maximum value and f(P 2) is the minimum value.

9. (0,0, ± 1).
We work it out. Let

f(x, y, z) = x 2 + y2 + Z2 and g(x, y, z) = Z2 - xy.

Then f(x, y, z) is the square of the distance of X from the origin, and we are
supposed to minimize f on the surface

g(x, y, z) = 1, that is Z2 - xy = 1.
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We have f(X) ~ 0 for all X and f(X) --+ 00 as IIXII --+ 00. Therefore f has a
minimum. We have

grad g(X) = (- y, -x, 2z).

Then grad g(P) = 0 implies x = y = z = 0, and (0,0,0) is not a point on the
surface because g(O, 0, 0) 0# 1. Hence grad g(P) 0# 0 for all points P on the
surface. Therefore a minimum for f must occur at a L.M. point. At such a
point we must have

(1)

(2)

(3)

2x = -Ay,

2y = -AX,

2z = 2AZ.

We must have A 0# 0, otherwise X = Y = Z = 0 which is not the case. We now
distinguish cases.
Case 1. Z = O. Then -xy = 1 so xy 0# 0 and X 2y2 = 1. Dividing equation

(1) by (2), we must have

X Y
- = - so x 2 = y2
Y X

whence x 4 = 1, so x = ± 1.

From -xy = 1 we then must have x = 1, y = -lor x = -1, y = 1. Then
the value of f at these two points is

f(l, -1,0) = f( -1, 1,0) = 2.

Case 2. Z 0# O. Then A = 1 from equation (3), so from equations (1), (2)
we get 2x = -y and 2y = -x. Therefore 4x = -x, so x = 0 and y = O.
Then z = ±1 since Z2 - xy = 1. This yields two L.M. points, and the value
of f at these points is

f(O,O, ± 1) = 1.

Since 1 < 2, it follows that the points (0,0, ± 1) are the two minimum points
of f. Done.

10. No min, max t at (t, t)·
Let f(x, y) = xy and g(x, y) = x + y. The constraint is x + Y = 1. Since
agjax = 1 and agjay = 1, these partials are never 0, so a max or min for f on
the line x + y = 1 occur at L.M. points. For these we must have

y=A and x = A.

Thus x = y, so from the constraint we get y = t = x. There is only one L.M.
point on the line and f(t, t) = t. Now we have to determine whether it's a
max, min, or neither.
For x large positive we can let y = 1 - x so y is large negative, and then

f(x, y) is large negative, so f has no minimum on the line x + y = 1. And
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also, for the same reason,

A35

f(x, y) --+ - co as x --+ co or x --+ - co

and x + y = 1. In a given finite interval of this line, f has a maximum, and
for instance f(t, t) = t is positive. Hence the L.M. point has to be the
maximum of f on the line.

11. 1. First the figure:

The square of the distance between a point (x, y) and (1,0) is

f(x, y) = (x - 1)2 + y2.

We have to minimize f subject to the constraint

g(x, y) = 0 where g(x, y) = y2 - 4x.

Since 8gj8x = -4 =F 0 it follows that a minimum for f on the curve y2 = 4x
must occur at an L.M. point. For such a point we have

2(x - 1) = -4A.,

2y = 2A.y.

Case 1. y = O. Then x = 0 and f(O,O) = 1.
Case 2. y =F O. Then A. = 1 from the second equation, so x = -1 and

y2 + 4 = 0 which is impossible.
Hence Case 2 does not occur, so case 1 occurs and gives the answer.

(; 1 (; -1
12. Max y 3 at J3 (1,1,1) and min -y 3 at J3 (1,1,1).
Let f(x, y, z) = x + Y + z. Then gradf(X) = (1, 1, 1) so f has no critical
points. Let A be the closed unit disc. Let U be the interior of A, so U is the
set of points (x, y, z) such that
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Then f has no max or min in U since f has no critical point. Hence a max
and a min for f in A occurs on the boundary, which is the unit sphere, that
is the surface

or g(x, y, z) = 1

We must now determine the max and min of f subject to the constraint
g(X) = 1. We have

grad g(X) = (2x, 2y, 2z),

and grad g(X) =F (0, 0, 0) on the sphere. Hence a max and a min for f occur
at an L.M. point, for which we have

1 = A2x, 1 = A2y, 1 = A2z.

Thus none of A, x, y, z is O. Taking quotients, we find x/y = 1 and y/z = 1,
so x = y = z. Substituting in x 2 + y2 + Z2 = 1, we get 3x2 = 1, whence

x = y = z = ± 1/.)3.

Thus the maximum value occurs with f(I/.)3, 1/.)3, 1/.)3) = 3/.)3, and the
minimum value occurs with f( -1/.)3, -1/.)3, -1/.)3) = - 3/.)3.

13. Values 3 and -3 at (t, -t,t) and (-t,t, -t)·
Let f(x, y, z) = x - 2y + 2z and g(x, y, z) = x 2 + y2 + Z2. We are supposed
to find the max and min of f subject to the constraint g(x, y, z) = 1. Then

grad g(x, y, z) = (2x, 2y, 2z)

and grad g(x, y, z) =F (0,0,0) for a point on the sphere. Hence a max and
min for f on the sphere occurs at an L.M. point, for which we have

that is

1 = A2x, -2=A2y, 2 = A2z.

Thus A, x, y, z =F O. Dividing yields

x/y = -1, y/z = -1,

so y = - 2x and z = - y = 2x. Substituting in the equation x 2 + y2 + Z2 = 1
yields

so x= ±t.

From this value for x you get y and z, and f(x, y, z) = 3 or -3 as stated.
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14. 2J3 at (2/J3,2/J3, 2/J3)
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15. (a) No max or min.
Let f(x, y, z) = xyz and g(x, y, z) = x + Y + z. We are to maximize and
minimize f subject to the constraint

g(x, y, z) = 1.

Since grad g(x, y, z) = (1,1,1) =f:. (0,0,0) such max and min occur at an
L.M. point. At such a point we have

yz = A., xz = A., xy = A..

If A. = 0 then two of the three numbers x, y, z are 0 from these equa­
tions, and f(x, y, z) = o.

If A. =f:. 0, then we can divide, and we find y/x = 1, z/y = 1, so

x = y = z.

Since x + y + z = 1 .we get x = y = z = 1/3 and f(x, y, z) = 1/27. This is
not a minimum, since f(O, y, z) = O. The value 1/27 is not a maximum
either. For instance, let x = y be large negative. Then

z = 1 - (x + y) = 1 - 2x

is large positive, and

f(x, y, z) = x 2(1 - 2x) is large positive.

(b) This part is different from 15(a) because the physical conditions impose
the additional restrictions

x ~O, y~O, z ~O.

Thus we have to maximize of minimize f subject to the same constraint
in the first quadrant:

z-axis

x + Y + z = 1, x ~ 0, y ~ 0, z ~ O.

......--- y-axis

x-axis
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The boundary of the region occurs when x or y or z is 0, in which case
f(x, y, z) = O. When xyz =I 0 then a max or min for f must occur at an
L.M. point, and by part (a) we know that such a point occurs when
x = y = z = 1/3 with the value f(1/3, 1/3, 1/3) = 1/27. Since 1/27 > 0, and
since f has a maximum on the region, which is closed and bounded, this
value 1/27 must be maximum.
Note the difference between the two parts. In part (b), we could not

take x negative as we did in part (a). The point (1/3, 1/3, 1/3) is a local
maximum in both cases, and an absolute maximum in part (b).

16. Max = 11/6, min = O.
Let f(x, y, z) = (x + Y + Z)2 and g(x, y, z) = x 2 + 2y2 + 3z2. Then

grad g(x, y, z) = (2x,4y, 6z),

and grad g(x, y, z) =I (0,0,0) at a point on the surface g(x, y, z) = 1. Hence a
max and min for f on this surface occurs at an L.M. point. At such a point,
we have

2(x + Y + z) = A.2x,

or after cancelling 2,

x + Y + z = Ax,

2(x + Y + z) = My,

x + Y + z = A.2y,

2(x + Y + z) = A.6z,

x + Y + z = A.3z.

If A. = 0 then x + y + z = 0
Suppose A. =I O. Then

so f(x, y, z) = o.

x = 2y = 3z.

Substituting in the constraint equation x 2 + 2y2 + 3z2 = 1 yields

or x = ±y'67i1.

Using y = x/2 and z = x/3, we find that for x = ±y'67i1, we get

f(x, y, z) = 11/6.

Now the ellipsoid (surface) x2 + 2y2 + 3z2 = 1 is closed and bounded, and f
has both a max and a min on this surface. There are points (x, y, z) on this
surface such that f(x, y, z) = 0, for instance let z = x and y = - 2x, and solve
for x. Comparing the two values 0 and 11/6, we conclude that 0 is the mini­
mum value and 11/6 the maximum value of f subject to the constraint.

17. 25/62.
Let f(x, y, z) = x2 + y2 + Z2 and g(x, y, z) = 3x + 2y - 7z. We have to mini­
mize f subject to the constraint g(x, y, z) = 5. Since

grad g(x, y, z) = (3, 2, -7) =I (0, 0, 0),
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a minimum for f occurs at a L.M. point. At such a point we have

A39

It follows that

2x = 3A, 2y = 2A,

tx = y = -tz.

2z= -n

Substituting in the constraint equation 3x + 2y - 7z = 5, we find

x = 15/62, y = 10/62, z = -35/62.

Then f(x, y, z) = 25/62 as stated. This is a minimum value, for x 2 + y2 + Z2
is the square of the distance from the origin, and is large if anyone of the
coordinates x, y, or z is large. So f has a minimum. Observe that you could
have worked this problem another way, as the distance between the plane
3x + 2y - 7z = 5 and the point (0,0,0), as in Chapter I. Check that you get
the same answer by the formula of Chapter I.

18. f(I/2, 0, 1/2) = 3/8.
Let f(x, y, z) = X _.y2 - z2/2 and g(x, y, z) = 2x2 + 3y2 - Z.' We are to maxi­
mize f subject to the constraint

2x2 + 3y2 - Z = g(x, y, z) = O.

Since grad g(x, y, z) = (4x, 6y, -1) #- (0,0,0), it follows that a max for f
occurs at an L.M. point. For such a point we have

1 = A4x, -2y = A6y, -z = -A.

Case 1. y = O. Then f is a function of two variables, f(x, 0, z) = x - z2/2
and g(x, 0, z) = 2x2 - Z = 0 so z = 2x2. Also z = A, and hence 1 = 4xz so
z = 1/4x. This gives 8x3 = 1, so x = 1/2 and z = 1/2, whence

f(I/2,0, 1/2) = 3/8.

Case 2. y #- O. Then from the second L.M. equation, we find A= -1/3,
and therefore from the first and third L.M. equations,

x = -3/4 and z = -1/3.

From the constraint equation we then find

2 2 1 9 35
3y = z - 2x = -- - - = --,

3 8 24

so y2= -35/72. For these values of (x, y, z) we get
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because the value of f at a given point is in fact negative. Hence the maxi­
mum must occur at the point with y = O.

19. f(O, t, ±i) = 3/8.
Let f(x, y, z) = _x2 + Y - 2z2 and g(x, y, z) = x 4 + y4 - Z2. We are sup­
posed to maximize f subject to the constraint

x4 + y4 - Z2 = g(x, y, z) = o.

We have grad g(x, y, z) = (4x 3
, 4y 3, -2z), which is (0,0,0) only at

x = y = z = o.

Then f(O, 0, 0) = O. At other points # (0,0,0),

grad g(x, y, z) # (0, 0, 0),

Hence on the surface x 4 + y4 - Z2 = 0 and (x, y, z) # (0, 0, 0), a max for f
must occur at an L.M. point. At such a point, we have

or in other words,

1 = 4,A,y3,

-4z = -,A,2z.

2z = ,A,z.

If z = 0 then from the constraint equation we also get x = y = 0 which we
have already excluded. So suppose z # O. From the last equation we find
,A, = 2, whence 1 = 8y 3 and y = 1/2. Then

The function f is obtained by subtracting the positive number x 2 + 2z2 from
y. Hence f(x, t, z) is a maximum when x = 0 and Z2 = 1/16 so

z = ±i.

Then the value is

20. (1, 1).
Let f(x, y) = 2x - y and g(x, y) = y - x 2

• We are to maximize f subject to
the constraint

g(x,y) = 0, that is y = x 2
•
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Since grad g(x, y) = (-2x, 1) #- (0, 0), a max for f on the curve y = x 2 occurs
at an L.M. point. At such a point we have

2 = -A2x and -1 = Ay.

Then xy #- 0, and after dividing, we get x = y. Substituting in the constraint
equation y = x 2 yields y = 1 so x = 1 also.

21. (-1, -2).
Let f(x, y) = 2x + y and g(x, y) = xy. We want to minimize f subject to the
constraint

xy = g(x, y) = 2.

Since grad g(x, y) = (y, x), which is #- (0,0) for any point on the curve xy = 2,
it follows that a min for f on the hyperbola xy = 2 occurs at an L.M. point.
At such a point we have

2 = Ay and 1 = Ax.

Then xy #- 0 and we can divide to get y = 2x. Substituting in the constraint
equation gives x 2 = 1 so x = 1 or x = -1. But f(1, 2) = 4 and

f(-1,-2)=-4

so the minimum of f is at the point (- 1, - 2).

22. f(O,O, ± 1) = 1 and f(±j2, 0, 0) = 4.
Let f(x, y, z) = 2x2 + y2 + Z2 and g(x, y, z) = x 2 + y2 + 2z2. We are to find
the max and min of f subject to the constraint

x 2 + y2 + 2z2 = g(x, y, z) = 2.

Since grad g(x, y, z) = (2x, 2y, 4z) we have grad g(x, y, z) #- (0,0,0) for all
points (x, y, z) on the surface g(x, y, z) = 2. Hence a max and a min for f on
the surface occurs at an L.M. point. At such a point, we have

4x = A2x, 2y = A2y, 2z = Mz.

If x#-O then A = 2 from the first equation, so y = z = 0 from the second
and third equation. Then x 2 = 2 so x = ±j2 and f( ±j2, 0, 0) = 4.
Let x = O. If y#-O then A = 1 from the second equation, and then z = 0

from the third equation. Then y2 = 2 and f(O, ±j2,0) = 2.
Let x = 0 and y = O. Then 2z2 = 2 so z = ± 1. In this case

f(O,O, ± 1) = 1.

Comparing the three values 4, 2, and 1 we see that the min is

f(O,O, ±1) = 1

and the max is f(±j2, 0, 0) = 4.
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23. d2/(a2 + b2 + c2).
Let I(x, y, z) = x 2 + y2 + Z2 and g(x, y, z) = ax + by + cz. We have to mini­
mize 1 subject to the constraint

ax + by + cz = g(x, y, z) = d.

Since grad g(x, y, z) = (a, b, c) #- (0,0,0), a min for 1 subject to the constraint
occurs at an L.M. point. At such a point we have

2x = la,

Then

2y = lb, 2z = lc.

and using ax + by + cz = d yields

Using x = la/2, y = lb/2 and z = lc/2 we get the stated value of 1 at this
L.M. point, namely d2/(a 2 + b2 + c2).

24. Max = tat (-t, Ji), (-t, -Jh min = -i at (t,O).
Let I(x, y) = x 2 - X + 2y 2. Let D be the closed unit disc and let U be the
interior of the disc. We have

grad/(x, y) = (2x - 1, 4y)

and

grad/(x, y) = (0,0) precisely at x = t, y = O.

Thus there is only one critical point in the interior of the disc, and at this
point

I(t, 0) = -i·

Now we look at the boundary values. Let g(x, y) = x 2 + y2. The bound­
ary of the disc is the circle

x 2 + y2 = g(x, y) = 1.

As we have seen many times, grad g(x, y) #- (0,0) on the circle, so a max and
min for 1 on the circle must occur at an L.M. point. At such a point we
have

2x - 1 = l2x and 4y = l2y.

If y = 0 then x 2 = 1 and x = ±1. Then

1(1,0) = 0 and I( -1,0) = 2.
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Let Y f:. O. Then A. = 2 from the second equation, so x = -t from the first
equation. Then y2 = 1 - x 2 = i from the constraint. Since the value of f at
(-t, ±i) is t we see by inspection that this is the maximum of f. Compar­
ing the values -t, 0, 2, *we also see that -t is the minimum value of f,
and occurs at the critical point.

25. Find the shortest distance from a point on the ellipse x2 + 4y2 = 4 to the

line x + y = 4. Ans. (4 - fi)/)2.
Let f(x, y) = x 2 + 4y2 and g(x, y) = x + y.

If (Xl' YI) is a point on the ellipse at shortest distance from points (x2, Y2) on
the line, then gradf(x l , YI) is parallel to grad g(x2, Y2)' that is there exists A.
such that

But grad g(x, y) = (1, 1) and gradf(x, y) = (2x, 8y). Hence we must have

2x = A. and 8y = A..

Hence 2x = 8y and X = 4y. Substituting in the equation of the ellipse

yields 20y2 = 4 so y = ± l/fi and X = ±4/fi. By inspection from the
graph, the point at shortest distance is given by

We can now use the formula for the distance between a point Q and a
line X· N = e, which is Ie - Q. NI/INI. Here we have N = (1, 1), Q = (Xl' YI)
and e = 4, so the distance is (4 - fi)/)2. (See Chapter I, §6.)

26. 8 hours at A and 2 hours at B. We work it out.
Let the number of hours be g(x, y) = X + y. Then the constraint is given by

g(x, y) = 10, that is X + Y= 10.
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We have to maximize f(x, y) = 2~ + JY subject to this constraint, and
x ~ 0, y ~ O. The boundary occurs when x = 0, y = 10 or x = 10, y = 0, in
which case

f(O, 10) = JiO and f(lO,O) = 2JiO.

Now suppose xy #- O. We always have

og
-=1ox and

og
-= 1oy ,

so grad g(x, y) #- (0,0) for all (x, y). Hence a maximum for f on the set of
numbers (x, y) such that x + y = 10 and xy #- 0 must occur at an L.M. point,
and at such a point we must have

of 1
-=-=,1.
ox ~ and

of 1
-=-=,1.oy 2JY .

Hence x = 2JY and x = 4y. Since x + y = 10, we get

x=8 and y = 2.

Furthermore, f(8, 2) = 2J8 + J2 = sJ2 > 2JiO, whence the max for f
subject to the constraints is at the L.M. point.

27. 4 units of A and 16/3 units of B.
It is given that to produce 80 units, we must have

g(x, y) = -3x2 + lOxy - 3y2 = 80.

This is the constraint. The cost is given by

f(x, y) = llx + 3y.

The physical situation restricts the domain of x and y to x ~ 0 and y ~ O.
Putting x or y = 0 in g(x, y) = 0 gives - 3y2 = 80 or - 3x2 = 80, and there
are no solutions. Hence any maximum or minimum for f on the curve
g(x, y) = 0 must occur in the interior of the first quadrant, and we can there­
fore apply the Lagrange Multiplier theorem. We have

grad g(x, y) = (-6x + lOy, lOx - 6y).

The only solution of - 6x + lOy = 0 and lOx - 6y = 0 is with x = y = 0
which is not a point on the curve, so grad g(x, y) #- (0,0) for points (x, y) on
the curve. At a maximum or minimum for f on the curve, there exists a
number A such that

11 = ,1.( -6x + lOy) and 3 = ,1.(lOx - 6y).
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11 -6x + lOy
-=
3 lOx - 6y

A45

Cross multiplying and simplifying yields y = 4x/3. Substituting back in the
equation for the constraint, and simplifying, we obtain x 2 = 16, so x = 4
since x has to be positive. Hence we have proved that any maximum or
minimum for the function f(x) = 11x + 3y must occur at the point (4,16/3).
One can tell this must be a minimum for the following reasons. The

curve g(x, y) = 80 with x > 0 and y > 0 lies entirely in the interior of the first
quadrant. For each number c > 0 the equation 11x + 3y = c is a line, as
shown in the figure.

11x + 3y = 60

11x + 3y = c

11x + 3y = 0

This line may not intersect the curve, for instance if c is near 0, or it may
intersect the curve in several points. From the figure, one can see by inspec­
tion that there must be a minimum for the function f(x, y) = 11x + 3y on
the curve, and the previous arguments showed that such a minimum can
occur only at one point, namely (4,16/3). However, one can also give the
following argument for the existence of the minimum.
The curve g(x, y) = 80 can be written in the form

3y2 - 10xy + 3x2 + 80 = O.

One can solve for y in terms of x by the quadratic formula

lOx ± Jl00x 2
- 12(3x2 + 80) lOx ± J64x2

- 960
y= =.

6 6

In particular, when x is large, one can solve for y which will also be large.
Hence the function f(x, y) = 11x + 3y is large when x (and hence y) is large.



A46 ANSWERS TO EXERCISES

In any bounded closed region of the first quadrant, the function has a mini­
mum, so the point which we have found is actually the minimum point for
the entire first quadrant.
By completing the square, you can convince yourself that the curve

g(x, y) = 80 is in fact a hyperbola.

28. 8 of A and 2 of B.
The problem is similar to Exercise 26.

VI, §1, p. 149

1. xy 2. 1 3. xy

(x + y)2
5. 1+ x + Y + 2!

4. x 2 + y2

y2
6.1- 2 7. x

8. y + xy 9. x + xy + 2y2

10. (1) -n(x - 1) - (y - n) - (x - 1)(y - n)

n2 (y - 11/
(2) -1 + 2 (x - 1)2 + n(x - 1)(y - n) + 2

(3) log 7 + ~(x - 2) + ~y - 3) - /S(X - 2)2 + i9(x - 2)(y - 3) - ts(y - 3)2

(4) 2..;;c(x - ..;;c) + 2..;;c(y - ..;;c) + (x - ..;;c)2 + (y - ..;;c)2

e3 e3

(5) e3 + e3(x - 1) + e3(y - 2) +2 (x - 1)2 + e3(x - 1)(y - 2) + 2 (y - 2)2

(6) -1 + !(y - n)2

(7) -1 + !(x - n/2)2 + !(y - n)2

e2~ e2~ e2~
(8) -2- + -2- (x - 2) + -2- (y - n/4)

e2~ e2~
+ -4- (x - 2)2 + -2- (x - 2)(y - n/4)

e2~
_ -- (y - n/4)2
4

(9) 4 + 2(x - 1) + 5(y - 1) + (x - 1)(y - 1) + 2(y - 1)2

VI, §2, p.l54

2. (a) If you take a first partial, each term will have an x or a y left in it, so
vanishes at (0, 0).

(b) q(x, y) is the same as f(x, y).
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3. (a) h2 + 4hk - k2
•

The first derivatives of f are given by the formula

A47

of
- = 2x + 4y - 8ox and

of
-=4x-2y- 6.oy

To find the critical point, we set them equal to 0, and solve

2x + 4y = 0,

4x - 2y = 6.

Then x = 2, y = 1, so (2, 1) is the only critical point.
For the second derivatives, we find

at (fiI2, fif2)

at ( - fi12, - fi12)

6. min

Hence the quadratic form associated to f at the critical point (2, 1) is
given by

q(h, k) = 1(2h2 + 8hk - 2k2
)

= h2 + 4hk - k2
•

(b) At (2n + l)n, 1), -hk. At (2nn, -1), + hk.

1 (h2 k2
)(c) -- e- 1/2 - + 3hk +-fi 2 2

1 (h2 k2
)- e1

/ 2 - + 3hk + -fi 2 2

(d) At points (a, 0) we get a2k2
• At points (0, b), we get b2h2 •

(e) k2 (f) 0
(g) At the points (0, nn), we get ±hk according to whether n is even or odd.
(h) h2 + 2k2

4. (a) Neither (b) Min (c) Max (d) Neither (e) Neither
(f) Neither (g) Max (h) Neither

VI~ §3~ p.161

1 through 5, neither.

7. min at (0,~} max at (0, - ~} Saddle points at (±1,0).
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8. Min at (0,0); Saddle points at (0, 2/3), ( - 2/3,0), Max at (- 2/3,2/3)

9. c.p. (I, 7/2), max

10. (a) (0, I/-/i) max, (0, -I/-/i) min
(b) (1,0) max, (-1,0) min

11. (a) x 2 + 3y2 (b) local min

VI, §4, p.169

1. 9Di + 12D1D2 + 4D~

2. Di + D~ + D~ + 2D1D2 + 2D2D3 + 2D1D3

3. Di - D~ 4. Di + 2D 1D2 + D~

5. Df + 3DiD2 + 3DID~ + D~

6. D1 + 4DfD2 + 6DiD~ + 4DID~ + Di

7. 2Di - D1D2 - 3D~ 8. D1D2 - D2D3 + 5D
1
D3 - 5D~

9. (~)3 + 12(~)2 ~ + 48~ (~)2 + 64(~)3
Ox Ox oy Ox oy oy

10. 4(~)2 + 4~~ + (~)2 11. h2(~)2 + 2hk~~ + k2(~)2
Ox Ox oy oy Ox Ox oy oy

12. h3(~)3 + 3h2k(~)2 ~ + 3hk2~ (~)2 + p(~)3
Ox Ox oy Ox oy oy

13. 8 14. 4 15. 4 16. 4 17. (a) 4! 5!xy (b) 0 (c) 4! 3! (d) 1O·4! 3!

18. (a) 0 (b)3·7!9! (c)1l·7!9! (d)O

19. (a) (4!)2 (b) -7· 9! 4! (c) 6 (d) 0

20. (a) 0 (b)4·2!3! (c)7·6!1O!7! (d) 0

VI, §5, p. 175

1 is a special case of 2. Take the derivative (d/dtr, i.e. differentiate m times
with respect to t. By Theorem 5.1 we get on the one hand

and on the other hand

Put t = 0 in the first expression to get the answer.
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4. (a) 1 - (X2 + y2) + R4

(b) xy + R4

5. (a) 5·4! ·6!
(b) e + (ex + 2ey) + t[ex2 + 6exy + 3ey2]

vn, §1, p. 187

A49

1. No 2. No 3. No 4. No 5. No 6. No

In each case, you compute Dd and Dig, and you will find that they are not
equal.

VII, §2, p. 192

1. No 2. No 3. No 4. No

Again in each case you find that Dd f= Dig.

5. This is the same as the exercises of §1:
r"+ 2

(a) r (b) logr (c) -- if nf= -2 6.2x2 y
n+2

7. x sin xy

10. (a) eX, (b) sin xy (c) sin(x2y) 11. g(r)

12. x 3 y + 2y2 x - Y + 2. You have to add the constant at the end to satisfy
<p(1, 1) = 4.

13. (a) x 2 + h 2 + 2z2

(d) xy sin z
(g) xz2 + y2

(
-y X)14 --,--.

. x2 + y2 x2 + y2

(b) xy + yz + xz
(e) xyz + Z3 y
(h) z sin xy

(c) xe,+2z

(f) xe'z
(i) y3xz + xy + yz

Let <p(x, y) = arctan(y/x). Let u = y/x so <p(x, y) = g(u). Then

alp ,au 1 - y 1 - y - y
-=g(u)-=----= -=--.
ax ax 1 + u2 x 2 1+ (yjX)2 x 2 x 2 + y2

The derivative a<pjay is computed in the same way.

15. div curl F = DI(Dd3 - D3J2) + DiD3Jl - Dd3) + DiDd2 - D2JI)
= Dl Dd3 - D 1D3J2 + D2D3Jl - D2Dl J3 + D3Dl J2 - D3Ddi
=0.
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VII, §4, p. 201
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xeX, - e' eX' - e'
1. D I t/J(x, y) = eX', D2 t/J(x, y) = - --2-

Y Y

x sin(xy)
2. D I t/J(x, y) = cos(xy), D2t/J(x, y) = - cos(xy) - --

Y y2

3. D I t/J(x,y)=(y+X)2 4. Dlt/J(x,y)=e'+x
D2t/J(x, y) = 2yx - 2y + x2

- 1 D2t/J(x, y) = e'+x _ e,+l

5. Dlt/J(x, y) = eY-X 6. Dlt/J(x, y) = X2y3
D2t/J(x, y) = -e'-X + e,-l D2t/J(x, y) = y2x 3

log(xy)
7. Dlt/J(x, y) =--

x

log x
D2t/J(x, y) = --

Y

8. Dlt/J(x, y) = sin(3xy)

D .1,( ) _ cos 3xy - cos 3y x sin 3xy - sin 3y
2'1' x, Y - 3 2 +

Y Y

VII, §5, p. 205

Let F = (fl' f2' f3) be a vector field on a rectangular box in 3-dimensional
space R3• Let (xo, Yo, zo) be a point of the box. Assume that

Define

for all indices i,j = 1,2,3.

CfJ(x, y, z) = IX fl(t, y, z) dt + f' f2(X O' t, z) dt + fZ fixo, Yo, t) dt.
Xo Yo Zo

We must verify that DICfJ =fl' D2CfJ =f2 and D3CfJ =f3' The first condition
D I CfJ = fl follows from the fundamental theorem of calculus and the fact that the
second and third integrals do not depend on x, so their derivatives with respect
to x are O. Next, we have

D2CfJ(x, y, z) = IX Ddl(t, y, z) dt + fixo, y, z) + 0
Xo

= IX Ddit, y, z) dt + f2(X O' y, z)
Xo

= fix, y, z) - fixo, y, z) + fixo, y, z)

=fix,y,z)
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D3q>(x, y, z) = r" D3fl(t, y, z) dt + fY D3f2(XO' t, z) dt + fixo, Yo, z)
Jxo Yo

= r" Dd3(t, y, z) dt + fY D2fixo, t, z) dt + f3(XO' Yo, z)
JXD )'0

= f3(X, y,O z) - f3(XO, y, z) + fixo, Yo, z) + f3(X O' Yo, z) + fixo, Yo, z)

= f3(X, y, z),

as was to be shown.

VIII, §1, p. 216

1. -369/10.
We parametrize the parabola by x = t, Y = t 2 with - 2 ~ t ~ 1.

-2 -1 0 1

Then dx = dt, dy = 2t dt, and

Ie F = Ie (x2 - 2xy) dx + (y2 - 2xy) dy

= [2 (t2 - 2tt2) dt + (t4
- 2tt2)2t dt

= fl (t 2 - 2t3 + 2t5 - 4t4 ) dt.
-2

2. 23/6.
Let F(x, y, z) = (x, y, xz - y). We parametrize the line segment from (0,0,0)
to (1,2,4) by

C(t) = (t, 2t, 4t) = 0 + tQ where Q = (1, 2,4),
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and 0 ~ t ;§; 1. Then x = t, Y = 2t, Z = 4t. Hence

Ie F = Ie x dx + y dy + (xz - y) dz

= t't dt + 4t dt + (4t2 - 2t) 4 dt

= t'(-3t + 4t2) dt = 23/6.

We used one notation. Using another notation, we can also write

F(C(t» = (t, 2t, 4t2 - 2t) and C(t) = (1,2,4).

Hence

f/ = t' F(C(t»· C(t) dt = t' [t + 4t + 4(4t2 - 2t)] dt,

which amounts to the same thing. Use whatever notation you like better.

3. O. (Also see Problem 4, which is more general.)

4. O. By assumption, there is a function heX) such that we can write
F(X) = h(X)X. We parametrize the circle of any radius a> 0 by

C(t) = (a cos t, a sin t), o~ t ~ 211:.

But all that we need is that C(t)2 = a2 so 2C(t)· C(t) = O. Now

f fh fh
C F = 0 F«C(t»· C(t) dt = 0 h(C(t»C(t)· C(t) dt = 0

because C(t)· C(t) = O.

5. )3c/2.
Let F(x, y) = (cxy, x6y2). We parametrize the curve y = axb by x = t, Y = atb,
and 0 ~ t ~ 1. Then

We have

dx = dt and dy = abtb- 1 dt.

IeF = Iecxy dx + X 6y2 dy = t1 ctatbdt + t6a2t2babtb-l dt,

= t1

(actb+ 1 +a3bts+ 3b)dt

ac b+2!1 a
3
b 6+ 3b 1

1

=--t +--t
b + 2 0 6 + 3b 0

ac a3b
=--+ .

b + 2 3(b + 2)
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We want this last expression to be independent of b. So we treat b as a vari­
able, differentiate with respect to b leaving a, e as constants, and we want to
get O. The derivative with respect to b is

ae 1 (b + 2)a3
- a3b -3ae + 2a3

- (b + 2)2 + :3 (b + 2)2 = 3(b + 2)3 .

To get the right-hand side equal to 0, it suffices that

-3ae + 2a3 = 0,

This gives the desired value for a.

that is a2 = 3e/2.

6. 4/3.
Let F(x, y) = (y2, -x). We parametrize the parabola x = y2/4 from (0,0) to
(1,2) by

y = t,

(0,0)

and o~ t ~ 2.

Then dx = (1/2) t dt, dy = dt, and

IeF = f/ 2
dx - x dy = J: t2(1/2)t dt - (t2/4) dt

= ~ - ~: I:
= 4/3.

7.4n.
Let F(x, y) = (x 2 - y2, x). We parametrize the circle x 2 + y2 = 4 by

C(t) = (2 cos t, 2 sin t) with 0 ~ t ~ 2n.
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Then
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Ie F = Ie(X2 - y2) dx + x dy = f:n (4 cos2 t - 4 sin2 t)( - 2 sin t) dt,

fh
+ Jo 2(cos t)2 cos t dt

= f:n 8(cos2 t)( -sin t) dt + f:n 8 sin3 t dt + f:n 4 cos2 t dt.

The first integral is of the form Ju2 du with u = cos t. In the second integral,
replace sin2 t by (1 - cos2 t) and then use substitution again. For the third
integral, remember that

2 1 + cos 2t
cos t = 2

Don't make arithmetical errors and you will find the right answer as given.

8. (a) 3n/4 (b) 2n (c) 2n (d) 2n.
In this problem, we know as in Example 4 that

I -y X 182

-2--2 dx + -2--2 dy = dO.
eX + y x + Y 81

if we integrate counterclockwise from an angle 0t to an angle O2 • Namely,
fix a radius a > O. Substitute

x = a cos 0 and y = a sin O.

Then dx = -a sin 0 dO and dy = a cos 0 dO. Also x 2 + y2 = a2. Hence

- y x - sin 0 a cos 0
-2--2 dx + -2--2 dy = --2- (-a sin 0) dO + --2- a cos 0 dO
x +y x +Y a a

= dO because sin2 0 + cos2 0 = 1.

Now the angles are determined as on the figures:

(a) n/4;:::; 0 ;:::; n (b) 0 ;:::; 0 ;:::; 2n

(-..fi,0)

(c) 0;:::; 0 ;:::; 2n (d) 0;:::; 0 ;:::; 2n
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264
9'5
Let F(x, y) = (xy, x). We parametrize the parabola x = 2y 2 from (2, -1) to
(8,2) by

Then

y = t, with -1;:;; t ;:;; 2.

(8,2)

VDI, §2, p. 219

1. 56

f. F = f. xy dx + x dy = f2 2t34t dt + 2t2 dt
C C -1

= 8t
S + 2t312 = 264.
5 3 -1 5

3

1

3 5

Let F(x, y) = (2xy, -3xy). We parametrize the sides as follows:

C 1(t) = (t, 3), 3;:;; t ;:;; 5;

C3"(t) = (t, 1), 3;:;; t ;:;; 5;

C2"(t) = (5, t), 1;:;; t ;:;; 3;

Cit) = (3, t), 1;:;; t;:;; 3.
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= J: 6tdt - r-15tdt - J: 2tdt +r-9tdt.

2. 54.
The square consists of four line segments:

3 ....- ....- ....

We parametrize the segments:

Cl(t) = (0, t), 0 ~ t ~ 3;

C3(t) = (3, t), 0 ~ t ~ ~;

C2(t) = (t, 0), 0 ~ t ~ 3;

C4(t) = (t, 3), 0 ~ t ~ 3.

= - [ 0 dt + J: t2 dt + J: 6t dt - J: (t2
- 9) dt.

3. -n; - ~

(0,2)

(2,0)
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It is easier to parametrize C-, namely

AS7

C(t) = (2 cos t, 2 sin t),

Let F(x, y) = (x2 - y2, x). Then

o~ t ~ n/2.

f. F= -f. F= - rnl
2
(4coS 2 t-4sin2 t)(-2 sin t)dt

c c- Jo
r

nl2
- Jo (2 cos t)(2 cos t) dt

r
nl2

r
nl2

= Jo 8cos2 tsintdt- Jo 8sin 3 tdt

r
nl2

- J0 4 cos2 t dt.

Use u=cost, du=(-sint)dt for the first integral. Replace sin2 t by
1 - cos2 t in the second and use substitution again. Use

cos2 t = (1 + cos 2t)/2

for the third.

4. 4/15.
Let F(x, y) = (X2y2, xy2). We are asked for JcF where C is the path {C I , C2}
indicated below.

We parametrize the two curves by letting:

Cit) = (1, t)

with -1 ~ t ~ 1.

with - 1 ~ t ~ 1.
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Then

Then
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= f1 (2t7- t4)dt = -2/5.
-1

f F = f X2y2 dx + Xy2 dy = f1 t2 dt = 2/3.
C2 C2 -1

f. F = f F + f. F = -2/5 + 2/3 = 4/15.
C Cl C2

VllI, §3, p. 225

1. The sum of the integrals over the curves C1, C2 , ... ,Cm is equal to

But

so all terms cancel except qJ(Qm) - qJ(P1)' as desired.

2. 9/2. There is a potential function

Then qJ(l. 1, 1) - qJ(O, 0, 0) = 9/2.

In each case of Exercises 3 through 8 there is a potential function and the
integral can be evaluated as in Exercise 2.

3. 3. Use the pot function xy + zx + zy.

4. Answer as in exercises 2 and 3.

5. 8. Use the pot function xy.

6. There is a pot function, namely Z2 X + y2.

7. 1 - e- 2n. There is a pot function given by f(X) = g(r) = -1/r. Then

f. 1 le2•F = - - = 1 - e- 2n•
C r 1
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8. There exists a potential function, cp(x, y, z) = xyz3, so the integral is indepen­
dent of the curve by Theorem 3.1.

9. (a) No (b) t (c) 0

10. (a) 0 = g(l) - g(l) (b) 0 (c) There is a potential function g(r) = sinr,
because by the chain rule, if cp(X) = sin r, then grad cp(X) = F(x, y).

11. (a) 2n (b) No potential function. We can write the vector field F in the
form

F(x, y) = G(x, y) + grad r/J(x, y)

(
-y X)where G(x, y) is the usual -2--2' -2--2 and r/J(X) = log r.

x +y x +y
The integral of F is the sum of the integrals of G and grad r/J. The integral
of grad r/J over a closed curve is O. If C is the circle of radius 1 centered at
the origin, then

Ie F = Ie G + Ie grad r/J = 2n + 0 = 2n.

12. (a) Yes, because the vector field is defined and has continuous partial deriva­
tives on this rectangle, so Theorem of Chapter V applies. (b) 2n (c) No,
because there is some closed curve such that the integral of the vector field
around this closed curve is not O. See the comments to Exercise 11.

13. (a) 0 (b) 0 (c) Yes, cp(X) = e', because a direct partial differentiation with
respect to x, y, z shows that

grad cp(X) = F(x, y).

Theorem 3.1 of Chapter V is not applicable here since the open set is not a
rectangle.

14. (a) e5
- e.fl (b) 0 (c) 0 (d) O. There is a potential function as in Exer­

cise 13 and the easiest way to evaluate the integrals is by means of the
formula cp(Q) - cp(P).
The potential function is cp(X) = e'. Then

(a) r(-3,4) = J9+l6 = 5 and r(2, 1) = J4+1 =)5.

Hence cp( -3,4) - cp(2, 1) = e5 - e,f5.
For (b), (c), (d) the integral comes out 0 since there is a potential function.

15. (a) -n/2 (b) 2n/3. In this case, there is a potential function, namely e, on
an open set containing the stated path, so the formula cp(Q) - cp(P) can again
be used. See Example 4 and Exercise 8 of §1.



A60

(a)

(0,1)

(1,0)
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(b)

-1 2

16. 16 + 5/6. There is a potential function

x 2 y3 4
qJ(X, y, Z) = "2 +3 + z .

Hence the integral is equal to qJ(l, 1, 2) - qJ(O, 0, 0).

IX, §2, p. 250

1. (a) 12 (b) V (c) /0 (d) 2 + n2/2 (e) i (f) n/4 (g) ~ (h) 1~n (i) 3

2. (d)

5

(f)

( -1,0)

(0,1)

(0,-1)

(1,0)

To see (f), suppose first x ~ 0 and y ~ O. Then the inequality reads

x + y ~ 1,

which is in the first quadrant, below the line y = - x + 1 as shown. But the
region is symmetric, in the sense that it does not change if x, yare replaced
by ±x or ±y because of the absolute values. Hence we get the square as
drawn.
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3. (a) - 3nl2

(n, n)

The integral is

[f: x cos(x + y) dy dx = [(X sin(x + y)!:) dx

= f: x sin 2x dx - f: x sin x dx.

A61

Do the integrals by parts. The first with u = x, dv = sin 2x dx and the
second with u = x, dv = sin x dx.

(b) e - lie. We decompose the region of Exercise 2(f) into two pieces as
shown.

y=x+l

y= -x-l

y= -x+l

y=x-l

Then we have to sum the integrals

and
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In each case, eX can be taken out of the inner integral with respect to y.
You evaluate the inner integral, for instance:

fX+1 IX+1 1
eYdy=eY =eex __ e-x.

-x-l -x-l e

Then integrate with respect to x.

40 63
(c) 1[2 - 9 (d) 32

1 1
4. (a) 20 (b) 35 (c) 4

If 0 ~ x ~ 1 then x 3 ~ x 2 and the region for (a) and (b) looks as on the
figure.

The integrals are:

(a) erx2 x dy dx (b) erx2y dy dx.
JoJx3 JoJx3

For (c), the region looks like
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The integral is

r2 r2xJo Jx X
2

dy dx.

49
6. (a) 20 (b) 1 - cos 2

For 6(b) watch out. You have to split the integral into

fIX-2IdX=r-(x-2)dx+ J:(X-2)dX

because ItI = tift ~ 0 and ItI = -t if t ;;;i! O.
(c) O. Remember that cos( - y) = cos y.
(d) 1. You have to split the integral into

f l rlxl = fO r-x+ erx.
-1 Jo -1 Jo JoJo

The region of inte.gration is shown on the figure.

A63

-1 1

We work out 6(e).

r"/2 rCOSY r"/2 X21COSYJo Jo x sin y dx dy = Jo (sin y)"2 0 dy

r"/21
= Jo 2COS

2 y sin ydy.

Now let u = cos y and du = (-sin y) dy. The indefinite integral comes out
-(cos3y)/6, and the answer drops out.

7. 2ka4/3

8. (a) log 2 (b) t (c) n (d) -t (e) log U.
We work out 8(b) and 8(e).
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(b) If both x, y ~ 0, the condition x 2 - y2 ~ 0, which amounts to x 2 ~ y2, is
equivalent with x ~ y. Since we are given °~ x ~ 1, and the condition
x 2 ~ y2 is symmetric if we change y to - y, the region of integration
looks like this.

1

The desired integral is then

(e) The integral is

flfl 1 fl 11
1

dy dx = log(1 + x + y) dx
o 0 +x+y 0 0

= f log(2 + x) dx - f log(1 + x) dx.

For the first integral, let u = 2 + x. Then

flog(2 + x) dx =rlog u du = (u log u - U)I: = log(27/4) - 1.

For the second integral, let u = 1 + x. Then

flog(1 + x) dx =rlog u du = (u log u - u{ = log(4) - 1.

Subtract the second integral from the first to get the answer.

9. 9/128.
Let A be the region as shown. We first describe A by inequalities.
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We first have to find the number b which is the point furthest to the right
for the region A. By Pythagoras, we ~ave

Then

so -/3b=-'
2

A = {(x, y) such that 0 ~ x ~ -/3/2 and 1/2 ~ y ~ ~}.

Let f(x, y) = xy. Then

If rv'3/2 ffi=X2
f(x, y) dy dx = Jo 1/2 xy dy dx.

A

The inner integral is

Thus the horrible square root sign has disappeared. The rest is easy. It is
only a simple integration with respect to x, which we leave to you.

Remark. If we look at the picture sideways, we can set up the integral in
a different way, without solving for b. We can give x as a function of y in
the first quadrant on the circle, namely

x=J1=7.
Then the region A can be described as the set of all points (x, y) such that

and o~x~J1=7.

Hence

If f(x, y) dx dy = {2 [til
-

Y2

xy dxJ dy.

A
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Now you integrate with respect to x first, and then with respect to y. You
will find the same answer.

10. 1/30 11. 3n/4
12. kn/4.
In Exercise 12, the region A is the set of points (x, y) such that

and O~y~sinx.

The distance of a point (x, y) from the x-axis is just y. Hence we are given

f(x, y) = ky for some constant k.

Therefore the mass of the plate is

If f(x, y) dy dx = J:fD\y dy dx,

A

which you should know how to do. Remember the identity

1 - cos 2x
sin2 x = ,

2

which gives the easiest way of integrating sin2 x.

IX, §3, p. 266

1. (e - l)n.
We have

f(x, y) = e r2

and the region is the disc of radius 1, which in polar coordinates is the set of
(r, lJ) such that 0 ~ r ~ 1 and 0 ~ lJ ~ 2n. Hence

If e,,2+
y

2 dy dx = f:"t e
r2 r dr dlJ.

D

Let u = r2 and du = 2r dr to evaluate the integral.
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2. 3n/2 4. n 5. 3n/8

6. 3kna4 /2.
We work this out. We place the disc with respect to the coordinates as
shown on the figure.

2a

In polar coordinates, the disc A is the set of points (x, y) such that

-n/2 ~ 0 ~ n/2 and o~ r ~ 2a sin O.

The circumference is the set of points such that r = 2a sin O. We take one
point on the circumference to be the origin. Then by hypothesis, the density
is proportional to the square of the distance from the origin, so

f(x, y) = kr2
•

Consequently the mass of the disc is

If f"12 i2QSiR8
f(x, y) dy dx = kr2 r dr dO.

-"12 8
A

The constant k can be taken out of the integral, and Jr3 dr = r4/4. Then you
will have to integrate Jsin4 0 dO by whatever method you want. For instance
use

. 20 1 - cos 20 1 + cos 40
sm = 2 and later cos2 20 = 2 .

n
7. 2(e - 1) 10. a\/i/6

11. (a) a2(n + 8)/4 (b) same as (a)
(a) The two curves are represented on the figure. The region outside the
circle of radius a and inside the other curve is shaded.
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r = a(l + cos B)-Jo_!""""' __

When A is the set of points (x, y) whose polar coordinates satisfy

-n/2 ~ B~ n/2

Hence the area of A is

and a ~ r ~ a(l + cos B).

If fn/2 fa<l +cos8)

dy dx = r dr dB.
-n/2 a

A

We leave the rest to you.
(b) Now the figure looks like this:

r = a(l - cos"",Br)"'l'"'!"'!~~.....

a

The integral is

f
3n/2fa(1-COS8)

r dr dB.
n/2 a

You will find the same answer.



12. a3(15n + 32)j24.
The integral is
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f
"/2 fall +cos8)

r cos 0 r dr dO.
-n/2 a

A69

13. (a) 1 (b) 2a2
•

We work out 13(a). The curve whose equation In polar coordinates IS
r 2 = cos 0 can also be written

r = Jcos O.

This holds for those values of 0 such that cos 0 ~ 0, in other words

- nl2 ~ 0 ~ nj2.

If t is a number with 0 ~ t ~ 1 then we have t ~.ji. Since the curve

r = cos 0 is a circle, it follows that r = Jcos 0 is elongated, as shown on the
figure.

r = JcosO

The region A inside this curve is the set of points (x, y) whose polar coordin­
ates satisfy

-nj2 ~ 0 ~ nj2 and

Hence

If f"/2 i~Area(A) = dy dx = r dr dO,
-"/2 0

A

f"/2 1 I~
= - r2 dO

-"/2 2 0

1 f"/2
=- cos odO.

2 -"/2

So the horrible square root sign disappeared, and the rest is easy.
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Next we get started on 13(b). The curve r2 = 2a2 cos 20 has points only
when cos 20 ~ O. Then a sketch of the curve is as follows.

The region A enclosed by the loop on the right is the set of points whose
polar coordinates satisfy

-n/4 ~ 0 ~ n/4 and

Hence the area of one loop is given by the integral

The total area is 2a2
•

2.J2na3 64 3 40.J2a3

14. 3 -"9 a + 9

The integral is

f
n/4 ffia.Jcos28

2 J2a2
- r 2 r dr dO.

-n/4 0

Let u = 2a2
- r2 so du = - 2r dr. Horrible square root signs will disappear,

fortunately.

15. 2n[ _(a2 + 1)-1/2 + 1].
We set up the integral. In terms of polar coordinates

1 1
f(x, y) = (x2 + y2 + 1)3/2 = (r2 + 1)3/2.
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The disc D. of radius a centered at the origin is the set of points (x, y) whose
polar coordinates satisfy

o~ 8 ~ 271: and O~r~a.

Hence

If f(x, y) dy dx = f"s: (r2 +11)3/2 + r dr d8.

D.

Now let u = (r2 + 1) and du = 2 r dr. Then the inside integral becomes
Ju - 3/2 du, up to some constant, and you should be able to evaluate the rest
to find the stated answer.

16. 2{ - 2(a/+ 2) + ~J Limit = 71:/2

17. ~(~-~)
2 24 34

18. (a) -571:/4 (b) ;~7I:a4

We work out 18. We have

f(x, y) = x = r cos 8.

Let A be the region bounded in polar coordinates by r = 1 - cos 8, as illus­
trated on the figure.

Then A consists of all pomts (x, y) such that

If 12"11-00.9
f(x, y) dy dx = Jo Jo r(cos 8)r dr d8.

A

Hence

Do the rest.

o~ 8 ~ 271: and o~ r ~ 1 - cos 8.
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2
19. (a) 3n/8 (b) 3(2.}2 - 1) (c) 0
Region for problem 19:

-n/2 ~ 8 ~ n/2
1 ~ r ~.}2.

20. Answer O. Note that

xy r cos 8 r sin 8 .
f(x, y) = -2--2 = 2 = sm 8 cos 8.

x + y r

Sketch of region:

The set of points (x, y) with y ~ x is' the set of points above the line y = x.
So the region looks like the above. In polar coordinates, it is the set of (r, 8)
such that

If fsn/4f.fi.
f(x, y) dy dx =n/4 1 sin 8 cos 8 dr d8.

A

Hence
n/4 ~ 8 ~ 5n/4 and 1 ~ r ~.}2.

For the e-integral, let u = sin e, and du = cos e de.
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21. (a) 0 ~O ~. 3nj4 and 1 ~ r ~ 2.

(26 - 1)J2
(b) 12

22. J2.!(3J3 - 2J2) =.J6 - 4/3.

The region A is the set of points (x, y) whose polar coordinates satisfy

A73

- 3nj4 ~ 0 ~ n/4 and

[The inequalities for 0 could also be expressed as 5n/4 ~ 0 ~ 9n/4, but re­
member that a ~ 0 ~ b ~ a + 2n.] Hence the integral is

f~ ffi . f~ ffir cos 0 r dr dO = • r2 cos 0 dr dO.
- 3,,/4~-~"/fI- ~

23.2

32n r;
24. 3 -4ny 3

z-axis

--+--f-......-+--+,--- y-axis

cross section
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Half the region lies above the disc of radius I, and is bounded above by the
graph of the function

z = J4 - X 2 - y2 = f(x, y),

because the equation of the sphere is x 2 + y2 + Z2 = 4. Thus half the desired
volume is the volume of this region. We can also write

f(x,y)=~.

Hence

f. 2"f.l
Volume = 2 0 0 J4 - r 2 r dr dO.

You can integrate this by s\lbstitution, with u = 4 - r2, du = -2r dr.
Multiply and divide the integral by - 2.

{

1 - a-·+ 2

25. (a) 2n 2 if n * 2,-n+

- 2n log a if n = 2.
The integral approaches a limit if n = 0 or 1.
Let A be region between the two circles:

Then A is the set of points (x, y) whose polar coordinates satisfy

and

Hence

If f(x, y) dy dx = f"f r-' r dr dO = fl1 r-·+ 1 dr dO.

A
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If -n + 1 #- -1, so n #- 2 then Jr- n + 1 dr = r- n +2/( -n + 2); and if
-n + 1 = 1 so n = 2, then Jr- 1 dr = log r. So you get the answer.

X, §1, p. 278

1. (a) -4 (b) 4 (c) 4n (d) n (e) 8 (f) nab
In each case, we now describe the double integral arising from Green's for­
mula.
Let p(x, y) = y2 and q(x, y) = x. Then

aq ap
---= 1-2y.ax ay

Then

Ie y2 dx + x dy = If (1 - 2y) dy dx.

A

Thus the double integral is equal to:

(a) J:f: (l - 2y) dy dx (b) L1L1 (1 - 2y) dy dx.

(c) Use polar coordinates with y = r sin e. The double integral is then

r2
" r2

Jo Jo (1 - 2r sin e)r dr de.

(d) Similarly, the integral in polar coordinates is

r2"eJo Jo (1 - 2r sin e)r dr de.

(e) f2 f2 (1 - 2y) dy dx.

fa fbv' l - (x/a)2
(f) (1 - 2y) dy dx.

-a -bv'1-(x/a)2

The inner integral is

f
bv'1-(x/a)2 \bv'1-(x/a)2

(1 - 2y) dy = y _ y2
- bv' 1 - (x/a)2 - bv' 1 - (x/a)2

= 2bJ1 - (x/a)2.

Now evaluate the outer integral with respect to x by a change of variables:

x = -a cos e, dx = a sin e de, and
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2. (a) -5/6.
The triangle is shown on the figure:

Green's theorem gives

f f
'f-X+l

C y2 dx - x dy = 0 0 ( -1 - 2y) dy dx

(b) Directly, let

C,(t) = (t, sin t)

with 0 ~ t ~ n. The integral is

and C2(t) = (t, 2 sin t)

Ie (1 + y2) dx + y dy

= f (1 + y2) dx + y dy - f (1 + y2) dx + y dy
Cl C2

= J: (1 + sin2 t) dt + sin t cos t dt - (1 + 4 sin2 t) dt - 4 sin t cos t dt

= -3 J: sin2 t dt = -3n/2.

By Green's theorem,

f"f2Sinx f"
. - 2y dy dx = - 3 sin2 x dx = - 3n/2.

o SlOX 0

3. (a) -2 (b) 5/3

4. (a) By Green's theorem, with p = - y, q = x, we get:

~ Ie - y dx + x dy = ~ If (l + 1) dy dx = II dy dx = area of A.

A A

(b) Similar, using p = 0 and q = x.
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5. By Green's theorem the integral is equal to

ff(-~ af - ~ a
f

) dydx = O.
ax ax dyay

A

An

6. 2n, use the method of Example 4, reducing the integral over the circle of
radius 1.

7. You can write F = G + grad l/J, where G is the vector field of Exercise 6
(an old friend), and l/J is a function (which one?). The integral of F over a
closed path is therefore equal to the integral of G over a closed path, so no
difficulties remain.

X, §2, p.288

1. Since e'(t) = (~, ~) IS in the direction of the curve, we see that

N(t) .1 e'(t) because N(t) = (dY , _ dX), and so
dt dt

dy dx dx dy
N(t)· C'(t) = -- - -- = o.

dt dt dt dt

2. Let F = (p, q). Let G be the vector field G = (-q, p). Apply Green's
theorem to G. Then

But

f. G = f. - q dx + p dy = f.b( - q dx + p dY) dt.
C C a dt dt

Furthermore,

dy dx
F·N =p--q-.

dt dt

This proves the divergence theorem.

3. The divergence of F is 0 because ayjax = 0 and axjay = 0 also. Hence the
divergence theorem implies

LF.ndS = o.
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4. Using the divergence theorem, we get

Ie gD.f ds = Ie g(grad f)· n ds = ffdiv(g grad f) dy dx

A

= ff(D1(gDd) + D2(gDl!)) dy dx

A

= ff(gDU + D1gDd + gDU + D2 gDl!) dy dx
A

= ff(gN + (grad g) . (grad f)) dy dx.

A

This proves the formula (a). Permuting f and 9 we get

Ie fD.g ds = ff(ft1g + (grad f). (grad g)) dy dx.

A

Subtracting and using the commutativity of the dot product proves the for­
mula of part (b).

XI, §1, p.297

2.0

4.3 - e.
Solution:

3. (a) 25 (b) 15/2

f 1 fx [X~+Y+zdz dy dx = f 1 fx (eY
- eX+

Y
) dy dx

=fO (e-e- x -ex + l +l)dx=3-e.
-I

y=l
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2. n/3 3. (a) nka4 (b) 2n(1 - a2
), 2n. See also Exercise 14.

4. 2nk(b2
- a2

)

5. nba4/4. The projection of the cylinder on the (x, y)-plane is given by the in­
equality of polar coordinates

O~(J~2n and o~ r ~ a.

The region A lying inside this cylinder and between the planes z = 0 and z =
b > 0 is then defined by the further inequality

o~ z ~ b.

The function to be integrated is f(x, y) = x 2 = r 2 cos2 (J. Hence the integral
is

r2n ra rbJo Jo J/
2
cos

2
(J r dz dr d(J.

6. kna4/2. Let the fixed plane be the (x, y)-plane. We first find the mass of the
upper half ball, with z ~ O. In spherical coordinates, the half ball A is the set
of points satisfying

O~ (J ~ 2n, o~ cp ~ n/2,

The distance of a point inside A from the plane is z = p cos cp. Hence

r2n rn, 2 ra
mass of half ball = Jo Jo J/(cos cp)p2 sin cp dp dcp d(J.

The mass of the ball is 2 times the mass of the half ball.

7. n/8. The projection of the region on the (x, y)-plane consists of those points
(x, y) satisfying

o~ x ~ n/2 and o~ y ~ cos x.

By definition, the region A consists of those points (x, y, z) satisfying those
two inequalities and the third inequality

o~ z ~ y.

Hence

rn,2 rcos x r'
volume of the region = Jo Jo Jodz dy dx.



A80 ANSWERS TO EXERCISES

8.
[
1 2 3/2 1 rriJ2n - - (1 - ro) + - - -
3 3 4

where 2 -1 + J5
ro = 2 .

The two surfaces x 2 + y2 + Z2 = 1 and z = x 2 + y2 = r meet precisely when

where r= Jx2 + y2 as usual.

Solving for r2 by the quadratic formula yields the value ro in the answer
above. The region A consists of those points (x, y, z) which in cylindrical
coordinates satisfy

o~ () ~ 2n,

Hence

f2"frof~volume of region = r dz dr dB.
o 0 r2

9. ~a3(31t - 4). The region A consists of those points (x, y, z) which in
cylindrical coordinates satisfy

o~ r ~ a sin B,

Remember that r = a sin B is the polar equation of a circle as shown on the
figure.

a

r=asinB

Hence

f" fa sin 6f~
volume of region = r dz dr dB.

o 0 -.ja2 -r2

Actually you may deal with the half region such that 0 ~ z ~ Ja2
- r 2

,

which makes the integral slightly less complicated, and then multiply the
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answer by 2. When you evaluate the integral, watch out: you may meet an
integral of the form

But on the interval O;;i; 8 ;;i; n, it is not true thai (cos2 8)312 = cos3 8. You
have to split the interval from 0 to n/2 and from n/2 to n, and take the ab­
solute value of cos38, which is cos3 8 on the first interval, but -cos3 8 on
the second interval. The answer is correctly given above.

10. Volume = na3• Center of sphere is at (0,0, a). Equation of upper part of the
cone is cp = n/4.
Since p ~ 0, from the equation of the sphere p = 2a cos cp, we have

o;;i; cp ;;i; n/2. This equation is equivalent with

p2 = 2ap cos cp = 2az.

Since p2 = x 2 + y2 + Z2, this equation is equivalent with

which is the equation of a sphere of radius a, centered at (0,0, a).
The equation of the cone with z ~ 0 is

z = r = p sin cp.

Since z = p cos cp, this equation is equivalent with tan cp = 1, that is cp = n/4.
Then the region above the cone and below the given sphere consists of those
points (x, y, z) whose spherical coordinates satisfy the inequalities

r2n rn/4 r2a cos If'

volume of region = J0 J0 J0 p2 sin cp dp dcp d8.

So
O;;i; 8;;i; 2n, O;;i; cp ;;i; n/4, o ;;i; p ;;i; 2a cos cp.

z axis
cp = n/4

2a

y-axis
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11. (a) n13. The region consists of all points (x, y, z) such that in cylindrical
coordinates

o~ IJ ~ 2n, o~ r ~ 1, r~z~1.

Draw the figure. You can also use spherical coordinates, and in terms of
spherical coordinates the region is the set of points satisfying

Then

o~ IJ ~ 2n, o~ p ~ l/cos <po

r2n rn/4 rl/cos<P
volume of region = Jo Jo Jo p2 sin <p dp d<p dlJ.

(b) 2nj2/3. The region consists of all points (x, y, z) such that in spherical
coordinates

o~ IJ ~ 2n, nl4 ~ <p ~ 3n14, O~p~1.

(c) n12. The region consists of all points (x, y, z) such that in cylindrical
coordinates

o~ IJ ~ 2n,

(d) n/32. The condition on z is

o~ r ~ 1,

r2 ~ z ~ r cos IJ.

This implies that r ~ cos IJ, because r = J x2 + y2 ;;;; O. Conversely, given
r ~ cos IJ, there is some z satisfying r2 ~ z ~ r cos IJ. The values of IJ such
that 0 ~ cos IJ are those from - nl2 to n12. Hence the region is the set
of points (x, y, z) which in cylindrical coordinates satisfy

-n12 ~ IJ ~ n12, o~ r ~ cos IJ, r2 ~ z ~ r cos IJ.

12. 7a 2b3/3. The region consists of all points (x, y, z) such that in cylindrical
coordinates

(because y ;;;; 0 is assumed)O~IJ~n

O~r~b

Then the integral is given by

and O~z~a.

f J: I7r(Sin lJ)zr dz dr dlJ.

13. 64/3. The region consists of all points (x, y, z) such that in cylindrical coor­
dinates

o~ r ~ 4, o~ z ~ y12.
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{

[

b3-n-a3-nJ
2. • b 1 4n if n =P 3,r r f n p2 sin ({J dp d({J de = 3 - nJo Jo a p .

4n[log b - log a] If n = 3.

A83

(b) The integral approaches a limit if n = 1, 2. If n ~ 3, the integral-> 00 as
a ->0.

XI, §3, p.315

8. (0,0, ih)

1. (1,5/3) 2. (5/2,5) 3. (0, ::) 4. (1, -!)

6. x = ~ + nJ2 _1 _ !2 y- = J2 + 1
2 4 y£., 4

_ 2a2 log a - a2 + 1 _ a(1og a)2
7. x = 'y = -1

4(a log a - a + 1) 2(a log a - a + 1)

20 (21 96)9. (a) Tkn (b) to' 25n

11. (a) tka3n (b) (0,0) (c) (3a, 3a)
2n 2n

XII, §l, p.324

ax
1. ali = ( - (a + b cos ({J) sin e, (a + b cos ((J) cos e,O)

,,~~ " = la + b cos ({JI

ax
O({J = (-b sin ({J cos e, -b sin ({J sin e, b cos ({J)

"~~II = Ibl

5. (n/2, n/8)

13. (0, 0, 2;)

ax
2. 8ii = ( - t sin IX sin e, t sin IX cos e, 0)

axat = (sin IX cos e, sin IX sin e, cos IX)

ax ax
8ii x at = (t sin IX cos ecos IX, t sin IX sin ecos IX, - t sin2 IX)

II~~ x °o~11 = t sin IX

Equation of surface is x 2 + y2 = (tan 1X)2Z2
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ax
3. at = (a cos e, a sin e, 2t)

axaii = (-at sin e, at cos e, 0)

ax ax 2 2' 2at x aii = (-2at cos e, -2at sm e, a t)

II aa~ x ~~ 11 = J4a
2
t

4
+ a

4
t

2

The equation is x2 + y2 = a2z.

ax
4. aq> = (a cos q> cos e, b cos q> sin e, -c sin q»

ax
ae = (-a sin q> sin e, b sin q> cos e, 0)

ax ax
aq> x aii = (cb sin2 q> cos e, ac sin2 q> sin e, ab sin q> cos q»

,,~: x ~~ II = J c2b2 sin4 q> cos2 e + a2c2 sin4 q> sin2 e + a2b2 sin2 q> cos2 q>

x2 y2 Z2

The equation is 2 + 2 + 2 = 1.
abc

ax
5. aii = (-a sin e, a cos e, 0)

axa; = (0,0, 1)

ax ax
ae x a; = (a cos e, a sin e, 0)

II~~ x ~~II = a

The equation is x2 + y2 = a2.

ax ax
6. a; = (cos e, sin e,1'(r» aii = (- r sin e, r cos e, 0)

ax ax .a; x aB = (- 1'(r)r cos e, - 1'(r)r sm e, r)

II ~~ x ~~ II = rJ1'(r)2 + 1

The equation is z = f(Jx 2 + y2).

7. x2 + y2 = (a ± Jb2 _ Z2)2

XII, §2, p. 332

j10 n /C r;
1. (a) nJ2 (b) -9- nh2 2. 6(5y 5 - 1) 3. 2n(y 3 - t)

4. ~n(2J2 - 1) 5. 2n(ke2arcsinhl - ke-2arcsinhl + t sinh 1)
6. 2nJ6 7. 2J2n 8. 2n(1 - J2f2) 9. 4n2a
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XII, §3, p. 339

1. (a) 4na4 /3 (b) na5/2 (c) 4na6/15 (d) na?/3

A8S

2. 4n/3 4. n(1OJS/3 + 2/15)/8 5. 6~ (25J5 - 11)

6. 0 7. 0 8. na3 9. na4/2

11. Let P = (0,0, c) with c G o. If c = 0 the integral is easily found. Suppose
c > O. Then IIX - PII = (x 2 + y2 + (z - C)2)1/2. Substitute x 2 + y2 = r 2 =
a2 sin2 qJ, and z = a cos qJ. Use spherical coordinates. The integral can be
evaluated by substitution u = a2 + c2

- 2ac cos qJ, du = 2ac sin qJ dqJ. Eventu­
ally, the expression

will appear. Here you have to distinguish whether c > a or c < a, because for
any real number t you have J? = Itl.

12. 4n/3 13. -(n2/4 + 2n) 14. 2n 15. 104/3 16. 2nJi 17. 1~ (8 - 5Ji)

18. 5/12 19. (a) 2na2 (b) 3na2 20. 3/2 21. 5n/4 22. 4n 23. 2n/3

XII, §4, p. 344

1. V·F = 2x + xz + 2yz
V x F = (Z2 - xy, 0, yz)

y x xy
2. V·F=-+-+-

x Y z
V x F = (x log z, - y log z, log y - log x)

3. V· F = 2x + x cos xy + e"y
V x F = (e"z, -e"yz, y cos xy)

4. V· F = ye"Y sin z + e"Z cos y + yeYZ cos x
V x F = (zeYz cos x - xe"Z sin y, e"Y cos z + eYZ sin x, ze"Z sin y - xe"Y sin z)

5. We have grad qJ = (D1qJ, D2qJ, D3qJ). Then

curl grad qJ = (D 2(D 3qJ) - D3(D2qJ), and so forth)

=0 because D;DjqJ = DjDjqJ.

6. curl F = (D 2/3 - D3/2' D3/1 - DJ3' DJ2 - D2/1)' Hence

div curl F = D1D2/3 - D1D2/2 + D2D3d l - D2DJ3 + D3DJ2 - D3D2/1

= 0 because DjDj = DjD;.

8. Let r = J x2 + l + Z2 and F(X) = c(x/r3, y/r3, z/r3). Then

DJI = c(x( - 3)r- 4 x/r + r- 3),

Dd2 = c(y( - 3)r- 4 y/r + r- 3),

D3/3 = c(z( -3)r- 4 z/r + r- 3).

But x2 + y2 + Z2 = r 2 so

DJI + Dd2 + D3/3 = c( -3r- 3 + 3r- 3) = O.
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XII, §5, p. 352

2. 3/2

ANSWERS TO EXERCISES

3. 3n/4. Note that the integral is supposed to be over a portion of the sphere.
Call this portion S. Let D be the disc at the bottom, that is, D consists of all
points

(x, y, -!) with

Let G = curl F. By the divergence theorem

If G·nda+ If G·nda= fIf divGdV=O

S D U

because div curl F = O. Hence

If G· n = - If G· n da.

S D

The integral over the disc is easily evaluated to give the stated value. Of
course, you can also evaluate directly the desired integral over the given por­
tion of the sphere. You will find the same answer.

4. 64n. For any sphere centered at the origin, we have n = X/IIXII. Hence

Then the integral is

ff da = area of the sphere = 64n.

S

5. (a) 0 (b) 0 (c) 16 (d) 24 6. 8n/3 7. 12n/5 8. 1

9. 24n. The surface is a closed surface to which we can apply the divergence
theorem. The region A inside the surface is the set of points (x, y, z) such
that

and

The divergence of F is 3 by a direct computation. Hence

If F·nda= Iff 3dV=3 f:n f: r-,2rdzdrdo.

S A
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10. 48n 11. 243n/2 12. 135n 13. 11/24

14. (a) By definition, Dof = (grad f)·n. Hence by the divergence theorem,

ff Dofda= ff (gradf)·nda= fff (divgradf)dV=O.
s s u

(b) Let F = f gradf. ThenfDof = F· n. Also

Hence

div F = D1(fDJ) + DifDz!) + D3(fD 3 f)

= DJDJ + fDif + DdDd + fDU + D3 fDd + fD~f

= IIgradfliZ + Dif + DU + D~f

= IIgrad fIlz if f is assumed harmonic.

The desired formula follows by the divergence theorem.

15. (a) If F(X) = X then div F = 3 so by the divergence theorem

ff X ·nda = fff 3 dV = 3 Vol(U).

s u

A87

(b) Compute D1, Dz, D3 by using the rules for the derivative of a product.

16. Let f(X) = qj4np where p = IIXII. For a sphere centered at the origin, we
have n = XjllXII = X/po Also

q -1 (X Y Z) -qgrad f(X) = - - -, -, - = - X.
4n pZ p P P 4np3

Hence
q

-grad f(X)·n = --Z.
4np

Let S be a sphere centered at the origin, and of radius p. Then

q
4

np
2 (area of S)

= q.

(You don't have to compute each time that the area of a sphere of radius p
is 4npz.)
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17. (a) If the origin does not lie in U or its boundary, then the vector field

X
F(X) = 3

P

is smooth, and we can apply the divergence theorem directly. By Exer­
cise 8 of §4 we know that div F = O. Hence by the divergence theorem

If F(X)·nda= Iff divFdV=O.

s u

(b) Suppose the origin lies in U. Let SI be a sphere of radius a centered at
the origin, such that the closed baH of radius is contained in U. Let A
be the region between S 1 and the surface S. Then the vector field X/p3
is smooth on the region A, and we can apply the divergence theorem.
The region A lies to the right of SI with its usual orientation. Hence

If F·n da - If F·n da = fff div F dV = O.
s s, u

Hence

If F·n da = If F·n da.

s s,

But on the sphere IIXII = a we have

X X 1
F·n=-·-=­

a3 a a2 '

so

If F· n da = :2 If da = 4n.
s,

This is of course exactly the same argument as in Exercise 16, except for
the normalizing constant factors.

18. Let Bj be a baH of radius a centered at Pj such that Bj and its bound.ary Sj
is contained in the interior U of the closed surface, but does not contam any
other point Pi for i i= j. Each Sj is a sphere of radius a centered at Pj'
Then the function

is a smooth function on the region A lying outside the spheres Sj and inside
the surface S.
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The figure is as follows:

A89

The situation is similar to that found in applying Green's theorem as in Ex­
amples 3 and 4 of Chapter X, §1. See also Exercise 6 of Chapter X, §1.
Hence we can apply the divergence theorem to this region. The boundary of
A consists of S and the spheres Sl' ... ,Sm. Let E = - grad f. Then div E =

- div grad f = 0, and so

If E·ndu- J1 If E·ndu= Iff divEdV=O.

I ~ A

Note that we put the minus sign in front of the sum because the outward
unit normal vector on Sj with respect to the region A has opposite direction
to the ordinary outward unit normal vector of the sphere Sj. Hence we ob­
tain

If E·ndu= jt1 ff E·ndu.
I IJ

Let

Then

and Ej = -grad fj.

if i i= j by Exercise 17

= qj if i = j by Exercise 16 or Exercise 17(b).

This proves the desired assertion.

19. Note that f grad g = (fD1g, fDzg, fD 3 g). Then

div(f grad g) = D1(fD1g) + DzCfDzg) + DifD3 g)

= (grad f). (grad g) + f(Dig + D~g + D~g).
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Then use Green to conclude part (a). Compare with Exercise 4 of Chapter X,
§2. For part (b), interchange f andg in part (a) and subtract.

XII, §6, p. 362

1. 4n. First, we have curlF = (1,1,1) directly from the definitions. The surface
is parametrized by

X{x, y) = (x,y, 4....., x2 _ y2),

Compute ax/ax and ax/ay, and find their cross product. You get

N(x, y) = (2x, 2y, 1).

Let S denote the surface. Let D2 be the disc of radius 2. Then

ff F . nda = ffF.NdYdX= ff(2X+2Y +1)dY dX

s ~ ~

= f:" L2

(2r cos 8 + 2r sin 8 + 1)r dr d8

= 4n.

Second, note that the boundary of the surface is the circle obtained by
putting z = 0, that is x 2 + y2 = 4, oriented clockwise so that the surface lies
to the left of this circle as on the figure.

4

2

If we parametrize the circle in the usual way with

x = 2 cos 8, y = 2 sin 8, o~ 8 ~ 2n,
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Then the boundary curve has to be taken to be C-. Hence

f. F·dC= -f.F.dC= -f.ZdX+XdY+YdZ
c- c c

f.

2><

= - 0 (2 cos 0X2 cos 0) dO

= 4n,

A91

which is the same number as we found by the surface integral.

2. -13/6. First we compute the surface integral. The surface is the triangle
which can be parametrized by

X(X, y) = (x, Y, 1 - x - h) with o~ x ~ 1, 0 ~ Y ~ 2 - 2x.

(0,2,0)

Take ax/ax and ax/ay. Then their cross product is

N = (1, t, 1).

From the definition, you find that curl F = ( - Y, -1, -1). Hence

(curl F)·N = -Y - t·

Let S be the surface of the triangle. Then

If f.
1 f.2-2X

(CUrlF)'D du= 0 0 (-y-t)dydx= -13/6.
s

Second, we compute the integral over the boundary of the surface, which
consists of three line segments parametrized as follows with 0 ~ t ~ 1.

C1(t) = (t, 0, -t + 1),

Cit) = (1 - t, 2t, 0),

Cit) = (0, -2t + 2, t),

so

so

so

C'l(t) = (1,0, -1),

C~(t) = ( -1, 2, 0),

C~(t) = (0, -2,1).
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You will find:
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f. F·dC3 = -1.
CJ

Hence the integral over the boundary is -13/6, which is the same value as
the surface integral.

3. O. The boundary of the half sphere is the circle

C(t) = (2 cos t,O, 2 sin t)

4.0

5. O. The figure of the cone is as follows.

with o~ t ~ 21t.

For the surface integral, you can compute curl F = (-1,0,0). We para­
metrize the cone with cylindrical coordinates by

X(r, IJ) = (r cos e, r sin 0, r), o~ r ~ 1, 0 ~ 0 ~ 21t.

Compute ax/ar, ax/alJ and take the cross product. You find

N(r, e) = ( - r cos e, - r sin e, r).

Let S be the surface of the cone. Then

ff (curl F) .n da = ff (curl F)· N dr de = f" f r cos e dr de = O.
s s

On the other hand, the boundary of the cone is the circle on the top,
parametrized by

C(e) = (cos e, sin e, 1), o~ e~ 21t.
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This is the counterclockwise parametrization, and the surface lies to the left
of the oriented circle. Then

= J:x(COS e+ sin e)( -sin e) de + (cos e+ 1) cos ede

=0.

6. -!

8. (a) n

Lz dx + 2x dy + y2 dz = f: x

-sin2 t dt + 2 cos2 t dt + sin2 t cos t dt

2n 2n
= - 2 + 22 + 0 = n.

(b) Let F(x, y, z) = (z, 2x, y2). Then curl F = (2y, 1,2). We let

X(x, y) = (x, y, y).

Compute ax/ax, ax/oy, and take their cross product. You find

N(x, y) = (0, -1, 1).

Hence

If (curl F)· n d(J = If (2y, 1,2)· (0, -1, 1) dx dy = If 1 dx dy = Area(D) = n.

S D D

9. A direct computation shows that curl F = (0,0,0). Then by Stokes' theorem,

LF.dC = If (curl F)·nd(J = o.
S

10. (a) By Stokes' theorem,

L (f grad g). dC = If curl(f grad g). n d(J.

S
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curl(f grad g) = curl(fDIg, fD 2 g, fD 3 g)

= (D 2(fD 3 g) - D3(fD 2 g), D3(fD Ig) - DI(fD3 g), DI(fD 2 g) - D2(fD Ig)

= (D 2 fD 3 g + fD 2 D3 g - D3 fD 2 g - fD 3 D2 g,···,···)

= (Dd, D2 f, D3 f) x (Dig, D2 g, D3 g)

= (grad f) x (grad g).

«b) You don't have to redo the computation. Observe that by part (a).

L(g grad f) .dC = If (grad g) x (grad f) du.

s

Let A = grad f and B = grad g. By a basic relation of the cross prod­
uct, we know that A x B + B x A = O. Hence

L(f grad g + g grad f)·dC = L(A x B + B x A)·dC = O.

11. Let C(t) be the parametrization of the boundary, a ~ t ~ b. By hypothesis,
F .dC/dt = 0 for all t. Hence by Stokes' theorem,

If (curl F)· D du = LF. dC = rF(C(t))· ~~ dt = O.
s

XUI, §1, p. 371

I.A+B=G
7

~} (-3 15 -6)
1 3B = 3 3 -3

-2B = ( 2
-10

~} (-1 12
-~)-2 -2 A + 2B = 1 2

2A+B=(_~
9 :} A-B=( 2

-3
~)1 -2 -1

A-2B=( 3
-8

~} (-2 3 -5)
-3 -2

B-A = 2 1 -3
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2. A + B = e_~} 3B = ( - ~ _~}

A + 2B = ( - ~ _ ~). A - B =G -~).

3. (a) Rows of A: (1, 2, 3), (-1, 0, 2)

Rows of B:(-I, 5, -2), (1,1, -1)

(b) Rows of A: (1, -1), (2, 1)

-2B=G -~}

B _ A = (-2
-2

Rows of B: (-1, 1), (0, -3)

4. (al 'A~G -no
(b) 'A = (_ ~ ~}

Columns of B:(-~} (_~)

(-1 1)
tB = 5 1

-2 -1

5. Let cij = aij + bij' The ij-component of '(A + B) is cji = aji + bji , which is the
sum of the ji-component of A plus the ji-component of B.

7. Same 8. G_~} same

9. A + t A =G ~} B + 'B = ( - ~ _ ~)

to. '(A + 'A) = 'A + "A = 'A + A = A + 'A.

XUI, §2, p. 379

1. IA = AI = A 2. 0

3. (a) (~

5. AB=(:

~) (b) G~) (c) G~ -~~)
_~} BA = (~ ~)
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(

14
BC = CB = 7 ~)

If C = xl, where x is a number, then AC = CA = xA.

7. (3, 1, 5), first row

8. Second row, third row, i-th row

9. (a) (~) (b) (:) (c) G)

to. (al (D ~lm(oj G)
11. Second column of A 12. j-th column of A

13. (al G) (bl G) (oj (~) (dj (:,j
14. (a) (a ax + db). Add a multiple of the first column to the second column.

e ex +
Other cases are similar.

(
136)

A3 = 0 1 3 ,

001

(
100)
o 16 0
o 0 81

18. Diagonal matrix with diagonal a~, a~, ... ,a~.

(
1410)

A4 = 0 1 4

001

19. 0,0

20 (a) (_~ ~)

(b) (_:2/b ~b) for any a, b¥= 0; if b= 0, then (~ ~}



ANSWERS TO EXERCISES A97

21. (a) Inverse is I + A.
(b) Multiply I - A by I + A + A 2 on each side. What do you get?

22. (a) Multiply each side of the relation B = T AT-Ion the left by T- l and on
the right by T. We get

Hence there exists a matrix, namely T- l
, such that T- IBT = A. This

means that B is similar to A.

(b) Suppose A has the inverse A-I. Then TA-IT- I is an inverse for B
because

And similarly BTA-IT- I = I.
(c) Take the transpose of the relation B = TAT-I. We get

'B = 'T- I 'A 'T.

This means that 'B is similar to 'A, because there exists a matrix, namely
'T- I = C, such that 'B = CAC- I .

23. Diagonal elements are allb ll , ... ,annbnn . They multiply componentwise.

24. G
25. G

a+ b) (1 na)
1 ' 0 1

-~)

26. Multiply AB on each side by B- 1A -I. What do you get? Note the order in
which the inverses are taken.

27. (a) The addition formula for cosine is

COS(OI + ( 2 ) = cos 01 cos O2 - sin 01 sin O2 •

This and the formula for the sine will give what you want.
(b) A(O)-I = A( - 0). Multiply A(O) by A( - 0), what do you get?

(

COS nO - sin no)
(c) An = . II ll. You can prove this by induction. Take the

sm nu cos nu
product of An with A. What do you get?

1 ( 1
(e) 2 _13

(b) ~G-~) (c) (-~ _~) (d) (-~

f) (f) ~ (f ~) (g) ~ (=~ _~)
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(
COsO SinO)

29. -sin 0 cos 0
1

30. j2 (-1, 3) 31. (-3, -1)

32. The coordinates of Yare given by

Yl = Xl cos 0 - X 2 sin 0,

Y2 = Xl sin 0 + X 2 cos O.

Find yi + y~ by expanding out, using simple arithmetic. Lots of terms will
cancel out to leave xi + x~.

XIV, §1, p.390

1. (a) 11 (b) 13 (c) 6 2. (a) (e,l) (b) (1,0) (c) (lie, -1)

3. (a) 1 (b) 11 4. Ellipse 9x2 + 4y2 = 36 5. Line X = 2y

7. Cylinder, radius 1, z-axis = axis of cylinder 8. Circle x 2 + y2 = 1

12. A=O

XIV, §2, p. 396

1. (a) G) (b) (~)

~ (! ~ ;)
(c) G) (d) (_~)

3. G~) 4. (~ ; (
1 0 00)5. 0 1

~)

(
1 0 0 0)

9. 0 1 0 0

(
-5

12. 7

(010)8. 0 0 1

11. Only A = O.

o 0)
o 1

D
14. (~ -~ -:) 16. (-~ ~ -~)

4 9 2 0 -7 8

7. G
o
o
1

~)

o
1

o

6. (1,0,0)

(

-1
13. 4

10. (~

17. Let A = L(l). For any number t, we have by linearity,

L(t) = L(t· 1) = tL(l) = tAo
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'9. U~n

XIV, §3, p. 402

3. L(E1
) =G} L(E

2
) = (-~)

5. It is the set of all points

with numbers t j satisfying 0 ;:;; t j ;:;; 1 for i = 1, 2, 3. Let S be this parallele­
piped. The image of Sunder L is the set L(S) consisting of all points

with t j satisfying the above inequality. Hence it is a parallelepiped if L(A),
L(B), L(C) do not all lie in a plane.

7. The three column vectors of the matrix.

8. It is the set of points L(P) + tL(A) with all t in R.

9. (a) P + t(Q - P) (b) L(P) + tL(Q - P) = L(P) + t[L(Q) - L(P)]

10. It is the set of points tL(A) + sL(B), with t, s in R.

11. It is the set of points L(P) + tL(A) + sL(B) with t, s in R.

XIV, §4, p.411

1. Inverse of F is the map G such that G(X) = (lj7)X.

2. G(X) = (-lj8)X 3. G(X) = c- I X.

4. (AB)-I = B-1A- 1; (ABC)-I = C-1B-1A- 1. Just multiply out

and

The same also holds taking the multiplication on the other side.

5. (/ + AX] - A) = (/ - A)(/ + A) = ]2 - A 2 =] so ] + A is an inverse for
I -A.
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6. / = A( -2/ - A), so -(2/ + A) is an inverse (it commutes with A).

7. We have (/ - A)(/ + A + A 2
) = (/ + A + A 2

)(/ - A) = / - A 3 = /, so
/ + A + A 2 is an inverse for / - A.

XV, §1, p.416

1. (a) 26 (b) 5 (c) -5 (d) -42 (e) -3 (f) 9

2.1 3. (a) 1 (b) -1 (c) -t (d) 0 5. D(cA) = c2D(A).

XV, §2, p.419

2. (a) -20 (b) 5 (c) 4 (d) 5 (e) -76 (f) -14

3. (a) 140 (b) 120 (c) -60

4. abc 5. (a) 3 (b) -24 (c) 16 (d) 14 (e) 0 (f) 8 (g) 8 (h)-lO

6. a11 a22 a33 both (a) and (b)

XV, §3, p. 425

4. Changes sign in both cases.

5. (a) -20 (b) 5 (c) 4 (d) 5 (e) -76 (f) -14

6. (a) 1 (b) -42 (c) 0 (d) 0 (e) 24 (f) 14 (g) 108 (h) 135 (i) 10

8. (a) 0 (b) 24 (c) -12 (d) 0 (e) 27 (f) -54 (g) -25 (h)-3
(i) 5 (j) 0 (k) -18 (I) 0

9. D(cA) = c3D(A) 14. 1 15. t 2 + 8t + 5

XV, §4, p.429

1. If a number x is such that B = xA, then

D(A, B, C) = (D(A, xA, C) = xD(A, A, C) = 0,

contrary to assumption.

XV, §6, p. 433

1. (a) (_

(d) (-

D
t)-5

(b) (1:1 -1:1) (c) (_
11 II
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2_1_( d -ab)
• ad - be -e

XVI, §1, p.437

A101

(

yz cos xyz
(f)

z

(
eosx 0)

(b) _ y sin xy -x sin xy

(
yz xz X y)

(e) 2xz 0 x2

xz cos xyz yx cos XYZ)
o x

(
yeXY xeXY)

(c) 1/x 0

(-1 0) C
e4

~)2. (a) G~) (b) n n2 n2 (c) 1- 2sin 2 -nsin 2

(d)n0 1) 4n
2:)

1 -2 -2 8
1 ~ (e) (-4 0 4) (f) (4 0
-1

3. (a) (;x

(-Y,;nxY -x sin xy

~)~) (b) y eozs xy x cos xy

0 x

4. dF(X) = x2
- 2xy. diX) = 0 when x = 0, y arbitrary, and also at all points

with x = 2y.

5. dF(X) = -x cos x sin xy

(

COS () - r sin ())
6. . () ()' r; determinant vanishes only for r = o.
sm r cos

(

sin qJ cos () - r sin qJ sin () r cos qJ cos ())
7. sin qJ sin () r sin qJ cos () r cos qJ sin ()

cos qJ 0 -r sin qJ

Determinant - r2 sin qJ

(
e' cos () - e' sin ())

8. . () ()e'sm e' cos

Determinant is e2,. F(r, () = F(r, () + 2n).

XVI, §4, p. 445

1. Yes in all cases 2. (a), (b), (c), (d) all locally C1-invertible

3. F(x, y) = F(x, y + 2n)
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2. Letting y = cp(x), we have

" -1 ( D2f(x, y)(DU(x, y) + D2Dd(x, y)cp'(x» )
cp (x) = Dd(x, y)2 -Dd(x, y)(D,Dd(x, y) + Dif(x, y)cp'(x» .

3. (a) No (b) Yes (c) Yes

4. (a) We have 2x - y - xi + 2yi = O. This yields cp'(l) = O.
-7[

(b) cp'(l) = 2 (c) cp'(l) = - t (d) cp'( -1) = t (e) cp'(O) = -1

-39
(f) cp'(2) = M

5. Define the map F: U --+ R3 by F(x, y, z) = (x, y, f(x, y, z»). Then

JF(x, y, z) = [~~ ~ ]

• • DJ!(x, y, z)

where the .'s indicate some entry which we don't care about. Thus the
Jacobian determinant is

L\F(X, y, z) = D3f(x, y, z) and

By the inverse mapping theorem, F is locally invertible. Let G be its local
inverse, so there exists a function 9 such that

G(u, v, w) = (u, v, g(u, v, w») or G(x, y, w) = (x, y, g(x, y, w»).

Define cp(x, y) = g(x, y, 0). Since F(a, b, c) = (a, b, 0) we conclude that
G(a, b, 0) = (a, b, c) and hence g(a, b, 0) = c. This shows that q>(a, b) = c.
Finally,

F(x, y, cp(x, y») = F(x, y, g(x, y, 0») = F(G(x, y, 0») = (x, y, 0)

because FoG = I. By definition, we also have

F(x, y, q>(x, y») = (x, y, f(x, y, cp(x, y»),

and therefore f(x, y, q>(x, y») = 0, which concludes the proof.

7. (a) both - I
(b) D,cp(0,0)=0;D2CP(0,0)=0
(c) D1CP(l, 1) = t; D2 CP(1, 1) = t
(d) D,cp(O, t) = -~; D2CP(0, t) = -1

9. For y as an implicit function of (x, z): (a) both -1
(b) Not possible since D2 f(O, 0, 0) = 0
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(c) D1<P(1, 2) = -1; D2<P(1, 2) = 3
(d) D1<P(t,t) = -~;D2<P(t,t)=-1

For x as an implicit function of (y, z): (a) both -1
(b) Not possible since Dtf(O, 0, 0) = 0
(c) D 1<p(1, 2) = -1; D2 <p(1, 2) = 3
(d) D1<P(t,t) = -1';D2 <P(t,t)= -1'

XVII, §1, p. 462

1. (a) 7 (b) 14 2. (a) 14 (b) 1
3. (a) 11 (b) 38 (c) 8 (d) 1 4. (a) 10 (b) 22 (c) 11 (d) 0

XVII, §2, p. 468

AI03

1. nab 2. 1'nabc

XVII, §3, p. 473

1. n. We have

Also

JG(u, v) = (2U -2V)
2v 2u

and

x2 + y2 = (u2 _ V2)2 + 4U2V2 = (u2 + V2)2

so (x2 + y2)1/2 = u2 + v2. Hence

=4 If dudv=4·area(A)=n.

A

2. (a) 1~8 (b) 0

(a) If dy dx = If I~G(u, v)1 du dv = f: f:4(u2 + v2) du dv = 1~8.
G(A) A

(b) If x dy dx = f: f: (u2 - v2)4(U2 + v2) du dv = 0,

G(A)

3. (a) 42 (b) 120
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and

4.2. We have

(1 + 4x + 4y)1/2 = 1 + 2u

JG(U,V)=(L ~1)

so

if u~O,

If (1 + 4x1+ 4y)1/2 dy dx = If 1 : 2u (1 + 2u) du dv = area of A = 2.
G(A) A

5. (a)

2

(b) !. We have

If x dy dx = If u2v du dv = 2f f uv du dv = ~.
F(R) R

so

Jiu, v) = G and ~iu, v) = 2v

6. nab. Let F be the map given by

x = au and y = bv.

Then F is linear, and ~F = abo Let D be the unit disc. Then

ff dy dx = ff ab du dv = ab(area of D) = nab.

F(D) D

7 2..2
• 2 8. 1500n. 9. 15nab
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10. Let F be the map such that x = u - v and y = v. Then we can solve for the
inverse mapping G, namely (u, v) = G(x, y) is such that

v=y and u = x + y.

Both F and G are linear. Let T be the triangle consisting of all points (x, y)
such that

0;;; x, 0;;; y, x+y;;;l.

In terms of u, v these inequalities are equivalent to

0;;; u - v, 0;;; v, u ;;; 1,

so G(T) is the set of points (u, v) such that

0;;; v;;; u;;; 1.

We illustrate T and G(T) on the next figure.

v-axis

u-axis

F

G

y-axis

x-axis

(1 -1)We have JF = 0land!'.F = 1, so

If q>(x + y)xmy' dy dx = If q>(u)(u - v)mv' dv du

T G(T)

We change variables, for each u we let v = tu so dv = u dt. Then the last
integral is equal to

as was to be shown.

11. 0 12. \6
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XVII, §5, p. 481
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1. (a) (~ p c~s q> Si~ q» and determinant is p.

o - p sm q> cos q>

(b) Hf I(G(e, q>, p»p dp dq> de = Hf I(e, r, z) dz dr de

A GW

5. (a) i (c) t (d) t
2. abck 3. 11tabc 4·'11ta3.14

6. (a) i (b) t

(
448)

7. (a) 2 7 4 (b) 20 (c) 100

1 4 3

8. In both parts Vol(LA(D» = Vol(D), because det (A) = 1. For an upper tri­
angular matrix, the determinant is the product of the diagonal elements.

9. 3(e - 1)/4

Appendix, §1, p.493

1. f:"cl(x) dx = c f:/(X) dx

and

(f, g + h) = f:/(X)[g(X) + h(x)] dx = f:" [f(x)g(x) + I(x)h(x)] dx

= f:" I(x)g(x) dx + f:" I(x)h(x) dx = (f, g) + (f, h).

2. Take the scalar product with J;. We obtain for each i,

n

0= (cdl + ... + cn!., J;) = L ck(/k' J;) = ci ·
k=1

3. If (hi' I) = 0 and (h 2 , I) = 0, then

If c is a number and (h, I) = 0, then (ch, I) = c(h, I) = o.
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7. (b) 1/4 (c) Ilfll = f and Ilgll = Jj (d) l/Z, 1/3, 1

Appendix, §2, p. 502

x sin Zx +1 sin nx
4. (a) "2=sinx--

Z
-+···+(-1)" -n-+'"

2 1t
2

( cos Zx + 1 cos nx )
(b) x ="3 - 4 cos x - 22 + ... + (-1)" ~ + ...

1t 4 ( cos 3x cos(Zn + 1)x )
(c) Ixl = - - - cos x + -- + ... + + ...

Z 1t 32 (Zn + 1)2

1 cos Zx
(d) "2--z-

(e) Isin xl = ~ (! _cos Zx _ ... _ cos Znx _ ...)
1t Z 3 4n2 - 1

4 (1 cos Zx cos Znx )(f) Icos xl = - - + -- + ... + (_1)"-1 --+ ...
1t Z 3 4n2 - 1

(g) sin3 x = ~ sin x -! sin 3x
(h) cos3 x = ~ cos x + ! cos 3x

AlO?



Index

A

Acceleration 56
Additive inverse 370
d'Alembert 5
Angle between planes 38
Angle between vectors 30
Area 234, 328, 467
Area of parallelogram 46, 326, 454,
457

B

Ball 21
Beginning point 10
Bessel inequality 493
Boundary 127, 238
Bounded 233, 238, 239
Bounded from above and below 239

c
C1-function 207, 443
Center of mass 314, 334
Chain rule 441
Change of variables formula 469, 478
Closed ball 21
Closed disc 21
Closed path 214
Closed set 127
Column vector 367
Completing the square 156
Component 490

Component of matrix 367
Composite 87, 404, 409
Cone 325
Connected 186
Conservation of energy 112
Conservative 112
Constraint 135
Continuous 31, 207, 235
Coordinates 4
Critical point 123, 149
Cross product 44
Curl 343, 360
Curve 51, 183
Curve integrals 208
Cylinder 325
Cylindrical coordinates 298

D

Degree 147
Density function 348, 334
Dependence of integral on path 228
Derivative of curves 52
Derivative, partial 72
Determinant 412, 455
Determinant as area or volume 456
Diderot 5
Differentiable 51, 80, 207, 438
Differential operator 156
Differentiating under integral 198
Dilation 338, 463
Direction 10
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Directional derivative 100
Disc 20
Discriminant 158
Distance 19, 103, 232
Distance from point to plane 41
Divergence 280, 285, 343
Divergence theorem 345
Dot product 14
Double integral 236

E

Element 385
Elementary cylindrical region 299
Elementary spherical region 305
End point 11
Equipotential 70
Equivalent vectors 12
Euler relation 92
Extremum 135

F

Flux 336
Fourier coefficient 490
Fourier series 497
Function 66
Function of distance 103

G

Gauss identities 355
Gauss' law 351
Gradient 75
Graph 67
Greatest lower bound 239
Green formulas 288
Green's theorem 270, 275, 282, 475

H
Harmonic 108
Heat flux 334
Hessian 451
Homogeneous 168
Hyperplane 38

I

Identity mapping 406
Image 386
Implicit function theorem 446
Independence of vectors 428

INDEX

Injective 327, 407
Integrable 294
Integral 236, 242, 294, 333
Integral of vector field along
curve 208

Integral of vector field over
surface 335

Interior 126
Intersection 386
Inverse 406, 410
Inverse of matrix 376, 431
Inverse mapping theorem 444
Invertible 410, 443
Isothermal 70

J

Jacobian determinant 436
Jacobian matrix 434
Join by a curve 185, 208

K

Kinetic energy 113

L

Lagrange multiplier 137
Laplace equation 86, 108, 120
Least upper bound 239
Length 62
Levelcurve 68,152
Level surface 69
Lie in set 385
Lie on surface 93
Line segment 32, 398
Linear mapping 393
Lines 32
Local max or min 124, 151
Locally C I-invertible 444
Located vector 10
Lower sum 235

M

Magnitude 18
Mapping 298, 318, 386
Mass 248, 334
Matrix 367
Matrix of linear map 394
Matrix of quadratic form 451



Maximum and minimum 124, 128,
158

Multiplication of matrices 372

N

Newton's law 112
Non-degenerate 158
Norm 17,489
Normal 37
Normal unit vector 224
Normal vector to curve 60, 283
Normal vector to surface 283

INDEX

Q

Quadratic form 151, 155, 451

R

Regular point 322
Repeated integral 232
Repeated partials 82
Reverse path 217, 219
Riemann sum 236
Right normal vector 283
Rotation 280, 383
Row of matrix 367
Row vector 367

13

o
Open ball 21
Open disc 20
Open set 70
Opposite curve 217
Opposite direction 10, 13, 19
Order 165
Orthogonal 16, 489
Outward unit vector 323

P

Pappus' theorem 341
Paraboloid 325
Parallel 10, 12, 38
Parallelogram 8, 326, 400, 454
Parallelotope 459
Parametric representation 32
Parametrization 32, 319, 327
Parametrized curve 51
Partial derivative 72, 83
Partial differential operator 162
Partial differentiation 114
Partition 235
Periodic 501
Perpendicular 14, 16, 34, 37, 489
Piecewise continuous 494
Plane 36
Plane spanned by vectors 428
Point 4
Polar coordinates 252, 389
Polynomial approximation 174
Position 32, 51
Potential energy 113
Potential function 184, 188, 221
Product 9, 14
Projection 26, 491
Pythagoras' theorem 24, 490

s
Saddle point 154
Same direction 10, 13, 23
Scalar matrix 372
Scalar product 14, 487
Schwarz inequality 29, 491
Segment 32, 398
Shearing transformation 459
Simple differential operator 165
Smooth 238
Speed 55
Sphere 21, 319
Spherical coordinates 302
Spiral 50
Square matrix 368
Standard form 167
Standard unit vectors 23
Stokes' theorem 355
Subrectangle 234
Subset 385
Sum of vectors 6
Surface 93, 318
Surface area 319
Surface integral 318
Surface of revolution 325
Surjective 407
Symmetric matrix 371

T

Tangent line 53
Tangent plane 94, 322
Taylor formula 143, 148, 172
Taylor formula in one variable 176
Tetrahedron 479
Torus 320
Transformation 298
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Translation 389
Transpose 370
Triangle inequality 30
Triple integral 294

U

Union 386
Unit matrix 374
Unit vector 23, 99, 323
Unit vector field 484
Upper sum 236

INDEX

V

Value 67, 111, 386
Vector 12
Vector field 111, 183
Vector field on sphere 483
Velocity 53
Volume 237

z
Zero 7
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