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GEOMETRY

Geometric Formulas

Formulas for area A, circumference C, and volume V:
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Distance and Midpoint Formulas

Distance between P1sx1, y1d and P2sx2, y2d:

d − ssx2 2 x1d2 1 s y2 2 y1d2

Midpoint of P1P2: S x1 1 x2

2
, 
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Lines

Slope of line through P1sx1, y1d and P2sx2, y2d:

m −
y2 2 y1

x2 2 x1

Point-slope equation of line through P1sx1, y1d with slope m:

y 2 y1 − msx 2 x1d

Slope-intercept equation of line with slope m and y-intercept b:

y − mx 1 b

Circles

Equation of the circle with center sh, kd and radius r:

sx 2 hd2 1 s y 2 kd2 − r 2

ALGEBRA

Arithmetic Operations

asb 1 cd − ab 1 ac 
a

b
1

c

d
−

ad 1 bc

bd

a 1 c

b
−

a

b
1

c

b
 

a

b

c

d

−
a

b
3

d

c
−

ad

bc

Exponents and Radicals
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Factoring Special Polynomials

x 2 2 y2 − sx 1 ydsx 2 yd

x 3 1 y3 − sx 1 ydsx 2 2 xy 1 y2d

x 3 2 y3 − sx 2 ydsx 2 1 xy 1 y2d

Binomial Theorem

sx 1 yd2 − x 2 1 2xy 1 y2  sx 2 yd2 − x 2 2 2xy 1 y2
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Quadratic Formula

If ax 2 1 bx 1 c − 0, then x −
2b 6 sb 2 2 4ac

2a
.

Inequalities and Absolute Value

If a , b and b , c, then a , c.

If a , b, then a 1 c , b 1 c.

If a , b and c . 0, then ca , cb.

If a , b and c , 0, then ca . cb.

If a . 0, then

          | x | − a  means  x − a  or  x − 2a

          | x | , a  means    2a , x , a

          | x | . a  means  x . a  or  x , 2a
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Fundamental Identities
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Right Angle Trigonometry
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Preface

vii

A great discovery solves a great problem but there is a grain of discovery in the solution  
of any problem. Your problem may be modest; but if it challenges your curiosity and 
brings into play your inventive faculties, and if you solve it by your own means, you may 
experience the tension and enjoy the triumph of discovery.

george polya

The art of teaching, Mark Van Doren said, is the art of assisting discovery. In this Ninth 
Edition, Metric Version, as in all of the preceding editions, we continue the tradition 
of writing a book that, we hope, assists students in discovering calculus — both for its 
practical power and its surprising beauty. We aim to convey to the student a sense of the 
utility of calculus as well as to promote development of technical ability. At the same 
time, we strive to give some appreciation for the intrinsic beauty of the subject. Newton 
undoubtedly experienced a sense of triumph when he made his great discoveries. We 
want students to share some of that excitement.

The emphasis is on understanding concepts. Nearly all calculus instructors agree that 
conceptual understanding should be the ultimate goal of calculus instruction; to imple-
ment this goal we present fundamental topics graphically, numerically, algebraically, 
and verbally, with an emphasis on the relationships between these different representa-
tions. Visualization, numerical and graphical experimentation, and verbal descriptions 
can greatly facilitate conceptual understanding. Moreover, conceptual understanding 
and technical skill can go hand in hand, each reinforcing the other.

We are keenly aware that good teaching comes in different forms and that there 
are different approaches to teaching and learning calculus, so the exposition and exer-
cises are designed to accommodate different teaching and learning styles. The features 
(including projects, extended exercises, principles of problem solving, and historical 
insights) provide a variety of enhancements to a central core of fundamental concepts 
and skills. Our aim is to provide instructors and their students with the tools they need 
to chart their own paths to discovering calculus.

 Alternate Versions
The Stewart Calculus series includes several other calculus textbooks that might be 
preferable for some instructors. Most of them also come in single variable and multi-
variable versions.

•  Calculus, Ninth Edition, Metric Version, includes the material in this book as well 
as the single-variable calculus chapters. The exponential, logarithmic, and inverse 
trigonometric functions are covered after the chapter on integration.

•  Calculus: Early Transcendentals, Ninth Edition, Metric Version, includes the mate-
rial in this book in addition to single-variable calculus. The exponential, logarith-
mic, and inverse trigonometric functions are covered early, before the chapter on 
integration.
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•  Essential Calculus, Second Edition, is a much briefer book (840 pages), though it 
contains almost all of the topics in Calculus, Ninth Edition. The relative brevity is 
achieved through briefer exposition of some topics and putting some features on the 
website.

•  Essential Calculus: Early Transcendentals, Second Edition, resembles Essential 
Calculus, but the exponential, logarithmic, and inverse trigonometric functions are 
covered in Chapter 3.

•  Calculus: Concepts and Contexts, Fourth Edition, emphasizes conceptual under-
standing even more strongly than this book. The coverage of topics is not encyclo-
pedic and the material on transcendental functions and on parametric equations is 
woven throughout the book instead of being treated in separate chapters.

•  Brief Applied Calculus is intended for students in business, the social sciences, and 
the life sciences.

•  Biocalculus: Calculus for the Life Sciences is intended to show students in the life 
sciences how calculus relates to biology. 

•  Biocalculus: Calculus, Probability, and Statistics for the Life Sciences contains all 
the content of Biocalculus: Calculus for the Life Sciences as well as three addi-
tional chapters covering probability and statistics.

 What’s New in the Ninth Edition, Metric Version?
The overall structure of the text remains largely the same, but we have made many 
improvements that are intended to make the Ninth Edition, Metric Version even more 
usable as a teaching tool for instructors and as a learning tool for students. The changes 
are a result of conversations with our colleagues and students, suggestions from users 
and reviewers, insights gained from our own experiences teaching from the book, and 
from the copious notes that James Stewart entrusted to us about changes that he wanted 
us to consider for the new edition. In all the changes, both small and large, we have 
retained the features and tone that have contributed to the success of this book. 

• More than 20% of the exercises are new:

Basic exercises have been added, where appropriate, near the beginning of exer-
cise sets. These exercises are intended to build student confidence and reinforce 
understanding of the fundamental concepts of a section. (See, for instance, Exer-
cises 11.4.3 – 6.)

Some new exercises include graphs intended to encourage students to understand 
how a graph facilitates the solution of a problem; these exercises complement 
subsequent exercises in which students need to supply their own graph. (See 
Exercises 10.4.43 –  46 as well as 53 – 54, 15.5.1 – 2, 15.6.9 – 12, 16.7.15 and 24, 
16.8.9 and 13.)

Some exercises have been structured in two stages, where part (a) asks for the 
setup and part (b) is the evaluation. This allows students to check their answer  
to part (a) before completing the problem. (See Exercises 15.2.7 – 10.)

Some challenging and extended exercises have been added toward the end of 
selected exercise sets (such as Exercises 11.2.79 – 81 and 11.9.47).

viii PREFACE
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PREFACE                 ix

Titles have been added to selected exercises when the exercise extends a con-
cept discussed in the section. (See, for example, Exercises 10.1.55 – 57 and 
15.2.80  –  81.)

Some of our favorite new exercises are 10.5.69, 15.1.38, and 15.4.3 –  4. In addi-
tion, Problem 4 in the Problems Plus following Chapter 15 is interesting and 
challenging.

•  New examples have been added, and additional steps have been added to the solu-
tions of some existing examples. (See, for instance, Example 10.1.5, Examples 
14.8.1 and 14.8.4, and Example 16.3.4.)

•  Several sections have been restructured and new subheads added to focus the orga-
nization around key concepts. (Good illustrations of this are Sections 11.1, 11.2, 
and 14.2.)

•  Many new graphs and illustrations have been added, and existing ones updated, to 
provide additional graphical insights into key concepts. 

•  A few new topics have been added and others expanded (within a section or in 
extended exercises) that were requested by reviewers. (See, for example, the sub-
section on torsion in Section 13.3.)

•  New projects have been added and some existing projects have been updated.  
(For instance, see the Discovery Project following Section 12.2, The Shape of a 
Hanging Chain.)

•  Alternating series and absolute convergence are now covered in one section (11.5).

•  The chapter on Second-Order Differential Equations, as well as the associated 
appendix section on complex numbers, has been moved to the website. 

 Features
Each feature is designed to complement different teaching and learning practices. 
Throughout the text there are historical insights, extended exercises, projects, problem-
solving principles, and many opportunities to experiment with concepts by using tech-
nology. We are mindful that there is rarely enough time in a semester to utilize all of 
these features, but their availability in the book gives the instructor the option to assign 
some and perhaps simply draw attention to others in order to emphasize the rich ideas 
of calculus and its crucial importance in the real world. 

n Conceptual Exercises
The most important way to foster conceptual understanding is through the problems that 
the instructor assigns. To that end we have included various types of problems. Some 
exercise sets begin with requests to explain the meanings of the basic concepts of the 
section (see, for instance, the first few exercises in Sections 11.2, 14.2, and 14.3) and 
most exercise sets contain exercises designed to reinforce basic understanding (such as 
Exercises 11.4.3 – 6). Other exercises test conceptual understanding through graphs or 
tables (see Exercises 10.1.30 – 33, 13.2.1 – 2, 13.3.37 –  43, 14.1.41 –  44, 14.3.2, 14.3.4 – 6, 
14.6.1 – 2, 14.7.3 –  4, 15.1.6 – 8, 16.1.13 – 22, 16.2.19 – 20, and 16.3.1 – 2). 

Many exercises provide a graph to aid in visualization (see for instance Exer- 
cises 10.4.43 –  46, 15.5.1 – 2, 15.6.9 – 12, and 16.7.24). In addition, all the review sections 
begin with a Concept Check and a True-False Quiz. 

We particularly value problems that combine and compare different approaches (see 
Exercises 14.2.3 –  4, 14.7.3 –  4, 14.8.2, 15.4.3 –  4, and 16.3.13).
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n Graded Exercise Sets
Each exercise set is carefully graded, progressing from basic conceptual exercises, to 
skill-development and graphical exercises, and then to more challenging exercises that 
often extend the concepts of the section, draw on concepts from previous sections, or 
involve applications or proofs.

n Real-World Data
Real-world data provide a tangible way to introduce, motivate, or illustrate the concepts 
of calculus. As a result, many of the examples and exercises deal with functions defined 
by such numerical data or graphs. These real-world data have been obtained by contact-
ing companies and government agencies as well as researching on the Internet and in 
libraries. See, for instance, Example 3 in Section 14.4 (the heat index), Figure 1 in Sec-
tion 14.6 (temperature contour map), Example 9 in Section 15.1 (snowfall in Colorado), 
and Figure 1 in Section 16.1 (velocity vector fields of wind in San Francisco Bay).

n Projects
One way of involving students and making them active learners is to have them work 
(perhaps in groups) on extended projects that give a feeling of substantial accomplish-
ment when completed. There are three kinds of projects in the text.

Applied Projects involve applications that are designed to appeal to the imagina- 
tion of students. The project after Section 14.8 uses Lagrange multipliers to determine 
the masses of the three stages of a rocket so as to minimize the total mass while enabling 
the rocket to reach a desired velocity. 

Discovery Projects anticipate results to be discussed later or encourage discovery 
through pattern recognition. Several discovery projects explore aspects of geometry: 
tetrahedra (after Section 12.4), hyperspheres (after Section 15.6), and intersections of 
three cylinders (after Section 15.7). Additionally, the project following Section 12.2 uses 
the geometric definition of the derivative to find a formula for the shape of a hanging 
chain. Some projects make substantial use of technology; the one following Section 10.2 
shows how to use Bézier curves to design shapes that represent letters for a laser printer. 

The Writing Project following Section 11.10 asks students to compare present-day 
methods with those of the founders of calculus. Suggested references are supplied.

More projects can be found in the Instructor’s Guide. There are also extended exer-
cises that can serve as smaller projects. (See Exercise 13.3.75 on the evolute of a curve, 
Exercise 14.7.61 on the method of least squares, or Exercise 16.3.42 on inverse square 
fields.)

n Technology
When using technology, it is particularly important to clearly understand the con-
cepts that underlie the images on the screen or the results of a calculation. When 
properly used, graphing calculators and computers are powerful tools for discovering 
and understanding those concepts. This textbook can be used either with or without 
technology — we use two special symbols to indicate clearly when a particular type of 
assistance from technology is required. The icon ; indicates an exercise that definitely 
requires the use of graphing software or a graphing calculator to aid in sketching a 
graph. (That is not to say that the technology can’t be used on the other exercises as 
well.) The symbol  means that the assistance of software or a graphing calculator is 
needed beyond just graphing to complete the exercise. Freely available websites such 
as WolframAlpha.com or Symbolab.com are often suitable. In cases where the full 
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resources of a computer algebra system, such as Maple or Mathematica, are needed, we 
state this in the exercise. Of course, technology doesn’t make pencil and paper obsolete. 
Hand calculation and sketches are often preferable to technology for illustrating and 
reinforcing some concepts. Both instructors and students need to develop the ability 
to decide where using technology is appropriate and where more insight is gained by 
working out an exercise by hand.

n WebAssign: webassign.net
This Ninth Edition is available with WebAssign, a fully customizable online solution 
for STEM disciplines from Cengage. WebAssign includes homework, an interactive 
mobile eBook, videos, tutorials and Explore It interactive learning modules. Instructors 
can decide what type of help students can access, and when, while working on assign-
ments. The patented grading engine provides unparalleled answer evaluation, giving 
students instant feedback, and insightful analytics highlight exactly where students are 
struggling. For more information, visit cengage.com/WebAssign.

n Stewart Website
Visit StewartCalculus.com for these additional materials:

• Homework Hints

• Solutions to the Concept Checks (from the review section of each chapter)

• Algebra and Analytic Geometry Review

• Lies My Calculator and Computer Told Me

• History of Mathematics, with links to recommended historical websites

•  Additional Topics (complete with exercise sets): Fourier Series, Rotation of Axes, 
Formulas for the Remainder Theorem in Taylor Series

•  Additional chapter on second-order differential equations, including the method of 
series solutions, and an appendix section reviewing complex numbers and complex 
exponential functions

•  Instructor Area that includes archived problems (drill exercises that appeared in 
previous editions, together with their solutions)

• Challenge Problems (some from the Problems Plus sections from prior editions) 

• Links, for particular topics, to outside Web resources

 Content

 10 Parametric Equations and  
Polar Coordinates

 This chapter introduces parametric and polar curves and applies the methods of cal-
culus to them. Parametric curves are well suited to projects that require graphing with 
technology; the two presented here involve families of curves and Bézier curves. A brief 
treatment of conic sections in polar coordinates prepares the way for Kepler’s Laws in 
Chapter 13.

 11 Sequences, Series, and  
Power Series

 The convergence tests have intuitive justifications (see Section 11.3) as well as formal 
proofs. Numerical estimates of sums of series are based on which test was used to prove 
convergence. The emphasis is on Taylor series and polynomials and their applications 
to physics.
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 12 Vectors and the Geometry  
of Space

 The material on three-dimensional analytic geometry and vectors is covered in this and 
the next chapter. Here we deal with vectors, the dot and cross products, lines, planes, 
and surfaces.

 13 Vector Functions This chapter covers vector-valued functions, their derivatives and integrals, the length 
and curvature of space curves, and velocity and acceleration along space curves, culmi-
nating in Kepler’s laws.

 14 Partial Derivatives Functions of two or more variables are studied from verbal, numerical, visual, and alge- 
braic points of view. In particular, partial derivatives are introduced by looking at a 
specific column in a table of values of the heat index (perceived air temperature) as a 
function of the actual temperature and the relative humidity.

 15 Multiple Integrals Contour maps and the Midpoint Rule are used to estimate the average snowfall and 
average temperature in given regions. Double and triple integrals are used to compute 
volumes, surface areas, and (in projects) volumes of hyperspheres and volumes of inter- 
sections of three cylinders. Cylindrical and spherical coordinates are introduced in the 
context of evaluating triple integrals. Several applications are considered, including 
computing mass, charge, and probabilities.

 16 Vector Calculus Vector fields are introduced through pictures of velocity fields showing San Francisco 
Bay wind patterns. The similarities among the Fundamental Theorem for line integrals, 
Green’s Theorem, Stokes’ Theorem, and the Divergence Theorem are emphasized.

 17 Second-Order Differential  
Equations

 Since first-order differential equations are covered in Chapter 9, this online chapter deals 
with second-order linear differential equations, their application to vibrating springs and 
electric circuits, and series solutions. 

 Ancillaries
Multivariable Calculus, Ninth Edition, Metric Version is supported by a complete set 
of ancillaries. Each piece has been designed to enhance student understanding and to 
facilitate creative instruction.

n Ancillaries for Instructors

Instructor’s Guide by Douglas Shaw 

 Each section of the text is discussed from several viewpoints. Available online at the Instruc-
tor’s Companion Site, the Instructor’s Guide contains suggested time to allot, points to stress, 
text discussion topics, core materials for lecture, workshop / discussion suggestions, group work 
exercises in a form suitable for handout, and suggested homework assignments.

Complete Solutions Manual Multivariable Calculus, Ninth Edition, Metric Version
Chapters 10 –16
By Joshua Babbin and Gina Sanders with metrication by Anthony Tan and Mike Verwer both 
from McMaster University

Includes worked-out solutions to all exercises in the text. The Complete Solutions Manual is 
available online at the Instructor’s Companion Site.

Test Bank  Contains text-specific multiple-choice and free response test items and is available online at the 
Instructor’s Companion Site.
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Cengage Learning Testing  
Powered by Cognero

n Ancillaries for Instructors and Students
Homework Hints n Algebra Review n Additional Topics n Drill exercises n  
Challenge Problems n Web links n History of Mathematics

WebAssign® 

Calculus: Early Transcendentals,  Access to WebAssign 
Ninth Edition, Metric Version  Printed Access Code: ISBN 978-0-357-43916-6

Instant Access Code: ISBN 978-0-357-43915-9

Calculus, Ninth Edition, Access to WebAssign 
Metric Version       Printed Access Code: ISBN 978-0-357-43944-9

Instant Access Code: ISBN 978-0-357-43943-2

 Prepare for class with confidence using WebAssign from Cengage. This online learning 
platform—which includes an interactive ebook—fuels practice, so you absorb what you learn 
and prepare better for tests. Videos and tutorials walk you through concepts and deliver instant 
feedback and grading, so you always know where you stand in class. Focus your study time and 
get extra practice where you need it most. Study smarter! Ask your instructor today how you can 
get access to WebAssign, or learn about self-study options at Cengage.com/WebAssign.

This flexible online system allows you to author, edit, and manage test bank content; create 
multiple test versions in an instant; and deliver tests from your LMS, your class room, or  
wherever you want.

Stewart Website
StewartCalculus.com
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Technology in the Ninth Edition

Graphing and computing devices are valuable tools for learning and exploring calculus, 
and some have become well established in calculus instruction. Graphing calculators are 
useful for drawing graphs and performing some numerical calculations, like approxi-
mating solutions to equations or numerically evaluating derivatives or definite integrals. 
Mathematical software packages called computer algebra systems (CAS, for short) are 
more powerful tools. Despite the name, algebra represents only a small subset of the 
capabilities of a CAS. In particular, a CAS can do mathematics symbolically rather than 
just numerically. It can find exact solutions to equations and exact formulas for deriva-
tives and integrals.

We now have access to a wider variety of tools of varying capabilities than ever 
before. These include Web-based resources (some of which are free of charge) and 
apps for smartphones and tablets. Many of these resources include at least some CAS 
functionality, so some exercises that may have typically required a CAS can now be 
completed using these alternate tools.

In this edition, rather than refer to a specific type of device (a graphing calculator, for 
instance) or software package (such as a CAS), we indicate the type of capability that is 
needed to work an exercise. 

	 ; Graphing Icon
The appearance of this icon beside an exercise indicates that you are expected to use a 
machine or software to help you draw the graph. In many cases, a graphing calculator 
will suffice. Websites such as Desmos.com provide similar capability. If the graph is in 
3D (see Chapters 12 – 16), WolframAlpha.com is a good resource. There are also many 
graphing software applications for computers, smartphones, and tablets. If an exercise 
asks for a graph but no graphing icon is shown, then you are expected to draw the graph 
by hand. 

  Technology Icon
This icon is used to indicate that software or a device with abilities beyond just graphing 
is needed to complete the exercise. Many graphing calculators and software resources 
can provide numerical approximations when needed. For working with mathematics 
symbolically, websites like WolframAlpha.com or Symbolab.com are helpful, as are 
more advanced graphing calculators such as the Texas Instrument TI-89 or TI-Nspire 
CAS. If the full power of a CAS is needed, this will be stated in the exercise, and access 
to software packages such as Mathematica, Maple, MATLAB, or SageMath may be 
required. If an exercise does not include a technology icon, then you are expected to 
evaluate limits, derivatives, and integrals, or solve equations by hand, arriving at exact 
answers. No technology is needed for these exercises beyond perhaps a basic scientific 
calculator. 
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Reading a calculus textbook is different from reading a story or a news article. Don’t 
be discouraged if you have to read a passage more than once in order to understand it. 
You should have pencil and paper and calculator at hand to sketch a diagram or make a 
calculation.

Some students start by trying their homework problems and read the text only if they 
get stuck on an exercise. We suggest that a far better plan is to read and understand a 
section of the text before attempting the exercises. In particular, you should look at the 
definitions to see the exact meanings of the terms. And before you read each example, 
we suggest that you cover up the solution and try solving the problem yourself. 

Part of the aim of this course is to train you to think logically. Learn to write the 
solutions of the exercises in a connected, step-by-step fashion with explanatory  
sentences — not just a string of disconnected equations or formulas.

The answers to the odd-numbered exercises appear at the back of the book, in Appen-
dix H. Some exercises ask for a verbal explanation or interpretation or description. In 
such cases there is no single correct way of expressing the answer, so don’t worry that 
you haven’t found the definitive answer. In addition, there are often several different 
forms in which to express a numerical or algebraic answer, so if your answer differs 
from the given one, don’t immediately assume you’re wrong. For example, if the answer 
given in the back of the book is s2 2 1 and you obtain 1y(1 1 s2  ), then you’re cor-
rect and rationalizing the denominator will show that the answers are equivalent.

The icon ; indicates an exercise that definitely requires the use of either a graph-
ing calculator or a computer with graphing software to help you sketch the graph. But 
that doesn’t mean that graphing devices can’t be used to check your work on the other 
exercises as well. The symbol  indicates that technological assistance beyond just 
graphing is needed to complete the exercise. (See Technology in the Ninth Edition for 
more details.)

You will also encounter the symbol , which warns you against committing an error. 
This symbol is placed in the margin in situations where many students tend to make the 
same mistake.

Homework Hints are available for many exercises. These hints can be found on 
Stewart Calculus.com as well as in WebAssign. The homework hints ask you ques-
tions that allow you to make progress toward a solution without actually giving you the 
answer. If a particular hint doesn’t enable you to solve the problem, you can click to 
reveal the next hint.

We recommend that you keep this book for reference purposes after you finish the 
course. Because you will likely forget some of the specific details of calculus, the book 
will serve as a useful reminder when you need to use calculus in subsequent courses. 
And, because this book contains more material than can be covered in any one course, it 
can also serve as a valuable resource for a working scientist or engineer.

Calculus is an exciting subject, justly considered to be one of the greatest achieve-
ments of the human intellect. We hope you will discover that it is not only useful but 
also intrinsically beautiful.

To the Student

xvii
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The photo shows comet Hale-Bopp as it passed the earth in 1997, due to return in 4380. One of the brightest comets of the past century, 
Hale-Bopp could be observed in the night sky by the naked eye for about 18 months. It was named after its discoverers Alan Hale and 
Thomas Bopp, who first obse ved it by telescope in 1995 (Hale in New Mexico and Bopp in Arizona). In Section 10.6 you will see how 
polar coordinates provide a convenient equation for the elliptical path of the comet’s orbit.
Jeff Schneiderman / Moment Open / Getty Images

10 Parametric Equations and  
Polar Coordinates
SO FAR WE HAVE DESCRIBED plane curves by giving y as a function of x fy − f sxdg or x as a 
function of y fx − tsydg or by giving a relation between x and y that defines y implicitly as a func-
tion of x f f sx, yd − 0g. In this chapter we discuss two new methods for describing curves.

Some curves, such as the cycloid, are best handled when both x and y are given in terms of a 
third variable t called a parameter fx − f std, y − tstdg. Other curves, such as the cardioid, have 
their most convenient description when we use a new coordinate system, called the polar coordi-
nate system.
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662 CHAPTER 10  Parametric Equations and Polar Coordinates 

Curves Defined by Parametric Equations

Imagine that a particle moves along the curve C shown in Figure 1. It is impossible to 
describe C by an equation of the form y − f sxd because C fails the Vertical Line Test. 
But the x- and y-coordinates of the particle are functions of time t and so we can write 
x − f std and y − tstd. Such a pair of equations is often a convenient way of describing a 
curve.

C

0

(x, y)={f(t), g(t)}

y

x

■	 Parametric Equations 
Suppose that x and y are both given as functions of a third variable t, called a parameter, 
by the equations

x − f std    y − tstd

which are called parametric equations. Each value of t determines a point sx, yd, which 
we can plot in a coordinate plane. As t varies, the point sx, yd − s f std, tstdd varies and 
traces out a curve called a parametric curve. The parameter t does not necessarily rep-
resent time and, in fact, we could use a letter other than t for the parameter. But in many 
applications of parametric curves, t does denote time and in this case we can interpret  
sx, yd − s f std, tstdd as the position of a moving object at time t.

EXAMPLE 1 Sketch and identify the curve defined by the parametric equations

x − t 2 2 2t    y − t 1 1

SOLUTION Each value of t gives a point on the curve, as shown in the table. For 
instance, if t − 1, then x − 21, y − 2 and so the corresponding point is s21, 2d. In Fig- 
ure 2 we plot the points sx, yd determined by several values of the parameter and we 
join them to produce a curve.

t x y

22 8 21
21 3 0

0 0 1
1 21 2
2 0 3
3 3 4
4 8 5

     

0
t=0

t=1

t=2
t=3

t=4

t=_1
t=_2

y

x
8

5

 FIGURE 2

10.1

FIGURE 1
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 SECTION 10.1  Curves Defined by Parametric Equations 663

A particle whose position at time t is given by the parametric equations moves along 
the curve in the direction of the arrows as t increases. Notice that the consecutive points 
marked on the curve appear at equal time intervals but not at equal distances. That is 
because the particle slows down and then speeds up as t increases.

It appears from Figure 2 that the curve traced out by the particle may be a parab ola. 
In fact, from the second equation we obtain t − y 2 1 and substitution into the first 
equation gives

x − t 2 2 2t − sy 2 1d2 2 2sy 2 1d − y 2 2 4y 1 3

Since the equation x − y 2 2 4y 1 3 is satisfied for all pairs of x- and y-values gener-
ated by the parametric equations, every point sx, yd on the parametric curve must lie on 
the parabola x − y 2 2 4y 1 3 and so the parametric curve coincides with at least part 
of this parabola. Because t can be chosen to make y any real number, we know that the 
parametric curve is the entire parabola.� ■

In Example 1 we found a Cartesian equation in x and y whose graph coincided with 
the curve represented by parametric equations. This process is called eliminating the 
parameter; it can be helpful in identifying the shape of the parametric curve, but we lose 
some information in the process. The equation in x and y describes the curve the particle 
travels along, whereas the parametric equations have additional advantages—they tell us 
where the particle is at any given time and indicate the direction of motion. If you think 
of the graph of an equation in x and y as a road, then the parametric equations could track 
the motion of a car traveling along the road.

No restriction was placed on the parameter t in Example 1, so we assumed that t could 
be any real number (including negative numbers). But sometimes we restrict t to lie in a 
particular interval. For instance, the parametric curve

x − t 2 2 2t    y − t 1 1    0 < t < 4

shown in Figure 3 is the part of the parabola in Example 1 that starts at the point s0, 1d 
and ends at the point s8, 5d. The arrowhead indicates the direction in which the curve is 
traced as t increases from 0 to 4.

In general, the curve with parametric equations

x − f std    y − tstd    a < t < b

has initial point s f sad, tsadd and terminal point s f sbd, tsbdd.

EXAMPLE 2 What curve is represented by the following parametric equations?

x − cos t    y − sin t    0 < t < 2�

SOLUTION If we plot points, it appears that the curve is a circle. We can confirm this 
by eliminating the parameter t. Observe that 

x 2 1 y 2 − cos2t 1 sin2t − 1

Because x 2 1 y 2 − 1 is satisfied for all pairs of x- and y-values generated by the 
parametric equations, the point sx, yd moves along the unit circle x 2 1 y 2 − 1. Notice 
that in this example the parameter t can be interpreted as the angle (in radians) shown 
in Figure 4. As t increases from 0 to 2�, the point sx, yd − scos t, sin td moves once 
around the circle in the counterclockwise direction starting from the point s1, 0d.� ■

It is not always possible to eliminate 
the parameter from parametric equa-
tions. There are many parametric 
curves that don’t have an equivalent 
representation as an equation in x 
and y.
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EXAMPLE 3 What curve is represented by the given parametric equations?

x − sin 2t    y − cos 2t    0 < t < 2�

SOLUTION Again we have

x 2 1 y 2 − sin2 s2td 1 cos2 s2td − 1

so the parametric equations again represent the unit circle x 2 1 y 2 − 1. But as t 
increases from 0 to 2�, the point sx, yd − ssin 2t, cos 2td starts at s0, 1d and moves 
twice around the circle in the clockwise direction as indicated in Figure 5.� ■

EXAMPLE 4 Find parametric equations for the circle with center sh, kd and radius r.

SOLUTION One way is to take the parametric equations of the unit circle in Example 2 
and multiply the expressions for x and y by r, giving x − r cos t, y − r sin t. You can 
verify that these equations represent a circle with radius r and center the origin, traced 
counterclockwise. We now shift h units in the x-direction and k units in the y-direction 
and obtain para metric equations of the circle (Figure 6) with center sh, kd and radius r :

 x − h 1 r cos t    y − k 1 r sin t    0 < t < 2� ■

NOTE Examples 2 and 3 show that different parametric equations can represent the 
same curve. Thus we distinguish between a curve, which is a set of points, and a 
parametric curve, in which the points are traced out in a particular way. 

In the next example we use parametric equations to describe the motions of four dif-
ferent particles traveling along the same curve but in different ways.

EXAMPLE 5 Each of the following sets of parametric equations gives the position of a 
moving particle at time t.

(a) x − t 3, y − t (b) x − 2t 3, y − 2t 

(c) x − t 3y2, y − st  (d) x − e23t, y − e2t

In each case, eliminating the parameter gives x − y3, so each particle moves along the 
cubic curve x − y3 ; however, the particles move in different ways, as illustrated in 
Figure 7.

(a) The particle moves from left to right as t increases.

(b) The particle moves from right to left as t increases. 

(c) The equations are defined only for t > 0. The particle starts at the origin (where 
t − 0) and moves to the right as t increases.

(d) Here x . 0 and y . 0 for all t. The particle moves from right to left and 
approaches the point s1,1d as t increases (through negative values) toward 0. As t fur-
ther increases, the particle approaches, but does not reach, the origin.

FIGURE 7 ■
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x − h 1 r cos t, y − k 1 r sin t
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EXAMPLE 6 Sketch the curve with parametric equations x − sin t, y − sin2t.

SOLUTION Observe that y − ssin td2 − x 2 and so the point sx, yd moves on the 
parabola y − x 2. But note also that, since 21 < sin t < 1, we have 21 < x < 1, so 
the parametric equations represent only the part of the parabola for which 21 < x < 1. 
Since sin t is periodic, the point sx, yd − ssin t, sin2td moves back and forth infinitely 
often along the parabola from s21, 1d to s1, 1d. (See Figure 8.)� ■

EXAMPLE 7 The curve represented by the parametric equations x − cos t, y − sin 2t 
is shown in Figure 9. It is an example of a Lissajous figure (see Exercise 63). It is 
possible to eliminate the parameter, but the resulting equation (y 2 − 4x 2 2 4x 4 ) isn’t 
very helpful. Another way to visualize the curve is to first draw graphs of x and y 
individually as functions of t, as shown in Figure 10. 
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π
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FIGURE 10

We see that as t increases from 0 to �y2, x decreases from 1 to 0 while y starts at 0, 
increases to 1, and then returns to 0. Together these descriptions produce the portion of 
the parametric curve that we see in the first quadrant. If we proceed similarly, we get 
the complete curve. (See Exercises 31–33 for practice with this technique.)� ■

■	 Graphing Parametric Curves with Technology
Most graphing software applications and graphing calculators can graph curves defined 
by parametric equations. In fact, it’s instructive to watch a parametric curve being 
drawn by a graphing calculator because the points are plotted in order as the corre-
sponding parameter values increase.

The next example shows that parametric equations can be used to produce the graph 
of a Cartesian equation where x is expressed as a function of y. (Some calculators, for 
instance, require y to be expressed as a function of x.) 

EXAMPLE 8 Use a calculator or computer to graph the curve x − y 4 2 3y 2.

SOLUTION If we let the parameter be t − y, then we have the equations

x − t 4 2 3t 2    y − t

Using these parametric equations to graph the curve, we obtain Figure 11. It would be 
possible to solve the given equation sx − y 4 2 3y 2 d for y as four functions of x and 
graph them individually, but the parametric equations provide a much easier method.� ■
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In general, to graph an equation of the form x − tsyd, we can use the parametric 
equations

x − tstd    y − t

In the same spirit, notice that curves with equations y − f sxd (the ones we are most 
familiar with — graphs of functions) can also be regarded as curves with parametric 
equations

x − t    y − f std

Graphing software is particularly useful for sketching complicated parametric curves. 
For instance, the curves shown in Figures 12, 13, and 14 would be virtually impossible to  
produce by hand.

13

0

4

_4

_4 4

3.5

_3.5

_3.5 3.5

13

FIGURE 12  
x − t 1 sin 5t 
y − t 1 sin 6t 

  FIGURE 13  
  x − cos t 1 cos 6t 1 2 sin 3t 
  y − sin t 1 sin 6t 1 2 cos 3t 

FIGURE 14  
x − 2.3 cos 10t 1 cos 23t 
y − 2.3 sin 10t 2 sin 23t 

One of the most important uses of parametric curves is in computer-aided design 
(CAD). In the Discovery Project after Section 10.2 we will investigate special parametric 
curves, called Bézier curves, that are used extensively in manufacturing, especially in 
the auto motive industry. These curves are also employed in specifying the shapes of let-
ters and other symbols in PDF documents and laser printers.

■	 The Cycloid

EXAMPLE 9 The curve traced out by a point P on the circumference of a circle as 
the circle rolls along a straight line is called a cycloid. (Think of the path traced out 
by a pebble stuck in a car tire; see Figure 15.) If the circle has radius r and rolls 
along the x-axis and if one position of P is the origin, find parametric equations for 
the cycloid.

P

P
P

FIGURE 15
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SOLUTION We choose as parameter the angle of rotation � of the circle s� − 0 when  
P is at the origin). Suppose the circle has rotated through � radians. Because the circle 
has been in contact with the line, we see from Figure 16 that the distance it has rolled 
from the origin is

| OT | − arc PT − r�

Therefore the center of the circle is Csr�, rd. Let the coordinates of P be sx, yd. Then 
from Figure 16 we see that

 x − | OT | 2 | PQ | − r� 2 r sin � − rs� 2 sin �d

 y − | TC | 2 | QC | − r 2 r cos � − r s1 2 cos �d

Therefore parametric equations of the cycloid are

1  x − r s� 2 sin �d    y − r s1 2 cos �d    � [ R

One arch of the cycloid comes from one rotation of the circle and so is described by 
0 < � < 2�. Although Equations 1 were derived from Figure 16, which illustrates the 
case where 0 , � , �y2, it can be seen that these equations are still valid for other 
values of � (see Exercise 48).

Although it is possible to eliminate the parameter � from Equations 1, the resulting 
Cartesian equation in x and y is very complicated [x − r cos21s1 2 yyrd 2 s2ry 2 y 2  
gives just half of one arch] and not as convenient to work with as the parametric 
equations.� ■

One of the first people to study the cycloid was Galileo; he proposed that bridges be 
built in the shape of cycloids and tried to find the area under one arch of a cycloid. Later 
this curve arose in connection with the brachistochrone problem: Find the curve along 
which a particle will slide in the shortest time (under the influence of gravity) from a 
point A to a lower point B not directly beneath A. The Swiss mathematician John 
Bernoulli, who posed this problem in 1696, showed that among all possible curves that 
join A to B, as in Figure 17, the particle will take the least time sliding from A to B if the 
curve is part of an inverted arch of a cycloid.

The Dutch physicist Huygens had already shown by 1673 that the cycloid is also the 
solution to the tautochrone problem; that is, no matter where a particle P is placed on 
an inverted cycloid, it takes the same time to slide to the bottom (see Figure 18). Huygens 
proposed that pendulum clocks (which he invented) should swing in cycloidal arcs 
because then the pendulum would take the same time to make a complete oscillation 
whether it swings through a wide arc or a small arc.

■	 Families of Parametric Curves

EXAMPLE 10 Investigate the family of curves with parametric equations

x − a 1 cos t      y − a tan t 1 sin t

What do these curves have in common? How does the shape change as a increases?

SOLUTION We use a graphing calculator (or computer) to produce the graphs for the 
cases a − 22, 21, 20.5, 20.2, 0, 0.5, 1, and 2 shown in Figure 19. Notice that all of 
these curves (except the case a − 0) have two branches, and both branches approach 
the vertical asymptote x − a as x approaches a from the left or right.
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a=_2 a=_1 a=_0.5 a=_0.2

a=2a=1a=0.5a=0

When a , 21, both branches are smooth; but when a reaches 21, the right branch 
acquires a sharp point, called a cusp. For a between 21 and 0 the cusp turns into a 
loop, which becomes larger as a approaches 0. When a − 0, both branches come 
together and form a circle (see Example 2). For a between 0 and 1, the left branch has a 
loop, which shrinks to become a cusp when a − 1. For a . 1, the branches become 
smooth again, and as a increases further, they become less curved. Notice that the 
curves with a positive are reflections about the y-axis of the corresponding curves with 
a negative.

These curves are called conchoids of Nicomedes after the ancient Greek scholar 
Nicomedes. He called them conchoids because the shape of their outer branches 
resembles that of a conch shell or mussel shell.� ■

FIGURE 19 
Members of the family x − a 1 cos t,
y − a tan t 1 sin t, all graphed in the 
viewing rectangle f24, 4g by f24, 4g

10.1 Exercises

1–2 For the given parametric equations, find the points sx, yd 
corresponding to the parameter values t − 22, 21, 0, 1, 2.

 1. x − t 2 1 t, y − 3 t11 

 2. x − lnst 2 1 1d, y − tyst 1 4d

3–6 Sketch the curve by using the parametric equations to plot 
points. Indicate with an arrow the direction in which the curve is 
traced as t increases.

 3.  x − 1 2 t 2,  y − 2t 2 t 2,  21 < t < 2

 4.  x − t 3 1 t,  y − t 2 1 2,  22 < t < 2

 5. x − 2 t 2 t, y − 22t 1 t, 23 < t < 3

 6. x − cos2t, y − 1 1 cos t, 0 < t < �

7–12
(a)  Sketch the curve by using the parametric equations to plot 

points. Indicate with an arrow the direction in which the curve 
is traced as t increases.

(b)  Eliminate the parameter to find a Cartesian equation of the 
curve.

 7.  x − 2t 2 1,  y − 1
2 t 1 1

 8.  x − 3t 1 2,  y − 2t 1 3

 9.  x − t 2 2 3,  y − t 1 2,  23 < t < 3

 10.  x − sin t,  y − 1 2 cos t,  0 < t < 2�

 11.  x − st  ,  y − 1 2 t

 12.  x − t 2,  y − t 3

13–22
(a)  Eliminate the parameter to find a Cartesian equation of the 

curve.
(b)  Sketch the curve and indicate with an arrow the direction in 

which the curve is traced as the parameter increases.

 13. x − 3 cos t, y − 3 sin t, 0 < t < � 

 14. x − sin 4�, y − cos 4�, 0 < � < �y2

 15. x − cos �, y − sec2�, 0 < � , �y2
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31–33 Use the graphs of x − f std and y − tstd to sketch the 
parametric curve x − f std, y − tstd. Indicate with arrows the 
direction in which the curve is traced as t increases.
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 34.   Match the parametric equations with the graphs labeled I–VI. 
Give reasons for your choices. 

  (a) x − t 4 2 t 1 1,  y − t 2

  (b) x − t 2 2 2t,  y − st  

  (c) x − t 3 2 2t, y − t 2 2 t

  (d) x − cos 5t,  y − sin 2t

  (e) x − t 1 sin 4t,  y − t 2 1 cos 3t

 16. x − csc t, y − cot t, 0 , t , �

 17. x − e2t, y − et

 18. x − t 1 2, y − 1yt, t . 0

 19. x − ln t, y − st , t > 1

 20. x − | t |, y − | 1 2 | t ||
 21. x − sin2t, y − cos2t

 22.  x − sinh t, y − cosh t

23–24 The position of an object in circular motion is modeled by 
the given parametric equations, where t is measured in seconds. 
How long does it take to complete one revolution? Is the motion 
clockwise or counterclockwise?

 23. x − 5 cos t, y − 25 sin t 

 24. x − 3 sinS�

4
 tD, y − 3 cosS�

4
 tD

25–28 Describe the motion of a particle with position sx, yd as t 
varies in the given interval.

 25.  x − 5 1 2 cos �t,  y − 3 1 2 sin �t,  1 < t < 2

 26.  x − 2 1 sin t,  y − 1 1 3 cos t,  �y2 < t < 2�

 27.  x − 5 sin t,  y − 2 cos t,  2� < t < 5�

 28.  x − sin t,  y − cos2t,  22� < t < 2�

 29.   Suppose a curve is given by the parametric equations 
x − f std, y − tstd, where the range of f  is f1, 4g and the 
range of t is f2, 3g. What can you say about the curve?

 30. Match each pair of graphs of equations x − f std, y − tstd in 
(a) – (d) with one of the parametric curves x − f std, y − tstd 
labeled I – IV. Give reasons for your choices.
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 (f ) x − t 1 sin 2t, y − t 1 sin 3t
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 35.  Graph the curve x − y 2 2 sin �y.

 36.  Graph the curves y − x 3 2 4x and x − y 3 2 4y and find 
their points of intersection correct to one decimal place.

 37.  (a) Show that the parametric equations

x − x1 1 sx 2 2 x1dt    y − y1 1 sy2 2 y1dt

   where 0 < t < 1, describe the line segment that joins 
the points P1sx1, y1d and P2sx 2, y2 d.

 (b)  Find parametric equations to represent the line segment 
from s22, 7d to s3, 21d.

 38.  Use a graphing calculator or computer and the result of 
Exercise 37(a) to draw the triangle with vertices As1, 1d, 
Bs4, 2d, and Cs1, 5d.

39–40  Find parametric equations for the position of a particle 
moving along a circle as described.

 39. The particle travels clockwise around a circle centered at the 
origin with radius 5 and completes a revolution in 4� seconds.

 40. The particle travels counterclockwise around a circle with 
center s1, 3d and radius 1 and completes a revolution in 
three seconds.

 41.   Find parametric equations for the path of a particle that 
moves along the circle x 2 1 sy 2 1d2 − 4 in the manner 
described.

 (a) Once around clockwise, starting at s2, 1d
 (b) Three times around counterclockwise, starting at s2, 1d
 (c) Halfway around counterclockwise, starting at s0, 3d

 42. (a)  Find parametric equations for the ellipse 
x 2ya 2 1 y 2yb 2 − 1. [Hint: Modify the equations of the 
circle in Example 2.]

 (b)  Use these parametric equations to graph the ellipse 
when a − 3 and b − 1, 2, 4, and 8.

 (c) How does the shape of the ellipse change as b varies?

;

;

;

;

43–44 Use a graphing calculator or computer to reproduce the 
picture.

 43.  44.  

0

y

x

2

3 8

4

0

2

y

x2

 45. (a) Show that the points on all four of the given parametric 
curves satisfy the same Cartesian equation.

(i) x − t 2, y − t (ii) x − t, y − st 

(iii) x − cos2t, y − cos t (iv) x − 32t, y − 3t

 (b)  Sketch the graph of each curve in part (a) and explain 
how the curves differ from one another. 

46–47 Compare the curves represented by the parametric 
equations. How do they differ?

 46.  (a) x − t,  y − t 22 (b) x − cos t,  y − sec2t
 (c) x − e t,  y − e22 t

 47.  (a) x − t 3,  y − t 2 (b) x − t 6,  y − t 4

 (c) x − e23 t,  y − e22 t

 48.  Derive Equations 1 for the case �y2 , � , �.

 49.   Let P be a point at a distance d from the center of a circle of 
radius r. The curve traced out by P as the circle rolls along a 
straight line is called a trochoid. (Think of the motion of a 
point on a spoke of a bicycle wheel.) The cycloid is the spe-
cial case of a trochoid with d − r. Using the same param-
eter � as for the cycloid, and assuming the line is the x-axis 
and � − 0 when P is at one of its lowest points, show that 
parametric equations of the trochoid are

 x − r� 2 d sin �     y − r 2 d cos �

 Sketch the trochoid for the cases d , r and d . r.

 50.    In the figure, the circle of radius a is stationary, and for  
every �, the point P is the midpoint of the segment QR.  
The curve traced out by P for 0 , � , � is called the  
longbow curve. Find parametric equations for this curve.
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method for constructing the edge of a cube whose volume 
is twice that of a given cube.)

 (b)  Use the geometric description of the curve to draw a 
rough sketch of the curve by hand. Check your work by 
using the parametric equations to graph the curve.

xO

y

A

P
x=2a

B

a

55–57 Intersection and Collision Suppose that the position of 
each of two particles is given by parametric equations. A collision 
point is a point where the particles are at the same place at the same 
time. If the particles pass through the same point but at different 
times, then the paths intersect but the particles don’t collide.

 55. The position of a red particle at time t is given by 

x − t 1 5  y − t 2 1 4t 1 6

and the position of a blue particle is given by

x − 2t 1 1   y − 2t 1 6

Their paths are shown in the graph.

x

y

61

11

0

 (a)  Verify that the paths of the particles intersect at the points 
s1, 6d and s6, 11d. Is either of these points a collision 
point? If so, at what time do the particles collide?

 (b) Suppose that the position of a green particle is given by

x − 2t 1 4  y − 2t 1 9

  Show that this particle moves along the same path as the 
blue particle. Do the red and green particles collide? If 
so, at what point and at what time? 

 56. The position of one particle at time t is given by 

x − 3 sin t  y − 2 cos t  0 ⩽ t ⩽ 2�

and the position of a second particle is given by

x − 23 1  cos t  y − 1 1 sin t   0 < t < 2�

 (a)  Graph the paths of both particles. At how many points do 
the graphs intersect?

;

 51.   If a and b are fixed numbers, find parametric equations for the 
curve that consists of all possible positions of the point P in 
the figure, using the angle � as the parameter. Then eliminate 
the param eter and identify the curve.

¨ P

y

xO

a
b

 52.   If a and b are fixed numbers, find parametric equations for the 
curve that consists of all possible positions of the point P in 
the figure, using the angle � as the parameter. The line seg-
ment AB is tangent to the larger circle.

O x

y

¨

a b

A

B

P

 53.   A curve, called a witch of Maria Agnesi, consists of all pos-
sible positions of the point P in the figure. Show that para-
metric equations for this curve can be written as 

x − 2a cot �    y − 2a sin2�

 Sketch the curve.

O x
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A P

y=2a

¨

y
C

 54.  (a)  Find parametric equations for the set of all points P as 
shown in the figure such that | OP | − | AB |. (This curve 
is called the cissoid of Diocles after the Greek scholar 
Diocles, who introduced the cissoid as a graphical 
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 (b) Do the particles collide? If so, find the collision points.
 (c)  Describe what happens if the path of the second particle 

is given by

x − 3 1 cos t  y − 1 1 sin t  0 ⩽ t ⩽ 2�

 57. Find the point at which the parametric curve intersects itself 
and the corresponding values of t.

  (a) x − 1 2 t 2, y − t 2 t 3

x

y

1

  (b) x − 2t 2 t 3, y − t 2 t 2

x

y

1_1

_1

0

 58.   If a projectile is fired from the origin with an initial velocity 
of v0 meters per second at an angle � above the horizontal 
and air resistance is assumed to be negligible, then its posi-
tion after t seconds is given by the parametric equations

x − sv0 cos �dt    y − sv0 sin �dt 2 1
2 tt 2

 where t is the acceleration due to gravity (9.8 mys2).
 (a)  If a gun is fired with � − 30° and v0 − 500 mys, when 

will the bullet hit the ground? How far from the gun will 
it hit the ground? What is the maximum height reached 
by the bullet?

 (b)  Use a graph to check your answers to part (a). Then 
graph the path of the projectile for several other values of 
the angle � to see where it hits the ground. Summarize 
your findings.

 (c)  Show that the path is parabolic by eliminating the 
parameter.

 59.  Investigate the family of curves defined by the parametric 
equations x − t 2, y − t 3 2 ct. How does the shape change as 
c increases? Illustrate by graphing several members of the 
family.

 60.  The swallowtail catastrophe curves are defined by the  
parametric equations x − 2ct 2 4t 3, y − 2ct 2 1 3t 4.  
Graph several of these curves. What features do the curves 
have in common? How do they change when c increases?

 61.  Graph several members of the family of curves with para- 
metric equations x − t 1 a cos t, y − t 1 a sin t, where 
a . 0. How does the shape change as a increases? For what 
values of a does the curve have a loop?

 62.  Graph several members of the family of curves 
x − sin t 1 sin nt, y − cos t 1 cos nt, where n is a positive 
integer. What features do the curves have in common? What 
happens as n increases?

 63.  The curves with equations x − a sin nt, y − b cos t are called 
Lissajous figures. Investigate how these curves vary when a, 
b, and n vary. (Take n to be a positive integer.)

 64.  Investigate the family of curves defined by the parametric 
equations x − cos t, y − sin t 2 sin ct, where c . 0. Start  
by letting c be a positive integer and see what happens to the 
shape as c increases. Then explore some of the possibilities 
that occur when c is a fraction.

;

;

;

;

;

;

;

In this project we investigate families of curves, called hypocycloids and epicycloids, that are  
generated by the motion of a point on a circle that rolls inside or outside another circle.

 1.  A hypocycloid is a curve traced out by a fixed point P on a circle C of radius b as C rolls 
on the inside of a circle with center O and radius a. Show that if the initial position of P is 
sa, 0d and the parameter � is chosen as in the figure, then parametric equations of the hypo-
cycloid are

x − sa 2 bd cos � 1 b cosS a 2 b

b
 �D      y − sa 2 bd sin � 2 b sinS a 2 b

b
 �D

xO

y

a

C

Pb
(a, 0)¨
A

DISCOVERY PROJECT ; RUNNING CIRCLES AROUND CIRCLES
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Calculus with Parametric Curves

Having seen how to represent curves by parametric equations, we now apply the methods 
of calculus to these parametric curves. In particular, we solve problems involving tan-
gents, areas, arc length, speed, and surface area.

■	 Tangents
Suppose f  and t are differentiable functions and we want to find the tangent line at a 
point on the parametric curve x − f std, y − tstd, where y is also a differentiable function 
of x. Then the Chain Rule gives

dy

dt
−

dy

dx
�

dx

dt

If dxydt ± 0, we can solve for dyydx :

1  
dy

dx
−

dy

  dt  

dx

dt

              if    
dx

dt
± 0

Equation 1 (which you can remember by thinking of canceling the dt’s) enables us to 
find the slope dyydx of the tangent to a parametric curve without having to eliminate the 
parameter t. We see from (1) that the curve has a horizontal tangent when dyydt − 0, 
provided that dxydt ± 0, and it has a vertical tangent when dxydt − 0, provided that 
dyydt ± 0. (If both dxydt − 0 and dyydt − 0, then we would need to use other methods 
to determine the slope of the tangent.) This information is useful for sketching paramet-
ric curves.

10.2

If we think of the curve as being 
traced out by a moving particle, then 
dyydt and dxydt are the vertical and 
horizontal velocities of the particle 
and Formula 1 says that the slope of 
the tangent is the ratio of these 
velocities.

 2.  Use a graphing calculator or computer to draw the graphs of hypocycloids with a a positive 
integer and b − 1. How does the value of a affect the graph? Show that if we take a − 4, 
then the parametric equations of the hypocycloid reduce to

x − 4 cos3�    y − 4 sin3�

  This curve is called a hypocycloid of four cusps, or an astroid.

 3. Now try b − 1 and a − nyd, a fraction where n and d have no common factor. First let  
n − 1 and try to determine graphically the effect of the denominator d on the shape of the 
graph. Then let n vary while keeping d constant. What happens when n − d 1 1?

 4.  What happens if b − 1 and a is irrational? Experiment with an irrational number like s2  
or e 2 2. Take larger and larger values for � and speculate on what would happen if we 
were to graph the hypocycloid for all real values of �.

 5.  If the circle C rolls on the outside of the fixed circle, the curve traced out by P is called an 
epicycloid. Find parametric equations for the epicycloid.

 6. Investigate the possible shapes for epicycloids. Use methods similar to Problems 2 – 4.
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As we have learned, it is also often useful to consider d 2 yydx 2. This can be found by 
replacing y by dyydx in Equation 1:

 d 2 y

dx 2 −
d

dx
 S dy

dxD −

d

dt
 S dy

dxD
dx

dt

EXAMPLE 1 A curve C is defined by the parametric equations x − t 2, y − t 3 2 3t.

(a) Show that C has two tangents at the point s3, 0d and find their equations.
(b) Find the points on C where the tangent is horizontal or vertical.
(c) Determine where the curve is concave upward or downward.
(d) Sketch the curve.

SOLUTION
(a) Notice that x − 3 for t − 6s3 and, in both cases, y − tst 2 2 3d − 0. Therefore 
the point s3, 0d on C arises from two values of the parameter, t − s3 and t − 2s3. 
This indicates that C crosses itself at s3, 0d. Since 

dy

dx
−

dyydt

dxydt
−

3t 2 2 3

2t

the slope of the tangent when t − s3 is dyydx − 6y(2s3 ) − s3, and when t − 2s3 
the slope is dyydx − 26y(2s3 ) − 2s3. Thus we have two different tangent lines at 
s3, 0d with equations

y − s3  sx 2 3d    and    y − 2s3  sx 2 3d

(b) C has a horizontal tangent when dyydx − 0, that is, when dyydt − 0 and 
dxydt ± 0. Since dyydt − 3t 2 2 3, this happens when t 2 − 1, that is, t − 61. The 
corresponding points on C are s1, 22d and (1, 2). C has a vertical tangent when 
dxydt − 2t − 0, that is, t − 0. (Note that dyydt ± 0 there.) The corresponding point 
on C is (0, 0).

(c) To determine concavity we calculate the second derivative:

d 2 y

dx 2 −

d

dt
 S dy

dxD
dx

dt

−

d

dt
 S 3t 2 2 3

2t D
dx

dt

−

6t 2 1 6

4t 2

2t
−

3t 2 1 3

4t 3

Thus the curve is concave upward when t . 0 and concave downward when t , 0.

(d) Using the information from parts (b) and (c), we sketch C in Figure 1.� ■

EXAMPLE 2 
(a) Find the tangent to the cycloid x − r s� 2 sin �d, y − r s1 2 cos �d at the point 
where � − �y3. (See Example 10.1.9.)
(b) At what points is the tangent horizontal? When is it vertical?

Note that  
d 2y

dx 2 ±

d 2y

dt 2

d 2x

dt 2

0

y

x
(3, 0)

(1, _2)

(1, 2)

t=1

t=_1
y=œ„3(x-3)

y=_ œ„3(x-3)

FIGURE 1 
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SOLUTION
(a) The slope of the tangent line is

dy

dx
−

dyyd�

dxyd�
−

r sin �

r s1 2 cos �d
−

sin �

1 2 cos �

When � − �y3, we have

x − rS�

3
2 sin 

�

3 D − rS�

3
2

s3 

2 D      y − rS1 2 cos 
�

3 D −
r

2

and 
dy

dx
−

sins�y3d
1 2 coss�y3d

−
s3 y2

1 2 1
2

− s3 

Therefore the slope of the tangent is s3  and its equation is

y 2
r

2
− s3  Sx 2

r�

3
1

rs3 

2 D    or    s3  x 2 y − rS �

s3 

2 2D
The tangent is sketched in Figure 2.

0

y

x2πr_2πr 4πr 6πr

(πr, 2r)(_πr, 2r) (3πr, 2r) (5πr, 2r)

π
3¨=

(b) The tangent is horizontal when dyydx − 0, which occurs when sin � − 0 and 
1 2 cos � ± 0, that is, � − s2n 2 1d�, n an integer. The corresponding point on the 
cycloid is ss2n 2 1d�r, 2rd.

When � − 2n�, both dxyd� and dyyd� are 0. It appears from the graph that there 
are vertical tangents at those points. We can verify this by using l’Hospital’s Rule as 
follows:

lim
� l

 

2n�1
 
dy

dx
− lim

� l
 

2n�1
 

sin �

1 2 cos �
−  lim

� l
 

2n�1
 
cos �

sin �
− `

A similar computation shows that dyydx l 2` as � l 2n�2, so indeed there are 
vertical tangents when � − 2n�, that is, when x − 2n�r. (See Figure 2.)� ■

■	 Areas
We know that the area under a curve y − Fsxd from a to b is A − yb

a
 Fsxd dx, where 

Fsxd > 0. If the curve is traced out once by the parametric equations x − f std and 
y − tstd, � < t < �, then we can calculate an area formula by using the Sub stitution 
Rule for Definite Integrals as follows:

 A − yb

a
 y dx − y�

�
 tstd f 9std dt    For y�

�
 tstd f 9std dtG

EXAMPLE 3 Find the area under one arch of the cycloid

x − rs� 2 sin �d    y − rs1 2 cos �d

FIGURE 2

The limits of integration for t are 
found as usual with the Substitution 
Rule. When x − a, t is either � or �. 
When x − b, t is the remaining value.
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SOLUTION One arch of the cycloid (shown in Figure 3) is given by 0 < � < 2�. Using 
the Substitution Rule with y − rs1 2 cos �d and dx − rs1 2 cos �d d�, we have

 A − y2�r

0
 y dx − y2�

0
 rs1 2 cos �d rs1 2 cos �d d�

 − r 2 y2�

0
 s1 2 cos �d2 d� − r 2 y2�

0
 s1 2 2 cos � 1 cos2�d d�

 − r 2 y2�

0
 f1 2 2 cos � 1 1

2 s1 1 cos 2�dg d�

 − r 2 f 32 � 2 2 sin � 1 1
4 sin 2�g0

2�

  − r 2 ( 32 � 2�) − 3�r 2 � ■

■	 Arc Length
We already know how to find the length L of a curve C given in the form y − Fsxd,  
a < x < b. Formula 8.1.3 says that if F9 is continuous, then

2  L − yb

a
Î1 1 S dy

dxD2  

 dx

Suppose that C can also be described by the parametric equations x − f std and y − tstd,  
� < t < �, where dxydt − f 9s td . 0. This means that C is traversed once, from left to 
right, as t increases from � to � and f s�d − a, f s�d − b. Putting Formula 1 into For-
mula 2 and using the Substitution Rule, we obtain

L − yb

a
 Î1 1 S dy

dxD
2  

 dx − y�

�
 Î1 1 S dyydt

dxydtD2  

 
dx

dt  dt

Since dxydt . 0, we have

3  L − y�

�
ÎS dx

dt D2

1 S dy

dt D2  

 dt

Even if C can’t be expressed in the form y − Fsxd, Formula 3 is still valid but we 
obtain it by polygonal approximations. We divide the parameter interval f�, �g into n 
subintervals of equal width Dt. If t0, t1, t2, . . . , tn are the endpoints of these subintervals, 
then xi − f stid and yi − tstid are the coordinates of points Pisxi, yid that lie on C and the 
polygonal path with vertices P0, P1, . . . , Pn approximates C. (See Figure 4.)

As in Section 8.1, we define the length L of C to be the limit of the lengths of these 
approximating polygonal paths as n l `:

L − lim
nl `

  o
n

i−1
 | Pi21 Pi |

The Mean Value Theorem, when applied to f  on the interval fti21, tig, gives a number ti* 
in sti21, tid such that

f stid 2 f sti21d − f 9sti*dsti 2 ti21d

Let Dxi − xi 2 xi21 and Dyi − yi 2 yi21. Then the preceding equation becomes

Dxi − f 9sti*d Dt

The result of Example 3 says that the 
area under one arch of the cycloid is 
three times the area of the rolling  
circle that generates the cycloid (see 
Example 10.1.9). Galileo guessed this 
result but it was first proved by the 
French mathematician Roberval and 
the Italian mathematician Torricelli.

0

y

x

P¸

P¡

P™ Pi _1

Pi

Pn

C

FIGURE 4 

0

y

x2πr

FIGURE 3 
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Similarly, when applied to t, the Mean Value Theorem gives a number ti** in sti21, tid 
such that

Dyi − t9sti**d Dt
Therefore

 | Pi21Pi | − ssDxid2 1 sDyid2 − sf f 9sti*dDtg2 1 ft9sti**dDtg2 

 − sf f 9sti*dg2 1 ft9sti**dg2  Dt

and so

4  L − lim
nl `

  o
n

i−1
 sf f 9sti*dg2 1 ft9st i**dg2  Dt

The sum in (4) resembles a Riemann sum for the function sf f 9stdg2 1 ft9stdg2  but it is 
not exactly a Riemann sum because ti* ± ti** in general. Nevertheless, if f 9 and t9 are 
contin uous, it can be shown that the limit in (4) is the same as if ti* and ti** were equal, 
namely,

L − y�

�
 sf f 9stdg2 1 ft9stdg2  dt

Thus, using Leibniz notation, we have the following result, which has the same form as 
Formula 3.

5  Theorem If a curve C is described by the parametric equations x − f std, 
y − tstd, � < t < �, where f 9 and t9 are continuous on f�, �g and C is traversed 
exactly once as t increases from � to �, then the length of C is

L − y�

�
 ÎS dx

dt D
2

1 S dy

dt
D2 

 dt

Notice that the formula in Theorem 5 is consistent with the general formula L − y ds 
of Section 8.1, where

6  ds − ÎS dx

dt D2

1 S dy

dt D2  

 dt

EXAMPLE 4 If we use the representation of the unit circle given in Example 10.1.2,

x − cos t    y − sin t    0 < t < 2�

then dxydt − 2sin t and dyydt − cos t, so Theorem 5 gives

L − y2�

0
ÎS dx

dt D2

1 S dy

dt D2  

 dt − y2�

0
ssin2t 1 cos2t  dt − y2�

0
 dt − 2�

as expected. If, on the other hand, we use the representation given in Example 10.1.3,

x − sin 2t    y − cos 2t    0 < t < 2�

then dxydt − 2 cos 2t, dyydt − 22 sin 2t, and the integral in Theorem 5 gives

y2�

0
 ÎS dx

dt D2

1 S dy

dt D2  

dt − y2�

0
 s4 cos2 s2td 1 4 sin2 s2td  dt − y2�

0
 2 dt − 4�
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Notice that the integral gives twice the arc length of the circle because as t increases 
from 0 to 2�, the point ssin 2t, cos 2td traverses the circle twice. In general, when 
finding the length of a curve C from a parametric representation, we have to be careful 
to ensure that C is traversed only once as t increases from � to �.� ■

EXAMPLE 5 Find the length of one arch of the cycloid x − r s� 2 sin �d, 
y − rs1 2 cos �d.

SOLUTION From Example 3 we see that one arch is described by the parameter 
interval 0 < � < 2�. Since

dx

d�
− rs1 2 cos �d    and    

dy

d�
− r sin �

we have

 L − y2�

0
 ÎS dx

d�D2

1 S dy

d�D2  

 d� −  y2�

0
 sr 2s1 2 cos �d2 1 r 2 sin2�   d�

 − y2�

0
 sr 2s1 2 2 cos � 1 cos2� 1 sin2�d  d� 

 − r y2�

0
 s2s1 2 cos �d  d�

To evaluate this integral we use the identity sin2x − 1
2 s1 2 cos 2xd with � − 2x, which 

gives 1 2 cos � − 2 sin2s�y2d. Since 0 < � < 2�, we have 0 < �y2 < � and so 
sins�y2d > 0. Therefore

s2s1 2 cos �d − s4 sin2s�y2d − 2 | sins�y2d | − 2 sins�y2d

and so  L − 2r y2�

0
 sins�y2d d� − 2r f22 coss�y2dg 2�

0

  − 2r f2 1 2g − 8r � ■

Recall that the arc length function (Formula 8.1.5) gives the length of a curve from an 
initial point to any other point on the curve. For a parametric curve C given by x − f std, 
y − tstd, where f 9 and t9 are continuous, we let sstd be the arc length along C from an 
initial point s f s�d, ts�dd to a point s f std, tstdd on C. By Theorem 5, the arc length func-
tion s for parametric curves is 

7  sstd − yt

�
ÎS dx

duD
2

1 S dy

duD
2

 du

(We have replaced the variable of integration by u so that t does not have two meanings.) 
If parametric equations describe the position of a moving particle (with t representing 

time), then the speed of the particle at time t, vstd, is the rate of change of distance trav-
eled (arc length) with respect to time: s9std. By Equation 7 and Part 1 of the Fundamental 
Theorem of Calculus, we have

8  
vstd − s9std − ÎS dx

dt D2

1 S dy

dt D2

The result of Example 5 says that the 
length of one arch of a cycloid is eight 
times the radius of the gener ating  
circle (see Figure 5). This was first 
proved in 1658 by Sir Christopher 
Wren, who later became the architect 
of St. Paul’s Cathedral in London.

0

y

x2πr

r

L=8r

FIGURE 5 

The arc length function and speed
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EXAMPLE 6 The position of a particle at time t is given by the parametric equations 
x − 2t 1 3, y − 4t 2, t > 0. Find the speed of the particle when it is at the point s5, 4d.

SOLUTION By Equation 8, the speed of the particle at any time t is

vstd − s22 1 s8td2 − 2s1 1 16t 2

The particle is at the point s5, 4d when t − 1, so its speed at that point is 
vs1d − 2s17 < 8.25. (If distance is measured in meters and time in seconds, then  
the speed is approximately 8.25 mys.) ■

■	 Surface Area
In the same way as for arc length, we can adapt Formula 8.2.5 to obtain a formula for 
surface area. Suppose a curve C is given by the parametric equations x − f std, y − tstd, 
� < t < �, where f 9,  t9 are continuous, tstd > 0, and C is traversed exactly once as t 
increases from � to �. If C is rotated about the x-axis, then the area of the resulting sur-
face is given by

9  S − y�

�
 2�yÎS dx

dt D2

1 S dy

dt D2 

 dt 

The general symbolic formulas S − y 2�y ds and S − y 2�x ds (Formulas 8.2.7 and 
8.2.8) are still valid, where ds is given by Formula 6.

EXAMPLE 7 Show that the surface area of a sphere of radius r is 4�r 2.

SOLUTION The sphere is obtained by rotating the semicircle

x − r cos t    y − r sin t    0 < t < �

about the x-axis. Therefore, from Formula 9, we get

 S − y�

0
 2�r sin t ss2r sin td2 1 sr cos td2 dt

 − 2� y�

0
 r sin t sr 2ssin2t 1 cos2td dt − 2� y�

0
 r sin t � r dt

  − 2�r 2 y�

0
 sin t dt − 2�r 2s2cos tdg 0

�

− 4�r 2 � ■

10.2 Exercises

1–4 Find dxydt, dyydt, and dyydx .

 1. x − 2t 3 1 3t, y − 4t 2 5t 2

 2. x − t 2 ln t, y − t 2 2 t22

 3. x − t e t,  y − t 1 sin t

 4. x − t 1 sinst 2 1 22, y − tanst 2 1 2d
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5–6 Find the slope of the tangent to the parametric curve at the 
indicated point.

 5. x − t 2 1 2t, y − 2 t 2 2t

x

y

0

(15, 2)

 6. x − t 1 cos �t, y − 2t 1 sin �t

x

y

0

(3, _2)

7–10 Find an equation of the tangent to the curve at the point 
corresponding to the given value of the parameter.

  7.  x − t 3 1 1,  y − t 4 1 t;  t − 21

  8.  x − st  ,  y − t 2 2 2t;  t − 4

 9. x − sin 2t 1 cos t, y − cos 2t 2 sin t ; t − �

 10.  x − e t sin � t,  y − e2 t;  t − 0

11–12 Find an equation of the tangent to the curve at the given 
point by two methods: (a) without eliminating the parameter and 
(b) by first eliminating the parameter.

 11. x − sin t, y − cos2t; (  

1
2, 34 )

 12. x − st 1 4 , y − 1yst 1 4d; (2, 14 

)

13–14 Find an equation of the tangent to the curve at the given 
point. Then graph the curve and the tangent.

 13.  x − t 2 2 t,  y − t 2 1 t 1 1;  s0, 3d

 14.  x − sin �t,  y − t 2 1 t ;  s0, 2d

 15–20 Find dyydx and d 2 yydx 2. For which values of t is the 
curve concave upward?

 15.  x − t 2 1 1,  y − t 2 1 t

 16.  x − t 3 1 1,  y − t 2 2 t

;

 17.  x − e t,  y − te2 t

 18.  x − t 2 1 1,  y − e t 2 1

 19.  x − t 2 ln t,  y − t 1 ln t

 20.  x − cos t,  y − sin 2t,  0 , t , �

21–24 Find the points on the curve where the tangent is 
horizontal or vertical. You may want to use a graph from a 
calculator or computer to check your work.

 21.  x − t 3 2 3t,  y − t 2 2 3

 22.  x − t 3 2 3t,  y − t 3 2 3t 2

 23.  x − cos �,  y − cos 3�

 24.  x − e sin �,  y − e cos �

 25.   Use a graph to estimate the coordinates of the rightmost 
point on the curve x − t 2 t 6, y − e t. Then use calculus to 
find the exact coordinates.

 26.   Use a graph to estimate the coordinates of the lowest point 
and the leftmost point on the curve x − t 4 2 2t, y − t 1 t 4.  
Then find the exact coordinates.

27–28 Graph the curve in a viewing rectangle that displays all 
the important aspects of the curve.

 27.  x − t 4 2 2t 3 2 2t 2,  y − t 3 2 t

 28.  x − t 4 1 4t 3 2 8t 2,  y − 2t 2 2 t

 29.   Show that the curve x − cos t, y − sin t cos t has two  
tangents at s0, 0d and find their equations. Graph the curve.

 30.   Graph the curve x − 22 cos t, y − sin t 1 sin 2t to dis-
cover where it crosses itself. Then find equations of both 
tangents at that point.

 31.  (a)  Find the slope of the tangent line to the trochoid 
x − r� 2 d sin �, y − r 2 d cos � in terms of �. (See 
Exercise 10.1.49.)

 (b)  Show that if d , r, then the trochoid does not have a  
vertical tangent.

 32.  (a)  Find the slope of the tangent to the astroid x − a cos3�,  
y − a sin3� in terms of �. (Astroids are explored in the 
Discovery Project following Section 10.1.)

 (b) At what points is the tangent horizontal or vertical?
 (c) At what points does the tangent have slope 1 or 21?

 33.   At what point(s) on the curve x − 3t 2 1 1, y − t 3 2 1 does 
the tangent line have slope 12?

 34.   Find equations of the tangents to the curve x − 3t 2 1 1, 
y − 2t 3 1 1 that pass through the point s4, 3d.

;

;

;

;

;
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 41.   Find the area under one arch of the trochoid of Exer- 
cise 10.1.49 for the case d , r.

 42.   Let 5 be the region enclosed by the loop of the curve in 
Example 1.

 (a) Find the area of 5.
 (b)  If 5 is rotated about the x-axis, find the volume of the 

resulting solid.
 (c) Find the centroid of 5.

43–46 Set up an integral that represents the length of the  
part of the parametric curve shown in the graph. Then use a 
calculator (or computer) to find the length correct to four  
decimal places.

 43. x − 3t 2 2 t 3, y − t 2 2 2t

x

y

0

3

2

2 4

 44. x − t 1 e2t, y − t 2 1 t

x

y

0

6

2

1

 45. x − t 2 2 sin t, y − 1 2 2 cos t, 0 < t < 4�

x

y

0

3

2π

4π

_1

35–36 Find the area enclosed by the given parametric curve and 
the x-axis.

 35. x − t 3 1 1, y − 2t 2 t 2

x

y

0

 36. x − sin t, y − sin t cos t, 0 < t < �y2

x

y

0

37–38 Find the area enclosed by the given parametric curve and 
the y-axis.

 37. x − sin2t, 38. x − t 2 2 2t, 
  y − cos t  y − st 

  

x

y

0

  
x

y

0

 39.   Use the parametric equations of an ellipse, x − a cos �, 
y − b sin �, 0 < � < 2�, to find the area that it encloses.

 40. Find the area of the region enclosed by the loop of the curve

x − 1 2 t 2, y − t 2 t 3

x

y

1
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 46. x − t cos t, y − t 2 5 sin t    

x

y

0

π

_π π

47–50 Find the exact length of the curve.

 47. x − 2
3 t

3, y − t 2 2 2, 0 ⩽ t < 3

 48.   x − e t 2 t,  y − 4e ty2,  0 < t < 2

 49.  x − t sin t,  y − t cos t,  0 < t < 1

 50.  x − 3 cos t 2 cos 3t,  y − 3 sin t 2 sin 3t,  0 < t < �

51–52 Graph the curve and find its exact length.

 51.  x − e t cos t,  y − e t sin t,  0 < t < �

 52.  x − cos t 1 ln(tan 12 t),  y − sin t,  �y4 < t < 3�y4

 53. Graph the curve x − sin t 1 sin 1.5t, y − cos t and find its 
length correct to four decimal places.

 54. Find the length of the loop of the curve x − 3t 2 t 3,  
y − 3t 2.

 55–56 Find the distance traveled by a particle with position 
sx, yd as t varies in the given time interval. Compare with the 
length of the curve.

 55.  x − sin2t,  y − cos2t,  0 < t < 3�

 56.  x − cos2t,  y − cos t,  0 < t < 4�

57–60 The parametric equations give the position (in meters) of 
a moving particle at time t (in seconds). Find the speed of the 
particle at the indicated time or point. 

 57. x − 2t 2 3, y − 2t 2 2 3t 1 6; t − 5

 58. x − 2 1 5 cosS�

3
tD, y − 22 1 7 sinS�

3
tD; t − 3

 59. x − e t, y − tet ; se, ed

 60. x − t 2 1 1, y − t 4 1 2t 2 1 1; s2, 4d

 61. A projectile is fired from the point s0, 0d with an initial veloc-
ity of v0 mys at an angle � above the horizontal. (See Exer-
cise 10.1.58.) If we assume that air resistance is negligible, 

;

;

then the position (in meters) of the projectile after t seconds is 
given by the parametric equations

x − sv0 cos �dt  y − sv0 sin �dt 2 1
2 tt 2

where t − 9.8 mys2 is the acceleration due to gravity.
 (a) Find the speed of the projectile when it hits the ground.
 (b) Find the speed of the projectile at its highest point. 

 62.   Show that the total length of the ellipse x − a sin �, 
y − b cos �, a . b . 0, is

L − 4a y�y2

0
 s1 2 e 2 sin2 �

 

 d�

where e is the eccentricity of the ellipse (e − cya,  
where c − sa 2 2 b2  ).

 63.  (a) Graph the epitrochoid with equations

 x − 11 cos t 2 4 coss11ty2d

 y − 11 sin t 2 4 sins11ty2d

 What parameter interval gives the complete curve?
 (b)  Use a calculator or computer to find the approximate 

length of this curve.

 64.   A curve called Cornu’s spiral is defined by the parametric 
equations

 x − Cstd − y t

0
 coss�u 2y2d du

 y − Sstd − y t

0
 sins�u 2y2d du

  where C and S are the Fresnel functions that were intro-
duced in Chapter 5.

 (a)  Graph this curve. What happens as t l ` and as  
t l 2`?

 (b)  Find the length of Cornu’s spiral from the origin to the 
point with parameter value t.

65–66 The curve shown in the figure is the astroid x − a cos3�, 
y − a sin3�. (Astroids are explored in the Discovery Project 
following Section 10.1.)

y

x0 a_a

_a

a

 65. Find the area of the region enclosed by the astroid.

 66. Find the perimeter of the astroid.
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regarded as a measure of the rate of change of direction of the 
curve at P and will be studied in greater detail in Chapter 13.

0 x

y

P

˙

 79.  For a parametric curve x − xstd, y − ystd, derive the  
formula

� −   |x?y?? 2 x??y? |  

fx? 2 1 y? 2 g3y2

where the dots indicate derivatives with respect to t, so 
x? − dxydt. [Hint: Use � − tan21sdyydxd and Formula 2 to 
find d�ydt. Then use the Chain Rule to find d�yds.]

 80.  By regarding a curve y − f sxd as the parametric curve  
x − x, y − f sxd with parameter x, show that the formula in 
Exercise 79 becomes

� − | d 2 yydx 2 |
f1 1 sdyydxd2 g3y2

 81.   Use the formula in Exercise 79 to find the curvature of the 
cycloid x − � 2 sin �, y − 1 2 cos � at the top of one of its 
arches.

 82.  (a)  Use the formula in Exercise 80 to find the curvature of 
the parabola y − x 2 at the point s1, 1d.

 (b)  At what point does this parabola have maximum 
curvature?

 83.  (a)  Show that the curvature at each point of a straight line  
is � − 0.

 (b)  Show that the curvature at each point of a circle of  
radius r is � − 1yr.

 84.  A cow is tied to a silo with radius r by a rope just long 
enough to reach the opposite side of the silo. Find the graz-
ing area available for the cow.

67–70 Set up an integral that represents the area of the surface 
obtained by rotating the given curve about the x-axis. Then use a 
calculator or computer to find the surface area correct to four 
decimal places.

 67.  x − t sin t,  y − t cos t,  0 < t < �y2

 68.  x − sin t,  y − sin 2t,  0 < t < �y2

 69.  x − t 1 e t,  y − e2t,  0 < t < 1

 70.  x − t 2 2 t 3,  y − t 1 t 4,  0 < t < 1

 71–73 Find the exact area of the surface obtained by rotating 
the given curve about the x-axis.

 71.  x − t 3,  y − t 2,  0 < t < 1

 72.  x − 2t 2 1 1yt,  y − 8st ,  1 < t < 3

 73.  x − a cos3�,  y − a sin3�,  0 < � < �y2

 74.  Graph the curve

 x − 2 cos � 2 cos 2�

 y − 2 sin � 2 sin 2�

If this curve is rotated about the x-axis, find the exact area 
of the resulting surface. (Use your graph to help find the 
correct parameter interval.)

 75–76 Find the surface area generated by rotating the given 
curve about the y-axis.

 75.  x − 3t 2,  y − 2t 3,  0 < t < 5

 76.  x − e t 2 t,  y − 4e ty2,  0 < t < 1

 77.   If f 9 is continuous and f 9std ± 0 for a < t < b, show that 
the parametric curve x − f std, y − tstd, a < t < b, can be 
put in the form y − Fsxd. [Hint: Show that f 21 exists.]

 78.   Use Formula 1 to derive Formula 9 from Formula 8.2.5 for 
the case in which the curve can be represented in the form 
y − Fsxd, a < x < b.

79–83 Curvature The curvature at a point P of a curve is  
defined as

� − Z d�

ds Z
where � is the angle of inclination of the tangent line at P, as 
shown in the figure. Thus the curvature is the absolute value of 
the rate of change of � with respect to arc length. It can be 

;
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 85.   A string is wound around a circle and then unwound while 
being held taut. The curve traced by the point P at the end of 
the string is called the involute of the circle. If the circle has 
radius r and center O and the initial position of P is sr, 0d, and 
if the parameter � is chosen as in the figure, show that para-
metric equations of the involute are

 x − r scos � 1 � sin �d

 y − r ssin � 2 � cos �d

xO

y

r
¨ P

T

Bézier curves are used in computer-aided design (CAD) and are named after the French math-
ematician Pierre Bézier (1910–1999), who worked in the automotive industry. A cubic Bézier 
curve is determined by four control points, P0sx0, y0 d, P1sx1, y1d, P2sx2, y2 d, and P3sx3, y3 d, and 
is defined by the parametric equations

 x − x0s1 2 td3 1 3x1ts1 2 td2 1 3x2t 2s1 2 td 1 x3t 3

 y − y0s1 2 td3 1 3y1ts1 2 td2 1 3y2t 2s1 2 td 1 y3t 3

where 0 < t < 1. Notice that when t − 0 we have sx, yd − sx0, y0 d and when t − 1 we have 
sx, yd − sx3, y3d, so the curve starts at P0 and ends at P3.

 1.  Graph the Bézier curve with control points P0s4, 1d, P1s28, 48d, P2s50, 42d, and P3s40, 5d. 
Then, on the same screen, graph the line segments P0P1, P1P2, and P2P3. (Exercise 10.1.37 
shows how to do this.) Notice that the middle control points P1 and P2 don’t lie on the 
curve; the curve starts at P0, heads toward P1 and P2 without reaching them, and ends at P3.

 2.  From the graph in Problem 1, it appears that the tangent at P0 passes through P1 and the  
tangent at P3 passes through P2. Prove it.

 3.  Try to produce a Bézier curve with a loop by changing the second control point in  
Problem 1.

 4.  Some laser printers use Bézier curves to represent letters and other symbols. Experiment 
with control points until you find a Bézier curve that gives a reasonable representation of 
the letter C.

 5.  More complicated shapes can be represented by piecing together two or more Bézier  
curves. Suppose the first Bézier curve has control points P0, P1, P2, P3 and the second one 
has control points P3, P4, P5, P6. If we want these two pieces to join together smoothly, 
then the tangents at P3 should match and so the points P2, P3, and P4 all have to lie on this 
common tangent line. Using this principle, find control points for a pair of Bézier curves 
that represent the letter S.

DISCOVERY PROJECT ; BÉZIER CURVES

Polar Coordinates

A coordinate system represents a point in the plane by an ordered pair of numbers called 
coordinates. Usually we use Cartesian coordinates, which are directed distances from 
two perpendicular axes. Here we describe a coordinate system introduced by Newton, 
called the polar coordinate system, which is more convenient for many purposes.

10.3
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■	 The Polar Coordinate System
We choose a point in the plane that is called the pole (or origin) and is labeled O. Then 
we draw a ray (half-line) starting at O called the polar axis. This axis is usually drawn 
hor izontally to the right and corresponds to the positive x-axis in Cartesian coordinates.

If P is any other point in the plane, let r be the distance from O to P and let � be the 
angle (usually measured in radians) between the polar axis and the line OP as in Fig- 
 ure 1. Then the point P is represented by the ordered pair sr, �d and r, � are called polar 
coordinates of P. We use the convention that an angle is positive if measured in the  
counterclockwise direction from the polar axis and negative in the clockwise direction. 
If P − O, then r − 0 and we agree that s0, �d represents the pole for any value of �.

We extend the meaning of polar coordinates sr, �d to the case in which r is negative 
by agreeing that, as in Figure 2, the points s2r, �d and sr, �d lie on the same line through 
O and at the same distance | r | from O, but on opposite sides of O. If r . 0, the point 
sr, �d lies in the same quadrant as �; if r , 0, it lies in the quadrant on the opposite side 
of the pole. Notice that s2r, �d represents the same point as sr, � 1 �d.

EXAMPLE 1 Plot the points whose polar coordinates are given. 

(a) s1, 5�y4d      (b) s2, 3�d      (c) s2, 22�y3d      (d) s23, 3�y4d

SOLUTION The points are plotted in Figure 3. In part (d) the point s23, 3�y4d is 
located three units from the pole in the fourth quadrant because the angle 3�y4 is in  
the second quadrant and r − 23 is negative.

FIGURE 3 

O

”_3,       3π
4

3π
4

(2, 3π) O

3π

”1, 5π
4

5π
4

O
O

”2, _      ’2π
3

2π
3_

’

’

(a) (b) (c) (d) ■

In the Cartesian coordinate system every point has only one representation, but in the 
polar coordinate system each point has many representations. For instance, the point 
s1, 5�y4d in Example 1(a) could be written as s1, 23�y4d or s1, 13�y4d or s21, �y4d. 
(See Figure 4.)

O
13π

4

”1,        ’ ’13π
4

O

_ 3π
4

”1, _      ’3π
4

O
5π
4 O

”_1,     π
4

π
4

”1, 5π
4 ’

FIGURE 4

In fact, since a complete counterclockwise rotation is given by an angle 2�, the point 
rep resented by polar coordinates sr, �d is also represented by

sr, � 1 2n�d    and    s2r, � 1 s2n 1 1d�d

where n is any integer.

FIGURE 1 

x
O

¨

r

polar axis

P(r, ̈ )

FIGURE 2 

(_r, ̈ )

O
¨

(r, ̈ )

¨+π
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■	 Relationship between Polar and Cartesian Coordinates
The connection between polar and Cartesian coordinates can be seen from Figure 5, in 
which the pole corresponds to the origin and the polar axis coincides with the positive 
x-axis. If the point P has Cartesian coordinates sx, yd and polar coordinates sr, �d, then, 
from the figure, we have  cos � − xyr and  sin � − yyr. So to find the Cartesian coordi-
nates sx, yd when the polar coordinates sr, �d are known, we use the equations 

1  x − r cos �      y − r sin �

To find polar coordinates sr, �d when the Cartesian coordinates sx, yd are known, we 
use the equations

2  r 2 − x 2 1 y 2      tan � −
y

x

which can be deduced from Equations 1 or simply read from Figure 5.
Although Equations 1 and 2 were deduced from Figure 5, which illustrates the case 

where r . 0 and 0 , � , �y2, these equations are valid for all values of r and �. (See 
the gen eral definition of sin � and cos � in Appendix D.)

EXAMPLE 2 Convert the point s2, �y3d from polar to Cartesian coordinates.

SOLUTION Since r − 2 and � − �y3, Equations 1 give

  x − r cos � − 2 cos 
�

3
− 2 �

1

2
− 1

 y − r sin � − 2 sin 
�

3
− 2 �

s3 

2
− s3 

Therefore the point is (1, s3 ) in Cartesian coordinates.� ■

EXAMPLE 3 Represent the point with Cartesian coordinates s1, 21d in terms of polar 
coordinates.

SOLUTION If we choose r to be positive, then Equations 2 give

 r − sx 2 1 y 2 − s12 1 s21d2 − s2 

 tan � −
y

x
− 21

Since the point s1, 21d lies in the fourth quadrant, we can choose � − 2�y4 or 
� − 7�y4. Thus one possible answer is (s2 , 2�y4); another is ss2 , 7�y4d.� ■

NOTE Equations 2 do not uniquely determine � when x and y are given because, as � 
increases through the interval 0 < � , 2�, each value of tan � occurs twice. Therefore, 
in converting from Cartesian to polar coordinates, it’s not good enough just to find r and 
� that satisfy Equations 2. As in Example 3, we must choose � so that the point sr, �d lies 
in the correct quadrant.

O

y

x
¨

x

y
r

P (r, ̈ )=P(x, y)

FIGURE 5 
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■	 Polar Curves
The graph of a polar equation r − f s�d, or more generally Fsr, �d − 0, consists of all 
points P that have at least one polar representation sr, �d whose coordinates satisfy the 
equation.

EXAMPLE 4 What curve is represented by the polar equation r − 2 ?

SOLUTION The curve consists of all points sr, �d with r − 2. Since r represents the 
distance from the point to the pole, the curve r − 2 represents the circle with center O 
and radius 2. In general, the equation r − a represents a circle with center O and  
radius | a |. (See Figure 6.)� ■

EXAMPLE 5 Sketch the polar curve � − 1.

SOLUTION This curve consists of all points sr, �d such that the polar angle � is  
1 radian. It is the straight line that passes through O and makes an angle of 1 radian 
with the polar axis (see Figure 7). Notice that the points sr, 1d on the line with r . 0 
are in the first quadrant, whereas those with r , 0 are in the third quadrant.� ■

EXAMPLE 6 
(a) Sketch the curve with polar equation r − 2 cos �.
(b) Find a Cartesian equation for this curve.

SOLUTION
(a) In Figure 8 we find the values of r for some convenient values of � and plot the 
corresponding points sr, �d. Then we join these points to sketch the curve, which 
appears to be a circle. We have used only values of � between 0 and �, because if we 
let � increase beyond �, we obtain the same points again.

� r − 2 cos �

0 2
�y6 s3 

�y4 s2 

�y3 1
�y2 0
2�y3 21
3�y4 2s2 

5�y6 2s3 

� 22
    

(2, 0)

2

”_1,     ’2π
3

”0,    ’π
2

”1,    ’π
3

”œ„,    ’π
4 ”œ„,   ’π

63

”_ œ„,     ’5π
63

”_ œ„,      ’3π
42

(b) To convert the given equation to a Cartesian equation we use Equations 1 and 2. 
From x − r cos � we have cos � − xyr, so the equation r − 2 cos � becomes r − 2xyr,  
which gives

2x − r 2 − x 2 1 y 2    or    x 2 1 y 2 2 2x − 0

FIGURE 6

x

r= 1
2

r=1
r=2

r=4

O
x

1

(_1, 1)

(_2, 1)

(1, 1)

(2, 1)

(3, 1)

¨=1

FIGURE 7 

FIGURE 8 
Table of values and  

graph of r − 2 cos �
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Completing the square, we obtain

sx 2 1d2 1 y 2 − 1

which is an equation of a circle with center s1, 0d and radius 1.� ■

O

y

x2
¨

r

P

Q

EXAMPLE 7 Sketch the curve r − 1 1 sin �.

SOLUTION Instead of plotting points as in Example 6, we first sketch the graph of 
r − 1 1 sin � in Cartesian coordinates in Figure 10 by shifting the sine curve up one 
unit. This enables us to read at a glance the values of r that correspond to increasing 
values of �. For instance, we see that as � increases from 0 to �y2, r (the distance  
from O) increases from 1 to 2 (see the corresponding green arrows in Figures 10 and 
11), so we sketch the corresponding part of the polar curve in Figure 11(a). As � 
increases from �y2 to �, Figure 10 shows that r decreases from 2 to 1, so we sketch 
the next part of the curve as in Figure 11(b). As � increases from � to 3�y2, r 
decreases from 1 to 0 as shown in part (c). Finally, as � increases from 3�y2 to 2�, r 
increases from 0 to 1 as shown in part (d). If we let � increase beyond 2� or decrease 
beyond 0, we would simply re trace this path. Putting together the parts of the curve 
from Figure 11(a) – (d), we sketch the complete curve in part (e). It is called a cardioid 
because it’s shaped like a heart.

(a) (b) (c) (d) (e)

O¨=π

¨=π
2

O
¨=π

¨= 3π
2

O
¨=2π

¨= 3π
2

O
O ¨=0

¨=π
2

1

2

FIGURE 11 Stages in sketching the cardioid r − 1 1 sin �� ■

EXAMPLE 8 Sketch the curve r − cos 2�.

SOLUTION As in Example 7, we first sketch r − cos 2�, 0 < � < 2�, in Cartesian 
coordinates in Figure 12. As � increases from 0 to �y4, Figure 12 shows that r 
decreases from 1 to 0 and so we draw the corresponding portion of the polar curve in 
Figure 13 (indicated by ). As � increases from �y4 to �y2, r decreases from 0 to 21. 
This means that the distance from O increases from 0 to 1, but instead of being in the 

Figure 9 shows a geometric illustra-
tion that the circle in Example 6 has 
the equation r − 2 cos �. The angle 
OPQ is a right angle (why?) and so 
ry2 − cos �.

FIGURE 9 

0

r

1

2

¨π 2π3π
2

π
2

FIGURE 10  
r − 1 1 sin � in Cartesian 
coordinates, 0 < � < 2�
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first quadrant this portion of the polar curve (indicated by ) lies on the opposite side 
of the pole in the third quadrant. The remainder of the curve is drawn in a similar 
fashion, with the arrows and numbers indicating the order in which the portions are 
traced out. The resulting curve has four loops and is called a four-leaved rose.

¨=0
¨=π

¨=3π
4

¨=π
2

¨=π
4

r

1

¨2ππ 5π
4

π
2

π
4

3π
4

3π
2

7π
4

!

@ # ^ &

% *$
!

@ #

$

%

&

*

^

FIGURE 12  
r − cos 2� in Cartesian coordinates  

FIGURE 13  
Four-leaved rose r − cos 2�� ■

■	 Symmetry
When we sketch polar curves it is sometimes helpful to take advantage of symmetry. The 
following three rules are explained by Figure 14.

(a)  If a polar equation is unchanged when � is replaced by 2�, the curve is sym metric 
about the polar axis.

(b)  If the equation is unchanged when r is replaced by 2r, or when � is replaced by 
� 1 �, the curve is symmetric about the pole. (This means that the curve remains 
unchanged if we rotate it through 180° about the origin.)

(c)  If the equation is unchanged when � is replaced by � 2 �, the curve is sym metric 
about the vertical line � − �y2.

O

(r, ̈ )

(_r, ̈ )
O

(r, ̈ )

(r, _¨)   

_¨
¨

(a) (b) (c)

O

(r, ̈ )(r, π-¨)

π-¨

¨

FIGURE 14 

The curves sketched in Examples 6 and 8 are symmetric about the polar axis, since 
coss2�d − cos �. The curves in Examples 7 and 8 are symmetric about � − �y2 because 
sins� 2 �d − sin � and cos f2s� 2 �dg − cos 2�. The four-leaved rose is also symmet-
ric about the pole. We could have used these symmetry properties in sketching the curves. 
For instance, in Example 6 we need only have plotted points for 0 < � < �y2 and then 
reflected about the polar axis to obtain the complete circle.
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■	 Graphing Polar Curves with Technology
Although it’s useful to be able to sketch simple polar curves by hand, we need to use a 
graphing calculator or computer when we are faced with a curve as complicated as the 
ones shown in Figures 15 and 16.

FIGURE 16   
r − sin2s3�y2d 1 cos2s2�y3d

2

_2

_2 2

1

_1

_1 1

FIGURE 15   
r − sin3s2.5�d 1 cos3s2.5�d

EXAMPLE 9 Graph the curve r − sins8�y5d.

SOLUTION First we need to determine the domain for �. So we ask ourselves: how 
many complete rotations are required until the curve starts to repeat itself ? If the 
answer is n, then

sin 
8s� 1 2n�d

5
− sinS 8�

5
1

16n�

5 D − sin 
8�

5

and so we require that 16n�y5 be an even multiple of �. This will first occur when 
n − 5. Therefore we will graph the entire curve if we specify that 0 < � < 10�. 
Figure 17 shows the resulting curve. Notice that this curve has 16 loops.� ■

EXAMPLE 10 Investigate the family of polar curves given by r − 1 1 c sin �.  
How does the shape change as c changes? (These curves are called limaçons, after a 
French word for snail, because of the shape of the curves for certain values of c.)

SOLUTION Figure 18 shows computer-drawn graphs for various values of c. (Note that 
we obtain the complete graph for 0 < � < 2�.) For c . 1 there is a loop that decreases 

1

_1

_1 1

FIGURE 17   
r − sins8�y5d

FIGURE 18 Members of the family of limaçons r − 1 1 c sin �

c=2.5

c=0 c=_0.2 c=_0.5 c=_0.8 c=_1

c=_2

c=1.7 c=1 c=0.7 c=0.5 c=0.2
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in size as c decreases. When c − 1 the loop disappears and the curve becomes the 
cardioid that we sketched in Example 7. For c between 1 and 12 the cardioid’s cusp is 
smoothed out and becomes a “dimple.” When c de creases from 12 to 0, the limaçon is 
shaped like an oval. This oval becomes more circular as c l 0, and when c − 0 the 
curve is just the circle r − 1.

The remaining parts of Figure 18 show that as c becomes negative, the shapes 
change in reverse order. In fact, these curves are reflections about the horizontal axis of 
the corresponding curves with positive c.� ■

Limaçons arise in the study of planetary motion. In particular, the trajectory of Mars, 
as viewed from the planet Earth, has been modeled by a limaçon with a loop, as in the 
parts of Figure 18 with | c | . 1.

Table 1 gives a summary of some common polar curves.

In Exercise 55 you are asked to prove 
analytically what we have discovered 
from the graphs in Figure 18.

Table 1 Common Polar Curves

Circles and Spiral

Limaçons
r − a 6 b sin �
r − a 6 b cos �
sa . 0, b . 0d
Orientation depends on 
the trigonometric func-
tion (sine or cosine) and 
the sign of b

Roses
r − a sin n�

r − a cos n�

n-leaved if n is odd
2n-leaved if n is even

Lemniscates
Figure-eight-shaped 
curves

r=a

circle circle circle spiral
r=a sin ¨

limaçon with
inner loop

cardioid dimpled
limaçon

convex
limaçon

a<b a=b a>b a˘2b

r=a cos ¨ r=a¨

r=a cos 2¨  

four-leaved rose three-leaved rose eight-leaved rose �ve-leaved rose
r=a cos 3¨ r=a cos 4¨ r=a cos 5¨

r@=a@ sin 2¨

lemniscate lemniscate
r@=a@ cos 2¨

r=a

circle circle circle spiral
r=a sin ¨

limaçon with
inner loop

cardioid dimpled
limaçon

convex
limaçon

a<b a=b a>b a˘2b

r=a cos ¨ r=a¨

r=a cos 2¨  

four-leaved rose three-leaved rose eight-leaved rose �ve-leaved rose
r=a cos 3¨ r=a cos 4¨ r=a cos 5¨

r@=a@ sin 2¨

lemniscate lemniscate
r@=a@ cos 2¨

r=a

circle circle circle spiral
r=a sin ¨

limaçon with
inner loop

cardioid dimpled
limaçon

convex
limaçon

a<b a=b a>b a˘2b

r=a cos ¨ r=a¨

r=a cos 2¨  

four-leaved rose three-leaved rose eight-leaved rose �ve-leaved rose
r=a cos 3¨ r=a cos 4¨ r=a cos 5¨

r@=a@ sin 2¨

lemniscate lemniscate
r@=a@ cos 2¨

r=a

circle circle circle spiral
r=a sin ¨

limaçon with
inner loop

cardioid dimpled
limaçon

convex
limaçon

a<b a=b a>b a˘2b

r=a cos ¨ r=a¨

r=a cos 2¨  

four-leaved rose three-leaved rose eight-leaved rose �ve-leaved rose
r=a cos 3¨ r=a cos 4¨ r=a cos 5¨

r@=a@ sin 2¨

lemniscate lemniscate
r@=a@ cos 2¨
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10.3 Exercises

1–2 Plot the point whose polar coordinates are given. Then find 
two other pairs of polar coordinates of this point, one with r . 0 
and one with r , 0.

 1.  (a) s1, �y4d (b) s22, 3�y2d (c) s3, 2�y3d

 2.  (a) s2, 5�y6d (b) s1, 22�y3d (c) s21, 5�y4d

3–4 Plot the point whose polar coordinates are given. Then find 
the Cartesian coordinates of the point.

 3.  (a) s2, 3�y2d (b) (s2 , �y4) (c) s21, 2�y6d

 4.  (a) (4, 4�y3) (b) s22, 3�y4d (c) s23, 2�y3d

5–6 The Cartesian coordinates of a point are given.
(i)  Find polar coordinates sr, �d of the point, where r . 0   

and 0 < � , 2�.
(ii)  Find polar coordinates sr, �d of the point, where r , 0   

and 0 < � , 2�.

 5.  (a) s24, 4d (b) (3, 3s3 )

 6.  (a) (s3 , 21) (b) s26, 0d

7–12 Sketch the region in the plane consisting of points whose 
polar coordinates satisfy the given conditions.

 7. 1 , r < 3

 8. r > 2, 0 < � < � 

 9. 0 < r < 1, 2�y2 < � < �y2 

 10. 3 , r , 5, 2�y3 < � < 4�y3

 11. 2 < r , 4, 3�y4 < � < 7�y4

 12. r > 0, � < � < 5�y2

 13.   Find the distance between the points with polar coordinates 
s4, 4�y3d and s6, 5�y3d.

 14.   Find a formula for the distance between the points with polar 
coordinates sr1, �1d and sr2, �2 d.

15–20 Identify the curve by finding a Cartesian equation for the 
curve.

 15.  r 2 − 5 16.  r − 4 sec �

 17.  r − 5 cos � 18.  � − �y3

 19.  r 2 cos 2� − 1 20.  r 2 sin 2 � − 1

21–26 Find a polar equation for the curve represented by the 
given Cartesian equation.

 21. x 2 1 y 2 − 7 22. x − 21

 23. y − s3  x 24. y − 22x 2 

 25. x 2 1 y 2 − 4y 26.  x 2 2 y 2 − 4

27–28 For each of the described curves, decide if the curve would 
be more easily given by a polar equation or a Cartesian equation. 
Then write an equation for the curve.

 27.  (a)  A line through the origin that makes an angle of �y6 with 
the positive x-axis

 (b)  A vertical line through the point s3, 3d

 28.  (a)  A circle with radius 5 and center s2, 3d
 (b)  A circle centered at the origin with radius 4

29–32 The figure shows a graph of r as a function of � in Cartesian 
coordinates. Use it to sketch the corresponding polar curve.

 29. 

¨

r

2

1

0
π 2π

 30. 

¨

r

2

1

0
π 2π

_1

 31. 

¨

r

1

0
π 2π

_1

_2
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 SECTION 10.3  Polar Coordinates 693

  (e) r − secs�y3d (f ) r − sec �

  (g) r − � 2,   0 < � < 8� (h) r − 2 1 cos 3�

  (i) r − 2 1 coss3�y2d

I III

IV VI

II

V

VII IXVIII

 57.   Show that the polar equation r − a sin � 1 b cos �, where 
ab ± 0, represents a circle. Find its center and radius.

 58.   Show that the curves r − a sin � and r − a cos � intersect at 
right angles.

59–64 Graph the polar curve. Choose a parameter interval that 
produces the entire curve.

 59.  r − 1 1 2 sins�y2d  (nephroid of Freeth)

 60.  r − s1 2 0.8 sin 2 �    (hippopede)

 61.  r − e sin � 2 2 coss4�d  (butterfly curve)

 62.  r − | tan � || cot � |  (valentine curve)

 63.  r − 1 1 cos999�  (Pac-Man curve)

 64.  r − 2 1 coss9�y4d

 65.   How are the graphs of r − 1 1 sins� 2 �y6d and 
r − 1 1 sins� 2 �y3d related to the graph of r − 1 1 sin �? 
In general, how is the graph of r − f s� 2 �d related to the 
graph of r − f s�d?

 66.   Use a graph to estimate the y-coordinate of the highest  
points on the curve r − sin 2�. Then use calculus to find  
the exact value.

;

;

 32. 

¨

r

1

2

0
π 2π

33–50 Sketch the curve with the given polar equation by  
first sketching the graph of r as a function of � in Cartesian 
coordinates.

 33.  r − 22 sin � 34.  r − 1 2 cos �

 35.  r − 2s1 1 cos �d 36.  r − 1 1 2 cos �

 37.  r − �, � > 0 38.  r − �2, 22� < � < 2�

 39.  r − 3 cos 3� 40.  r −  2sin 5�

 41.  r − 2 cos 4� 42.  r − 2 sin 6�

 43.  r − 1 1 3 cos � 44.  r − 1 1 5 sin �

 45.  r 2 − 9 sin 2� 46.  r 2 − cos 4�

 47.  r − 2 1 sin 3� 48.  r 2� − 1

 49.  r − sin s�y2d 50.  r − cos s�y3d

 51.   Show that the polar curve r − 4 1 2 sec � (called a con-
choid) has the line x − 2 as a vertical asymptote by showing 
that lim r l6` x − 2. Use this fact to help sketch the conchoid.

 52.   Show that the curve r − 2 2 csc � (a conchoid) has the  
line y − 21 as a horizontal asymptote by showing that 
lim r l6` y − 21. Use this fact to help sketch the conchoid.

 53.   Show that the curve r − sin � tan � (called a cissoid of  
Diocles) has the line x − 1 as a vertical asymptote. Show also 
that the curve lies entirely within the vertical strip 0 < x , 1. 
Use these facts to help sketch the cissoid.

 54.  Sketch the curve sx 2 1 y 2 d3 − 4x 2 y 2.

 55.  (a)  In Example 10 the graphs suggest that the limaçon 
r − 1 1 c sin � has an inner loop when | c | . 1. Prove 
that this is true, and find the values of � that correspond 
to the inner loop.

 (b)  From Figure 18 it appears that the limaçon loses its 
dimple when c − 1

2. Prove this.

 56.   Match the polar equations with the graphs labeled I–IX. Give 
reasons for your choices.

  (a) r − cos 3� (b) r − ln �,    1 < � < 6� 

  (c) r − coss�y2d (d) r − coss�y3d
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 67.   Investigate the family of curves with polar equations 
r − 1 1 c cos �, where c is a real number. How does the 
shape change as c changes?

 68.   Investigate the family of polar curves r − 1 1 cosn � , where 

;

;

n is a positive integer. How does the shape change as n 
increases? What happens as n becomes large? Explain the 
shape for large n by considering the graph of r as a function  
of � in Cartesian coordinates.

In this project you will discover the interesting and beautiful shapes that members of families 
of polar curves can take. You will also see how the shape of the curve changes when you vary 
the constants.

 1. (a)  Investigate the family of curves defined by the polar equations r − sin n�, where n is a 
positive integer. How is the number of loops related to n?

  (b) What happens if the equation in part (a) is replaced by r − | sin n� |?
 2.  A family of curves is given by the equations r − 1 1 c sin n�, where c is a real number 

and n is a positive integer. How does the graph change as n increases? How does it change 
as c changes? Illustrate by graphing enough members of the family to support your 
conclusions.

 3. A family of curves has polar equations

r −
1 2 a cos �

1 1 a cos �

   Investigate how the graph changes as the number a changes. In particular, you should  
identify the transitional values of a for which the basic shape of the curve changes.

 4.  The astronomer Giovanni Cassini (1625 –1712) studied the family of curves with polar  
equations

r 4 2 2c2r 2 cos 2� 1 c 4 2 a 4 − 0 

   where a and c are positive real numbers. These curves are called the ovals of Cassini  
even though they are oval shaped only for certain values of a and c. (Cassini thought that 
these curves might represent planetary orbits better than Kepler’s ellipses.) Investigate the 
variety of shapes that these curves may have. In particular, how are a and c related to each 
other when the curve splits into two parts?

DISCOVERY PROJECT ; FAMILIES OF POLAR CURVES

Calculus in Polar Coordinates

In this section we apply the methods of calculus to find areas, arc lengths, and tangents 
involving polar curves.

■	 Area
To develop the formula for the area of a region whose boundary is given by a polar equa-
tion, we need to use the formula for the area of a sector of a circle:

1  A − 1
2 r 2�

where, as in Figure 1, r is the radius and � is the radian measure of the central angle. 
Formula 1 follows from the fact that the area of a sector is proportional to its central 
angle: A − s�y2�d�r 2 − 1

2 r 2�. (See also Exercise 7.3.41.)

10.4

¨

r

FIGURE 1 
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Let 5 be the region, illustrated in Figure 2, bounded by the polar curve r − f s�d and 
by the rays � − a and � − b, where f  is a positive continuous function and where 
0 , b 2 a < 2�. We divide the interval fa, bg into subintervals with endpoints �0, �1,  
�2, . . . , �n and equal width D�. The rays � − �i then divide 5 into n smaller regions with 
central angle D� − �i 2 �i21. If we choose �i* in the ith subinterval f�i21, �ig, then the 
area DAi of the ith region is approximated by the area of the sector of a circle with central 
angle D� and radius f s�i*d. (See Figure 3.)

Thus from Formula 1 we have

DAi < 1
2 f f s�i*dg2 D�

and so an approximation to the total area A of 5 is

2  A < o
n

i−1
 12 f f s�i*dg2 D�

It appears from Figure 3 that the approximation in (2) improves as n l `. But the sums 
in (2) are Riemann sums for the function ts�d − 1

2 f f s�dg2, so

lim
n l `

 o
n

i−1
 12 f f s�i*dg2 D� − yb

a
 12 f f s�dg2 d�

It therefore appears plausible (and can in fact be proved) that the formula for the area A 
of the polar region 5 is

3  A − yb

a
 12 f f s�dg2 d�

Formula 3 is often written as

4  
A − yb

a
 12 r 2 d�

with the understanding that r − f s�d. Note the similarity between Formulas 1 and 4.
When we apply Formula 3 or 4, it is helpful to think of the area as being swept out by 

a rotating ray through O that starts with angle a and ends with angle b.

EXAMPLE 1 Find the area enclosed by one loop of the four-leaved rose r − cos 2�.

SOLUTION The curve r − cos 2� was sketched in Example 10.3.8. Notice from Fig- 
ure 4 that the region enclosed by the right loop is swept out by a ray that rotates from 
� − 2�y4 to � − �y4. Therefore Formula 4 gives

 A − y�y4

2�y4
 12 r 2 d� − 1

2 y�y4

2�y4
 cos2 2� d�

Because the region is symmetric about the polar axis � − 0, we can write

 A − 2 ? 1
2 y�y4

0
 cos2 2� d�

 − y�y4

0
 12 s1 1 cos 4�d d�   fbecause cos2u − 1

2 s1 1 cos 2udg

 − 1
2 f� 1 1

4 sin 4�g0

�y4 −
�

8 � ■

O

¨=b

b
¨=a

r=f(¨)

a

FIGURE 2 

O

¨=b

¨=a

¨=¨i-1

¨=¨i

Î¨

f(̈ i*)

FIGURE 3 

r=cos 2¨ ¨=π
4

¨=_π
4

FIGURE 4 
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EXAMPLE 2 Find the area of the region that lies inside the circle r − 3 sin � and 
outside the cardioid r − 1 1 sin �.

SOLUTION The cardioid (see Example 10.3.7) and the circle are sketched in Fig- 
ure 5 and the desired region is shaded. The values of a and b in Formula 4 are deter-
mined by finding the points of intersection of the two curves. They intersect when 
3 sin � − 1 1 sin �. This gives sin � − 1

2, so � − �y6, 5�y6. The desired area can be 
found by subtracting the area inside the cardioid between � − �y6 and � − 5�y6 from 
the area inside the circle from �y6 to 5�y6. Thus

A − 1
2 y5�y6

�y6
 s3 sin �d2 d� 2 1

2 y5�y6

�y6
 s1 1 sin �d2 d�

Since the region is symmetric about the vertical axis � − �y2, we can write

 A − 2F1
2 y�y2

�y6
 9 sin2� d� 2 1

2 y�y2

�y6
 s1 1 2 sin � 1 sin2�d d�G

 − y�y2

�y6
 s8 sin2� 2 1 2 2 sin �d d�

 − y�y2

�y6
 s3 2 4 cos 2� 2 2 sin �d d�    fbecause sin2� − 1

2 s1 2 cos 2�dg

 − 3� 2 2 sin 2� 1 2 cos �g�y6

�y2

− � � ■

Example 2 illustrates the procedure for finding the area of the region bounded by  
two polar curves. In general, let 5 be a region, as illustrated in Figure 6, that is  
bounded by curves with polar equations r − f s�d, r − ts�d, � − a, and � − b, where 
f s�d > ts�d > 0 and 0 , b 2 a < 2�. The area A of 5 is found by subtracting the  
area inside r − ts�d from the area inside r − f s�d, so using Formula 3 we have

 A − yb

a
 12 f f s�dg2 d� 2 yb

a
 12 fts�dg2 d�

 − 1
2 yb

a
 (f f s�dg2 2 fts�dg2) d�

CAUTION The fact that a single point has many representations in polar coordinates 
sometimes makes it difficult to find all the points of intersection of two polar curves.  
For instance, it is obvious from Figure 5 that the circle and the cardioid have three points 
of intersection; however, in Example 2 we solved the equations r − 3 sin � and 
r − 1 1 sin � and found only two such points, ( 32, �y6) and ( 32, 5�y6). The origin is also 
a point of intersection, but we can’t find it by solving the equations of the curves because 
the origin has no single representation in polar coordinates that satisfies both equations. 
Notice that, when represented as s0, 0d or s0, �d, the origin satisfies r − 3 sin � and so it 
lies on the circle; when represented as s0, 3�y2d, it satisfies r − 1 1 sin � and so it lies 
on the cardioid. Think of two points moving along the curves as the parameter value � 
increases from 0 to 2�. On one curve the origin is reached at � − 0 and � − �; on the 
other curve it is reached at � − 3�y2. The points don’t collide at the origin because they 
reach the origin at differ ent times, but the curves intersect there nonetheless. (See also 
Exercises 10.1.55 – 57.)

Thus, to find all points of intersection of two polar curves, it is recommended that you 
draw the graphs of both curves. It is especially convenient to use a graphing calculator or 
computer to help with this task.

O

¨=5π
6

¨=π
6

r=3 sin ̈

r=1+sin ¨

FIGURE 5 

O

¨=b

¨=a

r=f(¨)

r=g(¨)

FIGURE 6 
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EXAMPLE 3 Find all points of intersection of the curves r − cos 2� and r − 1
2.

SOLUTION If we solve the equations r − cos 2� and r − 1
2 simultaneously, we get 

cos 2� − 1
2 and, therefore, 2� − �y3, 5�y3, 7�y3, 11�y3. Thus the values of � 

between 0 and 2� that satisfy both equations are � − �y6, 5�y6, 7�y6, 11�y6. We 
have found four points of inter section: (1

2, �y6), (1
2, 5�y6), (1

2, 7�y6), and (1
2, 11�y6).

However, you can see from Figure 7 that the curves have four other points of 
inter section—namely, (1

2, �y3), (1
2, 2�y3), (1

2, 4�y3), and (1
2, 5�y3). These can be found 

using symmetry or by noticing that another equation of the circle is r − 21
2 and then 

solving the equations r − cos 2� and r − 21
2 simultaneously.� ■

■	 Arc Length
Recall from Section 10.3 that rectangular coordinates sx, yd and polar coordinates sr, �d 
are related by the equations x − r cos �, y − r sin �. Regarding � as a parameter allows 
us to write parametric equations for a polar curve r − f s�d as follows.

5  x − r cos � − f s�d cos �  y − r sin � − f s�d sin �

To find the length of a polar curve r − f s�d, a ⩽ � ⩽ b, we start with Equations 5 
and differentiate with respect to � (using the Product Rule):

dx

d�
−

dr

d�
 cos � 2 r sin �      

dy

d�
−

dr

d�
 sin � 1 r cos �

Then, using cos2� 1 sin2� − 1, we have

 S dx

d�
D2

1 S dy

d�
D2

− S dr

d�
D2

cos2� 2 2r 
dr

d�
 cos � sin � 1 r 2 sin2�

 − 1 S dr

d�
D2

 sin2� 1 2r 
dr

d�
 sin � cos � 1 r 2 cos2�

 − S dr

d�
D2

1 r 2

Assuming that f 9 is continuous, we can use Theorem 10.2.5 to write the arc length as

L − yb

a
 ÎS dx

d�D2

1 S dy

d�D2 

 d�

Therefore the length of a curve with polar equation r − f s�d, a < � < b, is

6
 

L − yb

a
 Îr 2 1 S dr

d�D2 

 d�

FIGURE 7 

r=cos 2¨

1
2r=

”   ,     ’1
2

π
3

”   ,     ’1
2

π
6

Parametric equations for  
a polar curve
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EXAMPLE 4 Find the length of the cardioid r − 1 1 sin �.

SOLUTION The cardioid is shown in Figure 8. (We sketched it in Example 10.3.7.) Its 
full length is given by the parameter interval 0 < � < 2�, so Formula 6 gives 

L − y2�

0
 Îr 2 1 S dr

d�D2  

 d� − y2�

0
 ss1 1 sin �d2 1 cos2�  d� − y2�

0
 s2 1 2 sin �  d�

We could evaluate this integral by multiplying and dividing the integrand by 
s2 2 2 sin �  , or we could use mathematical software. In any event, we find that the 
length of the cardioid is L − 8.� ■

■	 Tangents
To find a tangent line to a polar curve r − f s�d, we again regard � as a parameter and 
write parametric equations for the curve following Equations 5:

x − r cos � − f s�d cos �  y − r sin � − f s�d sin �

Then, using the method for finding the slope of a parametric curve (Equation 10.2.1) and 
the Product Rule, we have

7  
dy

dx
−

  

dy

d�
  

dx

d�

−

  

dr

d�
 sin � 1 r cos �  

dr

d�
 cos � 2 r sin �

We locate horizontal tangents by finding the points where dyyd� − 0 (provided that 
dxyd� ± 0). Likewise, we locate vertical tangents at the points where dxyd� − 0 (pro-
vided that dyyd� ± 0).

Notice that if we are looking for tangent lines at the pole, then r − 0 and Equation 7 
simplifies to

dy

dx
− tan �    if 

dr

d�
± 0

For instance, in Example 10.3.8 we found that r − cos 2� − 0 when � − �y4 or 3�y4. 
This means that the lines � − �y4 and � − 3�y4 (or y − x and y − 2x) are tangent 
lines to r − cos 2� at the origin.

EXAMPLE 5
(a) For the cardioid r − 1 1 sin � of Example 4, find the slope of the tangent line 
when � − �y3.
(b) Find the points on the cardioid where the tangent line is horizontal or vertical.

SOLUTION Using Equation 7 with r − 1 1 sin �, we have

 
dy

dx
−

 
dr

d�
 sin � 1 r cos � 

dr

d�
 cos � 2 r sin �

−
cos � sin � 1 s1 1 sin �d cos �

cos � cos � 2 s1 1 sin �d sin �

 −
cos � s1 1 2 sin �d

1 2 2 sin2� 2 sin �
−

cos � s1 1 2 sin �d
s1 1 sin �ds1 2 2 sin �d

O

FIGURE 8  
r − 1 1 sin �
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(a) The slope of the tangent at the point where � − �y3 is

 
dy

dx Z
�−�y3

−
coss�y3df1 1 2 sins�y3dg

f1 1 sins�y3dg f1 2 2 sins�y3dg
 −

1
2 (1 1 s3 )

(1 1 s3 y2)(1 2 s3 )

 −
1 1 s3 

(2 1 s3 )(1 2 s3 )
−

1 1 s3 

21 2 s3 

− 21

(b) Observe that

dy

d�
− cos � s1 1 2 sin �d − 0  when � −

�

2
, 

3�

2
, 

7�

6
, 

11�

6

dx

d�
− s1 1 sin �ds1 2 2 sin �d − 0   when � −

3�

2
, 

�

6
, 

5�

6

Therefore there are horizontal tangents at the points s2, �y2d, ( 12, 7�y6), ( 12, 11�y6) 
and vertical tangents at ( 32, �y6) and ( 32, 5�y6). When � − 3�y2, both dyyd� and 
dxyd� are 0, so we must be careful. Using l’Hospital’s Rule, we have

 lim
�ls3�y2d2

dy

dx
− S lim

�l s3�y2d2

1 1 2 sin �

1 2 2 sin �DS lim
�l s3�y2d2

cos �

1 1 sin �D
 − 2

1

3
 lim
�l s3�y2d2

cos�

1 1 sin �
− 2

1

3
 lim
�l s3�y2d2

2sin �

cos �
− `

By symmetry, lim
� l

 

s3�y2d1
 
dy

dx
− 2`

Thus there is a vertical tangent line at the pole (see Figure 9).� ■

NOTE Instead of having to remember Equation 7, we could employ the method used to 
derive it. For instance, in Example 5 we could have written parametric equations for the 
curve as

 x − r cos � − s1 1 sin �d cos � − cos � 1 1
2 sin 2�

 y − r sin � − s1 1 sin �d sin � − sin � 1 sin2�

Then we have

 
dy

dx
−

dyyd�

dxyd�
−

cos � 1 2 sin � cos �

2sin � 1 cos 2�
−

cos � 1 sin 2�

2sin � 1 cos 2�

which is equivalent to our previous expression.

”   ,     ’

”   ,   ’”   ,     ’5π
6

3
2

7π
6

1
2 ”   ,      ’11π

6
1
2

3
2

π
6

m=_1
”1+      ,    ’π

3
œ„3
2

”2,    ’π
2

0,”         ’3π
2

FIGURE 9  
Tangent lines for r − 1 1 sin �

10.4 Exercises
1–4 Find the area of the region that is bounded by the given curve 
and lies in the specified sector.

 1.   r − s2� ,  0 < � < �y2

 2.  r − e�,  3�y4 < � < 3�y2

 3.   r − sin � 1 cos �,  0 < � < �

 4.  r − 1y�,  �y2 < � < 2�
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5–8 Find the area of the shaded region.

 5. 

r@= sin  2¨

   6. 

r=2+cos ¨

 7. 

r=4+3 sin ¨

   8. 

r= œ„„„„ln ¨ , 1¯¨¯2π

9–12 Sketch the curve and find the area that it encloses.

 9. r − 4 cos �   10. r − 2 1 2 cos � 

 11. r − 3 2 2 sin �  12. r − 2 sin 3� 

13–16 Graph the curve and find the area that it encloses.

 13.  r − 2 1 sin 4� 14.  r − 3 2 2 cos 4�

 15.  r − s1 1 cos2s5�d  16.  r − 1 1 5 sin 6�

17–21 Find the area of the region enclosed by one loop of  
the curve.

 17.  r − 4 cos 3� 18.  r 2 − 4 cos 2�

 19.  r − sin 4� 20.  r − 2 sin 5�

 21.  r − 1 1 2 sin � (inner loop)

 22.   Find the area enclosed by the loop of the strophoid 
r − 2 cos � 2 sec �.

23–28 Find the area of the region that lies inside the first curve 
and outside the second curve.

 23.  r − 4 sin �,  r − 2

 24.  r − 1 2 sin �,  r − 1

 25.  r 2 − 8 cos 2�,  r − 2

 26.  r − 1 1 cos �,  r − 2 2 cos �

 27.  r − 3 cos �,  r − 1 1 cos �

 28.  r − 3 sin �,  r − 2 2 sin �

;

29–34 Find the area of the region that lies inside both curves.

 29.  r − 3 sin �,  r − 3 cos �

 30.  r − 1 1 cos �,  r − 1 2 cos �

 31.  r − sin 2�,  r − cos 2�

 32.  r − 3 1 2 cos �,  r − 3 1 2 sin �

 33.  r 2 − 2 sin 2�,  r − 1

 34.  r − a sin �,  r − b cos �,  a . 0, b . 0

 35.   Find the area inside the larger loop and outside the smaller 
loop of the limaçon r − 1

2 1 cos �.

 36.   Find the area between a large loop and the enclosed small 
loop of the curve r − 1 1 2 cos 3�.

37–42 Find all points of intersection of the given curves.

 37.  r − sin �,  r − 1 2 sin �

 38.  r − 1 1 cos �,  r − 1 2 sin �

 39.  r − 2 sin 2�,  r − 1

 40.  r −  cos �, r −  sin 2�

 41. r 2 − 2 cos 2�, r − 1

 42.  r 2 − sin 2�,  r 2 − cos 2�

43–46 Find the area of the shaded region.

 43. r=3+2 cos ¨

r=sin 2¨

 44. 

r=œ„2 cos ¨   

r@=œ„3 sin 2¨   
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53–54 Find the exact length of the portion of the curve shown 
in blue.

 53. 
r=3+3 sin ¨

 54. r=¨+2 

2

55–56 Find the exact length of the curve. Use a graph to 
determine the parameter interval.

 55.  r − cos4s�y4d 56.  r − cos2s�y2d

57–58 Set up, but do not evaluate, an integral to find the length 
of the portion of the curve shown in blue. 

 57.  r=cos(¨/5)

 58. 
 r=sin ¨

¨

59–62 Use a calculator or computer to find the length of the 
curve correct to four decimal places. If necessary, graph the 
curve to determine the parameter interval.

 59.  One loop of the curve r − cos 2�

 60.  r − tan �,  �y6 < � < �y3

 61.  r − sins6 sin �d 62.  r − sins�y4d

;

 45. 

r=3 cos ¨ 

r=1+cos ¨ 

 46. 
r=1-2 sin ¨ 

 47.  The points of intersection of the cardioid r − 1 1 sin � and 
the spiral loop r − 2�, 2�y2 < � < �y2, can’t be found 
exactly. Use a graph to find the approximate values of � at 
which the curves intersect. Then use these values to estimate 
the area that lies inside both curves.

 48.   When recording live performances, sound engineers often 
use a microphone with a cardioid pickup pattern because it 
suppresses noise from the audience. Suppose the microphone 
is placed 4 m from the front of the stage (as in the figure) 
and the boundary of the optimal pickup region is given by 
the cardioid r − 8 1 8 sin �, where r is measured in meters 
and the microphone is at the pole. The musicians want to 
know the area they will have on stage within the optimal 
pickup range of the microphone. Answer their question.

stage

audience
microphone

12 m

4 m

49–52 Find the exact length of the polar curve.

 49.  r − 2 cos �,  0 < � < � 50.  r − e�y2,  0 < � < �y2

 51.  r − � 2,  0 < � < 2� 52.  r − 2s1 1 cos �d

;
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63–68  Find the slope of the tangent line to the given polar curve 
at the point specified by the value of �.

 63. r − 2 cos  �,  � − �y3 64.  r − 2 1 sin 3 �,  � − �y4

 65.  r − 1y�,  � − �

 66.  r − sin � 1 2 cos �,  � − �y2

 67.  r − cos 2�,  � − �y4

 68.  r − 1 1 2 cos �,  � − �y3

69–72  Find the points on the given curve where the tangent line 
is horizontal or vertical.

 69.  r − sin � 70.  r − 1 2 sin �

 71.  r − 1 1 cos � 72.  r − e �

 73.    Let P be any point (except the origin) on the curve r − f s�d. 
If � is the angle between the tangent line at P and the radial 
line OP, show that

tan � −
r

dryd�

[Hint: Observe that � − � 2 � in the figure.]

O

P

ÿ

¨ ˙

r=f(¨ )

 74.   (a)  Use Exercise 73 to show that the angle between the tan-
gent line and the radial line is � − �y4 at every point on 
the curve r − e�.

 (b)  Illustrate part (a) by graphing the curve and the tangent 
lines at the points where � − 0 and �y2.

 (c)  Prove that any polar curve r − f s�d with the property that 
the angle � between the radial line and the tangent line is a 
constant must be of the form r − Ce k�, where C and k are 
constants.

 75.  (a)  Use Formula 10.2.9 to show that the area of the surface 
generated by rotating the polar curve

r − f s�d    a < � < b

  (where f 9 is continuous and 0 < a , b < �) about the 
polar axis is

S − yb

a
 2�r sin � Îr 2 1 S dr

d�
D2

 d�

 (b)  Use the formula in part (a) to find the surface area 
generated by rotating the lemniscate r 2 − cos 2� about 
the polar axis.

 76.  (a)  Find a formula for the area of the surface generated by 
rotating the polar curve r − f s�d, a < � < b (where f 9 is 
continuous and 0 < a , b < �), about the line � − �y2.

 (b)  Find the surface area generated by rotating the lemniscate 
r 2 − cos 2� about the line � − �y2.

;

Conic Sections

In this section we give geometric definitions of parabolas, ellipses, and hyperbolas and 
derive their standard equations. They are called conic sections, or conics, because they 
result from intersecting a cone with a plane as shown in Figure 1.

ellipse hyperbolaparabola

10.5

FIGURE 1 
Conics
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■	 Parabolas
A parabola is the set of points in a plane that are equidistant from a fixed point F (called 
the focus) and a fixed line (called the directrix). This definition is illustrated by Figure 2. 
Notice that the point halfway between the focus and the directrix lies on the parabola; it 
is called the vertex. The line through the focus perpendicular to the directrix is called the 
axis of the parabola.

In the 16th century Galileo showed that the path of a projectile that is shot into the air 
at an angle to the ground is a parabola. Since then, parabolic shapes have been used in 
designing automobile headlights, reflecting telescopes, and suspension bridges. (See 
Problem 22 in Problems Plus following Chapter 3 for the reflection property of parabolas 
that makes them so useful.)

We obtain a particularly simple equation for a parabola if we place its vertex at the 
origin O and its directrix parallel to the x-axis as in Figure 3. If the focus is the point 
s0, pd, then the directrix has the equation y − 2p. If Psx, yd is any point on the parabola, 
then the distance from P to the focus is

| PF | − sx 2 1 sy 2 pd2 

and the distance from P to the directrix is | y 1 p |. (Figure 3 illustrates the case where 
p . 0.) The defining property of a parabola is that these distances are equal:

sx 2 1 sy 2 pd2 − | y 1 p |
We get an equivalent equation by squaring and simplifying:

 x 2 1 sy 2 pd2 − | y 1 p |2 − sy 1 pd2

 x 2 1 y 2 2 2py 1 p 2 − y 2 1 2py 1 p 2

 x 2 − 4py

1  An equation of the parabola with focus s0, pd and directrix y − 2p is

x 2 − 4py

If we write a − 1ys4pd, then the standard equation of a parabola (1) becomes y − ax 2. 
It opens upward if p . 0 and downward if p , 0 [see Figure 4, parts (a) and (b)]. The 
graph is symmetric with respect to the y-axis because (1) is unchanged when x is replaced 
by 2x.

0 x

y

( p, 0)

x=_p

(d) ¥=4px, p<0

0 x

y

( p, 0)

x=_p

(c) ¥=4px, p>0

0
x

y

(0, p)

y=_p

(b) ≈=4py, p<0

0 x

y

(0, p)

y=_p

(a) ≈=4py, p>0

axis

F
focus

parabola

vertex directrix

FIGURE 2 

x

y

O

F(0, p)

y=_p

P(x, y)

y

p

FIGURE 3 

FIGURE 4 
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If we interchange x and y in (1), we obtain the following.

2  An equation of the parabola with focus s p, 0d and directrix x − 2p is

y 2 − 4px

(Inter changing x and y amounts to reflecting about the diagonal line y − x.) The parab-
ola opens to the right if p . 0 and to the left if p , 0 [see Figure 4, parts (c) and (d)]. In 
both cases the graph is symmetric with respect to the x-axis, which is the axis of the 
parabola.

EXAMPLE 1 Find the focus and directrix of the parabola y 2 1 10x − 0 and sketch  
the graph.

SOLUTION If we write the equation as y 2 − 210x and compare it with Equation 2, we 
see that 4p − 210, so p − 25

2. Thus the focus is s p, 0d − (25
2, 0) and the directrix is 

x − 5
2. The sketch is shown in Figure 5.� ■

■	 Ellipses
An ellipse is the set of points in a plane the sum of whose distances from two fixed points 
F1 and F2 is a constant (see Figure 6). These two fixed points are called the foci (plural 
of focus). One of Kepler’s laws is that the orbits of the planets in the solar system are 
ellipses with the sun at one focus.

In order to obtain the simplest equation for an ellipse, we place the foci on the x-axis 
at the points s2c, 0d and sc, 0d as in Figure 7 so that the origin is halfway between the 
foci. Let the sum of the distances from a point on the ellipse to the foci be 2a . 0. Then 
Psx, yd is a point on the ellipse when

| PF1 | 1 | PF2 | − 2a

that is, ssx 1 cd2 1 y 2 1 ssx 2 cd2 1 y 2 − 2a

or ssx 2 cd2 1 y 2 − 2a 2 ssx 1 cd2 1 y 2 

Squaring both sides, we have

x 2 2 2cx 1 c 2 1 y 2 − 4a 2 2 4assx 1 cd2 1 y 2 1 x 2 1 2cx 1 c 2 1 y 2

which simplifies to assx 1 cd2 1 y 2 − a 2 1 cx

We square again:

 a 2sx 2 1 2cx 1 c 2 1 y 2 d − a 4 1 2a 2cx 1 c 2x 2

which becomes  sa 2 2 c 2 dx 2 1 a 2 y 2 − a 2sa 2 2 c 2 d

From triangle F1F2P in Figure 7 we can see that 2c , 2a, so c , a and therefore 
a 2 2 c 2 . 0. For convenience, let b 2 − a 2 2 c 2. Then the equation of the ellipse 
becomes b 2x 2 1 a 2 y 2 − a 2b 2 or, if both sides are divided by a 2b 2, 

3  
x 2

a 2 1
 y 2

b 2 − 1

FIGURE 5 

0 x

y

x=5
2¥+10x=0

”_   , 0’5
2

FIGURE 6

F¡ F™

P

FIGURE 7
P is on the ellipse when 

| PF1 | 1 | PF2 | − 2a .

F¡(_c, 0) F™(c, 0)0 x

y
P(x, y)
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Since b 2 − a 2 2 c 2 , a 2, it follows that b , a. The x-intercepts are found by setting 
y − 0. Then x 2ya 2 − 1, or x 2 − a 2, so x − 6a. The corresponding points sa, 0d and 
s2a, 0d are called the vertices of the ellipse and the line segment joining the vertices is 
called the major axis. To find the y-intercepts we set x − 0 and obtain y 2 − b 2, so 
y − 6b. The line segment joining s0, bd and s0, 2bd is the minor axis. Equation 3 is 
unchanged if x is replaced by 2x or y is replaced by 2y, so the ellipse is symmetric  
about both axes. Notice that if the foci coincide, then c − 0, so a − b and the ellipse 
becomes a circle with radius r − a − b.

We summarize this discussion as follows (see also Figure 8).

4  The ellipse

x 2

a 2 1
 y 2

b 2 − 1    a > b . 0

has foci s6c, 0d, where c 2 − a 2 2 b 2, and vertices s6a, 0d.

If the foci of an ellipse are located on the y-axis at s0, 6cd, then we can find its equa-
tion by interchanging x and y in (4). (See Figure 9.)

5  The ellipse

x 2

b 2 1
 y 2

a 2 − 1    a > b . 0

has foci s0, 6cd, where c 2 − a 2 2 b 2, and vertices s0, 6ad.

EXAMPLE 2 Sketch the graph of 9x 2 1 16y 2 − 144 and locate the foci.

SOLUTION Divide both sides of the equation by 144:

x 2

16
1

 y 2

9
− 1

The equation is now in the standard form for an ellipse, so we have a 2 − 16, b 2 − 9, 
a − 4, and b − 3. The x-intercepts are 64 and the y-intercepts are 63. Also, 
c 2 − a 2 2 b 2 − 7, so c − s7  and the foci are (6s7 , 0). The graph is sketched in 
Figure 10.� ■

EXAMPLE 3 Find an equation of the ellipse with foci s0, 62d and vertices s0, 63d.

SOLUTION Using the notation of (5), we have c − 2 and a − 3. Then we obtain 
b 2 − a 2 2 c 2 − 9 2 4 − 5, so an equation of the ellipse is

x 2

5
1

 y 2

9
− 1

Another way of writing the equation is 9x 2 1 5y 2 − 45.� ■

Like parabolas, ellipses have an interesting reflection property that has practical con-
se quences. If a source of light or sound is placed at one focus of a surface with elliptical 
cross-sections, then all the light or sound is reflected off the surface to the other focus 

FIGURE 8 
x 2

a 2 1
 y 2

b 2 − 1, a > b

(c, 0)0 x

y

ab

c

(0, b)

(_c, 0)

(0, _b)

(a, 0)

(_a, 0)

FIGURE 9 
x 2

b 2 1
 y 2

a 2 − 1, a > b

0 x

y
(0, a)

(0, c)

(b, 0)

(0, _c)

(_b, 0)

(0, _a)

FIGURE 10 
9x 2 1 16y 2 − 144

0 x

y

(0, 3)

{œ„7, 0}

(4, 0)
(_4, 0)

(0, _3)

{_œ„7, 0}
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(see Exercise 67). This principle is used in lithotripsy, a treatment for kidney stones.  
A reflector with elliptical cross-section is placed in such a way that the kidney stone is  
at one focus. High-intensity sound waves generated at the other focus are reflected to  
the stone and destroy it without damaging surrounding tissue. The patient is spared the 
trauma of surgery and recovers within a few days.

■	 Hyperbolas
A hyperbola is the set of all points in a plane the difference of whose distances from 
two fixed points F1 and F2 (the foci) is a constant. This definition is illustrated in Fig-
ure 11.

Hyperbolas occur frequently as graphs of equations in chemistry, physics, biology, 
and economics (Boyle’s Law, Ohm’s Law, supply and demand curves). A particularly 
significant application of hyperbolas was found in the long-range navigation systems 
developed in World Wars I and II (see Exercise 53).

Notice that the definition of a hyperbola is similar to that of an ellipse; the only 
change is that the sum of distances has become a difference of distances. In fact, the 
derivation of the equation of a hyperbola is also similar to the one given earlier for an 
ellipse. It is left as Exercise 54 to show that when the foci are on the x-axis at s6c, 0d 
and the difference of dis tances is | PF1 | 2 | PF2 | − 62a, then the equation of the 
hyperbola is

6  
x 2

a 2 2
y 2

b 2 − 1

where c 2 − a 2 1 b 2. Notice that the x-intercepts are again 6a and the points sa, 0d and 
s2a, 0d are the vertices of the hyperbola. But if we put x − 0 in Equation 6 we get 
y 2 − 2b 2, which is impossible, so there is no y-intercept. The hyperbola is symmetric 
with respect to both axes.

To analyze the hyperbola further, we look at Equation 6 and obtain

x 2

a 2 − 1 1
y 2

b 2 > 1

This shows that x 2 > a 2, so | x | − sx 2 > a. Therefore we have x > a or x < 2a. This 
means that the hyperbola consists of two parts, called its branches.

When we draw a hyperbola it is useful to first draw its asymptotes, which are the 
dashed lines y − sbyadx and y − 2sbyadx shown in Figure 12. Both branches of the 
hyperbola approach the asymptotes; that is, they come arbitrarily close to the asymp-
totes. (See Exercise 4.5.77, where these lines are shown to be slant asymptotes.)

7  The hyperbola

x 2

a 2 2
 y 2

b 2 − 1

has foci s6c, 0d, where c 2 − a 2 1 b 2, vertices s6a, 0d, and asymptotes 
y − 6sbyadx.

F™(c, 0)F¡(_c, 0) 0 x

y

P(x, y)

FIGURE 11  P is on the hyperbola 
when | PF1 | 2 | PF2 | − 62a.

(a, 0)

(c, 0)0 x

y

(_c, 0)

(_a, 0)

y=_   xb
a y=   xb

a

FIGURE 12 
x 2

a 2 2
y 2

b 2 − 1
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If the foci of a hyperbola are on the y-axis, then by reversing the roles of x and y we 
obtain the following information, which is illustrated in Figure 13.

8  The hyperbola

y 2

a 2 2
x 2

b 2 − 1

has foci s0, 6cd, where c 2 − a 2 1 b 2, vertices s0, 6ad, and asymptotes 
y − 6saybdx.

EXAMPLE 4 Find the foci and asymptotes of the hyperbola 9x 2 2 16y 2 − 144 and 
sketch its graph.

SOLUTION If we divide both sides of the equation by 144, it becomes

x 2

16
2

y 2

9
− 1

which is of the form given in (7) with a − 4 and b − 3. Since c 2 − 16 1 9 − 25, the 
foci are s65, 0d. The asymptotes are the lines y − 3

4 x and y − 23
4 x. The graph is 

shown in Figure 14.� ■

EXAMPLE 5 Find the foci and equation of the hyperbola with vertices s0, 61d and 
asymptote y − 2x.

SOLUTION From (8) and the given information, we see that a − 1 and ayb − 2. Thus 
b − ay2 − 1

2 and c 2 − a 2 1 b 2 − 5
4. The foci are (0, 6s5 y2) and the equation of the 

hyperbola is

 y 2 2 4x 2 − 1� ■

■	 Shifted Conics
As discussed in Appendix C, we shift conics by taking the standard equations (1), (2), 
(4), (5), (7), and (8) and replacing x and y by x 2 h and y 2 k.

EXAMPLE 6 Find an equation of the ellipse with foci s2, 22d, s4, 22d and vertices 
s1, 22d, s5, 22d. 

SOLUTION The major axis is the line segment that joins the vertices s1, 22d, s5, 22d 
and has length 4, so a − 2. The distance between the foci is 2, so c − 1. Thus 
b 2 − a 2 2 c 2 − 3. Since the center of the ellipse is s3, 22d, we replace x and y in (4) 
by x 2 3 and y 1 2 to obtain

sx 2 3d2

4
1

sy 1 2d2

3
− 1

as the equation of the ellipse.� ■

0 x

y

(0, c)

(0, _c)

(0, a)

(0, _a)

y=_   xa
b

a
by=   x

FIGURE 13 
y 2

a 2 2
x 2

b 2 − 1

FIGURE 14 
9x 2 2 16y 2 − 144

0 x

y

(5, 0)(_5, 0)
(4, 0)(_4, 0)

y=_   x3
4 y=   x3

4
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EXAMPLE 7 Sketch the conic 9x 2 2 4y 2 2 72x 1 8y 1 176 − 0 and find its foci.

SOLUTION We complete the squares as follows:

 4sy 2 2 2yd 2 9sx 2 2 8xd − 176

 4sy 2 2 2y 1 1d 2 9sx 2 2 8x 1 16d − 176 1 4 2 144

 4sy 2 1d2 2 9sx 2 4d2 − 36

 
sy 2 1d2

9
2

sx 2 4d2

4
− 1

This is in the form (8) except that x and y are replaced by x 2 4 and y 2 1. Thus 
a 2 − 9, b 2 − 4, and c 2 − 13. The hyperbola is shifted four units to the right and one
unit upward. The foci are (4, 1 1 s13 ) and (4, 1 2 s13 ) and the vertices are s4, 4d 
and s4, 22d. The asymptotes are y 2 1 − 63

2 sx 2 4d. The hyperbola is sketched in 
Figure 15.� ■

FIGURE 15  
9x 2 2 4y 2 2 72x 1 8y 1 176 − 0

0 x

y

y-1=_   (x-4)3
2

y-1=   (x-4)3
2

(4, 4)

(4, _2)

(4, 1)

10.5 Exercises

1–8  Find the vertex, focus, and directrix of the parabola and 
sketch its graph.

 1. x 2 − 8y  2. 9x − y 2 

 3. 5x 1 3y 2 − 0  4. x 2 1 12y − 0 

 5. sy 1 1d2 − 16sx 2 3d 

 6. sx 2 3d2 − 8sy 1 1d

 7.  y 2 1 6y 1 2x 1 1 − 0

 8. 2x 2 2 16x 2 3y 1 38 − 0

9–10  Find an equation of the parabola. Then find the focus and 
directrix.

 9. y

x

1

_2

 10. y

x

1

20

11–16  Find the vertices and foci of the ellipse and sketch  
its graph.

 11. 
x 2

16
1

y 2

25
− 1  12. 

x 2

4
1

y 2

3
− 1

 13. x 2 1 3y 2 − 9

 14. x 2 − 4 2 2y 2

 15. 4x 2 1 25y 2 2 50y − 75

 16. 9x 2 2 54x 1 y 2 1 2y 1 46 − 0

17–18  Find an equation of the ellipse. Then find its foci.

 17. y

x

1

10

 18. y

x

1

2

  

19–24  Find the vertices, foci, and asymptotes of the hyperbola 
and sketch its graph.

 19.  
y 2

25
2

 x 2

9
− 1 20.   

x 2

36
2

y 2

64
− 1

 21.  x 2 2 y 2 − 100

 22.   y 2 2 16x 2 − 16
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 39.   Ellipse,  foci s62, 0d,  vertices s65, 0d

 40.   Ellipse,  foci (0, 6s2 ),  vertices s0, 62d

 41.   Ellipse,  foci s0, 2d, s0, 6d,  vertices s0, 0d, s0, 8d

 42.   Ellipse,  foci s0, 21d, s8, 21d,  vertex s9, 21d

 43.   Ellipse,  center s21, 4d,  vertex s21, 0d,  focus  s21, 6d

 44.   Ellipse,  foci s64, 0d,  passing through s24, 1.8d

 45.   Hyperbola,  vertices s63, 0d,  foci s65, 0d

 46.   Hyperbola,  vertices s0, 62d,  foci s0, 65d

 47.    Hyperbola,  vertices s23, 24d, s23, 6d,   

foci s23, 27d, s23, 9d

 48.    Hyperbola,  vertices s21, 2d, s7, 2d,  foci s22, 2d, s8, 2d

 49.   Hyperbola,  vertices s63, 0d,  asymptotes y − 62x

 50.    Hyperbola,  foci s2, 0d, s2, 8d, 
 asymptotes y − 3 1 1

2 x and y − 5 2 1
2 x

 51.    The point in a lunar orbit nearest the surface of the moon is 
called perilune and the point farthest from the surface is 
called apolune. The Apollo 11 spacecraft was placed in an 
elliptical lunar orbit with perilune altitude 110 km and apo-
lune altitude 314 km (above the moon). Find an equation of 
this ellipse if the radius of the moon is 1728 km and the cen-
ter of the moon is at one focus.

 52.    A cross-section of a parabolic reflector is shown in the figure. 
The bulb is located at the focus and the opening at the focus  
is 10 cm.

 (a) Find an equation of the parabola.
 (b)  Find the diameter of the opening | CD |, 11 cm from  

the vertex.

5 cm

5 cm

A

B

C

D

V F
11 cm

 53.    The LORAN (LOng RAnge Navigation) radio navigation  
system was widely used until the 1990s when it was super-
seded by the GPS system. In the LORAN system, two radio 

 23.   x 2 2 y 2 1 2y − 2

 24.   9y 2 2 4x 2 2 36y 2 8x − 4

25–26 Find an equation for the hyperbola. Then find the foci and 
asymptotes.

 25. y

x

1

10

 26. y

x

4

40

  

27–32  Identify the type of conic section whose equation is given 
and find the vertices and foci.

 27.  4x 2 − y 2 1 4 28.   4x 2 − y 1 4

 29.  x 2 − 4y 2 2y 2

 30.   y 2 2 2 − x 2 2 2x

 31.  3x 2 2 6x 2 2y − 1

 32.   x 2 2 2x 1 2y 2 2 8y 1 7 − 0

33–50  Find an equation for the conic that satisfies the given  
conditions.

 33.   Parabola,  vertex s0, 0d,  focus s1, 0d

 34.   Parabola,  focus s0, 0d,  directrix y − 6

 35.   Parabola,  focus s24, 0d,  directrix x − 2

 36.   Parabola,  focus s2, 21d,  vertex s2, 3d

 37.    Parabola,  vertex s3, 21d,  horizontal axis, 
passing through s215, 2d

 38.    Parabola,  vertical axis,   
passing through s0, 4d, s1, 3d, and s22, 26d
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stations located at A and B transmit simul ta neous signals to a 
ship or an aircraft located at P. The onboard computer converts 
the time difference in receiving these signals into a distance 
difference | PA | 2 | PB |, and this, according to the definition 
of a hyperbola, locates the ship or aircraft on one branch  
of a hyperbola (see the figure). Suppose that station B is  
located 640 km due east of station A on a coastline. A ship 
received the signal from station B 1200 micro seconds (ms) 
before it received the signal from station A.

 (a)  Assuming that radio signals travel at a speed of 300 my
ms, find an equation of the hyperbola on which the ship 
lies.

 (b)  If the ship is due north of B, how far off the coastline is  
the ship?

640 km

transmitting stations

coastlineA B

P

 54.    Use the definition of a hyperbola to derive Equation 6 for a 
hyperbola with foci s6c, 0d and vertices s6a, 0d.

 55.    Show that the function defined by the upper branch of the 
hyperbola y 2ya 2 2 x 2yb 2 − 1 is concave upward.

 56.    Find an equation for the ellipse with foci s1, 1d and s21, 21d 
and major axis of length 4.

 57.   Determine the type of curve represented by the equation

x 2

k
1

 y 2

k 2 16
− 1

  in each of the following cases:
 (a) k . 16  (b) 0 , k , 16  (c) k , 0
 (d)  Show that all the curves in parts (a) and (b) have the same 

foci, no matter what the value of k is.

 58.   (a)  Show that the equation of the tangent line to the parabola  
y 2 − 4px at the point sx0, y0d can be written as

y0y − 2psx 1 x 0d

 (b)  What is the x-intercept of this tangent line? Use this fact 
to draw the tangent line.

 59.    Show that the tangent lines to the parabola x 2 − 4py drawn 
from any point on the directrix are perpendicular.

 60.    Show that if an ellipse and a hyperbola have the same foci, 
then their tangent lines at each point of intersection are  
perpendicular.

 61.    Use parametric equations and Simpson’s Rule with n − 8 to 
estimate the circumference of the ellipse 9x 2 1 4y 2 − 36.

 62.    The dwarf planet Pluto travels in an elliptical orbit around  
the sun (at one focus). The length of the major axis  
is 1.18 3 1010 km and the length of the minor axis is 
1.14 3 1010 km. Use Simpson’s Rule with n − 10 to estimate 
the distance traveled by the planet during one complete orbit 
around the sun.

 63.    Find the area of the region enclosed by the hyperbola 
x 2ya 2 2 y 2yb 2 − 1 and the vertical line through a focus.

 64.   (a)  If an ellipse is rotated about its major axis, find the vol-
ume of the resulting solid.

 (b)  If it is rotated about its minor axis, find the resulting 
volume.

 65.    Find the centroid of the region enclosed by the x-axis and the 
top half of the ellipse 9x 2 1 4y 2 − 36.

 66.   (a)  Calculate the surface area of the ellipsoid that is gener-
ated by rotating an ellipse about its major axis.

 (b)  What is the surface area if the ellipse is rotated about its 
minor axis?

67–68 Reflection Properties of Conic Sections We saw the 
reflection property of parabolas in Problem 22 of Problems Plus 
following Chapter 3. Here we investigate the reflection properties 
of ellipses and hyperbolas.

 67.    Let Psx1, y1d be a point on the ellipse x 2ya 2 1 y 2yb 2 − 1 
with foci F1 and F2 and let � and � be the angles between the 
lines PF1, PF2 and the ellipse as shown in the figure. Prove 
that � − �. This explains how whispering galleries and litho-
tripsy work. Sound coming from one focus is reflected and 
passes through the other focus. [Hint: Use the formula in 
Problem 21 in Problems Plus following Chapter 3 to show 
that tan � − tan �.]

F¡ F™0 x

y

∫
å

+    =1≈
a@

¥
b@

P(⁄, ›)

 68.    Let Psx1, y1d be a point on the hyperbola x 2ya 2 2 y 2yb 2 − 1 
with foci F1 and F2 and let � and � be the angles between  
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 69. The graph shows two red circles with centers s21, 0d and 
s1, 0d and radii 3 and 5, respectively. Consider the collection 
of all circles tangent to both of these circles. (Some of these 
are shown in blue.) Show that the centers of all such circles 
lie on an ellipse with foci s61, 0d. Find an equation of this 
ellipse.

0 x

y

1

1

the lines PF1, PF2 and the hyperbola as shown in the figure. 
Prove that � − �. This shows that light aimed at a focus F2 of 
a hyperbolic mirror is reflected toward the other focus F1.

0 x

y

å
∫

F™F¡

P

F™F¡

P

Conic Sections in Polar Coordinates

In Section 10.5 we defined the parabola in terms of a focus and directrix, but we defined 
the ellipse and hyperbola in terms of two foci. In this section we give a more unified 
treatment of all three types of conic sections in terms of a focus and directrix.

■	 A Unified Description of Conics
If we place the focus at the origin, then a conic section has a simple polar equation, 
which provides a convenient description of the motion of planets, satellites, and 
comets.

1  Theorem Let F be a fixed point (called the focus) and l be a fixed line  
(called the directrix) in a plane. Let e be a fixed positive number (called the  
eccentricity). The set of all points P in the plane such that

| PF |
| Pl | − e

(that is, the ratio of the distance from F to the distance from l is the constant e)  
is a conic section. The conic is

(a)  an ellipse if e , 1

(b)  a parabola if e − 1

(c)  a hyperbola if e . 1

10.6
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PROOF Notice that if the eccentricity is e − 1, then | PF | − | Pl | and so the given 
condition simply becomes the definition of a parabola as given in Section 10.5.

Let us place the focus F at the origin and the directrix parallel to the y-axis and  
d units to the right. Thus the directrix has equation x − d and is perpendicular to the 
polar axis. If the point P has polar coordinates sr, �d, we see from Figure 1 that

| PF | − r      | Pl | − d 2 r cos �

Thus the condition | PF |y| Pl | − e, or | PF | − e | Pl |, becomes

2  r − esd 2 r cos �d

If we square both sides of this polar equation and convert to rectangular coordinates,  
we get

x 2 1 y 2 − e 2sd 2 xd2 − e 2sd 2 2 2dx 1 x 2 d

or s1 2 e 2 dx 2 1 2de 2x 1 y 2 − e 2d 2

After completing the square, we have

3  Sx 1
e 2d

1 2 e 2D2

1
 y 2

1 2 e 2 −
e 2d 2

s1 2 e 2 d2

If e , 1, we recognize Equation 3 as the equation of an ellipse. In fact, it is of the form

sx 2 hd2

a 2 1
 y 2

b 2 − 1

where

4  h − 2
e 2d

1 2 e 2       a 2 −
e 2d 2

s1 2 e 2 d2       b 2 −
e 2d 2

1 2 e 2

In Section 10.5 we found that the foci of an ellipse are at a distance c from the center, 
where

5  c 2 − a 2 2 b 2 −
e 4d 2

s1 2 e 2 d2

This shows that c −
e 2d

1 2 e 2 − 2h

and confirms that the focus as defined in Theorem 1 means the same as the focus 
defined in Section 10.5. It also follows from Equations 4 and 5 that the eccentricity is 
given by

e −
c

a

If e . 1, then 1 2 e 2 , 0 and we see that Equation 3 represents a hyperbola. Just as 
we did before, we could rewrite Equation 3 in the form

sx 2 hd2

a 2 2
 y 2

b 2 − 1

y

x
F

l (directrix)

x=d

r cos ¨

P

¨
r

d

C

FIGURE 1 
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and see that
 e −

c

a
    where c 2 − a 2 1 b 2� ■

■	 Polar Equations of Conics
In Figure 1, the focus of the conic section is located at the origin and the directrix has 
equation x − d. By solving Equation 2 for r, we see that the polar equation of this conic 
can be written as

r −
ed

1 1 e cos �

If the directrix is chosen to be to the left of the focus as x − 2d, or if the directrix is 
cho sen to be parallel to the polar axis as y − 6d, then the polar equation of the conic is 
given by the following theorem, which is illustrated by Figure 2. (See Exercises 27–29.)

(a) r= ed
1+e cos ¨

y

xF

x=d
directrix

(b) r= ed
1-e cos ¨

xF

y

x=_d
directrix

(c) r= ed
1+e sin ¨

y

F x

y=d         directrix

(d) r= ed
1-e sin ¨

x

y

y=_d         directrix

F

6  Theorem A polar equation of the form

r −
ed

1 6 e cos �
    or    r −

ed

1 6 e sin �

represents a conic section with eccentricity e. The conic is an ellipse if e , 1,  
a parabola if e − 1, or a hyperbola if e . 1.

EXAMPLE 1 Find a polar equation for a parabola that has its focus at the origin and 
whose directrix is the line y − 26.

SOLUTION Using Theorem 6 with e − 1 and d − 6, and using part (d) of Figure 2, we 
see that the equation of the parabola is

 r −
6

1 2 sin �
� ■

EXAMPLE 2 A conic is given by the polar equation

r −
10

3 2 2 cos �

Find the eccentricity, identify the conic, locate the directrix, and sketch the conic.

FIGURE 2 Polar equations of conics
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SOLUTION Dividing numerator and denominator by 3, we write the equation as

r −
10
3

1 2 2
3 cos �

From Theorem 6 we see that this represents an ellipse with e − 2
3. Since ed − 10

3 ,  
we have

d −
10
3

e
−

10
3
2
3

− 5

and so the directrix has Cartesian equation x − 25. We find the values for r when 
� − 0, �y2, �, and 3�y2, as shown in the table. The ellipse is sketched in Figure 3.

�

y

0 x

r= 10
3-2 cos ̈x=_5

(directrix)

(10, 0)

(2, π)

focus

” ,    ’3π
2   10

3

” ,    ’π
2   10

3

� ■

EXAMPLE 3 Sketch the conic r −
12

2 1 4 sin �
.

SOLUTION Writing the equation in the form

r −
6

1 1 2 sin �

we see that the eccentricity is e − 2 and the equation therefore represents a hyperbola. 
Since ed − 6, we have d − 3 and the directrix has equation y − 3. We find the values 
for r when � − 0, �y2, � , and 3�y2 as shown in the table. The vertices occur when 
� − �y2 and 3�y2, so they are s2, �y2d and s26, 3�y2d − s6, �y2d. The x-intercepts 
occur when � − 0, �; in both cases r − 6. For additional accuracy we draw the 
asymptotes. Note that r l 6` when 1 1 2 sin � l 01 or 02 and 1 1 2 sin � − 0 
when sin � − 2 

1
2. Thus the asymptotes are parallel to the rays � − 7�y6 and 

� − 11�y6. The hyperbola is sketched in Figure 4.

 

x0

y

(6, π) (6, 0)

y=3 (directrix)

focus

”2,    ’π
2

”6,    ’π
2

� ■

When rotating conic sections, we find it much more convenient to use polar equations 
than Cartesian equations. We just use the fact (see Exercise 10.3.65) that the graph of 

FIGURE 3 

r −
10

3 2 2 cos �

� r
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�

2
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� 2

3�
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3

� r
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2
 2

� 6
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FIGURE 4 

r −
12

2 1 4 sin �
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r − f s� 2 �d is the graph of r − f s�d rotated counterclockwise about the origin through 
an angle �.

EXAMPLE 4 If the ellipse of Example 2 is rotated through an angle �y4 about the 
origin, find a polar equation and graph the resulting ellipse.

SOLUTION We get the equation of the rotated ellipse by replacing � with � 2 �y4 in 
the equation given in Example 2. So the new equation is

r −
10

3 2 2 coss� 2 �y4d

We use this equation to graph the rotated ellipse in Figure 5. Notice that the ellipse has 
been rotated about its left focus.� ■

In Figure 6 we use a computer to sketch a number of conics to demonstrate the effect 
of varying the eccentricity e. Notice that when e is close to 0 the ellipse is nearly circular, 
whereas it becomes more elongated as e l 12. When e − 1, of course, the conic is a 
parabola.

e=1 e=1.1 e=1.4 e=4

e=0.96e=0.86e=0.68e=0.1 e=0.5

■	 Kepler’s Laws
In 1609 the German mathematician and astronomer Johannes Kepler, on the basis of huge 
amounts of astronomical data, published the following three laws of planetary motion.

Kepler’s Laws
1. A planet revolves around the sun in an elliptical orbit with the sun at one focus.

2. The line joining the sun to a planet sweeps out equal areas in equal times.

3. The square of the period of revolution of a planet is proportional to the cube of 
the length of the major axis of its orbit.

FIGURE 5 

11

_6

_5 15

r= 10
3-2 cos(¨-π/4)

r= 10
3-2 cos ̈

FIGURE 6
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Although Kepler formulated his laws in terms of the motion of planets around the 
sun, they apply equally well to the motion of moons, comets, satellites, and other  
bodies that orbit subject to a single gravitational force. In Section 13.4 we will show 
how to deduce Kepler’s Laws from Newton’s Laws. Here we use Kepler’s First Law, 
together with the polar equation of an ellipse, to calculate quantities of interest in 
astronomy.

For purposes of astronomical calculations, it’s useful to express the equation of an 
ellipse in terms of its eccentricity e and its semimajor axis a. We can write the distance d 
from the focus to the directrix in terms of a if we use (4):

a2 −
e2d 2

s1 2 e 2d2         ?        d 2 −
a 2s1 2 e2d2

e2         ?        d −
as1 2 e2d

e

So ed − as1 2 e2d. If the directrix is x − d, then the polar equation is

r −
ed

1 1 e cos �
−

as1 2 e2d
1 1 e cos �

7  The polar equation of an ellipse with focus at the origin, semimajor axis a, 
eccentricity e, and directrix x − d can be written in the form

r −
as1 2 e2d

1 1 e cos �

The positions of a planet that are closest to and farthest from the sun are called its 
peri helion and aphelion, respectively, and correspond to the vertices of the ellipse (see 
Figure 7). The distances from the sun to the perihelion and aphelion are called the  
perihelion distance and aphelion distance, respectively. In Figure 1 the sun is at the 
focus F, so at perihelion we have � − 0 and, from Equation 7,

r −
as1 2 e2d

1 1 e cos 0
−

as1 2 eds1 1 ed
1 1 e

− as1 2 ed

Similarly, at aphelion � − � and r − as1 1 ed.

8  The perihelion distance from a planet to the sun is as1 2 ed and the aphelion 
distance is as1 1 ed.

EXAMPLE 5 
(a) Find an approximate polar equation for the elliptical orbit of the earth around the 
sun (at one focus) given that the eccentricity is about 0.017 and the length of the major 
axis is about 2.99 3 108 km.
(b) Find the distance from the earth to the sun at perihelion and at aphelion.

FIGURE 7 

perihelionaphelion
sun

planet

¨
r
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SOLUTION
(a) The length of the major axis is 2a − 2.99 3 108, so a − 1.495 3 108. We are 
given that e − 0.017 and so, from Equation 7, an equation of the earth’s orbit around 
the sun is

r −
as1 2 e2d

1 1 e cos �
−

s1.495 3 108d f1 2 s0.017d2g
1 1 0.017 cos �

or, approximately,

r −
1.49 3 108

1 1 0.017 cos �

(b) From (8), the perihelion distance from the earth to the sun is

as1 2 ed < s1.495 3 108ds1 2 0.017d < 1.47 3 108 km

and the aphelion distance is

 as1 1 ed < s1.495 3 108ds1 1 0.017d < 1.52 3 108 km� ■

10.6 Exercises

1–8 Write a polar equation of a conic with the focus at the origin 
and the given data.

 1. Parabola, directrix x − 2 

 2. Ellipse, eccentricity 13, directrix y − 6

 3. Hyperbola, eccentricity 2, directrix y − 24

 4. Hyperbola, eccentricity 52, directrix x − 23

 5.  Ellipse,  eccentricity 23,  vertex s2, �d

 6.  Ellipse,  eccentricity 0.6,   directrix r − 4 csc �

 7.  Parabola,  vertex s3, �y2d 

 8.  Hyperbola,  eccentricity 2,  directrix r − 22 sec �

9–14 Match the polar equations with the graphs labeled I–VI. 
Give reasons for your answer.

 9. r −
3

1 2  sin �
 10. r −

9

1 1 2 cos �

 11. r −
12

8 2 7 cos �
 12. r −

12

4 1 3 sin �

 13. r −
5

2 1 3 sin �
 14. r −

3

2 2 2 cos �

y

x

y

x

I II

y

x

y

x

III IV

y

x

y

x

V VI  
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15–22 (a) Find the eccentricity, (b) identify the conic, (c) give 
an equation of the directrix, and (d) sketch the conic.

 15.  r −
4

5 2 4 sin �
 16.  r −

1

2 1 sin �

 17.  r −
2

3 1 3 sin �
 18.  r −

5

2 2 4 cos �

 19.  r −
9

6 1 2 cos �
 20.  r −

1

3 2 3 sin �

 21.  r −
3

4 2 8 cos �
 22.  r −

4

2 1 3 cos �

 23.  (a)  Find the eccentricity and directrix of the conic 
r − 1ys1 2 2 sin �d and graph the conic and its  
directrix.

  (b)  If this conic is rotated counterclockwise about the ori- 
gin through an angle 3�y4, write the resulting equation 
and graph its curve.

 24.   Graph the conic

r −
4

5 1 6 cos �

and its directrix. Also graph the conic obtained by rotating 
this curve about the origin through an angle �y3.

 25.  Graph the conics

r −
e

1 2 e cos �

with e − 0.4, 0.6, 0.8, and 1.0 on a common screen. How 
does the value of e affect the shape of the curve?

 26.  (a)  Graph the conics

r −
ed

1 1 e sin �

for e − 1 and var ious values of d. How does the value 
of d affect the shape of the conic?

  (b)  Graph these conics for d − 1 and various values of e. 
How does the value of e affect the shape of the conic?

 27.   Show that a conic with focus at the origin, eccentricity e, 
and directrix x − 2d has polar equation

r −
ed

1 2 e cos �

;

;

;

;

 28.   Show that a conic with focus at the origin, eccentricity e, 
and directrix y − d has polar equation

r −
ed

1 1 e sin �

 29.   Show that a conic with focus at the origin, eccentricity e, 
and directrix y − 2d has polar equation

r −
ed

1 2 e sin �

 30.   Show that the parabolas r − cys1 1 cos �d and 
r − dys1 2 cos �d intersect at right angles.

 31.   The orbit of Mars around the sun is an ellipse with eccen-
tricity 0.093 and semimajor axis 2.28 3 108 km. Find a 
polar equation for the orbit.

 32.   Jupiter’s orbit has eccentricity 0.048 and the length of the 
major axis is 1.56 3 109 km. Find a polar equation for the 
orbit.

 33.   The orbit of Halley’s comet, last seen in 1986 and due to 
return in 2061, is an ellipse with eccentricity 0.97 and one 
focus at the sun. The length of its major axis is 36.18 AU.  
[An astronomical unit (AU) is the mean distance between the 
earth and the sun, about 150 million kilometers.] Find a polar 
equation for the orbit of Halley’s comet. What is the maxi-
mum distance from the comet to the sun?

 34.   Comet Hale-Bopp, discovered in 1995, has an elliptical 
orbit with eccentricity 0.9951. The length of the orbit’s 
major axis is 356.6 AU. Find a polar equation for the orbit 
of this comet. How close to the sun does it come?

©
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n 
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en

 35.    The planet Mercury travels in an elliptical orbit with eccen-
tricity 0.206. Its minimum distance from the sun is   
4.6 3 107 km. Find its maximum distance from the sun.

 36.   The distance from the dwarf planet Pluto to the sun is  
4.43 3 109 km at perihelion and 7.37 3 109 km at  
aphelion. Find the eccentricity of Pluto’s orbit.

 37.   Using the data from Exercise 35, find the distance traveled  
by the planet Mercury during one complete orbit around the 
sun. (Evaluate the resulting definite integral numerically, 
using a calculator or computer, or use Simpson’s Rule.)
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 10 REVIEW

CONCEPT CHECK 

 1.  (a) What is a parametric curve?
 (b) How do you sketch a parametric curve?

 2.  (a)  How do you find the slope of a tangent to a parametric 
curve?

 (b)  How do you find the area under a parametric curve?

 3.   Write an expression for each of the following:
 (a)  The length of a parametric curve
 (b)  The area of the surface obtained by rotating a parametric 

curve about the x-axis
 (c)  The speed of a particle traveling along a parametric curve

 4.  (a)  Use a diagram to explain the meaning of the polar coordi-
nates sr, �d of a point.

 (b)  Write equations that express the Cartesian coordinates  
sx, yd of a point in terms of the polar coordinates.

 (c)  What equations would you use to find the polar coordi-
nates of a point if you knew the Cartesian coordinates?

 5.  (a)  How do you find the area of a region bounded by a polar 
curve?

 (b)  How do you find the length of a polar curve?

 (c)  How do you find the slope of a tangent line to a polar 
curve?

 6.  (a)  Give a geometric definition of a parabola.
 (b)  Write an equation of a parabola with focus s0, pd and 

directrix y − 2p. What if the focus is sp, 0d and the 
directrix is x − 2p?

 7.  (a)  Give a definition of an ellipse in terms of foci.
 (b)  Write an equation for the ellipse with foci s6c, 0d and  

vertices s6a, 0d.

 8.  (a)  Give a definition of a hyperbola in terms of foci.
 (b)  Write an equation for the hyperbola with foci s6c, 0d and 

vertices s6a, 0d.
 (c)  Write equations for the asymptotes of the hyperbola in 

part (b).

 9.  (a)  What is the eccentricity of a conic section?
 (b)  What can you say about the eccentricity if the conic 

section is an ellipse? A hyperbola? A parabola?
 (c)  Write a polar equation for a conic section with eccen- 

tricity e and directrix x − d. What if the directrix is 
x − 2d ? y − d ? y − 2d ?

Answers to the Concept Check are available at StewartCalculus.com.

Determine whether the statement is true or false. If it is true,  
explain why. If it is false, explain why or give an example that 
disproves the statement.

 1.   If the parametric curve x − f std, y − tstd satisfies t9s1d − 0, 
then it has a horizontal tangent when t − 1.

 2.   If x − f std and y − tstd are twice differentiable, then

d 2y

dx 2 −
d 2yydt 2

d 2xydt 2

 3.   The length of the curve x − f std, y − tstd, a < t < b, is

yb

a
 sf f 9stdg 2 1 ft9stdg 2 dt

 4. If the position of a particle at time t is given by the parametric 
equations x − 3t 1 1, y − 2t 2 1 1, then the speed of the 
particle at time t − 3 is the value of dyydx when t − 3.

 5.   If a point is represented by sx, yd in Cartesian coordinates 
(where x ± 0) and sr, �d in polar coordinates, then 
� − tan 21s yyxd.

 6.   The polar curves

r − 1 2 sin 2�  r − sin 2� 2 1

   have the same graph.

 7.   The equations r − 2, x 2 1 y 2 − 4, and x − 2 sin 3t, 
y − 2 cos 3t s0 < t < 2�d all have the same graph.

 8.   The parametric equations x − t 2, y − t 4 have the same graph 
as x − t 3, y − t 6.

 9.   The graph of y 2 − 2y 1 3x is a parabola.

 10.   A tangent line to a parabola intersects the parabola only  
once.

 11.   A hyperbola never intersects its directrix.

TRUE-FALSE QUIZ
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1–5 Sketch the parametric curve and eliminate the parameter to 
find a Cartesian equation of the curve.

 1.  x − t 2 1 4t,  y − 2 2 t,  24 < t < 1

 2.  x − 1 1 e 2 t,  y − e t

 3. x − ln t, y − t 2

 4.  x − 2 cos �,  y − 1 1 sin �

 5.  x − cos �,  y − sec �,  0 < � , �y2

 6. Describe the motion of a particle with position sx, yd, where 
x − 2 1 4 cos �t and y − 23 1 4 sin �t, as t increases 
from 0 to 4.

 7.   Write three different sets of parametric equations for the  
curve y − sx  .

 8.   Use the graphs of  x − f std and y − tstd to sketch the para-
metric curve x − f std, y − tstd. Indicate with arrows the  
direction in which the curve is traced as t increases.

t

x

_1

1

x=f(t)

t

y

1

1

y=g(t)

 9.  (a)  Plot the point with polar coordinates s4, 2�y3d. Then 
find its Cartesian coordinates.

 (b)  The Cartesian coordinates of a point are s23, 3d. Find 
two sets of polar coordinates for the point.

 10.   Sketch the region consisting of points whose polar coor-
dinates satisfy 1 < r , 2 and �y6 < � < 5�y6.

11–18 Sketch the polar curve.

 11.  r − 1 1 sin � 12.  r − sin 4�

 13.  r − cos 3 � 14.  r − 3 1 cos 3�

 15.  r − 1 1 cos 2� 16.  r − 2 coss�y2d

 17.  r −
3

1 1 2 sin �
 18.  r −

3

2 2 2 cos �

19–20 Find a polar equation for the curve represented by the 
given Cartesian equation.

 19.  x 1 y − 2 20.  x 2 1 y 2 − 2

 21.   The curve with polar equation r − ssin �dy� is called a 
cochleoid. Use a graph of r as a function of � in Cartesian 
coordinates to sketch the cochleoid by hand. Then graph it 
with a calculator or computer to check your sketch.

;

 22. The figure shows a graph of r as a function of � in Cartesian 
coordinates. Use it to sketch the corresponding polar curve.

¨

r

π 2π
0

2

_2

23–26 Find the slope of the tangent line to the given curve at 
the point corresponding to the specified value of the parameter.

 23.  x − ln t, y − 1 1 t 2;  t − 1

 24.  x − t 3 1 6t 1 1,  y − 2t 2 t 2;  t − 21

 25.  r − e 2� ;  � − �

 26.  r − 3 1 cos 3�;  � − �y2

27–28 Find dyydx and d 2 yydx 2.

 27.  x − t 1 sin t,  y − t 2 cos t

 28.  x − 1 1 t 2,  y − t 2 t 3

 29.   Use a graph to estimate the coordinates of the lowest point 
on the curve x − t 3 2 3t, y − t 2 1 t 1 1.  Then use calcu-
lus to find the exact coordinates.

 30.   Find the area enclosed by the loop of the curve in  
Exercise 29.

 31.   At what points does the curve

x − 2a cos t 2 a cos 2t    y − 2a sin t 2 a sin 2t

have vertical or horizontal tangents? Use this information to 
help sketch the curve.

 32.  Find the area enclosed by the curve in Exercise 31.

 33.  Find the area enclosed by the curve r 2 − 9 cos 5�.

 34.   Find the area enclosed by the inner loop of the curve 
r − 1 2 3 sin �.

 35.   Find the points of intersection of the curves r − 2 and 
r − 4 cos �.

 36.   Find the points of intersection of the curves r − cot � and 
r − 2 cos �.

 37.   Find the area of the region that lies inside both of the circles 
r − 2 sin � and r − sin � 1 cos �.

 38.   Find the area of the region that lies inside the curve 
r − 2 1 cos 2� but outside the curve r − 2 1 sin �.

;

EXERCISES
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 53.   Find an equation of the ellipse with foci s64, 0d and  
vertices s65, 0d.

 54.   Find an equation of the parabola with focus s2, 1d and  
directrix x − 24.

 55.   Find an equation of the hyperbola with foci s0, 64d and 
asymptotes y − 63x.

 56.   Find an equation of the ellipse with foci s3, 62d and major 
axis with length 8.

 57.   Find an equation for the ellipse that shares a vertex and a 
focus with the parabola x 2 1 y − 100 and that has its other 
focus at the origin.

 58.   Show that if m is any real number, then there are exactly  
two lines of slope m that are tangent to the ellipse 
x 2ya 2 1 y 2yb 2 − 1 and their equations are

y − mx 6 sa 2m 2 1 b 2 

 59.   Find a polar equation for the ellipse with focus at the origin, 
eccentricity 13, and directrix with equation r − 4 sec �.

 60.   Graph the ellipse r − 2ys4 2 3 cos �d and its directrix. 
Also graph the ellipse obtained by rotation about the origin 
through an angle 2�y3.

 61.   Show that the angles between the polar axis and the  
asymptotes of the hyperbola r − edys1 2 e cos �d, e . 1,  
are given by cos21s61yed.

 62.  A curve called the folium of Descartes is defined by the 
parametric equations

x −
3t

1 1 t 3 y −
3t 2

1 1 t 3

 (a)  Show that if sa, bd lies on the curve, then so does sb, ad; 
that is, the curve is symmetric with respect to the line  
y − x. Where does the curve intersect this line?

 (b)  Find the points on the curve where the tangent lines are 
horizontal or vertical.

 (c) Show that the line y − 2x 2 1 is a slant asymptote.
 (d) Sketch the curve.
 (e)  Show that a Cartesian equation of this curve is 

x 3 1 y 3 − 3xy.
 (f )  Show that the polar equation can be written in the form

r −
3 sec � tan �

1 1 tan3�

 (g) Find the area enclosed by the loop of this curve.
 (h)  Show that the area of the loop is the same as the area 

that lies between the asymptote and the infinite 
branches of the curve. (Use a computer algebra system 
to evaluate the integral.)

;

39–42 Find the length of the curve.

 39.  x − 3t 2,  y − 2t 3,  0 < t < 2

 40.  x − 2 1 3t,  y − cosh 3t,  0 < t < 1

 41.  r − 1y�,  � < � < 2�

 42.  r − sin3s�y3d,  0 < � < �

 43. The position (in meters) of a particle at time t seconds is 
given by the parametric equations

x − 1
2 st 2 1 3d  y − 5 2 1

3 t 3

 (a) Find the speed of the particle at the point s6, 24d.
 (b) What is the average speed of the particle for 0 < t < 8 ?

 44. (a) Find the exact length of the portion of the curve shown 
in blue.

 (b) Find the area of the shaded region.

r=2 cos@(¨/2)

O

45–46 Find the area of the surface obtained by rotating the 
given curve about the x-axis.

 45.  x − 4st  ,  y −
t 3

3
1

1

2t 2 ,  1 < t < 4

 46.  x − 2 1 3t,  y − cosh 3t,  0 < t < 1

 47.   The curves defined by the parametric equations

x −
t 2 2 c

t 2 1 1
    y −

tst 2 2 cd
t 2 1 1

are called strophoids (from a Greek word meaning “to turn 
or twist”). Investigate how these curves vary as c varies.

 48.   A family of curves has polar equations r a − | sin 2� | where 
a is a positive number. Investigate how the curves change as 
a changes.

49–52 Find the foci and vertices and sketch the graph.

 49.  
x 2

9
1

 y 2

8
− 1 50.  4x 2 2 y 2 − 16

 51.  6y 2 1 x 2 36y 1 55 − 0

 52.  25x 2 1 4y 2 1 50x 2 16y − 59

;

;
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 1.   The outer circle in the figure has radius 1 and the centers of the interior circular arcs lie on 
the outer circle. Find the area of the shaded region.

 2. (a)  Find the highest and lowest points on the curve x 4 1 y 4 − x 2 1 y 2.
  (b)  Sketch the curve. (Notice that it is symmetric with respect to both axes and both of the 

lines y − 6x, so it suffices to consider y > x > 0 initially.)
  (c)  Use polar coordinates and a computer algebra system to find the area enclosed by the 

curve.

 3.  What is the smallest viewing rectangle that contains every member of the family of polar 
curves r − 1 1 c sin �, where 0 < c < 1? Illustrate your answer by graphing several mem-
bers of the family in this viewing rectangle.

 4.  Four bugs are placed at the four corners of a square with side length a. The bugs crawl  
counterclockwise at the same speed and each bug crawls directly toward the next bug at all 
times. They approach the center of the square along spiral paths.

  (a)  Find a polar equation of a bug’s path assuming the pole is at the center of the square. (Use 
the fact that the line joining one bug to the next is tangent to the bug’s path.)

  (b) Find the distance traveled by a bug by the time it meets the other bugs at the center.

 5.  Show that any tangent line to a hyperbola touches the hyperbola halfway between the points 
of intersection of the tangent and the asymptotes.

 6.  A circle C of radius 2r has its center at the origin. A circle of radius r rolls without slipping in 
the counterclockwise direction around C. A point P is located on a fixed radius of the rolling 
circle at a distance b from its center, 0 , b , r. [See parts (i) and (ii) of the figure below.]  
Let L be the line from the center of C to the center of the rolling circle and let � be the angle 
that L makes with the positive x-axis.

  (a) Using � as a parameter, show that parametric equations of the path traced out by P are

x − b cos 3� 1 3r cos � y − b sin 3� 1 3r sin �

   Note: If b − 0, the path is a circle of radius 3r; if b − r, the path is an epicycloid. The 
path traced out by P for 0 , b , r is called an epitrochoid.

  (b)  Graph the curve for various values of b between 0 and r.
  (c)  Show that an equilateral triangle can be inscribed in the epitrochoid and that its centroid 

is on the circle of radius b centered at the origin.

   Note: This is the principle of the Wankel rotary engine. When the equilateral triangle 
rotates with its vertices on the epitrochoid, its centroid sweeps out a circle whose center is 
at the center of the curve.

  (d)  In most rotary engines the sides of the equilateral triangles are replaced by arcs of circles 
centered at the opposite vertices as in part (iii) of the figure. (Then the diameter of the 
rotor is constant.) Show that the rotor will fit in the epitrochoid if b < 3

2 (2 2 s3 )r.

(ii)

y

xP¸
¨

P
y

x

r

b

P=P¸

2r

(i) (iii)
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a
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a
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;
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Astronomers gather information about distant celestial objects from the electromagnetic radiation that these objects emit. In the 
project following Section 11.11 you are asked to compare the radiation emitted by different stars, including  Betelgeuse (the largest of 
the observable stars), Sirius, and our own Sun.
Antares StarExplorer / Shutterstock.com

11 Sequences, Series, and  
Power Series
IN ALL OF THE PREVIOUS CHAPTERS we studied functions that are defined on an interval. In this 
chapter we start by studying sequences of numbers. A sequence can be viewed as a function whose 
domain is a set of natural numbers. We then consider infinite series (the sum of the numbers in a 
sequence). Isaac Newton represented functions defined on an interval as sums of infinite series, in 
part because such series are readily integrated and differentiated. In Section 11.10 we will see that 
his idea allows us to integrate functions that we have previously been unable to find antiderivatives 
for, such as e2x 2

. Many of the functions that arise in mathematical physics and chemistry—such as 
Bessel functions—are defined as sums of series, so it is important to be familiar with the basic 
concepts of convergence of infinite sequences and series.

Physicists also use series in another way, as we will see in Section 11.11. In studying fields as 
diverse as optics, special relativity, electromagnetism, and cosmology, they analyze phenomena by 
replacing a function with the first few terms in the series that represents that function.
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Sequences

Many concepts in calculus involve lists of numbers that result from applying a process in 
stages. For example, if we use Newton’s method (Section 4.8) to approximate the zero of 
a function, we generate a list or sequence of numbers. If we compute average rates of 
change of a function over smaller and smaller intervals in order to approximate an instan-
taneous rate of change (as in Section 2.7), we also generate a sequence of numbers.

In the fifth century bc the Greek philosopher Zeno of Elea posed four problems, now 
known as Zeno’s paradoxes, that were intended to challenge some of the ideas concern-
ing space and time that were held in his day. In one of his paradoxes, Zeno argued that a 
man standing in a room could never walk to a wall because he would first have to walk 
half the distance to the wall, then half the remaining distance, and then again half of what 
still remains, continuing in this way indefinitely (see Figure 1). The distances that the 
man walks at each stage form a sequence:

1

2
, 

1

4
, 

1

8
, 

1

16
, 

1

32
, . . . , 

1

2n , . . .

1
2

1
4

1
2n

. . . . . . 

■	 Infinite Sequences
An infinite sequence, or just a sequence, can be thought of as a list of numbers written 
in a definite order:

a1, a2, a3, a4, . . . , an, . . .

The number a1 is called the first term, a2 is the second term, and in general an is the n th 
term. We will deal exclusively with infinite sequences and so each term an will have a 
successor an11.

Notice that for every positive integer n there is a corresponding number an and so a 
sequence can be defined as a function f  whose domain is the set of positive integers. But 
we usually write an instead of the function notation f snd for the value of the function at 
the number n.

NOTATION The sequence {a1, a2, a3, . . .} is also denoted by

han j    or    han j n−1
`

Unless otherwise stated, we assume that n starts at 1.

EXAMPLE 1 Some sequences can be defined by giving a formula for the nth term.

(a) At the beginning of the section we described a sequence of distances walked by a 
man in a room. The following are three equivalent descriptions of this sequence:

H 1

2nJ  an −
1

2n   H 1

2
, 

1

4
, 

1

8
, 

1

16
, 

1

32
, . . . , 

1

2n , . . .J
In the third description we have written out the first few terms of the sequence: 
a1 − 1y21, a2 − 1y22, and so on.

11.1

FIGURE 1 
At the n th stage the man  

walks a distance 1y2n.
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(b) The definition H n

n 1 1Jn−2

`

 indicates that the formula for the n th term is 

an −
n

n 1 1
 and we start the sequence with n − 2:

H 2

3
, 

3

4
, 

4

5
, 

5

6
, . . .J

(c) The sequence hs3 , s4 , s5 , s6 , . . .j can be described by hsn 1 2 jn−1
`

 if we  

start with n − 1. Equivalently, we could start with n − 3 and write hsn jn−3
`

 or  

an − sn , n > 3.

(d) The definition Hs21dn 
sn 1 1d

3n J
n−0

`

 generates the sequence

H 1

1
, 2 

2

3
, 

3

9
, 2

4

27
, 

5

81
, . . .J

Here the first term corresponds to n − 0 and the s21dn factor in the definition creates 
terms that alternate between positive and negative.� ■

EXAMPLE 2 Find a formula for the general term an of the sequence

H 3

5
, 2

4

25
, 

5

125
, 2

6

625
, 

7

3125
, . . .J

assuming that the pattern of the first few terms continues.

SOLUTION We are given that

a 1 −
3

5
    a 2 − 2

4

25
    a 3 −

5

125
    a 4 − 2

6

625
    a 5 −

7

3125

Notice that the numerators of these fractions start with 3 and increase by 1 whenever 
we go to the next term. The second term has numerator 4, the third term has numer- 
ator 5; in general, the nth term will have numerator n 1 2. The denominators are the 
powers of 5, so an has denominator 5 n. The signs of the terms are alternately positive 
and negative, so we need to multiply by a power of 21, as in Example 1(d). Here we 
want a1 to be positive and so we use s21d n21 or s21d n11. Therefore

 an − s21d n21 
n 1 2

5 n � ■

EXAMPLE 3 Here are some sequences that don’t have a simple defining equation.

(a) The sequence hpn j, where pn is the population of the world as of January 1 in the 
year n.

(b) If we let an be the digit in the nth decimal place of the number e, then han j is a 
sequence whose first few terms are

h7, 1, 8, 2, 8, 1, 8, 2, 8, 4, 5, . . .j

(c) The Fibonacci sequence h fn j is defined recursively by the conditions

f1 − 1    f2 − 1    fn − fn21 1 fn22    n > 3
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Each term is the sum of the two preceding terms. The first few terms are

h1, 1, 2, 3, 5, 8, 13, 21, . . .j

This sequence arose when the 13th-century Italian mathematician known as Fibonacci 
solved a problem concerning the breeding of rabbits (see Exercise 89).� ■

■	 The Limit of a Sequence
A sequence can be pictured either by plotting its terms on a number line or by plotting its 
graph. Figures 2 and 3 illustrate these representations for the sequence

H n

n 1 1J − H 1

2
, 

2

3
, 

3

4
, 

4

5
, . . .J

Since a sequence han j n−1
`  is a function whose domain is the set of positive integers, its 

graph consists of discrete points with coordinates

s1, a1d    s2, a2 d    s3, a3 d    . . .    sn, an d    . . .

From Figure 2 or Figure 3 it appears that the terms of the sequence an − nysn 1 1d 
are approaching 1 as n becomes large. In fact, the difference

1 2
n

n 1 1
−

1

n 1 1

can be made as small as we like by taking n sufficiently large. We indicate this by writing

lim
n l `

 
n

n 1 1
− 1

In general, the notation lim
n l `

 an − L

means that the terms of the sequence han j approach L as n becomes large. Notice that the 
following definition of the limit of a sequence is very similar to the definition of a limit 
of a function at infinity given in Section 2.6.

1  Intuitive Definition of a Limit of a equence A sequence han j has the  
limit L and we write

lim
n l `

 an − L    or    an l L as n l `

if we can make the terms an as close to L as we like by taking n sufficiently large. 
If limn l ` an exists, we say the sequence converges (or is convergent). Otherwise, 
we say the sequence diverges (or is divergent).

Figure 4 illustrates Definition 1 by showing the graphs of two convergent sequences 
that have the limit L.

0 n

an

L

0 n

an

L

1 2 3 4 1 2 3 4

0 11
2

a¡ a™ a£
a¢

FIGURE 2 

0 n

an

1

1

2 3 4 5 6 7

7
8a¶=

FIGURE 3 

FIGURE 4  
Graphs of two con- 
vergent sequences 
with lim

n l `
 an − L
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A more precise version of Definition 1 is as follows.

2  Precise Definition of a Limit of a equence A sequence han j has the  
limit L and we write

lim
n l `

 an − L    or    an l L as n l `

if for every « . 0 there is a corresponding integer N such that

if    n . N    then    | an 2 L | , «

Compare this definition with  
Definition 2.6.7.

Definition 2 is illustrated by Figure 5, in which the terms a1, a2, a3, . . . are plotted on 
a number line. No matter how small an interval sL 2 «, L 1 «d is chosen, there exists an 
N such that all terms of the sequence from aN11 onward must lie in that interval.

0 L-∑ L L+∑

a¡ a£ a¢a™ a∞aß a¶aˆ a˜aN+1 aN+2

Another illustration of Definition 2 is given in Figure 6. The points on the graph of 
han j must lie between the horizontal lines y − L 1 « and y − L 2 « if n . N. This 
picture must be valid no matter how small « is chosen, but usually a smaller « requires a 
larger N.

20 n

y

1 3 4

L

y=L+∑

N

y=L-∑

A sequence diverges if its terms do not approach a single number. Figure 7 illustrates 
two different ways in which a sequence can diverge.

0 n

an

1 2 3 40 n

an

1 2 3 4 0 n

an

1 2 3 40 n

an

1 2 3 4

(a) (b)

The sequence graphed in Figure 7(a) diverges because it oscillates between two dif-
ferent numbers and does not approach a single value as n l `. In the graph in part (b),  
an increases without bound as n becomes larger. We write limnl` an − ` to indicate the 

FIGURE 5 

FIGURE 6 

FIGURE 7
Graphs of two divergent sequences 
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particular way that this sequence diverges, and we say that the sequence diverges to `. 
The following precise definition is similar to Definition 2.6.9.

3  Precise Definition of an nfini e Limit The notation lim n l ` an − ` means 
that for every positive number M there is an integer N such that

if  n . N  then  an . M

An analogous definition applies for lim n l ` an − 2`.

■	 Properties of Convergent Sequences
If you compare Definition 2 with Definition 2.6.7, you will see that the only difference 
between limn l ` an − L and limx l ` f sxd − L is that n is required to be an integer. Thus 
we have the following theorem, which is illustrated by Figure 8.

4  Theorem If limx l ` f sxd − L and f snd − an when n is an integer, then 
limn l ` an − L .

20 x

y

1 3 4

L

y=ƒ

For instance, since we know that limx l ` s1yxrd − 0 when r . 0 (Theorem 2.6.5), it 
follows from Theorem 4 that

5  lim
n l `

 
1

nr − 0    if r . 0

The Limit Laws given in Section 2.3 also hold for the limits of sequences and their 
proofs are similar.

Limit Laws for Sequences Suppose that han j and hbn j are convergent sequences 
and c is a constant. Then

1.  lim
n l `

 san 1 bn d − lim
n l `

 an 1 lim
n l `

 bn

2.  lim
n l `

 san 2 bn d − lim
n l `

 an 2 lim
n l `

 bn

3.  lim
n l `

 can − c lim
n l `

 an   

4. lim
n l `

 san bn d − lim
n l `

 an � lim
n l `

 bn       

5. lim
n l `

 
an

bn
−

lim
n l ` 

an

lim
n l `

 bn
    if lim

n l ` 
bn ± 0

Sum Law

Difference Law

Constant Multiple Law

Product Law

Quotient Law

FIGURE 8
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Another useful property of sequences is the following Power Law, which you are 
asked to prove in Exercise 94.

lim
n l ` 

an
p − F lim

n l `
anG p

 if p . 0 and an . 0Power Law

The Squeeze Theorem can also be adapted for sequences as follows (see Figure 9).

If an < bn < cn for n > n0 and lim
n l `

an − lim
n l `

cn − L , then lim
n l `

bn − L .Squeeze Theorem for 
Sequences

0 n

cn

an

bn

Another useful fact about limits of sequences is given by the following theorem; the  
proof is left as Exercise 93.

6  Theorem  If lim
n l `

| an | − 0, then lim
n l `

 an − 0.

EXAMPLE 4 Find lim
n l `

 
n

n 1 1
.

SOLUTION The method is similar to the one we used in Section 2.6: divide numerator 
and denominator by the highest power of n that occurs in the denominator and then use 
the Limit Laws for Sequences.

lim
nl `

  
n

n 1 1
− lim

nl `
 

1

1 1
1

n

−
lim
nl ` 

1

lim
nl `

 1 1 lim
nl `

 1

n

 −
1

1 1 0
− 1

Here we used Equation 5 with r − 1.� ■

EXAMPLE 5 Is the sequence an −
n

s10 1 n 
 convergent or divergent?

FIGURE 9 
The sequence hbn j is squeezed  

between the sequences han j and hcn j.

In general, for any constant c

lim
n l `

 c − c

This shows that the guess we made 
earlier from Figures 2 and 3 was 
correct.
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SOLUTION As in Example 4, we divide numerator and denominator by n :

lim
nl `

 
n

s10 1 n
 −    lim

nl `
 

1

Î10

n 2 1
1

n

− `

since the numerator is constant and the denominator (which is positive) approaches 0. 
So hanj is divergent.� ■

EXAMPLE 6 Calculate lim 
n l `

 
ln n

n
.

SOLUTION Notice that both numerator and denominator approach infinity as n l `.  
We can’t apply l’Hospital’s Rule directly because it applies not to sequences but to 
functions of a real variable. However, we can apply l’Hospital’s Rule to the related 
function f sxd − sln xdyx and obtain

lim 
x l `

 
ln x

x
− lim 

x l `
 
1yx

1
− 0

Therefore, by Theorem 4, we have

 lim 
n l `

 
ln n

n
− 0� ■

EXAMPLE 7 Determine whether the sequence an − s21dn is convergent or divergent.

SOLUTION If we write out the terms of the sequence, we obtain

h21, 1, 21, 1, 21, 1, 21, . . .j

The graph of this sequence is shown in Figure 10. Since the terms oscillate between 1 
and 21 infinitely often, an does not approach any number. Thus lim n l ` s21dn does not 
exist; that is, the sequence hs21dn j is divergent.� ■

EXAMPLE 8 Evaluate lim 
n l `

 
s21dn

n
 if it exists.

SOLUTION We first calculate the limit of the absolute value:

lim 
n l `

 Z s21dn

n Z − lim 
n l `

 
1

n
− 0

Therefore, by Theorem 6,

 lim 
n l `

 
s21dn

n
− 0�

The sequence is graphed in Figure 11. ■

The following theorem says that if we apply a continuous function to the terms of a 
convergent sequence, the result is also convergent. The proof is given in Appendix F.

7  Theorem If lim
n l `

 an − L and the function f  is continuous at L , then

lim
n l `

  f sand − f sLd

0 n

an

1

1

2 3 4
_1

FIGURE 10 The sequence hs21dnj

0 n

an

1

1

_1

FIGURE 11 The sequence Hs21dn

n J
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EXAMPLE 9 Find lim
n l `

 sin 
�

n
.

SOLUTION Because the sine function is continuous at 0, Theorem 7 enables us to write

 lim
n l `

 sin 
�

n
− sin� lim

n l `
 
�

n � − sin 0 − 0� ■

EXAMPLE 10 Discuss the convergence of the sequence an − n!ynn, where 
n! − 1 � 2 � 3 � ∙ ∙ ∙ � n.

SOLUTION Both numerator and denominator approach infinity as n l ` but here we 
have no corresponding function for use with l’Hospital’s Rule (x! is not defined when x 
is not an integer). Let’s write out a few terms to get a feeling for what happens to an as 
n gets large:

a1 − 1      a2 −
1 � 2

2 � 2
      a3 −

1 � 2 � 3

3 � 3 � 3

8  an −
1 � 2 � 3 � ∙ ∙ ∙ � n

n � n � n � ∙ ∙ ∙ � n

It appears from these expressions and the graph in Figure 12 that the terms are decreas-
ing and perhaps approach 0. To confirm this, observe from Equation 8 that

an −
1

n
 S 2 � 3 � ∙ ∙ ∙ � n

n � n � ∙ ∙ ∙ � nD
Notice that the expression in parentheses is at most 1 because the numerator is less  
than (or equal to) the denominator. So

0 , an <
1

n

We know that 1yn l 0 as n l `. Therefore an l 0 as n l ` by the Squeeze Theorem.
� � ■

EXAMPLE 11 For what values of r is the sequence hr n j convergent?

SOLUTION We know from Section 2.6 and the graphs of the exponential functions in 
Section 1.4 that lim x l ` bx − ` for b . 1 and lim x l ` bx − 0 for 0 , b , 1.  
Therefore, putting b − r and using Theorem 4, we have

lim 
n l `

 r n − H`

0

if r . 1

if 0 , r , 1

It is obvious that

lim
n l `

 1n − 1    and    lim
n l `

 0 n − 0

If 21 , r , 0, then 0 , | r | , 1, so

lim 
n l `

 | r n | − lim 
n l `

 | r |n − 0

0 n

an

1

1

FIGURE 12 The sequence hn!ynnj
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and therefore lim n l ` r n − 0 by Theorem 6. If r < 21, then hr n j diverges as in 
Example 7. Figure 13 shows the graphs for various values of r. (The case r − 21 is 
shown in Figure 10.)

 

r>1

r=1

0<r<1

0

r<_1

_1<r<0

0 n

an

1

1
n

an

1
1

 ■

The results of Example 11 are summarized for future use as follows.

9  The sequence hr n j is convergent if 21 , r < 1 and divergent for all other  
values of r.

lim 
n l `

 r n − H0

1

if 21 , r , 1

if r − 1

■	 Monotonic and Bounded Sequences
Sequences for which the terms always increase (or always decrease) play a special role 
in the study of sequences.

 10  Definitio  A sequence han j is called increasing if an , an11 for all n > 1,  
that is, a1 , a2 , a3 , ∙ ∙ ∙ . It is called decreasing if an . an11 for all n > 1.  
A sequence is called monotonic if it is either increasing or decreasing.

EXAMPLE 12 The sequence H 3

n 1 5J is decreasing because

an −
3

n 1 5
.

3

n 1 6
−

3

sn 1 1d 1 5
− an11

for all n > 1.� ■

EXAMPLE 13 Show that the sequence an −
n

n2 1 1
  is decreasing.

SOLUTION 1 We must show that an . an11, that is,

n

n2 1 1
.

n 1 1

sn 1 1d2 1 1

FIGURE 13 
The sequence an − r n

In Example 12, 3ysn 1 6d is smaller 
than 3ysn 1 5d because its denomina-
tor is larger.
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This inequality is equivalent to the one we get by cross-multiplication:

 
n

n2 1 1
.

n 1 1

sn 1 1d2 1 1
 &? nfsn 1 1d2 1 1g . sn 1 1dsn2 1 1d

 &? n3 1 2n2 1 2n . n3 1 n2 1 n 1 1

 &? n2 1 n . 1

Since n > 1, we know that the inequality n2 1 n . 1 is true. Therefore an . an11 and 
so han j is decreasing.

SOLUTION 2 Consider the function f sxd −
x

x 2 1 1
 :

f 9sxd −
x 2 1 1 2 x ? 2x

sx 2 1 1d2 −
1 2 x 2

sx 2 1 1d2 , 0    whenever x 2 . 1

Thus f  is decreasing on s1, `d and so f snd . f sn 1 1d. Therefore han j is decreasing.� ■

 11  Definitio  A sequence han j is bounded above if there is a number M  
such that

an < M    for all n > 1

A sequence is bounded below if there is a number m such that

m < an    for all n > 1

If a sequence is bounded above and below, then it is called a bounded sequence.

For instance, the sequence an − n is bounded below san . 0d but not above. The 
sequence an − nysn 1 1d is bounded because 0 , an , 1 for all n.

We know that not every bounded sequence is convergent [for instance, the sequence 
an − s21dn satisfies 21 < an < 1 but is divergent from Example 7] and not every mono-
tonic sequence is convergent san − n l `d. But if a sequence is both bounded and 
monotonic, then it must be convergent. This fact is proved as Theorem 12, but intuitively 
you can understand why it is true by looking at Figure 14. If han j is increasing and an < M 
for all n, then the terms are forced to crowd together and approach some number L.

20 n

an

1 3

L
M

 12  Monotonic Sequence Theorem Every bounded, monotonic sequence is  
convergent.

In particular, a sequence that is increasing and bounded above converges, and a 
sequence that is decreasing and bounded below converges.

FIGURE 14 
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The proof of Theorem 12 is based on the Completeness Axiom for the set R of real 
numbers, which says that if S is a nonempty set of real numbers that has an upper bound 
M (x < M for all x in S ), then S has a least upper bound b. (This means that b is an 
upper bound for S, but if M is any other upper bound, then b < M.) The Completeness 
Axiom is an expression of the fact that there is no gap or hole in the real number line.

PROOF OF THEOREM 12 Suppose han j is an increasing sequence. Since han j is 
bounded, the set S − han | n > 1j has an upper bound. By the Completeness Axiom it 
has a least upper bound L. Given « . 0, L 2 « is not an upper bound for S (since L is 
the least upper bound). Therefore

aN . L 2 «    for some integer N

But the sequence is increasing so an > aN for every n . N. Thus if n . N, we have

 an . L 2 «

so  0 < L 2 an , «

since an < L. Thus

| L 2 an | , «    whenever n . N

so lim n l ` an − L.
A similar proof (using the greatest lower bound) holds if han j is decreasing.� ■

EXAMPLE 14 Investigate the sequence han j defined by the recurrence relation

a1 − 2    an11 − 1
2 san 1 6d    for n − 1, 2, 3, . . .

SOLUTION We begin by computing the first several terms:

  a1 − 2   a2 − 1
2 s2 1 6d − 4  a3 − 1

2 s4 1 6d − 5

  a4 − 1
2 s5 1 6d − 5.5  a5 − 5.75   a6 − 5.875

  a7 − 5.9375   a8 − 5.96875   a9 − 5.984375

These initial terms suggest that the sequence is increasing and the terms are approach-
ing 6. To confirm that the sequence is increasing, we use mathematical induction to 
show that an11 . an for all n > 1. This is true for n − 1 because a2 − 4 . a1. If we 
assume that it is true for n − k, then we have

 ak11 . ak

so  ak11 1 6 . ak 1 6

and  12 sak11 1 6d . 1
2 sak 1 6d

Thus  ak12 . ak11

We have deduced that an11 . an is true for n − k 1 1. Therefore the inequality is true 
for all n by induction.

Next we verify that han j is bounded by showing that an , 6 for all n. (Since the 
sequence is increasing, we already know that it has a lower bound: an > a1 − 2 for  

Mathematical induction is often used 
in dealing with recursive sequences. 
See Principles of Problem Solving 
following Chapter 1 for a discussion  
of the Principle of Mathematical 
Induction.
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all n.) We know that a1 , 6, so the assertion is true for n − 1. Suppose it is true for 
n − k. Then

 ak , 6

so  ak 1 6 , 12

and  12 sak 1 6d , 1
2 s12d − 6

Thus  ak11 , 6

This shows, by mathematical induction, that an , 6 for all n.
Since the sequence han j is increasing and bounded, Theorem 12 guarantees that it 

has a limit. The theorem doesn’t tell us what the value of the limit is. But now that we 
know L − limn l ` an exists, we can use the given recurrence relation to write

lim
n l `

an11 − lim
n l `

 12 san 1 6d − 1
2 a lim

n l `
 an 1 6b − 1

2 sL 1 6d

Since an l L, it follows that an11 l L too (as n l `, n 1 1 l ` also). So we have

L − 1
2 sL 1 6d

Solving this equation for L, we get L − 6, as we predicted.� ■

A proof of this fact is requested in 
Exercise 76.

11.1 EXERCISES
 1.  (a) What is a sequence?
 (b) What does it mean to say that limn l ` an − 8?
 (c) What does it mean to say that limn l ` an − `?

 2.  (a) What is a convergent sequence? Give two examples.
 (b) What is a divergent sequence? Give two examples.

3–16 List the first five terms of the sequence.

 3. an − n3 2 1 4. an −
1

3n 1 1

 5. h2n 1 nj`
n−2 6.  H n2 2 1

n2 1 1J
`

n−3

 7. an −
s21dn21

n2  8. an −
s21dn

4n

 9. an −  cos n� 10. an − 1 1 s21dn

 11. an −
s22dn

sn 1 1d!
 12. an −

2n 1 1

n! 1 1

 13. a1 − 1, an11 − 2an 1 1

 14.  a1 − 6,  an11 −
an

n

 15.  a1 − 2,  an11 −
an

1 1 an

 16.  a1 − 2,  a2 − 1,  an11 − an 2 an21

17–22 Find a formula for the general term an of the sequence, 
assuming that the pattern of the first few terms continues.

 17.  51
2,  14,  16, 1

8,  1
10, . . .6

 18.  5  4, 21, 14, 2 1
16, 1

64, . . .6
 19.  523, 2, 24

3 , 89, 216
27 , . . .6

 20.  h5, 8, 11, 14, 17, . . .j

 21.  5  

1
2 , 2 

4
3 , 94, 2 

16
5 , 25

6 , . . .6
 22.  h1, 0, 21, 0, 1, 0, 21, 0, . . .j

23–26 Calculate, to four decimal places, the first ten terms of the 
sequence and use them to plot the graph of the sequence by hand. 
Does the sequence appear to have a limit? If so, calculate it. If not, 
explain why.

 23.  an −
3n

1 1 6n
 24.  an − 2 1

s21dn

n

 25.  an − 1 1 (2 

1
2)n

 26.  an − 1 1
10 n

9 n

27– 62 Determine whether the sequence converges or diverges.  
If it converges, find the limit.

 27. an −
5

n 1 2
 28. an − 5sn 1 2
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 29. an −
4n2 2 3n

2n2 1 1
 30. an −

4n2 2 3n

2n 1 1

 31.  an −
n4

n3 2 2n
 32.  an − 2 1 s0.86dn

 33.  an − 3n 72n 34.  an −
3sn 

sn 1 2

 35.  an − e21ysn 

 36.  an −
4n

1 1 9 n

 37.  an − Î 1 1 4n2

1 1 n2   38.  an − cosS n�

n 1 1D
 39.  an −

n2

sn3 1 4n 
 40.  an − e2nysn12d

 41.  an −
s21dn

2sn
  
 42.  an −

s21dn11n

n 1 sn
  

 43.  Hs2n 2  1 d!
s2n 1  1d!J 44.  H ln n

lns2ndJ
 45.  {sin n} 46.  an −

tan21n

n

 47.  hn2e 2nj 48.  an − lnsn 1 1d 2 ln n

 49.  an −
cos2n

2n  50.  an − sn 2113n 

 51.  an − n sins1ynd 52.  an − 22n cos n�

 53.  an − S1 1
2

nD
n

 54.  an − n1yn

 55.  an − lns2n2 1 1d 2 lnsn2 1 1d

 56.  an −
sln nd2

n

 57.  an − arctansln nd

 58.  an − n 2 sn 1 1 sn 1 3 

 59.  h0, 1, 0, 0, 1, 0, 0, 0, 1, . . .j

 60.  51
1, 13, 12, 14, 13, 15, 14, 16, . . .6

 61.  an −
n!

2n  62.  an −
s23dn

n!

63–69 Use a graph of the sequence to decide whether the 
sequence is convergent or divergent. If the sequence is conver-
gent, guess the value of the limit from the graph and then prove 
your guess.

 63.  an − s21dn 
n

n 1 1
 64.  an −

sin n

n

 65.  an − arctanS n2

n2 1 4D 66.  an − sn 3n 1 5n 

;

 67.  an −
n2 cos n

1 1 n2

 68.  an −
1 � 3 � 5 � ∙ ∙ ∙ � s2n 2 1d

n!

 69.  an −
1 � 3 � 5 � ∙ ∙ ∙ � s2n 2 1d

s2ndn

 70.  (a)  Determine whether the sequence defined as follows is 
convergent or divergent:

a1 − 1        an11 − 4 2 an        for n > 1

 (b)  What happens if the first term is a1 − 2 ?

 71.   If $1000 is invested at 6% interest, compounded annually, 
then after n years the investment is worth an − 1000s1.06dn 
dollars.

 (a) Find the first five terms of the sequence han j.
 (b) Is the sequence convergent or divergent? Explain.

 72.   If you deposit $100 at the end of every month into an 
account that pays 3% interest per year compounded 
monthly, the amount of interest accumulated after n months 
is given by the sequence

In − 100S 1.0025n 2 1

0.0025
2 nD

 (a) Find the first six terms of the sequence.
 (b) How much interest will you have earned after two years?

 73.   A fish farmer has 5000 catfish in his pond. The number of 
catfish increases by 8% per month and the farmer harvests 
300 catfish per month.

 (a)  Show that the catfish population Pn after n months is 
given recursively by

Pn − 1.08Pn21 2 300    P0 − 5000

 (b) Find the number of catfish in the pond after six months.

 74.   Find the first 40 terms of the sequence defined by

an11 − H1
2 an

3an 1 1

if an is an even number

if an is an odd number

and a1 − 11. Do the same if a1 − 25. Make a conjecture 
about this type of sequence.

 75.  For what values of r is the sequence hnr n j convergent?

 76.  (a) If han j is convergent, show that

lim 
n l `

 an11 − lim 
n l `

 an

 (b)  A sequence han j is defined by a1 − 1 and 
an11 − 1ys1 1 an d for n > 1. Assuming that han j is  
convergent, find its limit.

 77.  Suppose you know that han j is a decreasing sequence and 
all its terms lie between the numbers 5 and 8. Explain why 
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 (b)  Use a graph of the sequence in part (a) to find the  
smallest values of N that correspond to « − 0.1 and 
« − 0.001 in Definition 2.

 92.   Use Definition 2 directly to prove that lim n l ` r n − 0  
when | r | , 1.

 93.   Prove Theorem 6. 
[Hint: Use either Definition 2 or the Squeeze Theorem.]

 94. Use Theorem 7 to prove the Power Law:

lim
n l `

 a pn − f lim
n l `

 ang p      if p . 0 and an . 0

 95.   Prove that if limn l ` an − 0 and hbnj is bounded, then 
limn l ` san bnd − 0.

 96.   Let an − s1 1 1yndn.

 (a)  Show that if 0 < a , b, then

b n11 2 a n11

b 2 a
, sn 1 1db n

 (b) Deduce that b n fsn 1 1da 2 nbg , a n11.
 (c)  Use a − 1 1 1ysn 1 1d and b − 1 1 1yn in part (b) to 

show that han j is increasing.
 (d)  Use a − 1 and b − 1 1 1ys2nd in part (b) to show  

that a2n , 4.
 (e) Use parts (c) and (d) to show that an , 4 for all n.
 (f)  Use Theorem 12 to show that lim n l ` s1 1 1yndn exists. 

(The limit is e. See Equation 3.6.6.)

 97.   Let a and b be positive numbers with a . b. Let a1 be their 
arithmetic mean and b1 their geometric mean:

a1 −
a 1 b

2
      b1 − sab 

Repeat this process so that, in general,

an11 −
an 1 bn

2
      bn11 − san bn

 

 (a) Use mathematical induction to show that

an . an11 . bn11 . bn

 (b) Deduce that both han j and hbn j are convergent.
 (c)  Show that limn l ` an − limn l ` bn. Gauss called the  

common value of these limits the arithmetic-geometric 
mean of the numbers a and b.

 98.  (a)  Show that if lim n l ` a2n − L and lim n l ` a2n11 − L,  
then han j is convergent and lim n l ` an − L.

 (b) If a1 − 1 and

an11 − 1 1
1

1 1 an

 find the first eight terms of the sequence han j. Then use 

the sequence has a limit. What can you say about the value 
of the limit?

78–84 Determine whether the sequence is increasing, decreas-
ing, or not monotonic. Is the sequence bounded?

 78.  an − cos n

 79.  an −
1

2n 1 3
 80.  an −

1 2 n

2 1 n

 81.  an − ns21dn 82.  an − 2 1
s21dn

n

 83.  an − 3 2 2ne2n 84.  an − n3 2 3n 1 3

 85.  Find the limit of the sequence

5s2 , s2s2 
 , s2s2s2 

 , . . .6
 86. A sequence han j is given by a1 − s2 , an11 − s2 1 an

   .
 (a)  By induction or otherwise, show that han j is increasing  

and bounded above by 3. Apply the Monotonic 
Sequence Theorem to show that limn l ` an exists.

 (b) Find limn l ` an .

 87.   Show that the sequence defined by

a1 − 1      an11 − 3 2
1

an

is increasing and an , 3 for all n. Deduce that han j is con-
vergent and find its limit.

 88.   Show that the sequence defined by

a1 − 2      an11 −
1

3 2 an

satisfies 0 , an < 2 and is decreasing. Deduce that the 
sequence is convergent and find its limit.

 89.  (a)  Fibonacci posed the following problem: 

   Suppose that rabbits live forever and that every 
month each pair produces a new pair which becomes 
productive at age 2 months. If we start with one new-
born pair, how many pairs of rabbits will we have in 
the nth month? 

  Show that the answer is fn , where h fn j is the Fibonacci 
sequence defined in Example 3(c).

 (b)  Let an − fn11yfn and show that an21 − 1 1 1yan22 . 
Assuming that han j is convergent, find its limit.

 90.  (a)  Let a1 − a, a2 − f sad, a3 − f sa2d − f s f sadd, . . . , 
an11 − f san d, where f  is a continuous function. If 
limn l ` an − L, show that f sLd − L .

 (b)  Illustrate part (a) by taking f sxd − cos x, a − 1, and  
estimating the value of L to five decimal places.

 91.  (a) Use a graph to guess the value of the limit

lim
n l `

 
n5

n!

;
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part (a) to show that lim n l ` an − s2 . This gives the  
continued fraction expansion

s2 − 1 1
1

2 1
1

2 1 ∙ ∙ ∙

 99. The size of an undisturbed fish population has been modeled 
by the formula

pn11 −
bpn

a 1 pn

where pn is the fish population after n years and a and b are 

positive constants that depend on the species and its environ-
ment. Suppose that the population in year 0 is p0 . 0.

 (a)  Show that if h pnj is convergent, then the only possible  
values for its limit are 0 and b 2 a.

 (b)  Show that pn11 , sbyadpn .
 (c)  Use part (b) to show that if a . b, then limn l ` pn − 0;  

in other words, the population dies out.
 (d)  Now assume that a , b. Show that if p 0 , b 2 a, then 

h pnj is increasing and 0 , pn , b 2 a. Also show that  
if p 0 . b 2 a, then h pnj is decreasing and pn . b 2 a. 
Deduce that if a , b, then limn l ` pn − b 2 a. 

A sequence that arises in ecology as a model for population growth is defined by the logistic  
difference equation

pn11 − kpns1 2 pn d

where pn measures the size of the population of the nth generation of a single species. To keep 
the numbers manageable, we take pn to be a fraction of the maximal size of the population, so 
0 < pn < 1. Notice that the form of this equation is similar to the logistic differential equation 
in Section 9.4. The discrete model—with sequences instead of continuous functions—is pref-
erable for modeling insect populations, where mating and death occur in a periodic fashion.

An ecologist is interested in predicting the size of the population as time goes on, and asks  
these questions: Will it stabilize at a limiting value? Will it change in a cyclical fashion? Or 
will it exhibit random behavior?

Write a program to compute the first n terms of this sequence starting with an initial popu-
lation p0, where 0 , p0 , 1. Use this program to do the following.

 1.  Calculate 20 or 30 terms of the sequence for p0 − 1
2 and for two values of k such that 

1 , k , 3. Graph each sequence. Do the sequences appear to converge? Repeat for a dif-
ferent value of p0 between 0 and 1. Does the limit depend on the choice of p0? Does it 
depend on the choice of k?

 2.  Calculate terms of the sequence for a value of k between 3 and 3.4 and plot them. What do 
you notice about the behavior of the terms?

 3. Experiment with values of k between 3.4 and 3.5. What happens to the terms?

 4.  For values of k between 3.6 and 4, compute and plot at least 100 terms and comment on 
the behavior of the sequence. What happens if you change p0 by 0.001? This type of 
behavior is called chaotic and is exhibited by insect populations under certain conditions.

DISCOVERY PROJECT  LOGISTIC SEQUENCES

Series

Recall from Section 11.1 that Zeno, in one of his paradoxes, observed that in order for a 
man standing in a room to walk to a wall, he would first have to walk half the distance to 
the wall, then half the remaining distance ( 14 of the total), and then again half of what still 

11.2
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remains ( 18 

) , and so on (see Figure 1). Because this process can always be continued, 
Zeno argued that the man can never reach the wall.

1
2

1
4

1
2n

. . . . . . 

Of course, we know that the man can actually reach the wall, so this suggests that 
perhaps the total distance the man walks can be expressed as the sum of infinitely many 
smaller distances as follows:

1 −
1

2
1

1

4
1

1

8
1

1

16
1 ∙ ∙ ∙ 1

1

2n 1 ∙ ∙ ∙

Zeno was arguing that it doesn’t make sense to add infinitely many numbers together. 
But there are other situations in which we implicitly use infinite sums. For instance, in 
decimal notation, the value of � is

� − 3.14159 26535 89793 23846 26433 83279 50288 . . .

The convention behind our decimal notation is that this number can be written as the 
infinite sum

� − 3 1
1

10
1

4

102 1
1

103 1
5

104 1
9

105 1
2

106 1
6

107 1
5

108 1 ∙ ∙ ∙

We can’t literally add an infinite number of terms, but the more terms we add, the closer 
we get to the actual value of �.

■	 Infinite Series
If we try to add the terms of an infinite sequence han jn−1

`  we get an expression of the form

1  a1 1 a2 1 a3 1 ∙  ∙  ∙ 1 an 1 ∙  ∙  ∙

which is called an infinite series (or just a series) and is denoted by the symbol

o
`

n−1
 an     or    o  an

In general, does it make sense to talk about the sum of infinitely many numbers? For 
example, it would be impossible to find a finite sum for the series

1 1 2 1 3 1 4 1 5 1 ∙ ∙ ∙ 1 n 1 ∙ ∙ ∙

because if we start adding the terms, then we get cumulative sums that grow increasingly 
larger. 

However, consider the series of distances from Zeno’s paradox:

1

2
1

1

4
1

1

8
1

1

16
1

1

32
1

1

64
1 ∙ ∙ ∙ 1

1

2n 1 ∙ ∙ ∙

FIGURE 1 
At the nth stage, the man has  

walked a total distance of 
1

2
1

1

4
1

1

8
1 ∙ ∙ ∙ 1

1

2n .

With the help of computers, research-
ers have found decimal approxima-
tions for � accurate to tens of trillions 
of decimal places.
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If we start adding the terms, and we keep track of the subtotals as we go, we get 12, 34 (the 
sum of the first two terms), 78 (first three terms), 15

16, 31
32, 63

64, and so on. The table in the mar-
gin shows that as we add more and more terms, these partial sums become closer and 
closer to 1. In fact, you can verify that the n th partial sum is given by

2n 2 1

2n − 1 2
1

2n

and we can see that by adding sufficiently many terms of the series (making n sufficiently 
large), the partial sums can be made as close to 1 as we like. So it seems reasonable to 
say that the sum of this infinite series is 1 and to write

o
`

n−1
 

1

2n −
1

2
1

1

4
1

1

8
1

1

16
1 ∙ ∙ ∙ 1

1

2n 1 ∙ ∙ ∙ − 1

We use a similar idea to determine whether or not a general series �an  has a sum. We  
consider the partial sums

 s1 − a1

 s2 − a1 1 a2

 s3 − a1 1 a2 1 a3

 s4 − a1 1 a2 1 a3 1 a4

and, in general,

sn − a1 1 a2 1 a3 1 ∙ ∙ ∙ 1 an − o
n

i−1
 ai

These partial sums form a new sequence hsn j, which may or may not have a limit. If 
lim n l ` sn exists (as a finite number), then we call it the sum of the infinite series �an .

2  Definitio  Given a series o`
n−1 an − a1 1  a2 1  a3 1 ∙  ∙  ∙, let sn denote its  

n th partial sum:

sn − o
n

i−1
 ai − a1 1 a2 1 ∙ ∙ ∙ 1 an

If the sequence hsn j is convergent and lim n l ` sn − s exists as a real number, then 
the series �an  is called convergent and we write

a1 1 a2 1 ∙ ∙ ∙ 1 an 1 ∙ ∙ ∙ −  s     or    o
`

n−1
 an − s

The number s is called the sum of the series. 

If the sequence hsn j is divergent, then the series is called divergent.

Thus the sum of a series is the limit of the sequence of partial sums. So when we write 
o`

n−1 an − s, we mean that by adding sufficiently many terms of the series we can get as 
close as we like to the number s. Notice that

o
`

n−1
 an − lim

n l `
 o

n

i−1
 ai

n Sum of first n terms

 1 0.50000000
 2 0.75000000
 3 0.87500000
 4 0.93750000
 5 0.96875000
 6 0.98437500
 7 0.99218750
10 0.99902344
15 0.99996948
20 0.99999905
25 0.99999997

Compare with the improper integral

y`

1
 f sxd dx − lim

t l `
 y t

1
 f sxd dx

To find this integral we integrate  
from 1 to t and then let t l `. For a 
series, we sum from 1 to n and then 
let n l `.
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EXAMPLE 1 Suppose we know that the sum of the first n terms of the series o`
n−1 an is

sn − a1 1 a2 1 ∙ ∙ ∙ 1 an −
2n

3n 1 5

Then the sum of the series is the limit of the sequence hsn j:

 o
`

n−1
 an − lim

n l `
 sn − lim

n l `
 

2n

3n 1 5
− lim

n l `
 

2

3 1
5

n

−
2

3
� ■

In Example 1 we were given an expression for the sum of the first n terms. In the fol-
lowing example we will find an expression for the n th partial sum.

EXAMPLE 2 Show that the series o
`

n−1
 

1

nsn 1 1d
 is convergent, and find its sum.

SOLUTION We use the definition of a convergent series and compute the partial sums.

sn − o
n

i−1
 

1

isi 1 1d
−

1

1 � 2
1

1

2 � 3
1

1

3 � 4
1 ∙ ∙ ∙ 1

1

nsn 1 1d

We can simplify this expression if we use the partial fraction decomposition

1

isi 1 1d
−

1

i
2

1

i 1 1

(see Section 7.4). Thus we have

 sn − o
n

i−1
 

1

isi 1 1d
− o

n

i−1
 S 1

i
2

1

i 1 1D
 − S1 2

1

2D 1 S 1

2
2

1

3D 1 S 1

3
2

1

4D 1 ∙ ∙ ∙ 1 S 1

n
2

1

n 1 1D
 − 1 2

1

n 1 1

and so lim
nl`

 sn − lim
nl`

 S1 2
1

n 1 1D − 1 2 0 − 1

Therefore the given series is convergent and

 o
`

n−1
 

1

nsn 1 1d
− 1� ■

 
0

1

�an�

n

�sn�

 

Notice that the terms cancel in pairs.  
This is an example of a telescoping 
sum: because of all the cancellations, 
the sum collapses (like a pirate’s col-
lapsing telescope) into just two terms.

Figure 2 illustrates Example 2 by show- 
ing the graphs of the sequence of 
terms an − 1y[nsn 1 1d] and the 
sequence hsn j of partial sums. Notice 
that an l 0 and sn l 1. See Exer-
cises 82 and 83 for two geometric 
interpretations of Example 2.

FIGURE 2

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



742 CHAPTER 11   Sequences, Series, and Power Series 

■	 Sum of a Geometric Series
An important example of an infinite series is the geometric series

a 1 ar 1 ar 2 1 ar 3 1 ∙ ∙ ∙ 1 ar n21 1 ∙ ∙ ∙ − o
`

n−1
 ar n21    a ± 0

Each term is obtained from the preceding one by multiplying it by the common ratio r. 
(The series that arises from Zeno’s paradox is the special case where a − 1

2 and r − 1
2 .)

If r − 1, then sn − a 1 a 1 ∙ ∙ ∙ 1 a − na l 6`. Since lim n l ` sn doesn’t exist, 
the geometric series diverges in this case.

If r ± 1, we have
 sn −  a 1 ar 1 ar 2 1 ∙ ∙ ∙ 1 ar n21

and  rsn −    ar 1 ar 2 1 ∙ ∙ ∙ 1 ar n21 1 ar n

Subtracting these equations, we get

sn 2 rsn − a 2 ar n

3  
sn −

as1 2 r n d
1 2 r

If 21 , r , 1, we know from (11.1.9) that r n l 0 as n l `, so

lim
n l `

 sn − lim
n l `

 
as1 2 r n d

1 2 r
−

a

1 2 r
2

a

1 2 r
� lim

n l `
 r n −

a

1 2 r

Thus when | r | , 1 the geometric series is convergent and its sum is ays1 2 rd.
If r < 21 or r . 1, the sequence hr n j is divergent by (11.1.9) and so, by Equation 3, 

lim n l ` sn does not exist. Therefore the geometric series diverges in those cases. We sum-
marize these results as follows.

4  The geometric series

o
`

n−1
 ar n21 − a 1 ar 1 ar 2 1 ∙ ∙ ∙

is convergent if | r | , 1 and its sum is

o
`

n−1
 ar n21 −

a

1 2 r
    | r | , 1

If | r | > 1, the geometric series is divergent.

In words: the sum of a convergent 
geometric series is

first term

1 2 common ratio

EXAMPLE 3 Find the sum of the geometric series

5 2 10
3 1 20

9 2 40
27 1 ∙ ∙ ∙

SOLUTION The first term is a − 5 and the common ratio is r − 22
3. Since  

| r | − 2
3 , 1, the series is convergent by (4) and its sum is

 
5

1 2 (22
3)

−
5
5
3

− 3� ■

Figure 3 provides a geometric demon-
stration of the formula for the sum of 
a geometric series. If the triangles are 
constructed as shown and s is the 
sum of the series, then, by similar 
triangles,

s

a
−

a

a 2 ar
so s −

a

1 2 r

aa

a

ara-ar

ar

ar@

ar#

ar@

s

FIGURE 3 
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 SECTION 11.2  Series 743

What do we really mean when we say that the sum of the series in Example 3 is 3? Of 
course, we can’t literally add an infinite number of terms, one by one. But, according to 
Defi  ni tion 2, the total sum is the limit of the sequence of partial sums. So, by taking the 
sum of sufficiently many terms, we can get as close as we like to the number 3. The table 
shows the first 10 partial sums sn and the graph in Figure 4 shows how the sequence of 
partial sums approaches 3.

FIGURE 4 

0 n

sn

20

3

EXAMPLE 4 Is the series o
`

n−1
 22n312n convergent or divergent?

SOLUTION Let’s rewrite the nth term of the series in the form ar n21:

o
`

n−1
 22n312n − o

`

n−1
 s22dn 32sn21d − o

`

n−1
 

4n

3n21 − o
`

n−1
 4( 

4
3)n21

We recognize this series as a geometric series with a − 4 and r − 4
3. Since r . 1, the 

series diverges by (4).� ■

EXAMPLE 5 A drug is administered to a patient at the same time every day. Suppose 
the concentration of the drug is Cn (measured in mgymL) after the injection on the nth 
day. Before the injection the next day, only 30% of the drug remains in the bloodstream 
and the daily dose raises the concentration by 0.2 mgymL.

(a) Find the concentration just after the third injection.
(b) What is the concentration just after the nth dose?
(c) What is the limiting concentration?

SOLUTION
(a) Just before the daily dose of medication is administered, the concentration is 
reduced to 30% of the preceding day’s concentration, that is, 0.3Cn. With the new dose, 
the concentration is increased by 0.2 mgymL and so

Cn11 − 0.2 1 0.3Cn

Starting with C0 − 0 and putting n − 0, 1, 2 into this equation, we get

C1 − 0.2 1 0.3C0 − 0.2

C2 − 0.2 1 0.3C1 − 0.2 1 0.2s0.3d − 0.26

C3 − 0.2 1 0.3C2 − 0.2 1 0.2s0.3d 1 0.2s0.3d2 − 0.278

The concentration after three days is 0.278 mgymL.

n sn

 1 5.000000
 2 1.666667
 3 3.888889
 4 2.407407
 5 3.395062
 6 2.736626
 7 3.175583
 8 2.882945
 9 3.078037
10 2.947975

Another way to identify a and r is to 
write out the first few terms:

4 1 16
3 1 64

9 1 ∙ ∙ ∙
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(b) After the nth dose the concentration is

Cn − 0.2 1 0.2s0.3d 1 0.2s0.3d2 1 . . . 1 0.2s0.3dn21

This is a finite geometric series with a − 0.2 and r − 0.3, so by Formula 3 we have

Cn −
0.2 f1 2 s0.3dn g

1 2 0.3
−

2

7
 f1 2 s0.3dn g mgymL

(c)  Because 0.3 , 1, we know that limnl` s0.3dn − 0. So the limiting concentration is

 lim
nl`

 Cn − lim
nl`

 
2

7
 f1 2 s0.3dn g −

2

7
 s1 2 0d −

2

7
 mgymL� ■

EXAMPLE 6 Write the number 2.317 − 2.3171717. . . as a ratio of integers.

SOLUTION

2.3171717. . . − 2.3 1
17

103 1
17

105 1
17

107 1 ∙ ∙ ∙

After the first term we have a geometric series with a − 17y103 and r − 1y102.  
Therefore

 2.317 − 2.3 1

17

103

1 2
1

102

− 2.3 1

17

1000

99

100

  −
23

10
1

17

990
−

1147

495
� ■

EXAMPLE 7 Find the sum of the series o
`

n−0
 xn, where | x | , 1.

SOLUTION Notice that this series starts with n − 0 and so the first term is x 0 − 1. 
(With series, we adopt the convention that x 0 − 1 even when x − 0.) Thus

o
`

n−0
 xn − 1 1 x 1 x 2 1 x 3 1 x 4 1 ∙ ∙ ∙

This is a geometric series with a − 1 and r − x. Since | r | − | x | , 1, it converges  
and (4) gives

5  o
`

n−0
 xn −

1

1 2 x
� ■

■	 Test for Divergence
Recall that a series is divergent if its sequence of partial sums is a divergent sequence.

EXAMPLE 8 Show that the harmonic series

o
`

n−1
 
1

n
− 1 1

1

2
1

1

3
1

1

4
1 ∙ ∙ ∙

is divergent.
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 SECTION 11.2  Series 745

SOLUTION For this particular series it’s convenient to consider the partial sums s2, s4, 
s8, s16, s32, . . . and show that they become large.

 s2 − 1 1 1
2

 s4 − 1 1 1
2 1 (  

1
3 1 1

4 ) . 1 1 1
2 1 (  

1
4 1 1

4 ) − 1 1 2
2

 s8 − 1 1 1
2 1 (  

1
3 1 1

4 ) 1 (  

1
5 1 1

6 1 1
7 1 1

8 )

 . 1 1 1
2 1 (  

1
4 1 1

4 ) 1 (  

1
8 1 1

8 1 1
8 1 1

8 )

 − 1 1 1
2 1 1

2 1 1
2 − 1 1 3

2

 s16 − 1 1 1
2 1 (  

1
3 1 1

4 ) 1 (  

1
5 1 ∙ ∙ ∙ 1 1

8 ) 1 (  

1
9 1 ∙ ∙ ∙ 1 1

16 )

 . 1 1 1
2 1 (  

1
4 1 1

4 ) 1 (  

1
8 1 ∙ ∙ ∙ 1 1

8 ) 1 (  

1
16 1 ∙ ∙ ∙ 1 1

16 )

 − 1 1 1
2 1 1

2 1 1
2 1 1

2 − 1 1 4
2

Similarly, s32 . 1 1 5
2 , s64 . 1 1 6

2 , and in general

s2n . 1 1
n

2

This shows that s2n l ` as n l ` and so hsn j is divergent. Therefore the harmonic 
series diverges.� ■

6  Theorem If the series o
`

n−1
 an is convergent, then lim 

n l `
 an − 0.

PROOF Let sn − a1 1 a2 1 ∙ ∙ ∙ 1 an. Then an − sn 2 sn21. Since � an is convergent, 
the sequence hsn j is convergent. Let lim n l ` sn − s. Since n 2 1 l ` as n l `, we 
also have lim n l ` sn21 − s. Therefore

  lim
n l `

 an − lim
n l `

ssn 2 sn21d − lim
n l `

 sn 2 lim
n l `

 sn21 − s 2 s − 0� ■

NOTE With any series � an we associate two sequences: the sequence hsn j of its partial 
sums and the sequence han j of its terms. If � an is convergent, then the limit of the sequence 
hsn j is s (the sum of the series) and, as Theorem 6 asserts, the limit of the sequence han j  
is 0.

WARNING The converse of Theorem 6 is not true in general. If lim n l ` an − 0, we can-
not conclude that � an is convergent. Observe that for the harmonic series � 1yn we have 
an − 1yn l 0 as n l `, but we showed in Example 8 that � 1yn is divergent.

7  Test for Divergence If lim
nl`

 an does not exist or if lim
nl`

 an ± 0, then the

series o
`

n−1
 an is divergent.

The method used in Example 8 for 
showing that the harmonic series 
diverges was developed by the French 
scholar Nicole Oresme (1323–1382).
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The Test for Divergence follows from Theorem 6 because, if the series is not diver-
gent, then it is convergent, and so lim n l ` an − 0.

EXAMPLE 9 Show that the series o
`

n−1
 

n 2

5n 2 1 4
 diverges.

SOLUTION

lim
nl`

 an − lim
nl`

 
n 2

5n 2 1 4
− lim

nl`
 

1

5 1 4yn 2 −
1

5
± 0

So the series diverges by the Test for Divergence.� ■

NOTE If we find that lim n l ` an ± 0, we know that � an is divergent. If we find that 
lim n l ` an − 0, this fact tells us nothing about the convergence or divergence of � an. 
Remember the warning given after Theorem 6: if lim n l ` an − 0, the series � an might 
converge or it might diverge.

■	 Properties of Convergent Series
The following properties of convergent series follow from the corresponding Limit Laws 
for Sequences in Section 11.1.

8  Theorem If � an and � bn are convergent series, then so are the series � can

(where c is a constant), �san 1 bn d, and �san 2 bn d, and

 (i) o
`

n−1
 can − c o

`

n−1
 an

 (ii) o
`

n−1
 san 1 bn d − o

`

n−1
 an 1 o

`

n−1
 bn

 (iii) o
`

n−1
 san 2 bn d − o

`

n−1
 an 2 o

`

n−1
 bn

We prove part (ii); the other parts are left as exercises.

PROOF OF PART (ii) Let

sn − o
n

i−1
 ai      s − o

`

n−1
 an      tn − o

n

i−1
 bi      t − o

`

n−1
 bn

The nth partial sum for the series osan 1 bn d is

un − o
n

i−1
 sai 1 bid

and, using Equation 5.2.10, we have

 lim
n l `

 un − lim
n l `

 o
n

i−1
 sai 1 bid − lim

n l `
 So

n

i−1
 ai 1 o

n

i−1
 biD

 − lim
n l `

 o
n

i−1
 ai 1 lim

n l `
 o

n

i−1
 bi

 − lim
n l `

 sn 1 lim
n l `

 tn − s 1 t
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 SECTION 11.2  Series 747

Therefore o  san 1 bn d is convergent and its sum is

 o
`

n−1
 san 1 bn d − s 1 t − o

`

n−1
 an 1 o

`

n−1
 bn� ■

EXAMPLE 10 Find the sum of the series o
`

n−1
 S 3

nsn 1 1d
1

1

2nD.

SOLUTION The series � 1y2n is a geometric series with a − 1
2 and r − 1

2, so

o
`

n−1
 

1

2n −
1
2

1 2 1
2

− 1

In Example 2 we found that

o
`

n−1
 

1

nsn 1 1d
− 1 

So, by Theorem 8, the given series is convergent and

 o
`

n−1
 S 3

nsn 1 1d
1

1

2nD − 3 o
`

n−1
 

1

nsn 1 1d
1 o

`

n−1
 

1

2n

  − 3 � 1 1 1 − 4 � ■

NOTE A finite number of terms doesn’t affect the convergence or divergence of a series. 
For instance, suppose that we were able to show that the series

o
`

n−4
 

n

n3 1 1

is convergent. Since

o
`

n−1
 

n

n3 1 1
−

1

2
1

2

9
1

3

28
1 o

`

n−4
 

n

n3 1 1

it follows that the entire series o`
n−1 nysn3 1 1d is convergent. Similarly, if it is known 

that the series �`
n−N11 an converges, then the full series

o
`

n−1
 an − o

N

n−1
 an 1 o

`

n−N11
 an

is also convergent.

11.2 Exercises
 1.  (a) What is the difference between a sequence and a series?
 (b) What is a convergent series? What is a divergent series?

 2.  Explain what it means to say that o `
n−1 an − 5.

3–4 Calculate the sum of the series o `
n−1 an whose partial sums 

are given.

 3.  sn − 2 2 3s0.8dn 4.  sn −
n 2 2 1

4n 2 1 1

5–10 Calculate the first eight terms of the sequence of partial sums 
correct to four decimal places. Does it appear that the series is 
convergent or divergent?

 5. o
`

n−1
 

1

n3  6. o
`

n−1
 

1

s3 n 

 7.  o
`

n−1
 sin n 8. o

`

n−1
s21dn n
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 9. o
`

n−1
 

1

n4 1 n2  10. o
`

n−1
 
s21dn21

n!

11–14 Find at least 10 partial sums of the series. Graph both the 
sequence of terms and the sequence of partial sums on the same 
screen. Does it appear that the series is convergent or divergent? 
If it is convergent, find the sum. If it is divergent, explain why.

 11.  o
`

n−1
 

6

s23dn  12.  o
`

n−1
 cos n

 13.  o
`

n−1
 

n

sn 2 1 4 
 14.  o

`

n−1
 
7 n11

10 n

 15.  Let an −
2n

3n 1 1
.

 (a) Determine whether han j is convergent.

 (b) Determine whether �`
n−1 an is convergent.

 16.  (a) Explain the difference between

o
n

i−1
 ai    and    o

n

j−1
 aj

 (b) Explain the difference between

o
n

i−1
 ai    and    o

n

i−1
 aj

17–22 Determine whether the series is convergent or divergent 
by expressing sn as a telescoping sum (as in Ex am ple 2). If it is 
convergent, find its sum.

 17.  o
`

n−1
S 1

n 1 2
2

1

nD 18.  o
`

n−4
 S 1

sn 

 2  
1

sn 1 1 D
 19.  o

`

n−1
 

3

nsn 1 3d
 20.  o

`

n−1
 ln 

n

n 1 1

 21.  o
`

n−1
 (e 1yn 2 e1ysn11d) 22.  o

`

n−2
 

1

n3 2 n

23–32 Determine whether the geometric series is convergent or 
divergent. If it is convergent, find its sum.

 23.  3 2 4 1 16
3 2 64

9 1 ∙ ∙ ∙ 24.  4 1 3 1 9
4 1 27

16 1 ∙ ∙ ∙

 25.  10 2 2 1 0.4 2 0.08 1 ∙ ∙ ∙

 26.  2 1 0.5 1 0.125 1 0.03125 1 ∙ ∙ ∙

 27.  o
`

n−1
 12s0.73dn21 28.  o

`

n−1
 

5

� n

 29.  o
`

n−1
 
s23dn21

4 n  30.  o
`

n−0

 
3n11

s22dn

 31.  o
`

n−1
 

e 2n

6 n21  32.  o
`

n−1
 
6 � 2 2n21

3n

;

33–50 Determine whether the series is convergent or divergent. 
If it is convergent, find its sum.

 33.  
1

3
1

1

6
1

1

9
1

1

12
1

1

15
1 ∙ ∙ ∙

 34. 
1

2
1

2

3
1

3

4
1

4

5
1

5

6
1

6

7
1 ∙ ∙ ∙

 35. 
2

5
1

4

25
1

8

125
1

16

625
1

32

3125
1 ∙ ∙ ∙

 36.  
1

3
1

2

9
1

1

27
1

2

81
1

1

243
1

2

729
1 ∙ ∙ ∙

 37.  o
`

n−1
 

2 1 n

1 2 2n
 38.  o

`

k−1
 

k2

k 2 2 2k 1 5

 39.  o
`

n−1
 3n11 42n 40.  o

`

n−1
 fs20.2dn 1 s0.6dn21g

 41.  o
`

n−1
 

1

4 1 e2n  42.  o
`

n−1
 
2 n 1 4 n

e n

 43.  o
`

k−1
 ssin 100dk 44.  o

`

n−1
 

1

1 1 ( 

2
3)n

 45. o
`

n−1
 lnS n2 1 1

2n2 1 1D  46.  o
`

k−0
 (s2 )2k

 47.  o
`

n−1
 arctan n 48.  o

`

n−1
 S 3

5 n 1
2

nD
 49.  o

`

n−1
 S 1

e n
 1

1

nsn 1 1dD 50.  o
`

n−1
 
e n

n2

 51.  Let x − 0.99999 . . . .
 (a)  Do you think that x , 1 or x − 1?
 (b)  Sum a geometric series to find the value of x.
 (c)  How many decimal representations does the number 1 

have?
 (d)  Which numbers have more than one decimal  

representation?

 52.  A sequence of terms is defined by

a1 − 1    an − s5 2 ndan21

Calculate o `
n−1 an.

53–58 Express the number as a ratio of integers.

 53.  0.8 − 0.8888 . . .

 54.  0.46 − 0.46464646 . . .

 55.  2.516 − 2.516516516 . . .
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 73.  A patient takes 150 mg of a drug at the same time every  
day. It is known that the body eliminates 95% of the drug in 
24 hours.

 (a)  What quantity of the drug is in the body after the third 
tablet? After the nth tablet?

 (b)  What quantity of the drug remains in the body in the 
long run?

 74.  After injection of a dose D of insulin, the concentration of 
insulin in a patient’s system decays exponentially and so it 
can be written as De2at, where t represents time in hours 
and a is a positive constant.

 (a)  If a dose D is injected every T hours, write an expres-
sion for the sum of the residual concentrations just 
before the sn 1 1dst injection.

 (b)  Determine the limiting pre-injection concentration.
 (c)  If the concentration of insulin must always remain at or 

above a critical value C, determine a minimal dosage D 
in terms of C, a, and T.

 75. When money is spent on goods and services, those who 
receive the money also spend some of it. The people receiv-
ing some of the twice-spent money will spend some of that, 
and so on. Economists call this chain reaction the multiplier 
effect. In a hypothetical isolated community, the local gov-
ernment begins the process by spending D dollars. Suppose 
that each recipient of spent money spends 100c% and saves 
100s% of the money that he or she receives. The val ues c 
and s are called the marginal propensity to consume and the 
marginal propensity to save and, of course, c 1 s − 1.

 (a)  Let Sn be the total spending that has been generated 
after n transactions. Find an equation for Sn.

 (b)  Show that limn l ` Sn − kD, where k − 1ys. The number 
k is called the multiplier. What is the multiplier if the 
marginal propensity to consume is 80%?

Note: The federal government uses this principle to justify 
deficit spending. Banks use this principle to justify lend ing a 
large percentage of the money that they receive in deposits.

 76.  A certain ball has the property that each time it falls from a 
height h onto a hard, level surface, it rebounds to a height 
rh, where 0 , r , 1. Suppose that the ball is dropped from 
an initial height of H meters.

 (a)  Assuming that the ball continues to bounce indefinitely, 
find the total distance that it travels.

 (b)  Calculate the total time that the ball travels. (Use the 
fact that the ball falls 12 tt 2 meters in t seconds.)

 (c)  Suppose that each time the ball strikes the surface with 
velocity v it rebounds with velocity 2kv, where 
0 , k , 1. How long will it take for the ball to come  
to rest?

 77.  Find the value of c if o
`

n−2
 s1 1 cd2n − 2.

 78.  Find the value of c such that o
`

n−0
 e nc − 10 .

 56.  10.135 − 10.135353535 . . .

 57.  1.234567 58.  5.71358

59–66 Find the values of x for which the series converges. Find 
the sum of the series for those values of x.

 59.  o
`

n−1
 s25dnx n 60.  o

`

n−1
 sx 1 2dn

 61.  o
`

n−0
 
sx 2 2dn

3n  62.  o
`

n−0
 s24dnsx 2 5dn

 63.  o
`

n−0
 
2n

x n  64.  o
`

n−0
 
x n

2n

 65.  o
`

n−0
 e nx 66.  o

`

n−0
 
sin nx

3n

67–68 Use the partial fraction command on a computer algebra 
system to find a convenient expression for the partial sum, and 
then use this expression to find the sum of the series. Check your 
answer by using the CAS to sum the series directly.

 67.  o
`

n−1
 
3n2 1 3n 1 1

sn2 1 nd3  68.  o
`

n−3
 

1

n5 2 5n3 1 4n

 69.  If the nth partial sum of a series �`
n−1 an is

sn −
n 2 1

n 1 1

find an and �`
n−1 an.

 70.  If the nth partial sum of a series �`
n−1 an is sn − 3 2 n22n, 

find an and �`
n−1 an.

 71.  A doctor prescribes a 100-mg antibiotic tablet to be taken 
every eight hours. It is known that the body eliminates 75% 
of the drug in eight hours.

 (a)  How much of the drug is in the body just after the 
second tablet is taken? After the third tablet?

 (b)  If Qn is the quantity of the antibiotic in the body just 
after the nth tablet is taken, find an equation that 
expresses Qn11 in terms of Qn.

 (c)  What quantity of the antibiotic remains in the body in 
the long run?

 72.  A patient is injected with a drug every 12 hours. Immedi-
ately before each injection the concentration of the drug has 
been reduced by 90% and the new dose increases the con-
centration by 1.5 mgyL.

 (a)  What is the concentration after three doses?
 (b)  If Cn is the concentration after the nth dose, find a 

formula for Cn as a function of n.
 (c)  What is the limiting value of the concentration?
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79–81 The Harmonic Series Diverges In Example 8 we proved 
that the harmonic series diverges. Here we outline additional 
methods of proving this fact. In each case, assume that the series 
converges with sum S, and show that this assumption leads to a 
contradiction. 

 79.  S − S1 1
1

2D 1 S 1

3
1

1

4D 1 S 1

5
1

1

6D 1 ∙ ∙ ∙

   . S 1

2
1

1

2D 1 S 1

4
1

1

4D 1 S 1

6
1

1

6D 1 ∙ ∙ ∙ − S

 80. S − 1 1 S 1

2
1

1

3
1

1

4D 1 S 1

5
1

1

6
1

1

7D 1

S 1

8
1

1

9
1

1

10D 1 ∙ ∙ ∙ . 1 1
3

3
1

3

6
1

3

9
1 ∙ ∙ ∙ − 1 1 S

Hint: First show that 
1

n 2 1
1

1

n 1 1
.

2

n
. 

 81. e11s1y2d1s1y3d1∙ ∙ ∙1s1ynd − e1 ? e1y2 ? e1y3 ? ∙ ∙ ∙ ? e1yn

  . S1 1 1DS1 1
1

2DS1 1
1

3D∙ ∙ ∙S1 1
1

nD − n 1 1

Hint: First show that e x . 1 1 x .

 82.  Graph the curves y − x n, 0 < x < 1, for n − 0, 1, 2, 
3, 4, . . . on a common screen. By finding the areas between 
successive curves, give a geometric demonstration of the 
fact, shown in Example 2, that

o
`

n−1
 

1

nsn 1 1d
− 1

 83.  The figure shows two circles C and D of radius 1 that touch  
at P. The line T is a common tangent line; C1 is the circle 
that touches C, D, and T; C2 is the circle that touches C, D, 
and C1; C3 is the circle that touches C, D, and C2. This pro-
cedure can be continued indefinitely and produces an infi-
nite sequence of circles hCn j. Find an expression for the 
diameter of Cn and thus provide another geometric demon-
stration of Example 2.

1 1

P

C£
C™

C¡ D

T

C

 84.  A right triangle ABC is given with /A − � and | AC | − b.  
CD is drawn perpendicular to AB, DE is drawn perpendicu-

;

lar to BC, EF� AB, and this process is continued indefi-
nitely, as shown in the figure. Find the total length of all the  
perpendiculars

| CD | 1 | DE | 1 | EF | 1 | FG | 1 ∙ ∙ ∙ 

in terms of b and �.
A

CEGB

F
H

D ¨

b

 85.  What is wrong with the following calculation?

 0 − 0 1 0 1 0 1 ∙ ∙ ∙

 − s1 2 1d 1 s1 2 1d 1 s1 2 1d 1 ∙ ∙ ∙

 − 1 2 1 1 1 2 1 1 1 2 1 1 ∙ ∙ ∙

 − 1 1 s21 1 1d 1 s21 1 1d 1 s21 1 1d 1 ∙ ∙ ∙

 − 1 1 0 1 0 1 0 1 ∙ ∙ ∙ − 1

(Guido Ubaldus thought that this proved the existence of 
God because “something has been created out of nothing.”)

 86. Suppose that o `
n−1 an san ± 0d is known to be a convergent 

series. Prove that o `
n−1 1yan is a divergent series.

 87.  (a) Prove part (i) of Theorem 8.
 (b) Prove part (iii) of Theorem 8.

 88.  If � an is divergent and c ± 0, show that � can is divergent.

 89. If � an is convergent and � bn is divergent, show that the 
series � san 1 bnd is divergent. [Hint: Argue by 
contradiction.]

 90.  If � an and � bn are both divergent, is � san 1 bnd neces- 
sarily divergent?

 91.  Suppose that a series � an has positive terms and its partial 
sums sn satisfy the inequality sn < 1000 for all n. Explain 
why � an must be convergent.

 92.  The Fibonacci sequence was defined in Section 11.1 by the 
equations

f1 − 1,  f2 − 1,  fn − fn21 1 fn22    n > 3

Show that each of the following statements is true.

 (a) 
1

fn21 fn11
−

1

fn21 fn
2

1

fn fn11

 (b) o
`

n−2
 

1

fn21 fn11
− 1 (c) o

`

n−2
 

 fn

fn21 fn11
− 2

 93.  The Cantor set, named after the German mathematician 
Georg Cantor (1845–1918), is constructed as follows. We 
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and a2 and use a calculator to guess the limit of the 
sequence.

 (b)  Find limn l ` an in terms of a1 and a2 by expressing 
an11 2 an in terms of a2 2 a1 and summing a series.

 95.  Consider the series    �`
n−1 n ysn 1 1d!.

 (a)  Find the partial sums s1, s2, s3, and s4. Do you recognize the 
denominators? Use the pattern to guess a formula for sn .

 (b) Use mathematical induction to prove your guess.
 (c)  Show that the given infinite series is convergent, and find 

its sum.

 96.  The figure shows infinitely many circles approaching the ver-
tices of an equilateral triangle, each circle touching other 
circles and sides of the triangle. If the triangle has sides of 
length 1, find the total area occupied by the circles.

start with the closed interval [0, 1] and remove the open inter-

val ( 1
3,  23 ). That leaves the two intervals f0, 13 g and f 2

3, 1g and 
we remove the open middle third of each. Four intervals 
remain and again we remove the open middle third of each of 
them. We continue this procedure indefinitely, at each step 
removing the open middle third of every interval that remains 
from the preceding step. The Cantor set consists of the num-
bers that remain in [0, 1] after all those intervals have been 
removed.

 (a)  Show that the total length of all the intervals that are 
removed is 1. Despite that, the Cantor set contains 
infinitely many numbers. Give examples of some 
numbers in the Cantor set.

 (b)  The Sierpinski carpet is a two-dimensional counterpart 
of the Cantor set. It is constructed by removing the center 
one-ninth of a square of side 1, then removing the centers 
of the eight smaller remaining squares, and so on. (The 
figure shows the first three steps of the construction.) 
Show that the sum of the areas of the removed squares  
is 1. This implies that the Sierpinski carpet has area 0.

 94.  (a)  A sequence han j is defined recursively by the equation 
an − 1

2 san21 1 an22 d for n > 3, where a1 and a2 can be 
any real numbers. Experiment with various values of a1 

The Integral Test and Estimates of Sums

In general, it is difficult to find the exact sum of a series. We were able to accomplish this 
for geometric series and for some telescoping series because in each of those cases we 
could find a simple formula for the nth partial sum sn . But usually it isn’t easy to discover 
such a formula. Therefore, in the next few sections, we develop several tests that enable 
us to determine whether a series is convergent or divergent without explicitly finding its 
sum. (In some cases, however, our methods will enable us to find good esti  mates of the 
sum.) Our first test involves improper integrals.

■	 The Integral Test
We begin by investigating the series whose terms are the reciprocals of the squares of the 
positive integers:

o
`

n−1
 

1

n 2 −
1

12 1
1

22 1
1

32 1
1

42 1
1

52 1 ∙ ∙ ∙

There’s no simple formula for the sum sn of the first n terms, but the computer-generated 

11.3
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table of approximate values given in the margin suggests that the partial sums are 
approaching a number near 1.64 as n l ` and so it looks as if the series is convergent.

We can confirm this impression with a geometric argument. Figure 1 shows the curve 
y − 1yx 2 and rectangles that lie below the curve. The base of each rectangle is an interval 
of length 1; the height is equal to the value of the function y − 1yx 2 at the right endpoint 
of the interval. 

x

y

0 21 3 4 5

y= 1
≈

area= 1
1@

area= 1
2@

area= 1
3@

area= 1
4@

area= 1
5@

So the sum of the areas of the rectangles is

1

12 1
1

22 1
1

32 1
1

42 1
1

52 1 ∙ ∙ ∙ − o
`

n−1
 

1

n2

If we exclude the first rectangle, the total area of the remaining rectangles is smaller 
than the area under the curve y − 1yx 2 for x > 1, which is the value of the integral 
y`

1
 s1yx 2 d dx. In Section 7.8 we discovered that this improper integral is convergent and 

has value 1. So the picture shows that all the partial sums are less than

1

12 1 y`

1
 

1

x 2  dx − 2

Thus the partial sums are bounded. We also know that the partial sums are increasing 
(because all the terms are positive). Therefore the partial sums converge (by the Mono-
tonic Sequence Theorem) and so the series is convergent. The sum of the series (the  
limit of the partial sums) is also less than 2:

o
`

n−1
 

1

n 2 −
1

12 1
1

22 1
1

32 1
1

42 1 ∙ ∙ ∙ , 2

[The exact sum of this series was found by the Swiss mathematician Leonhard Euler 
(1707–1783) to be � 2y6, but the proof of this fact is quite difficult. (See Problem 6 in the 
Problems Plus following Chapter 15.)]

Now let’s look at the series

o
`

n−1
 

1

sn 
−

1

s1 
1

1

s2 
1

1

s3 
1

1

s4 
1

1

s5 
1 ∙ ∙ ∙

The table of values of sn suggests that the partial sums aren’t approaching a finite num-
ber, so we suspect that the given series may be divergent. Again we use a picture for 

n sn − o
n

i−1
 
1

i 2

5 1.4636
10 1.5498
50 1.6251

100 1.6350
500 1.6429

1000 1.6439
5000 1.6447

FIGURE 1

n sn − o
n

i−1
 

1

si 

5 3.2317
10 5.0210
50 12.7524

100 18.5896
500 43.2834

1000 61.8010
5000 139.9681
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confirmation. Figure 2 shows the curve y − 1ysx , but this time we use rectangles whose 
tops lie above the curve.

x

y

0 21 3 4 5

area= 1
œ„

1
œ„

1
œ„

1
œ„1

y= 1
œ„x

area=
2

area=
3

area=
4

The base of each rectangle is an interval of length 1. The height is equal to the value 
of the function y − 1ysx  at the left endpoint of the interval. So the sum of the areas of 
all the rectangles is

1

s1 
1

1

s2 
1

1

s3 
1

1

s4 1
1

s5 
1 ∙ ∙ ∙ − o

`

n−1
 

1

sn 

This total area is greater than the area under the curve y − 1ysx  for x > 1, which is 
equal to the integral y`

1
 (1ysx ) dx. But we know from Example 7.8.4 that this improper 

integral is divergent. In other words, the area under the curve is infinite. So the sum of 
the series must be infinite; that is, the series is divergent.

The same sort of geometric reasoning that we used for these two series can be used to 
prove the following test. (The proof is given at the end of this section.)

The Integral Test Suppose f  is a continuous, positive, decreasing function on 
f1, `d and let an − f snd. Then the series �`

n−1 an is convergent if and only if the 
improper integral y`

1
 f sxd dx is convergent. In other words:

 (i) If y`

1
 f sxd dx is convergent, then o

`

n−1
 an is convergent.

 (ii) If y`

1
 f sxd dx is divergent, then o

`

n−1
 an is divergent.

NOTE When we use the Integral Test, it is not necessary to start the series or the integral 
at n − 1. For instance, in testing the series

o
`

n−4
 

1

sn 2 3d2     we use    y`

4
 

1

sx 2 3d2  dx

Also, it is not necessary that f  be always decreasing. What is important is that f  be 
ultimately decreasing, that is, decreasing for x larger than some number N. Then o`

n−N an 
is convergent, so o`

n−1 an is convergent (see the note at the end of Section 11.2).

FIGURE 2

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



754 CHAPTER 11   Sequences, Series, and Power Series 

EXAMPLE 1 Test the series o
`

n−1
 

1

n2 1 1
 for convergence or divergence.

SOLUTION The function f sxd − 1ysx 2 1 1d is continuous, positive, and decreasing on 
f1, `d so we use the Integral Test:

 y`

1
 

1

x 2 1 1
 dx − lim

t l `
 y t

1
 

1

x 2 1 1
 dx − lim

t l `
 tan21xg1

t  

 − lim
t l `

 Stan21t 2
�

4 D −
�

2
2

�

4
−

�

4

Thus y`

1
 1ysx 2 1 1d dx is a convergent integral and so, by the Integral Test, the series 

o  1ysn2 1 1d is convergent.� ■

EXAMPLE 2 For what values of p is the series o
`

n−1
 

1

np  convergent?

SOLUTION If p , 0, then limn l ` s1ynp d − `. If p − 0, then limn l ` s1ynp d − 1.  
In either case limn l ` s1ynp d ± 0, so the given series diverges by the Test for Diver-
gence (11.2.7).

If p . 0, then the function f sxd − 1yxp is clearly continuous, positive, and decreas-
ing on f1, `d. We found in Section 7.8 [see (7.8.2)] that

y`

1
 

1

xp  dx  converges if p . 1 and diverges if p < 1

It follows from the Integral Test that the series � 1ynp converges if p . 1 and  
diverges if 0 , p < 1. (For p − 1, this series is the harmonic series discussed in 
Example 11.2.8.)� ■

The series in Example 2 is called the p-series. It is important in the rest of this chapter, 
so we summarize the results of Example 2 for future reference as follows.

1  The p-series o
`

n−1
 

1

np  is convergent if p . 1 and divergent if p < 1.

EXAMPLE 3  

(a) The series

o
`

n−1
 

1

n 3 −
1

13 1
1

23 1
1

33 1
1

43 1 ∙ ∙ ∙

is convergent because it is a p-series with p − 3 . 1.

(b) The series

o
`

n−1
 

1

n 1y3 − o
`

n−1
 

1

s3 n 
− 1 1

1

s3 2 
1

1

s3 3 
1

1

s3 4 
1 ∙ ∙ ∙

is divergent because it is a p-series with p − 1
3 , 1.� ■

In order to use the Integral Test we 
need to be able to evaluate y`

1  f sxd dx 
and therefore we have to be able to 
find an antiderivative of f . Frequently 
this is difficult or impossible, so in the 
next three sections we develop other 
tests for convergence.

We can think of the convergence of a 
series of positive terms as depending 
on how “rapidly” the terms of the 
series approach zero. For any p-series 
(with p . 0) the terms an − 1yn p 
tend toward zero, but they do so 
more rapidly for larger values of p.
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NOTE We should not infer from the Integral Test that the sum of the series is equal to the 
value of the integral. In fact,

o
`

n−1
 

1

n2 −
� 2

6
    whereas    y`

1
 

1

x 2  dx − 1

Therefore, in general,

o
`

n−1
 an ± y`

1
 f sxd dx

EXAMPLE 4 Determine whether the series o
`

n−1
 
ln n

n
 converges or diverges.

SOLUTION The function f sxd − sln xdyx is positive and continuous for x . 1 because 
the logarithm function is continuous. But it is not obvious whether or not f  is decreas-
ing, so we compute its derivative:

f 9sxd −
s1yxdx 2 ln x

x 2 −
1 2 ln x

x 2

Thus f 9sxd , 0 when ln x . 1, that is, when x . e. It follows that f  is decreasing 
when x . e and so we can apply the Integral Test:

 y`

1
 
ln x

x
 dx − lim

t l `
 y t

1
 
ln x

x
 dx − lim

t l `
 
sln xd2

2 G
1

t

  − lim
t l `

 
sln td2

2
− `

Since this improper integral is divergent, the series � sln ndyn is also divergent by the 
Integral Test.� ■

■	 Estimating the Sum of a Series
Suppose we have been able to use the Integral Test to show that a series � an is conver-
gent and we now want to find an approximation to the sum s of the series. Of course, any 
partial sum sn is an approximation to s because limn l ` sn − s. But how good is such an 
approximation? To find out, we need to estimate the size of the remainder

Rn − s 2 sn − an11 1 an12 1 an13 1 ∙ ∙ ∙

The remainder Rn is the error made when sn, the sum of the first n terms, is used as an 
approximation to the total sum.

We use the same notation and ideas as in the Integral Test, assuming that f  is decreas-
ing on fn, ̀ d. Comparing the areas of the rectangles with the area under y − f sxd for 
x > n in Figure 3, we see that

Rn − a n11 1 a n12 1 ∙ ∙ ∙ < y`

n
 f sxd dx

FIGURE 3 

0 x

y

n

. . .

y=ƒ

an+1 an+2

n+1 n+2
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Similarly, we see from Figure 4 that

Rn − an11 1 an12 1 ∙  ∙ ∙ >  y`

n11
 f sxd d x

So we have proved the following error estimate.

2  Remainder Estimate for the Integral Test Suppose f skd − ak, where f  is a 
continuous, positive, decreasing function for x > n and o an is convergent. If 
Rn − s 2 sn, then

y`

n11
  f sxd dx < Rn < y`

n
 f sxd dx

EXAMPLE 5
(a) Approximate the sum of the series o 1yn3 by using the sum of the first 10 terms. 
Estimate the error involved in this approximation. 
(b) How many terms are required to ensure that the sum is accurate to within 0.0005 ?

SOLUTION In both parts (a) and (b) we need to know y`
n  f sxd dx. With f sxd − 1yx 3, 

which satisfies the conditions of the Integral Test, we have

y`

n
 

1

x 3  dx − lim
t l `

 F2
1

2x 2G
n

t

− lim
t l `

 S2
1

2t 2 1
1

2n2D −
1

2n2

(a) Approximating the sum of the series by the 10th partial sum, we have

o
`

n−1
 

1

n3 < s10 −
1

13 1
1

23 1
1

33 1 ∙ ∙ ∙ 1
1

103 < 1.1975

According to the remainder estimate in (2), we have

R10 < y`

10
 

1

x 3  dx −
1

2s10d2 −
1

200

So the size of the error is at most 0.005.

(b) Accuracy to within 0.0005 means that we have to find a value of n such that 
Rn < 0.0005. Since

Rn < y`

n
 

1

x 3  dx −
1

2n2

we want 
1

2n2 , 0.0005 

Solving this inequality, we get

n2 .
1

0.001
− 1000    or    n . s1000 < 31.6

We need 32 terms to ensure accuracy to within 0.0005.� ■

FIGURE 4 

0 x

y

an+1 an+2

n+1 n+2n

. . .

y=ƒ
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If we add sn to each side of the inequalities in (2), we get

3  sn 1 y`

n11
 f sxd dx < s < sn 1 y`

n
 f sxd dx

because sn 1 Rn − s. The inequalities in (3) give a lower bound and an upper bound  
for s. They provide a more accurate approximation to the sum of the series than the par-
tial sum sn does.

EXAMPLE 6 Use (3) with n − 10 to estimate the sum of the series o
`

n−1
 

1

n3 .

SOLUTION The inequalities in (3) become

s10 1 y`

11
 

1

x 3  dx < s < s10 1 y`

10
 

1

x 3  dx 

From Example 5 we know that

y`

n
 

1

x 3  dx −
1

2n 2

so s10 1
1

2s11d2 < s < s10 1
1

2s10d2

Using s10 < 1.197532, we get

1.201664 < s < 1.202532 

If we approximate s by the midpoint of this interval, then the error is at most half the 
length of the interval. So

 o
`

n−1
 

1

n3 < 1.2021    with error , 0.0005� ■

If we compare Example 6 with Example 5, we see that the improved estimate in (3) 
can be much better than the estimate s < sn. To make the error smaller than 0.0005 we 
had to use 32 terms in Example 5 but only 10 terms in Example 6.

■	 Proof of the Integral Test
We have already seen the basic idea behind the proof of the Integral Test in Figures 1 and 
2 for the series o  1yn2 and o  1ysn . For the general series o  an, look at Figures 5 and 6. 
The area of the first shaded rectangle in Figure 5 is the value of f  at the right endpoint of 
f1, 2g, that is, f s2d − a2. So, comparing the areas of the shaded rectangles with the area 
under y − f sxd from 1 to n , we see that

4  a2 1 a3 1 ∙ ∙ ∙ 1 an < yn

1
 f sxd dx

Although Euler was able to calculate 
the exact sum of the p-series for 
p − 2, nobody has been able to  
find the exact sum for p − 3. In 
Example 6, however, we show  
how to estimate this sum.

0 x

y

1 2 3 4 5 . . . n

y=ƒ

ana™ a£ a¢ a∞

FIGURE 5 

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



758 CHAPTER 11   Sequences, Series, and Power Series 

(Notice that this inequality depends on the fact that f  is decreasing.) Likewise, Figure 6 
shows that

5  yn

1
 f sxd dx < a1 1 a2 1 ∙ ∙ ∙ 1 an21

(i) If y`

1
 f sxd dx is convergent, then (4) gives

o
n

i−2
 ai < yn

1
 f sxd dx < y`

1
 f sxd dx

since f sxd > 0. Therefore

sn − a1 1 o
n

i−2
 ai < a1 1 y`

1
 f sxd dx − M, say

Since sn < M for all n, the sequence hsn j is bounded above. Also

sn11 − sn 1 an11 > sn

since an11 − f sn 1 1d > 0. Thus hsn j is an increasing bounded sequence and so it is 
con vergent by the Monotonic Sequence Theorem (11.1.12). This means that � an is  
convergent.

(ii) If y`

1
 f sxd dx is divergent, then yn

1
 f sxd dx l ` as n l ` because f sxd > 0. But  

(5) gives

yn

1
 f sxd dx < o

n21

i−1
 ai − sn21

and so sn21 l `. This implies that sn l ` and so � an diverges.� ■

0 x

y

1 2 3 4 5 . . . n

y=ƒ

a™ a£ a¢a¡

an-1

FIGURE 6 

11.3 Exercises

 1. Draw a picture to show that

o
`

n−2
 

1

n 1.5 , y`

1
 

1

x 1.5  dx

 What can you conclude about the series?

 2.   Suppose f  is a continuous positive decreasing function for 
x > 1 and an − f snd. By drawing a picture, rank the follow-
ing three quantities in increasing order:

y6

1
 f sxd dx   o

5

i−1
 ai   o

6

i−2
 ai

3–10 Use the Integral Test to determine whether the series is  
convergent or divergent.

 3. o
`

n−1
 n23 4. o

`

n−1
 n20.3

 5. o
`

n−1
 

2

5n 2 1
 6. o

`

n−1
 

1

s3n 2 1d4

 7. o
`

n−2
 

n2

n3 1 1
 8. o

`

n−1
 n2e2n3

 9. o
`

n−2
 

1

nsln nd3  10. o
`

n−1
 

tan21n

1 1 n2

11–28 Determine whether the series is convergent or divergent.

 11. o
`

n−1
 

1

n s2 
 12. o

`

n−3
 n20.9999

 13. 1 1
1

8
1

1

27
1

1

64
1

1

125
1 ∙ ∙ ∙

 14. 
1

5
1

1

7
1

1

9
1

1

11
1

1

13
1 ∙ ∙ ∙

 15. 
1

3
1

1

7
1

1

11
1

1

15
1

1

19
1 ∙ ∙ ∙

 16. 1 1
1

2s2 

1
1

3s3
1

1

4 s4 

1
1

5s5 

1 ∙ ∙ ∙
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 Use Euler’s result to find the sum of the series.

 (a) o
`

n−1
 S 3

nD
4

 (b) o
`

k−5
 

1

sk 2 2d4

 38.  (a)  Find the partial sum s10 of the series o `
n−1 1yn4. Estimate 

the error in using s10 as an approximation to the sum  
of the series.

 (b)  Use (3) with n − 10 to give an improved estimate of the 
sum.

 (c)  Compare your estimate in part (b) with the exact value 
given in Exercise 37.

 (d)  Find a value of n so that sn is within 0.00001 of the sum.

 39.  (a)  Use the sum of the first 10 terms to estimate the sum of 
the series �`

n−1 1yn2. How good is this estimate?
 (b) Improve this estimate using (3) with n − 10.
 (c)  Compare your estimate in part (b) with the exact value 

given in Exercise 36.
 (d)  Find a value of n that will ensure that the error in the 

approximation s < sn is less than 0.001.

 40.   Find the sum of the series o `
n−1 ne22n correct to four decimal 

places.

 41.   Estimate o `
n−1 s2n 1 1d26 correct to five decimal places.

 42.   How many terms of the series o `
n−2  1yfnsln nd2g would you 

need to add to find its sum to within 0.01 ?

 43.   Show that if we want to approximate the sum of the series 
o `

n−1 n21.001 so that the error is less than 5 in the ninth decimal 
place, then we need to add more than 1011,301 terms!

 44.  (a) Show that the series o `
n−1 sln nd2yn2 is convergent.

 (b)  Find an upper bound for the error in the approxima- 
tion s < sn .

 (c)  What is the smallest value of n such that this upper bound 
is less than 0.05 ?

 (d) Find sn for this value of n.

 45.  (a)  Use (4) to show that if sn is the nth partial sum of the  
harmonic series, then

sn < 1 1 ln n

 (b)  The harmonic series diverges, but very slowly. Use  
part (a) to show that the sum of the first million terms is 
less than 15 and the sum of the first billion terms is less 
than 22.

 46.   Use the following steps to show that the sequence

tn − 1 1
1

2
1

1

3
1 ∙ ∙ ∙ 1

1

n
2 ln n

has a limit. (The value of the limit is denoted by � and is 
called Euler’s constant.)

 (a)  Draw a picture like Figure 6 with f sxd − 1yx and 
interpret tn as an area [or use (5)] to show that tn . 0 for 
all n.

 17. o
`

n−1
 
sn 1 4

n2  18. o
`

n−1
 

sn 

1 1 n3y2

 19. o
`

n−1
 

1

n2 1 4
 20. o

`

n−1
 

1

n2 1 2n 1 2

 21. o
`

n−1
 

n 3

n 4 1 4
 22. o

`

n−3
 

3n 2 4

n2 2 2n

 23. o
`

n−2
 

1

n ln n
 24. o

`

n−2
 
ln n

n2

 25. o
`

k−1
 ke2k 26. o

`

k−1
 ke2k2

 27. o
`

n−1
 

1

n2 1 n3  28. o
`

n−1
 

n

n4 1 1

29–30 Explain why the Integral Test can’t be used to determine 
whether the series is convergent.

 29.  o
`

n−1
 
cos �n

sn 
 30.  o

`

n−1
 

cos2 n

1 1 n2

31–34 Find the values of p for which the series is convergent.

 31.  o
`

n−2
 

1

nsln nd p  32.  o
`

n−3
 

1

n ln n flnsln ndg p

 33.  o
`

n−1
 ns1 1 n2 d p 34.  o

`

n−1
 
ln n

n p

35–37 The Riemann Zeta Function The function � defined by

�ssd − o
`

n−1
 

1

ns

where s is a complex number, is called the Riemann zeta function.

 35. For which real numbers x is �sxd defined?

 36.   Leonhard Euler was able to calculate the exact sum of the  
p-series with p − 2:

�s2d − o
`

n−1
 

1

n2 −
� 2

6

Use this fact to find the sum of each series.

 (a) o
`

n−2
 

1

n2  (b) o
`

n−3
 

1

sn 1 1d2

 (c) o
`

n−1
 

1

s2nd2

 37.   Euler also found the sum of the p-series with p − 4:

�s4d − o
`

n−1
 

1

n 4 −
� 4

90
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 (b) Interpret

tn 2 tn11 − flnsn 1 1d 2 ln ng 2
1

n 1 1

  as a difference of areas to show that tn 2 tn11 . 0. There-
fore htnj is a decreasing sequence.

 (c)  Use the Monotonic Sequence Theorem to show that htnj 
is convergent.

 47. Find all positive values of b  for which the series o `
n−1 b ln n 

converges.

 48.   Find all values of c for which the following series 
converges. 

o
`

n−1
S c

n
2

1

n 1 1D

The Comparison Tests

In the comparison tests the idea is to compare a given series with a series that is known to 
be convergent or divergent. If two series have only positive terms, we can compare cor-
responding terms directly to see which are larger (the Direct Comparison Test) or we can 
investigate the limit of the ratios of corresponding terms (the Limit Comparison Test).

■	 The Direct Comparison Test 
Let’s consider the two series

o
`

n−1
 

1

2n 1 1
  and  o

`

n−1
 

1

2n

The second series o`
n−1 1y2n is a geometric series with a − 1

2 and r − 1
2 and is therefore 

convergent. Since these series are so similar, we may have the feeling that the first series 
must converge also. In fact, it does. The inequality 

1

2n 1 1
,

1

2n

shows that the series � 1ys2n 1 1d has smaller terms than those of the geometric series 
� 1y2n and therefore all its partial sums are also smaller than 1 (the sum of the geometric 
series). This means that its partial sums form a bounded increasing sequence, which is 
convergent. It also follows that the sum of the series is less than the sum of the geometric 
series:

o
`

n−1
 

1

2n 1 1
, 1

Similar reasoning can be used to prove the following test, which applies only to series 
whose terms are positive. The first part says that if we have a series whose terms are  
smaller than those of a known convergent series, then our series is also convergent. The  
second part says that if we start with a series whose terms are larger than those of a 
known divergent series, then it too is divergent.

The Direct Comparison Test Suppose that � an and � bn are series with positive 
terms.

 (i) If � bn is convergent and an < bn for all n, then � an is also convergent.

 (ii) If � bn is divergent and an > bn for all n, then � an is also divergent.

11.4
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PROOF 

(i) Let sn − o
n

i−1
 ai       tn − o

n

i−1
 bi      t − o

`

n−1
 bn

Since both series have positive terms, the sequences hsnj and htnj are increasing 
ssn11 − sn 1 an11 > snd. Also tn  l  t, so tn < t for all n. Since ai < bi, we have sn <  tn .  
Thus sn < t for all n. This means that hsnj is increasing and bounded above and there-
fore converges by the Monotonic Sequence Theorem. Thus � an converges.

(ii) If � bn is divergent, then tn  l  ` (since htnj is increasing). But ai > bi so sn > tn . 
Thus sn  l  `. Therefore � an diverges.� ■

In using the Direct Comparison Test we must, of course, have some known series � bn 
for the purpose of comparison. Most of the time we use one of these series: 

●	 A p-series f �1ynp con verges if p . 1 and diverges if p < 1; see (11.3.1)g
●	 A geometric series f � ar n21 converges if | r | , 1 and diverges if | r | > 1;  

see (11.2.4)g

EXAMPLE 1 Determine whether the series o
`

n−1
 

5

2n2 1 4n 1 3
 converges or diverges.

SOLUTION For large n the dominant term in the denominator is 2n2, so we compare the 
given series with the series � 5ys2n2d. Observe that

5

2n2 1 4n 1 3
,

5

2n2

because the left side has a bigger denominator. (In the notation of the Direct Comparison 
Test, an is the left side and bn is the right side.) We know that

o
`

n−1
 

5

2n2 −
5

2
 o

`

n−1
 

1

n2

is convergent because it’s a constant times a p-series with p − 2 . 1. Therefore

o
`

n−1
 

5

2n2 1 4n 1 3

is convergent by part (i) of the Direct Comparison Test.� ■

NOTE Although the condition an < bn or an > bn in the Direct Comparison Test is given 
for all n, we need verify only that it holds for n > N, where N is some fixed integer, 
because the convergence of a series is not affected by a finite number of terms. This is 
illustrated in the next example.

EXAMPLE 2 Test the series o
`

k−1
 
ln k

k
 for convergence or divergence.

SOLUTION We used the Integral Test to test this series in Example 11.3.4, but we can 
also test it by comparing it with the harmonic series. Observe that ln k . 1 for k > 3 
and so

ln k

k
.

1

k
    k > 3

It is important to keep in mind the 
distinction between a sequence and a 
series. A sequence is a list of num-
bers, whereas a series is a sum. With 
every series � an there are two associ-
ated sequences: the sequence hanj of 
terms and the sequence hsnj of partial 
sums.

Standard series for use  
with the comparison tests
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We know that � 1yk is divergent (p-series with p − 1). Thus the given series is 
divergent by the Direct Comparison Test.� ■

■	 Limit Comparison Test
The Direct Comparison Test is conclusive only if the terms of the series being tested are 
smaller than those of a convergent series or larger than those of a divergent series. If the 
terms are larger than the terms of a convergent series or smaller than those of a divergent 
series, then the Direct Comparison Test doesn’t apply. Consider, for instance, the series

o
`

n−1
 

1

2n 2 1
The inequality

1

2n 2 1
.

1

2n

is useless as far as the Direct Comparison Test is concerned because � bn − � ( 12 

)n
 is 

convergent and an . bn . Nonetheless, we have the feeling that � 1ys2n 2 1d ought to be 
convergent because it is very similar to the convergent geometric series � ( 12 )n

. In such 
cases the following test can be used.

The Limit Comparison Test Suppose that � an and � bn are series with positive  
terms. If

lim
n l `

 
an

bn
− c

where c is a finite number and c . 0, then either both series converge or both 
diverge.

PROOF Let m and M be positive numbers such that m , c , M. Because anybn is 
close to c for large n, there is an integer N such that

 m ,
an

bn
, M  when n . N

and so  mbn , an , Mbn when n . N

If � bn converges, so does � Mbn . Thus � an converges by part (i) of the Direct Com- 
parison Test. If � bn diverges, so does � mbn and part (ii) of the Direct Comparison Test 
shows that � an diverges.� ■

EXAMPLE 3 Test the series o
`

n−1
 

1

2n 2 1
 for convergence or divergence.

SOLUTION We use the Limit Comparison Test with

an −
1

2n 2 1
      bn −

1

2n

and obtain

lim
n l `

 
an

bn
− lim

n l `
 
1ys2n 2 1d

1y2n − lim
n l `

 
2n

2n 2 1
− lim

n l `
 

1

1 2 1y2n − 1 . 0

Exercises 48 and 49 deal with the 
cases c − 0 and c − `.
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Since this limit exists and � 1y2n is a convergent geometric series, the given series 
converges by the Limit Comparison Test.� ■

EXAMPLE 4 Determine whether the series o
`

n−1
 
2n2 1 3n

s5 1 n 5 
 converges or diverges.

SOLUTION The dominant part of the numerator is 2n2 and the dominant part of the 
denominator is sn5 − n 5y2. This suggests taking

an −
2n2 1 3n

s5 1 n 5 
  bn −

2n2

n 5y2 −
2

n 1y2

 lim
n l `

 
an

bn
− lim

n l `
 
2n2 1 3n

s5 1 n 5 
�

n1y2

2
− lim

n l `
 
2n5y2 1 3n3y2

2s5 1 n 5 

 − lim
n l `

 

2 1
3

n

2Î 5

n5 1 1 

−
2 1 0

2s0 1 1 
− 1

Since � bn − 2 � 1yn1y2 is divergent (p-series with p − 1
2 , 1), the given series 

diverges by the Limit Comparison Test.� ■

Notice that in testing many series we find a suitable comparison series � bn by keeping 
only the highest powers in the numerator and denominator.

■	 Estimating Sums
If we have used the Direct Comparison Test to show that a series � an converges by com-
parison with a series � bn, then we may be able to estimate the sum � an by comparing 
remainders. As in Section 11.3, we consider the remainder

Rn − s 2 sn − an11 1 an12 1 ∙ ∙ ∙

For the comparison series � bn we consider the corresponding remainder

Tn − t 2 tn − bn11 1 bn12 1 ∙ ∙ ∙

Since an < bn for all n, we have Rn < Tn . If � bn is a p-series, we can estimate its remain-
der Tn as in Section 11.3. If � bn is a geometric series, then Tn is the sum of a geometric 
series and we can sum it exactly (see Exercises 43 and 44). In either case we know that 
Rn is smaller than Tn .

EXAMPLE 5 Use the sum of the first 100 terms to approximate the sum of the series 
� 1ysn3 1 1d. Estimate the error involved in this approximation.

SOLUTION Since
1

n3 1 1
,

1

n3

the given series is convergent by the Direct Comparison Test. The remainder Tn for the 
compar ison series � 1yn3 was estimated in Example 11.3.5 using the Remainder Esti-
mate for the Integral Test. There we found that

Tn < y`

n
 

1

x 3  dx −
1

2n2
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Therefore the remainder Rn for the given series satisfies

Rn < Tn <
1

2n2

With n − 100 we have

R100 <
1

2s100d2 − 0.00005

Using a calculator or a computer, we find that

o
`

n−1
 

1

n3 1 1
< o

100

n−1
 

1

n3 1 1
< 0.6864538

with error less than 0.00005.� ■

11.4 Exercises

 1.   Suppose � an and � bn are series with positive terms and � bn  
is known to be convergent.

 (a) If an . bn for all n, what can you say about � an? Why?
 (b) If an , bn for all n, what can you say about � an? Why?

 2.   Suppose � an and � bn are series with positive terms and � bn  
is known to be divergent.

 (a) If an . bn for all n, what can you say about � an? Why?
 (b)  If an , bn for all n, what can you say about � an? Why?

 3. (a) Use the Direct Comparison Test to show that the first 
series converges by comparing it to the second series.

o
`

n−2
 

n

n3 1 5
   o

`

n−2
 

1

n2

 (b)  Use the Limit Comparison Test to show that that the first 
series converges by comparing it to the second series.

o
`

n−2
 

n

n3 2 5
   o

`

n−2
 

1

n2

 4. (a) Use the Direct Comparison Test to show that the first 
series diverges by comparing it to the second series.

o
`

n−2
 
n2 1 n

n3 2 2
   o

`

n−2
 
1

n

 (b)  Use the Limit Comparison Test to show that that the first 
series diverges by comparing it to the second series.

o
`

n−2
 
n2 2 n

n3 1 2
   o

`

n−2
 
1

n

 5. Which of the following inequalities can be used to show that 
�`

n−1 ny sn3 1 1d converges?

  (a) 
n

n3 1 1
>

1

n3 1 1
 (b) 

n

n3 1 1
<

1

n

  (c) 
n

n3 1 1
<

1

n2

 6. Which of the following inequalities can be used to show that 
�`

n−1 ny sn2 1 1d diverges?

  (a) 
n

n2 1 1
>

1

n2 1 1
 (b) 

n

n2 1 1
<

1

n

  (c) 
n

n2 1 1
>

1

2n

7–40 Determine whether the series converges or diverges.

 7.  o
`

n−1
 

1

n3 1 8
 8. o

`

n−2
 

1

sn 2 1

 9. o
`

n−1
 
n 1 1

nsn 
 10. o

`

n−1
 

n 2 1

n3 1 1

 11. o
`

n−1
 

9 n

3 1 10 n  12. o
`

n−1
 

6n

5n 2 1

 13. o
`

n−2
 

1

ln n
 14. o

`

k−1
 
k sin2k

1 1 k 3

 15. o
`

k−1
 

s3 k 

sk 3 1 4k 1 3 
 16. o

`

k−1
 
s2k 2 1dsk 2 2 1d
sk 1 1dsk 2 1 4d2

 17. o
`

n−1
 
1 1 cos n

e n  18. o
`

n−1
 

1

s3 3n 4 1 1 

 19. o
`

n−1
 

4n11

3n 2 2
 20. o

`

n−1
 

1

n n

 21. o
`

n−1
 

1

sn 2 1 1 
 22. o

`

n−1
 

2

sn 1 2

 23. o
`

n−1
 

n 1 1

n3 1 n
 24. o

`

n−1
 
n2 1 n 1 1

n4 1 n2
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diverges. [Hint: Use Formula 1.5.10 sx r − er ln x d and the fact 
that  ln x , sx  for x > 1.]

 48.  (a)  Suppose that � an and � bn are series with positive terms 
and � bn is convergent. Prove that if

lim 
n l `

 
an

bn
− 0

  then � an is also convergent.
 (b)  Use part (a) to show that the series converges.

 (i) o
`

n−1
 
ln n

n3  (ii) o
`

n−1
S1 2 cos 

1

n2D
 49.  (a)  Suppose that � an and � bn are series with positive terms 

and � bn is divergent. Prove that if

lim 
n l `

 
an

bn
− `

  then � an is also divergent.
 (b)  Use part (a) to show that the series diverges.

 (i) o
`

n−2
 

1

ln n
 (ii) o

`

n−1
 
ln n

n

 50.   Give an example of a pair of series � an and � bn with positive 
terms where lim n l ` sanybnd − 0 and � bn diverges, but � an 
converges. (Compare with Exercise 48.)

 51.   Show that if an . 0 and lim n l ` nan ± 0, then � an is  
divergent.

 52.   Show that if an . 0 and � an is convergent, then � lns1 1 an d 
is convergent.

 53.   If � an is a convergent series with positive terms, is it true that 
� sinsand is also convergent?

 54.   Prove that if an > 0 and � an converges, then � an
2 also  

converges.

 55. Let � an and � bn be series with positive terms. Is each of the 
following statements true or false? If the statement is false, 
give an example that disproves the statement.

 (a)  If � an and � bn are divergent, then � an bn is divergent.
 (b)  If � an converges and � bn diverges, then � an bn  

diverges.
 (c) If � an and � bn are convergent, then � an bn is convergent.

 25. o
`

n−1
 

s1 1 n 

2 1 n
 26. o

`

n−3
 

n 1 2

sn 1 1d 3

 27. o
`

n−1
 

5 1 2n

s1 1 n2d2  28. o
`

n−1
 
n 1 3n

n 1 2n

 29. o
`

n−1
 

e n 1 1

ne n 1 1
 30. o

`

n−2
 

1

nsn2 2 1 

 31. o
`

n−1
 
2 1 sin n

n2  32. o
`

n−1
 
n2 1 cos2n

n3

 33. o
`

n−1
 S1 1

1

nD2

 e2n 34. o
`

n−1
 
e 1yn

n

 35. o
`

n−1
 

1

n!
 36. o

`

n−1
 
n!

n n

 37. o
`

n−1
 sinS 1

nD 38. o
`

n−1
 sin2S 1

nD
 39. o

`

n−1
 
1

n
 tan 

1

n
 40. o

`

n−1
 

1

n 111yn

41–44 Use the sum of the first 10 terms to approximate the sum 
of the series. Estimate the error.

 41. o
`

n−1
 

1

5 1 n5  42. o
`

n−1
 
e1yn 

n4

 43. o
`

n−1
 52n cos2n 44. o

`

n−1
 

1

3n 1 4n

 45.   The meaning of the decimal representation of a number 
0.d1d2d3 . . . (where the digit di is one of the numbers 0, 1,  
2, . . . , 9) is that

0.d1d2d3d4 . . . −
d1

10
1

d2

102 1
d3

103 1
d4

104 1 ∙ ∙ ∙

 Show that this series converges for all choices of d1, d2, . . . .

 46.  For what values of p does the series o `
n−2 1y sn p ln nd 

converge?

 47. Show that 

o
`

n−2
 

1

sln nd ln ln n

Alternating Series and Absolute Convergence

The convergence tests that we have looked at so far apply only to series with positive 
terms. In this section and the next we learn how to deal with series whose terms are not 
necessarily positive. Of particular importance are alternating series, whose terms alter-
nate in sign.

11.5
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■	 Alternating Series
An alternating series is a series whose terms are alternately positive and negative. Here 
are two examples:

 1 2
1

2
1

1

3
2

1

4
1

1

5
2

1

6
1 ∙ ∙ ∙ − o

`

n−1
 s21dn21 

1

n

 2
1

2
1

2

3
2

3

4
1

4

5
2

5

6
1

6

7
2 ∙ ∙ ∙ − o

`

n−1
 s21dn 

n

n 1 1

We see from these examples that the n th term of an alternating series is of the form

an − s21dn21bn    or    an − s21dnbn

where bn is a positive number. (In fact, bn − | an |.)
The following test says that if the terms of an alternating series decrease toward 0 in 

absolute value, then the series converges.

Alternating Series Test If the alternating series

o
`

n−1
 s21dn21bn − b1 2 b2 1 b3 2 b4 1 b5 2 b6 1 ∙ ∙ ∙  sbn . 0d

satisfies the conditions

 (i) bn11 < bn    for all n

 (ii) lim
n l `

bn − 0

then the series is convergent.

Before giving the proof let’s look at Figure 1, which gives a picture of the idea behind 
the proof. We first plot s1 − b1 on a number line. To find s2 we subtract b2 , so s2 is to the 
left of s1. Then to find s3 we add b3, so s3 is to the right of s2. But, since b3 , b2 , s3 is to 
the left of s1. Continuing in this manner, we see that the partial sums oscillate back and 
forth. Since bn l 0, the successive steps are becoming smaller and smaller. The even 
partial sums s2 , s4 , s6 , . . . are increasing and the odd partial sums s1 , s3 , s5 , . . . are 
decreasing. Thus it seems plausible that both are converging to some number s, which is 
the sum of the series. Therefore we consider the even and odd partial sums separately in 
the following proof.

0 s¡s™ s£s¢ s∞sß s

b¡

-b™
+b£

-b¢
+b∞

-bß

FIGURE 1
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PROOF OF THE ALTERNATING SERIES TEST We first consider the even partial sums:

 s2 − b1 2 b2 > 0   since b2 < b1

 s4 − s2 1 sb3 2 b4 d > s2  since b4 < b3

In general s2n − s2n22 1 sb2n21 2 b2n d > s2n22  since b2n < b2n21

Thus 0 < s2 < s4 < s6 < ∙ ∙ ∙ < s2n < ∙ ∙ ∙

But we can also write

s2n − b1 2 sb2 2 b3 d 2 sb4 2 b5 d 2 ∙ ∙ ∙ 2 sb2n22 2 b2n21d 2 b2n

Every term in parentheses is positive, so s2n < b1 for all n. Therefore the sequence hs2n j 
of even partial sums is increasing and bounded above. It is therefore convergent by the 
Monotonic Sequence Theorem. Let’s call its limit s, that is,

lim 
n l `

 s2n − s

Now we compute the limit of the odd partial sums:

 lim
nl`

 s2n11 − lim
nl`

 ss2n 1 b2n11d

 − lim
nl`

 s2n 1 lim
nl`

 b2n11

 − s 1 0   [by condition (ii)]

 − s

Since both the even and odd partial sums converge to s, we have lim n l ` sn − s  
[see Exercise 11.1.98(a)] and so the series is convergent.� ■

EXAMPLE 1 The alternating harmonic series

1 2
1

2
1

1

3
2

1

4
1 ∙ ∙ ∙ − o

`

n−1
 
s21dn21

n

satisfies the conditions

 (i) bn11 , bn    because    
1

n 1 1
,

1

n

 (ii) lim
nl`

 bn − lim
nl`

 
1

n
− 0

so the series is convergent by the Alternating Series Test.� ■

EXAMPLE 2 The series o
`

n−1
 
s21dn 3n

4n 2 1
 is alternating, but

lim
n l `

 bn − lim
n l `

 
3n

4n 2 1
− lim

n l `
 

3

4 2
1

n

−
3

4

Figure 2 illustrates Example 1 by  
show  ing the graphs of the terms 
an − s21dn21yn and the partial sums  
sn. Notice how the values of sn zig- 
zag across the limiting value, which 
appears to be about 0.7. In fact, it  
can be proved that the exact sum of 
the series is ln 2 < 0.693 (see  
Exercise 50).

0 n

1

�an�

�sn�

FIGURE 2 
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so condition (ii) is not satisfied. Thus the Alternating Series Test doesn’t apply. Instead, 
we look at the limit of the n th term of the series:

lim
n l `

 an − lim
n l `

 
s21dn 3n

4n 2 1

This limit does not exist, so the series diverges by the Test for Divergence.� ■

EXAMPLE 3 Test the series o
`

n−1
 s21dn11 

n2

n3 1 1
  for convergence or divergence.

SOLUTION The given series is alternating so we try to verify conditions (i) and (ii) of 
the Alternating Series Test.

Condition (i): Unlike the situation in Example 1, it is not obvious that the sequence 
given by bn − n2ysn3 1 1d is decreasing. However, if we consider the related function 
f sxd − x 2ysx 3 1 1d, we find that

f 9sxd −
xs2 2 x 3 d
sx 3 1 1d2

Since we are considering only positive x, we see that f 9sxd , 0 if 2 2 x 3 , 0, that is, 
x . s3 2 . Thus f  is decreasing on the interval (s3 2 , `). This means that f sn 1 1d , f snd 
and therefore bn11 , bn when n > 2. (The inequality b2 , b1 can be verified directly 
but all that really matters is that the sequence hbn j is eventually decreasing.)

Condition (ii) is readily verified:

lim
n l `

 bn − lim
n l `

 
n2

n3 1 1
− lim

n l `
 

1yn

1 1 1yn 3 − 0

Thus the given series is convergent by the Alternating Series Test.� ■

■	 Estimating Sums of Alternating Series
A partial sum sn of any convergent series can be used as an approximation to the total 
sum s, but this is not of much use unless we can estimate the accuracy of the approxima-
tion. The error involved in using s < sn is the remainder Rn − s 2 sn. The next theorem 
says that for series that satisfy the conditions of the Alternating Series Test, the size of 
the error is smaller than bn11, which is the absolute value of the first neglected term.

Alternating Series Estimation Theorem If s − � s21dn21bn , where bn . 0, is 
the sum of an alter nating series that satisfies

(i) bn11 < bn    and    (ii) lim
n l `

 bn − 0

then | Rn | − | s 2 sn | < bn11

You can see geometrically why  
the Alternating Series Estimation 
Theorem is true by looking at  
Figure 1. Notice that s 2 s4 , b5, 

| s 2 s5 | , b6, and so on. Notice  
also that s lies between any two  
consecutive partial sums.

PROOF We know from the proof of the Alternating Series Test that s lies between 
any two consecutive partial sums sn and sn11. (There we showed that s is larger than all 
the even partial sums. A similar argument shows that s is smaller than all the odd 
sums.) It follows that

 | s 2 sn | < | sn11 2 sn | − bn11� ■

Instead of verifying condition (i) of 
the Alternating Series Test by com-
puting a derivative, we could verify 
that bn11 , bn directly by using  
the tech ni que of Solution 1 in 
Example 11.1.13.
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EXAMPLE 4 Find the sum of the series o
`

n−0
 
s21dn

n!
 correct to three decimal places.

SOLUTION We first observe that the series is convergent by the Alternating Series Test 
because

 (i) bn11 −
1

sn 1 1d!
−

1

n! sn 1 1d
,

1

n!
− bn

(ii) 0 ,
1

n!
,

1

n
l 0  so bn −

1

n!
l 0 as n l `

To get a feel for how many terms we need to use in our approximation, let’s write out 
the first few terms of the series:

 s −
1

0!
2

1

1!
1

1

2!
2

1

3!
1

1

4!
2

1

5!
1

1

6!
2

1

7!
1 ∙ ∙ ∙

 − 1 2 1 1 1
2 2 1

6 1 1
24 2 1

120 1 1
720 2 1

5040 1 ∙ ∙ ∙

Notice that b7 − 1
5040 , 1

5000 − 0.0002

and s6 − 1 2 1 1 1
2 2 1

6 1 1
24 2 1

120 1 1
720 < 0.368056

By the Alternating Series Estimation Theorem we know that

| s 2 s6 | < b7 , 0.0002

This error of less than 0.0002 does not affect the third decimal place, so we have 
s < 0.368 correct to three decimal places.� ■

NOTE The rule that the error (in using sn to approximate s) is smaller than the first  
neglected term is, in general, valid only for alternating series that satisfy the conditions 
of the Alternating Series Estimation Theorem. The rule does not apply to other types of 
series.

■	 Absolute Convergence and Conditional Convergence
Given any series � an , we can consider the corresponding series

o
`

n−1
 | an | − | a1 | 1 | a2 | 1 | a3 | 1 ∙ ∙ ∙

whose terms are the absolute values of the terms of the original series.

1  Definitio  A series � an is called absolutely convergent if the series of 
absolute values � | an | is convergent.

We have discussed convergence tests 
for series with positive terms and for 
alternating series. But what if the signs 
of the terms switch back and forth 
irregularly? We will see in Example 7 
that the idea of absolute convergence 
sometimes helps in such cases.

Notice that if � an is a series with positive terms, then | an | − an and so absolute con-
vergence is the same as convergence in this case.

EXAMPLE 5 The alternating series

o
`

n−1
 
s21dn21

n2 − 1 2
1

22 1
1

32 2
1

42 1 ∙ ∙ ∙

By definition, 0! − 1.

In Section 11.10 we will prove that 
ex −o `

n−0 xnyn! for all x, so what we  
have obtained in Example 4 is actually 
an approximation to the number e21.
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is absolutely convergent because

o
`

n−1
 Z s21dn21

n2 Z − o
`

n−1
 

1

n2 − 1 1
1

22 1
1

32 1
1

42 1 ∙ ∙ ∙

is a convergent p-series ( p − 2).� ■

2  Definitio  A series � an is called conditionally convergent if it is conver-
gent but not absolutely convergent; that is, if � an converges but � |an| diverges.

EXAMPLE 6 We know from Example 1 that the alternating harmonic series

o
`

n−1
 
s21dn21

n
− 1 2

1

2
1

1

3
2

1

4
1 ∙ ∙ ∙

is convergent, but it is not absolutely convergent because the corresponding series of 
absolute values is

o
`

n−1
 Z s21dn21

n Z − o
`

n−1
 
1

n
− 1 1

1

2
1

1

3
1

1

4
1 ∙ ∙ ∙

which is the harmonic series ( p-series with p − 1) and is therefore divergent. Thus the 
alternating harmonic series is conditionally convergent.� ■

Example 6 shows that it is possible for a series to be convergent but not absolutely 
convergent. However, the following theorem states that absolute convergence implies 
convergence.

3  Theorem If a series � an is absolutely convergent, then it is convergent.You can think of absolute conver-
gence as a stronger type of conver-
gence. An absolutely convergent 
series, like the one in Example 5,  
will converge regardless of the  
signs of its terms, whereas the series 
in Example 6 will not converge if  
we change all of its negative terms  
to positive.

PROOF Observe that the inequality

0 < an 1 | an | < 2 | an |
is true because | an | is either an or 2an. If � an is absolutely convergent, then � | an | is 

convergent, so � 2 | an | is convergent. Therefore, by the Direct Comparison Test, 

� (an 1 | an |) is convergent. Then

o  an − o (an 1 | an |) 2 o  | an |
is the difference of two convergent series and is therefore convergent.� ■

EXAMPLE 7 Determine whether the series

o
`

n−1
 
cos n

n2 −
cos 1

12 1
cos 2

22 1
cos 3

32 1 ∙ ∙ ∙

is convergent or divergent.
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SOLUTION This series has both positive and negative terms, but it is not alternating.  
(The first term is positive, the next three are negative, and the following three are 
positive: the signs change irregularly.) We can apply the Direct Comparison Test to the 
series of absolute values

o
`

n−1
 Z cos n

n2 Z − o
`

n−1
 | cos n |

n2

Since | cos n | < 1 for all n, we have

| cos n |
n2 <

1

n2

We know that � 1yn2 is convergent ( p-series with p − 2) and therefore � | cos n |yn2 is 
convergent by the Direct Comparison Test. Thus the given series � scos ndyn2 is 
absolutely convergent and therefore convergent by Theorem 3.� ■

EXAMPLE 8 Determine whether the series is absolutely convergent, conditionally 
convergent, or divergent.

(a) o
`

n−1
 
s21dn

n3   (b) o
`

n−1
 
s21dn

s3 n
  (c) o

`

n−1
 s21dn 

n

2n 1 1
SOLUTION 
(a) Because the series

o
`

n−1
 ` s21dn

n3 ` − o
`

n−1
 

1

n3

converges ( p-series with p − 3), the given series is absolutely convergent.

(b) We first test for absolute convergence. The series 

o
`

n−1
` s21dn

s3 n
` − o

`

n−1
 

1

s3 n

diverges ( p-series with p − 1
3), so the given series is not absolutely convergent. The 

given series converges by the Alternating Series Test (bn11 < bn and limn l ` bn − 0). 
Since the series converges but is not absolutely convergent, it is conditionally 
convergent.

(c) This series is alternating but 

lim
n l `

 an − lim
n l `

 s21dn 
n

2n 1 1

does not exist (see Figure 4), so the series diverges by the Test for Divergence. ■

■	 Rearrangements
The question of whether a given convergent series is absolutely convergent or condi-
tionally convergent has a bearing on the question of whether infinite sums behave like 
finite sums.

If we rearrange the order of the terms in a finite sum, then of course the value of the 
sum remains unchanged. But this is not always the case for an infinite series. By a rear-
rangement of an infinite series � an we mean a series obtained by simply changing the 

0 n

0.5

�an�

�sn�

FIGURE 3 

Figure 3 shows the graphs of the 
terms an and partial sums sn of the 
series in Example 7. Notice that 
the series is not alternating but 
has positive and negative terms.

FIGURE 4 
The terms of {an} are alternately  
close to 0.5 and 20.5. 

0 n

0.5

_0.5

�an�
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order of the terms. For instance, a rearrangement of � an could start as follows:

a1 1 a2 1 a5 1 a3 1 a4 1 a15 1 a6 1 a7 1 a20 1 ∙ ∙ ∙

It turns out that

if � an is an absolutely convergent series with sum s,
then any rearrangement of � an has the same sum s.

However, any conditionally convergent series can be rearranged to give a different sum. 
To illustrate this fact let’s consider the alternating harmonic series from Example 1. In 
Exercise 50 you are asked to show that

4  1 2 1
2 1 1

3 2 1
4 1 1

5 2 1
6 1 1

7 2 1
8 1 ∙ ∙ ∙ − ln 2

If we multiply this series by 12, we get

1
2 2 1

4 1 1
6 2 1

8 1 ∙ ∙ ∙ − 1
2 ln 2

Inserting zeros between the terms of this series, we have

5  0 1 1
2 1 0 2 1

4 1 0 1 1
6 1 0 2 1

8 1 ∙ ∙ ∙ − 1
2 ln 2

Now we add the series in Equations 4 and 5 using Theorem 11.2.8:

6  1 1 1
3 2 1

2 1 1
5 1 1

7 2 1
4 1 ∙ ∙ ∙ − 3

2 ln 2

Notice that the series in (6) contains the same terms as in (4) but rearranged so that one 
neg ative term occurs after each pair of positive terms. The sums of these series, however, 
are different. In fact, Riemann proved that

if � an is a conditionally convergent series and r is any real number what-
soever, then there is a rearrangement of � an that has a sum equal to r.

A proof of this fact is outlined in Exercise 52.

Adding these zeros does not affect 
the sum of the series; each term in 
the sequence of partial sums is 
repeated, but the limit is the same.

11.5 Exercises

 1. (a) What is an alternating series?
 (b)  Under what conditions does an alternating series  

converge?
 (c)  If these conditions are satisfied, what can you say  

about the remainder after n terms?

2–20 Test the series for convergence or divergence.

 2. 2
3 2 2

5 1 2
7 2 2

9 1 2
11 2 ∙ ∙ ∙

 3. 22
5 1 4

6 2 6
7 1 8

8 2 10
9 1 ∙ ∙ ∙

 4. 
1

ln 3
2

1

ln 4
1

1

ln 5
2

1

ln 6
1

1

ln 7
2 ∙ ∙ ∙

 5. o
`

n−1
 
s21dn21

3 1 5n
 6. o

`

n−0
 
s21dn11 

sn 1 1

 7. o
`

n−1
 s21dn  

3n 2 1

2n 1 1
 8. o

`

n−1
 s21d n 

n2

n2 1 n 1 1

 9. o
`

n−1
 s21dn e2n 10. o

`

n−1
 s21dn 

sn 

2n 1 3

 11. o
`

n−1
 s21dn11  

n2

n3 1 4
 12. o

`

n−1
 s21dn 

n

2n

 13. o
`

n−1
 s21dn21e 2yn 14. o

`

n−1
 s21dn21 arctan n

 15. o
`

n−0

 sin(n 1 1
2)�

1 1 sn 
 16. o

`

n−1

 n cos n�

2n

 17. o
`

n−1
 s21dn sin 

�

n
 18. o

`

n−1
 s21dn cos 

�

n

 19. o
`

n−1
 s21dn 

n2

5n  20. o
`

n−1
 s21dn (sn 1 1 2 sn )
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41–44 Approximate the sum of the series correct to four 
decimal places.

 41. o
`

n−1
 
s21dn

s2nd!
 42. o

`

n−1
 
s21dn11

n6

 43. o
`

n−1
 s21dn ne22n 44. o

`

n−1
 
s21dn21

n4 n

 45.  Is the 50th partial sum s50 of the alternating series 
�`

n−1 s21dn21yn an overestimate or an underestimate of the 
total sum? Explain.

46 – 48 For what values of p is each series convergent?

 46. o
`

n−1
 
s21dn21

n p

 47.  o
`

n−1
 
s21dn

n 1 p
 48. o

`

n−2
 s21dn21 

sln nd p

n

 49.  Show that the series � s21dn21bn , where bn − 1yn if n is odd 
and bn − 1yn2 if n is even, is divergent. Why does the Alter-
nating Series Test not apply?

 50. Use the following steps to show that

o
`

n−1
 
s21dn21

n
− ln 2

Let hn and sn be the partial sums of the harmonic and alter-
nating harmonic series.

 (a) Show that s2n − h2n 2 hn .
 (b) From Exercise 11.3.46 we have

hn 2 ln n l �    as n l `

 and therefore

h2n 2 lns2nd l �    as n l `

  Use these facts together with part (a) to show that 
s2n l ln 2 as n l `.

 51.   Given any series � an, we define a series � an
1 whose terms 

are all the positive terms of � an and a series � an
2 whose 

terms are all the negative terms of � an . To be specific, we let

an
1 −

an 1 | an |
2

an
2 −

an 2 | an |
2

 Notice that if an . 0, then an
1− an and an

2
 − 0, whereas if 

an , 0, then an
2− an and an

1 − 0.
 (a)  If � an is absolutely convergent, show that both of the 

series � an
1 and � an

2 are convergent.
 (b)  If � an is conditionally convergent, show that both of 

the series � an
1 and � an

2 are divergent.

 21. (a) What does it mean for a series to be absolutely 
convergent?

 (b)  What does it mean for a series to be conditionally 
convergent?

 (c)  If the series of positive terms �`
n−1 bn converges, then 

what can you say about the series �`
n−1 s21dnbn?

22–34 Determine whether the series is absolutely convergent, 
conditionally convergent, or divergent. 

 22. o
`

n−1
 
s21dn

n4  23. o
`

n−1
 
s21dn21

s3 n 2 

 24. o
`

n−0
s21dn11 

n2

n2 1 1
 25. o

`

n−1
 

s21dn

5n 1 1

 26. o
`

n−1
 

2n

n2 1 1
 27. o

`

n−1
 

s21dn

n2 1 1

 28. o
`

n−1
 
sin n

2n  29. o
`

n−1
 
1 1 2 sin n

n3

 30. o
`

n−1
 s21dn21 

n

n2 1 4
 31. o

`

n−2
 
s21dn

ln n

 32. o
`

n−1
 s21dn 

n

sn3 1 2 

 33. o
`

n−1
 
cos n�

3n 1 2

 34. o
`

n−2
 
s21dn

n ln n
 

35–36 Graph both the sequence of terms and the sequence of 
partial sums on the same screen. Use the graph to make a rough 
estimate of the sum of the series. Then use the Alternating 
Series Estimation Theorem to estimate the sum correct to four 
decimal places.

 35. o
`

n−1
 
s20.8dn

n!
 36. o

`

n−1
 s21dn21 n

8n

37–40 Show that the series is convergent. How many terms of 
the series do we need to add in order to find the sum to the 
indicated accuracy?

 37. o
`

n−1
 
s21dn11

n6   (| error | , 0.00005)

 38. o
`

n−1

 (21
3)n

n
  (| error | , 0.0005)

 39. o
`

n−1
 
s21dn21

n2 2n   (| error | , 0.0005)

 40. o
`

n−1
 S2 1

nDn

  (| error | , 0.00005)

;
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 52.   Prove that if � an is a conditionally convergent series and  
r is any real number, then there is a rearrangement of � an  
whose sum is r. [Hints: Use the notation of Exercise 51.  
Take just enough positive terms an

1 so that their sum is greater 
than r. Then add just enough negative terms an

2 so that the 
cumulative sum is less than r. Continue in this manner and 
use Theorem 11.2.6.]

 53.  Suppose the series � an is conditionally convergent.
 (a) Prove that the series � n2an is divergent.
 (b)  Conditional convergence of � an is not enough to 

determine whether � nan is convergent. Show this by 
giving an example of a conditionally convergent series 
such that � nan converges and an example where � nan 
diverges.

The Ratio and Root Tests

One way to determine how quickly the terms of a series are decreasing (or increasing) is 
to calculate the ratios of consecutive terms. For a geometric series � ar n21 we have 

| an11yan | − | r | for all n, and the series converges if | r | , 1. The Ratio Test tells us that 
for any series, if the ratios | an11yan | approach a number less than 1 as n l `, then the 
series converges. The proofs of both the Ratio Test and the Root Test involve comparing 
a series with a geometric series.

■	 The Ratio Test
The following test is very useful in determining whether a given series is absolutely 
convergent.

The Ratio Test

 (i)  If lim
nl`

 Z an11

an
Z − L , 1, then the series o

`

n−1
 an is absolutely convergent 

  (and therefore convergent).

 (ii) If lim
nl`

 Z an11

an
Z − L . 1 or lim

nl`
 Z an11

an
Z − `, then the series o

`

n−1
 an is

  divergent.

 (iii)  If lim
nl`

 Z an11

an
Z − 1, the Ratio Test is inconclusive; that is, no conclusion

 can be drawn about the convergence or divergence of � an .

PROOF
(i) The idea is to compare the given series with a convergent geometric series. Since 

L , 1, we can choose a number r such that L , r , 1. Since

lim
n l `

 Z an11

an
Z − L    and    L , r

the ratio | an11yan | will eventually be less than r; that is, there exists an integer N  
such that

Z an11

an
Z , r whenever n > N 

or, equivalently,

1  | an11 | , | an | r whenever n > N

11.6
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Putting n successively equal to N, N 1 1, N 1 2, . . . in (1), we obtain

 | aN11 | , | aN | r

 | aN12 | , | aN11 | r , | aN | r 2

 | aN13 | , | aN12 | r , | aN | r 3

and, in general,

2  | aN1k | , | aN | r k    for all k > 1

Now the series

o
`

k−1
 | aN | r k − | aN | r 1 | aN | r 2 1 | aN | r 3 1 ∙ ∙ ∙

is convergent because it is a geometric series with 0 , r , 1. So the inequality (2),  
together with the Direct Comparison Test, shows that the series

o
`

n−N11
 | an | − o

`

k−1
 | aN1k | − | aN11 | 1 | aN12 | 1 | aN13 | 1 ∙ ∙ ∙

is also convergent. It follows that the series �`
n−1 | an | is convergent. (Recall that a finite 

number of terms doesn’t affect convergence.) Therefore � an is absolutely convergent.

(ii) If | an11yan |l L . 1 or | an11yan |l `, then the ratio | an11yan | will eventually 
be greater than 1; that is, there exists an integer N such that

Z an11

an
Z . 1    whenever n > N

This means that | an11 | . | an | whenever n > N and so

lim
nl`

 an ± 0

Therefore � an diverges by the Test for Divergence.� ■

EXAMPLE 1 Test the series o
`

n−1
 s21dn 

n3

3n  for absolute convergence.

SOLUTION We use the Ratio Test with an − s21dn n3y3n:

 Z an11

an
Z −

s21dn11sn 1 1d3

3n11

s21dn n3

3n

 −
sn 1 1d3

3n11 �
3n

n3

 −
1

3
 S n 1 1

n D3

−
1

3
 S1 1

1

nD3

l 
1

3
, 1

Thus, by the Ratio Test, the given series is absolutely convergent.� ■

Estimating Sums
In the preceding three sections we 
used various methods for estimating 
the sum of a series—the method 
depended on which test was used to 
prove convergence. What about series 
for which the Ratio Test works? There 
are two possibilities: If the series hap-
pens to be an alternating series, as in 
Example 1, then it is best to use the 
methods of Section 11.5. If the terms 
are all positive, then use the special 
methods explained in Exercise 42.
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EXAMPLE 2 Test the convergence of the series o
`

n−1
 
nn

n!
.

SOLUTION Since the terms an − nnyn! are positive, we don’t need the absolute value 
signs.

 
an11

an
−

sn 1 1dn11

sn 1 1d!
�

n!

nn −
sn 1 1dsn 1 1dn

sn 1 1d n!
�

n!

nn

 − S n 1 1

n Dn

− S1 1
1

nDn

l e as n l `

(see Equation 3.6.6). Since e . 1, the given series is divergent by the Ratio Test.� ■

NOTE Although the Ratio Test works in Example 2, an easier method is to use the Test 
for Divergence. Since

an −
nn

n!
−

n � n � n � ∙ ∙ ∙ � n

1 � 2 � 3 � ∙ ∙ ∙ � n
> n

it follows that an does not approach 0 as n l `. Therefore the given series is divergent 
by the Test for Divergence.

EXAMPLE 3 Part (iii) of the Ratio Test says that if limn l ` | an11yan | − 1, then the test 
gives no information. For instance, let’s apply the Ratio Test to each of the following 
series: 

o
`

n−1
 
1

n
   o

`

n−1
 

1

n2

In the first series an − 1yn and 

Z an11

an
Z −

1ysn 1 1d
1yn

−
n

n 1 1
l 1    as n l `

In the second series an − 1yn2 and 

Z an11

an
Z −

1ysn 1 1d2

1yn 2 − S n

n 1 1D2

l 1    as n l `

In both cases the Ratio Test fails to determine whether the series converges or diverges, 
so we must try another test. Here the first series is the harmonic series, which we know 
diverges; the second series is a p-series with p . 1, so it converges.� ■

■	 The Root Test
The following test is convenient to apply when nth powers occur. Its proof is similar to 
the proof of the Ratio Test and is left as Exercise 45.

The Ratio Test is usually conclusive  
if the nth term of the series contains 
an exponential or a factorial, as  
in Examples 1 and 2. The test will  
always fail for p -series, as in  
Example 3.
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The Root Test 
 (i)  If lim

n l `
sn | an | − L , 1, then the series o

`

n−1
 an is absolutely convergent 

  (and therefore convergent).

 (ii) If lim
n l `

 sn | an | − L . 1 or lim
n l `

 sn | an | − `, then the series o
`

n−1
 an is

  divergent.

 (iii) If lim
n l `

 sn | an | − 1, the Root Test is inconclusive.

If lim n l ` sn | an | − 1, then part (iii) of the Root Test says that the test gives no infor-
mation. The series � an could converge or diverge. (If L − 1 in the Ratio Test, don’t try 
the Root Test because L will again be 1. And if L − 1 in the Root Test, don’t try the Ratio 
Test because it will fail too.)

EXAMPLE 4 Test the convergence of the series o
`

n−1
 S 2n 1 3

3n 1 2Dn

.

SOLUTION

 an − S 2n 1 3

3n 1 2Dn

 sn | an | −
2n 1 3

3n 1 2
−

2 1
3

n

3 1
2

n

l 
2

3
, 1

Thus the given series is absolutely convergent (and therefore convergent) by the Root 
Test.� ■

EXAMPLE 5 Determine whether the series o
`

n−1
S n

n 1 1Dn

 converges or diverges.

SOLUTION Here it seems natural to apply the Root Test:

sn | an | −
n

n 1 1
 l 1  as n l `

Since this limit is 1, the Root Test is inconclusive. However, using Equation 3.6.6 we 
see that 

an − S n

n 1 1D
n

 −
1

S n 1 1

n Dn
 l  

1

e
  as n l `

Since this limit is different from zero, the series diverges by the Test for Divergence. ■

Example 5 serves as a reminder that when testing a series for convergence or diver-
gence it is often helpful to apply the Test for Divergence before attempting other tests.
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11.6 Exercises

 1.  What can you say about the series  � an in each of the follow-
ing cases?

  (a) lim
nl`

 Z an11

an
Z − 8

  (b) lim
n l `

 Z an11

an
Z − 0.8

  (c) lim
n l `

 Z  an11

an
Z − 1

 2. Suppose that for the series  � an we have limn l ` | anyan11 | − 2. 
What is lim n l ` | an11yan | ? Does the series converge?

3–20 Use the Ratio Test to determine whether the series is 
convergent or divergent.

 3. o
`

n−1
 

n

5n  4. o
`

n−1
 
s22dn

n2

 5. o
`

n−1
 s21dn21  3n

2nn3  6. o
`

n−0
 

s23dn

s2n 1 1d!

 7. o
`

k−1
 

1

k!
 8. o

`

k−1
 ke2k

 9. o
`

n−1
 

10 n

sn 1 1d 42n11  10. o
`

n−1
 

n!

100 n

 11. o
`

n−1
 

n� n

s23dn21  12. o
`

n−1
 

n10

s210d n11

 13. o
`

n−1
 
cossn�y3d

n!
 14. o

`

n−1
 
n!

n n

 15. o
`

n−1
 
n100 100 n

n!
 16. o

`

n−1
 
s2nd!
sn!d2

 17. 1 2
2!

1 � 3
1

3!

1 � 3 � 5
2

4!

1 � 3 � 5 � 7
1 ∙ ∙ ∙

      1 s21dn21 n!

1 � 3 � 5 � ∙ ∙ ∙ � s2n 2 1d
1 ∙ ∙ ∙

 18. 
2

3
1

2 � 5

3 � 5
1

2 � 5 � 8

3 � 5 � 7
1

2 � 5 � 8 � 11

3 � 5 � 7 � 9
1 ∙ ∙ ∙

 19. o
`

n−1
 
2 � 4 � 6 � ∙ ∙ ∙ � s2nd

n!

 20. o
`

n−1
 s21dn 

2n n!

5 � 8 � 11 � ∙ ∙ ∙ � s3n 1 2d

21–26 Use the Root Test to determine whether the series is 
convergent or divergent.

 21. o
`

n−1
 S n2 1 1

2n2 1 1Dn

 22. o
`

n−1
 
s22dn

n n

 23. o
`

n−2
 
s21dn21

sln ndn  24. o
`

n−1
 S 22n

n 1 1D5n

 25. o
`

n−1
 S1 1

1

nDn 2

 26. o
`

n−0
 sarctan ndn

27–34 Use any test to determine whether the series is absolutely 
convergent, conditionally convergent, or divergent.

 27. o
`

n−2
 
s21dn ln n

n
 28. o

`

n−1
 S 1 2 n

2 1 3nDn

 29. o
`

n−1
 

s29dn

n10 n11  30. o
`

n−1
 

n52n

10 n11

 31. o
`

n−2
 S n

ln nDn

 32. o
`

n−1
 
sinsn�y6d

1 1 nsn 

 33. o
`

n−1
 

s21dn arctan n

n2

 34. o
`

n−2
 

s21dn

sn  ln n
 fHint: ln x , sx  .g

 35.   The terms of a series are defined recursively by the equations

a1 − 2      an11 −
5n 1 1

4n 1 3
 an

 Determine whether � an converges or diverges.

 36.  A series � an is defined by the equations

a1 − 1      an11 −
2 1 cos n

sn 

 an

 Determine whether � an converges or diverges.

37–38 Let hbnj be a sequence of positive numbers that converges  
to 12 . Determine whether the given series is absolutely convergent.

 37.  o
`

n−1
 
bn

n cos n�

n
 38.  o

`

n−1
 

s21dn n!

nn b1b2 b3 ∙ ∙ ∙ bn

 39.   For which of the following series is the Ratio Test inconclu-
sive (that is, it fails to give a definite answer)?

  (a) o
`

n−1
 

1

n3  (b) o
`

n−1
 

n

2n

  (c) o
`

n−1
 
s23dn21

sn  

 (d) o
`

n−1
 

sn  

1 1 n2
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 (b)  Find a value of n so that sn is within 0.00005 of the 
sum. Use this value of n to approximate the sum of  
the series.

 44.   Use the sum of the first 10 terms to approximate the sum of  
the series

o
`

n−1
 

n

2n

 Use Exercise 42 to estimate the error.

 45.   Prove the Root Test. [Hint for part (i): Take any number r 
such that L , r , 1 and use the fact that there is an integer N 
such that sn | an | , r whenever n > N.]

 46.   Around 1910, the Indian mathematician Srinivasa Ramanujan 
discovered the formula

1

�
−

2s2 

9801
 o

`

n−0
 
s4nd!s1103 1 26390nd

sn!d4 3964n

  William Gosper used this series in 1985 to compute the first 
17 million digits of �.

 (a)  Verify that the series is convergent.
 (b)  How many correct decimal places of � do you get if you 

use just the first term of the series? What if you use two 
terms?

 40.   For which positive integers k is the following series  
convergent?

o
`

n−1
 
sn!d2

sknd!

 41.  (a) Show that �`
n−0 x nyn! converges for all x.

 (b) Deduce that limn l ` x nyn! − 0 for all x.

 42.   Let � an be a series with positive terms and let rn − an11yan .  
Suppose that limn l ` rn − L , 1, so � an converges by the 
Ratio Test. As usual, we let Rn be the remainder after n terms, 
that is,

Rn − an11 1 an12 1 an13 1 ∙ ∙ ∙

 (a)  If hrn j is a decreasing sequence and rn11 , 1, show, by 
summing a geometric series, that

Rn <
an11

1 2 rn11

 (b) If hrn j is an increasing sequence, show that

Rn <
an11

1 2 L

 43.  (a)  Find the partial sum s5 of the series �`
n−1 1ysn2nd. Use 

Exercise 42 to estimate the error in using s5 as an approxi- 
mation to the sum of the series.

Strategy for Testing Series

We now have several ways of testing a series for convergence or divergence; the problem 
is to decide which test to use on which series. In this respect, testing series is similar 
to integrating functions. Again, there are no hard and fast rules about which test to apply 
to a given series, but you may find the following advice of some use.

It is not wise to apply a list of the tests in a specific order until one finally works. That 
would be a waste of time and effort. Instead, as with integration, the main strategy is to 
classify the series according to its form.

1.  Test for Divergence If you can see that lim n l ` an may be different from 0, then 
apply the Test for Divergence.

2. p-Series If the series is of the form � 1ynp, then it is a p-series, which we know 
to be convergent if p . 1 and divergent if p < 1.

3.  Geometric Series If the series has the form � ar n21 or � ar n, then it is a geometric 
series, which converges if | r | , 1 and diverges if | r | > 1. Some preliminary 
algebraic manipulation may be required to bring the series into this form.

4.  Comparison Tests If the series has a form that is similar to a p-series or a 
geometric series, then one of the comparison tests should be considered. In 
particular, if an is a rational function or an algebraic function of n (involving 
roots of polynomials), then the series should be compared with a p-series.  
Notice that most of the series in Exercises 11.4 have this form. (The value of p 
should be chosen as in Sec tion 11.4 by keeping only the highest powers of n in 
the numerator and denominator.) The comparison tests apply only to series with 
positive terms, but if � an has some negative terms, then we can apply a 
comparison test to � | an | and test for absolute convergence.

11.7
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5.  Alternating Series Test If the series is of the form � s21dn21bn or � s21dnbn , 
then the Alternating Series Test is an obvious possibility. Note that if � bn 
converges, then the given series is absolutely convergent and therefore convergent.

6.  Ratio Test Series that involve factorials or other products (including a constant 
raised to the nth power) are often conveniently tested using the Ratio Test. Bear 
in mind that | an11yan |l 1 as n l ` for all p-series and therefore all rational or 
algebraic functions of n. Thus the Ratio Test should not be used for such series.

7. Root Test If an is of the form sbn dn, then the Root Test may be useful.

8.  Integral Test If an − f snd, where y`

1
 f sxd dx is easily evaluated, then the Integral 

Test is effective (assuming the hypotheses of this test are satisfied).

In the following examples we don’t work out all the details but simply indicate which 
tests should be used.

EXAMPLE 1 o
`

n−1
 

n 2 1

2n 1 1

Since an l 12 ± 0 as n l `, we should use the Test for Divergence.� ■

EXAMPLE 2 o
`

n−1
 

sn3 1 1 

3n3 1 4n2 1 2

Since an is an algebraic function of n, we compare the given series with a p-series. The 
comparison series for the Limit Comparison Test is � bn, where

 bn −
sn3 

3n3
−

n3y2

3n3
−

1

3n3y2
� ■

EXAMPLE 3 o
`

n−1
 ne2n2

Since the integral y`
1  xe2x2 dx is easily evaluated, we use the Integral Test. The Ratio 

Test also works.� ■

EXAMPLE 4 o
`

n−1
 s21dn 

n2

n4 1 1

Since the series is alternating, we use the Alternating Series Test. We can also observe 
that � | an | converges (compare to � 1yn2) so the given series converges absolutely and 
hence converges.� ■

EXAMPLE 5 o
`

k−1
 
2k

k!

Since the series involves k!, we use the Ratio Test.� ■

EXAMPLE 6 o
`

n−1
 

1

2 1 3n

Since the series is closely related to the geometric series � 1y3n, we use the Direct 
Comparison Test or the Limit Comparison Test.� ■
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11.7 Exercises
1–8 Two similar-looking series are given. Test each one for 
convergence or divergence.

 1. (a) o
`

n−1
 

1

5n  (b) o
`

n−1
 

1

5n 1 n

 2. (a) o
`

n−1
 
s21dn

n3y2  (b) o
`

n−1
 

1

n3y2

 3. (a) o
`

n−1
 

n

3n  (b) o
`

n−1
 
3n

n

 4. (a) o
`

n−1
 
n 1 1

n
 (b) o

`

n−1
 s21dn 

n 1 1

n

 5. (a) o
`

n−1
 

n

n2 1 1
 (b) o

`

n−1
S n

n2 1 1D
n

 6. (a) o
`

n−1
 
ln n

n
 (b) o

`

n−10
 

1

n ln n

 7. (a) o
`

n−1
 

1

n 1 n!
 (b) o

`

n−1
S 1

n
1

1

n!D
 8. (a) o

`

n−1
 

1

sn2 1 1
 (b) o

`

n−1
 

1

nsn2 1 1

9–48 Test the series for convergence or divergence.

 9. o
`

n−1
 
n2 2 1

n3 1 1
 10. o

`

n−1
 

n 2 1

n3 1 1

 11. o
`

n−1
 s21dn 

n2 2 1

n3 1 1
 12. o

`

n−1
 s21dn 

n2 2 1

n2 1 1

 13. o
`

n−1
 
en

n2  14. o
`

n−1
 

n2n

s1 1 nd3n

 15. o
`

n−2
 

1

nsln n 
 16. o

`

n−1
 s21dn21 

n4

4n

 17. o
`

n−0
 s21dn 

� 2n

s2nd!
 18. o

`

n−1
 n2e2n3

 19. o
`

n−1
 S 1

n3 1
1

3nD 20. o
`

k−1
 

1

ksk 2 1 1 

 21. o
`

n−1
 
3n n2

n!
 22. o

`

n−1
 

sin 2n

1 1 2n

 23. o
`

k−1
 
2 k213k11

k k
 24. o

`

n−1
 
sn4 1 1 

n3 1 n

 25. o
`

n−1
 
1 � 3 � 5 � ∙ ∙ ∙ � s2n 2 1d
2 � 5 � 8 � ∙ ∙ ∙ � s3n 2 1d

 26. o
`

n−2
 
s21dn21

sn 2 1

 27. o
`

n−1
 s21dn 

ln n

sn 
 28. o

`

k−1
 

s3 k 2 1

k (sk 1 1)

 29. o
`

n−1
 s21dn coss1yn2d 30. o

`

k−1
 

1

2 1 sin k

 31. o
`

n−1
 tans1ynd 32. o

`

n−1
 n sins1ynd

 33. o
`

n−1
 
4 2 cos n

sn 

 34. o
`

n−1
 
8 1 s21dn n

n

 35. o
`

n−1
 

n!

e n2  36. o
`

n−1
 
n2 1 1

5n

 37. o
`

k−1
 

k ln k

sk 1 1d3  38. o
`

n−1
 
e 1yn

n2

 39. o
`

n−1
 

s21dn

cosh n
 40. o

`

j−1
 s21d j 

sj  

j 1 5

 41. o
`

k−1
 

5 k

3 k 1 4 k  42. o
`

n−1
 
sn!dn

n4n

 43. o
`

n−1
 S n

n 1 1Dn2

 44. o
`

n−1
 

1

n 1 n cos2n

 45. o
`

n−1
 

1

n111yn  46. o
`

n−2
 

1

sln ndln n

 47. o
`

n−1
 (sn 2 2 1)n

 48. o
`

n−1
 (sn  2 2 1)

Power Series

So far we have studied series of numbers: � an. Here we consider series, called power 
series, in which each term includes a power of the variable x: � cn xn. 

■	 Power Series
A power series is a series of the form

1  o
`

n−0
 cn xn − c0 1 c1 x 1 c2 x 2 1 c3 x 3 1 ∙ ∙ ∙

11.8
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where x is a variable and the cn’s are constants called the coefficients of the series. For each 
number that we substitute for x, the series (1) is a series of constants that we can test for 
convergence or divergence. A power series may converge for some values of x and 
diverge for other values of x. The sum of the series is a function

f sxd − c0 1 c1 x 1 c2 x 2 1 ∙ ∙ ∙ 1 cn xn 1 ∙ ∙ ∙

whose domain is the set of all x for which the series converges. Notice that f  resembles 
a polynomial. The only difference is that f  has infinitely many terms.

For instance, if we take cn − 1 for all n, the power series becomes the geometric series

2  o
`

n−0
 xn − 1 1 x 1 x 2 1 ∙ ∙ ∙ 1 xn 1 ∙ ∙ ∙

which converges when 21 , x , 1 and diverges when | x | > 1. (See Equation 11.2.5.)
In fact if we put x − 1

2 in the geometric series (2) we get the convergent series

o
`

n−0
 S 1

2D
n

− 1 1
1

2
1

1

4
1

1

8
1

1

16
1 ∙ ∙ ∙

but if we put x − 2 in (2) we get the divergent series

o
`

n−0
 2n − 1 1 2 1 4 1 8 1 16 1 ∙ ∙ ∙

More generally, a series of the form

3  o
`

n−0
 cnsx 2 adn − c0 1 c1sx 2 ad 1 c2sx 2 ad2 1 ∙ ∙ ∙

is called a power series in sx 2 ad or a power series centered at a or a power series 
about a. Notice that in writing out the term corresponding to n − 0 in Equations 1 and 3 
we have adopted the convention that sx 2 ad0 − 1 even when x − a. Notice also that 
when x − a, all of the terms are 0 for n > 1 and so the power series (3) always converges 
when x − a.

To determine the values of x for which a power series converges, we normally use the 
Ratio (or Root) Test.

EXAMPLE 1 For what values of x does the series o
`

n−1
 
sx 2 3dn

n
 converge?

SOLUTION If we let an denote the n th term of the series, as usual, then 
an − sx 2 3dnyn, and

 Z an11

an
Z − Z sx 2 3dn11

n 1 1
�

n

sx 2 3dn Z
 −

1

1 1
1

n

| x 2 3 | l | x 2 3 |  as n l `

By the Ratio Test, the given series is absolutely convergent, and therefore convergent, 
when | x 2 3 | , 1 and divergent when | x 2 3 | . 1. Now

| x 2 3 | , 1  &?  21 , x 2 3 , 1  &?  2 , x , 4

so the series converges when 2 , x , 4 and diverges when x , 2 or x . 4.

Trigonometric Series
A power series is a series in which 
each term is a power function. A 
trigonometric series

o
`

n−0
 san cos nx 1 bn sin nxd

is a series whose terms are trigono-
metric functions. This type of series 
is discussed on the website

www.StewartCalculus.com

Click on Additional Topics and then 
on Fourier Series.
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The Ratio Test gives no information when | x 2 3 | − 1 so we must consider x − 2 
and x − 4 separately. If we put x − 4 in the series, it becomes � 1yn, the harmonic 
series, which is divergent. If x − 2, the series is � s21dnyn, which converges by the 
Alternating Series Test. Thus the given power series converges for 2 < x , 4.� ■

EXAMPLE 2 For what values of x is the series o
`

n−0
 n!xn convergent?

SOLUTION Again we use the Ratio Test. Let an − n!xn. If x ± 0, we have

 lim
nl`

 Z an11

an
Z − lim

nl`
 Z sn 1 1d!xn11

n!xn Z − lim
nl`

 sn 1 1d | x | − `

By the Ratio Test, the series diverges when x ± 0. Thus the given series converges only 
when x − 0.� ■

EXAMPLE 3 For what values of x does the series o
`

n−0
 

xn

s2nd!
 converge?

SOLUTION Here an − xnys2nd! and, as n l `, 

 ̀
an11

an
` − ` xn11

f2sn 1 1d�!
?

s2nd!
xn ` −

s2nd!
s2n 1 2d!

 | x |

 −
s2nd!

s2nd!s2n 1 1ds2n 1 2d
 | x | − | x |

s2n 1 1ds2n 1 2d
 l 0 , 1

for all x. Thus, by the Ratio Test, the given series converges for all values of x.� ■

■	 Interval of Convergence
For the power series that we have looked at so far, the set of values of x for which the 
series is convergent has always turned out to be an interval [a finite interval for the geo-
metric series and the series in Example 1, the infinite interval s2`, `d in Example 3, and 
a collapsed interval f0, 0g − h0j in Example 2]. The following theorem, proved in 
Appendix F, says that this is true in general.

4  Theorem For a power series o
`

n−0
 cnsx 2 adn, there are only three possibilities:

 (i) The series converges only when x − a.

 (ii) The series converges for all x.

 (iii)  There is a positive number R such that the series converges if | x 2 a | , R 
and diverges if | x 2 a | . R.

The number R in case (iii) is called the radius of convergence of the power series. By 
convention, the radius of convergence is R − 0 in case (i) and R − ` in case (ii). The 
interval of convergence of a power series is the interval that consists of all values of x 
for which the series converges. In case (i) the interval consists of just a single point a. 
In case (ii) the interval is s2`, `d. In case (iii) note that the inequality | x 2 a | , R can 
be rewritten as a 2 R , x , a 1 R. When x is an endpoint of the interval, that is, 

Notice that

 sn 1 1d! − sn 1 1dnsn 2 1d �  . . . � 3 � 2 � 1

 − sn 1 1dn!
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x − a 6 R, anything can happen—the series might converge at one or both endpoints or 
it might diverge at both endpoints. Thus in case (iii) there are four possibilities for the 
interval of convergence:

sa 2 R, a 1 Rd sa 2 R, a 1 Rg fa 2 R, a 1 Rd fa 2 R, a 1 Rg

The situation is illustrated in Figure 1.

a-R a a+R

convergence for |x-a|<R

divergence for |x-a|>R

We summarize here the radius and interval of convergence for each of the examples 
already considered in this section.

Series Radius of convergence Interval of convergence

Geometric series o
`

n−0
 x n R − 1 s21, 1d

Example 1 o
`

n−1
 
sx 2 3dn

n
R − 1 f2, 4d

Example 2 o
`

n−0
 n! x n R − 0 h0j

Example 3 o
`

n−0
 

x n

s2nd!
R − ` s2`, `d

NOTE In general, the Ratio Test (or sometimes the Root Test) should be used to 
determine the radius of convergence R. The Ratio and Root Tests always fail when x is 
an endpoint of the interval of convergence, so the endpoints must be checked with some 
other test.

EXAMPLE 4 Find the radius of convergence and interval of convergence of the series

o
`

n−0
 
s23dnxn

sn 1 1

SOLUTION Let an − s23dnxnysn 1 1. Then

 Z an11

an
Z − Z s23dn11xn11

sn 1 2 
�

sn 1 1 

s23dnxn Z − Z 23xÎn 1 1

n 1 2 Z
 − 3Î 1 1 s1ynd

1 1 s2ynd
 | x | l 3 | x | as n l `

FIGURE 1
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By the Ratio Test, the given series converges if 3 | x | , 1 and diverges if 3 | x | . 1.
Thus it converges if | x | , 1

3 and diverges if | x | . 1
3. This means that the radius of 

convergence is R − 1
3.

We know the series converges in the interval (2 

1
3, 13 ), but we must now test for con-

vergence at the endpoints of this interval. If x − 2 

1
3, the series becomes

o
`

n−0
 
s23dn (21

3)n

sn 1 1 
− o

`

n−0
 

1

sn 1 1 
−

1

s1 
1

1

s2 
1

1

s3 
1

1

s4 
1 ∙ ∙ ∙

which diverges. (It is a p-series with p − 1
2 , 1.) If x − 1

3, the series is

o
`

n−0
 
s23dn (  

1
3 

)n

sn 1 1 
− o

`

n−0
 

s21dn

sn 1 1 

which converges by the Alternating Series Test. Therefore the given power series con-

verges when 21
3 , x < 1

3 , so the interval of convergence is (21
3, 13 g.� ■

EXAMPLE 5 Find the radius of convergence and interval of convergence of the series

o
`

n−0
 
nsx 1 2dn

3n11

SOLUTION If an − nsx 1 2dny3n11, then

 Z an11

an
Z − Z sn 1 1dsx 1 2dn11

3n12 �
3n11

nsx 1 2dn Z
 − S1 1

1

nD | x 1 2 |
3

l | x 1 2 |
3

as n l `

Using the Ratio Test, we see that the series converges if | x 1 2 |y3 , 1 and it diverges 
if | x 1 2 |y3 . 1. So it converges if | x 1 2 | , 3 and diverges if | x 1 2 | . 3. Thus 
the radius of convergence is R − 3.

The inequality | x 1 2 | , 3 can be written as 25 , x , 1, so we test the series at 
the endpoints 25 and 1. When x − 25, the series is

o
`

n−0
 
ns23dn

3n11 − 1
3 o

`

n−0
 s21dnn

which diverges by the Test for Divergence [s21dnn doesn’t converge to 0]. When  
x − 1, the series is

o
`

n−0
 
ns3dn

3n11 − 1
3 o

`

n−0
 n

which also diverges by the Test for Divergence. Thus the series converges only when 
25 , x , 1, so the interval of convergence is s25, 1d.� ■
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11.8 Exercises

 1. What is a power series?

 2. (a)  What is the radius of convergence of a power series?  
How do you find it?

 (b)  What is the interval of convergence of a power series?  
How do you find it?

3–36 Find the radius of convergence and interval of convergence 
of the power series.

 3. o
`

n−1
 
x n

n
 4. o

`

n−1
 s21dnnx n

 5. o
`

n−1
 sn  x n 6. o

`

n−1
 
s21dnx n

s3 n 

 7. o
`

n−1
 

n

5n  x n 8. o
`

n−2
 
5n

n
 x n

 9. o
`

n−1
 

x n

n3n  10. o
`

n−1
 

n

n 1 1
 x n

 11. o
`

n−1
 

x n

2n 2 1
 12. o

`

n−1
 
s21dnx n

n2

 13. o
`

n−0
 
x n

n!
 14. o

`

n−1
 n nx n

 15. o
`

n−1
 

x n

n4 4 n  16. o
`

n−1
 2n n2 x n

 17. o
`

n−1
 
s21dn 4n

sn 
 x n 18. o

`

n−1
 
s21dn21

n5n  x n

 19. o
`

n−1
 

n

2nsn2 1 1d
 x n 20. o

`

n−1
 
x 2n

n!

 21. o
`

n−0
 
sx 2 2dn

n2 1 1
 22. o

`

n−1
 

s21d n

s2n 2 1d2n  sx 2 1dn

 23. o
`

n−2
 
sx 1 2dn

2n ln n
 24. o

`

n−1
 
sn 

8n  sx 1 6dn

 25. o
`

n−1
 
sx 2 2dn

n n  26. o
`

n−1
 
s2x 2 1dn

5nsn 

 27. o
`

n−4
 
ln n

n
 x n 28. o

`

n−2
 
s21dn

n ln n
 x n

 29. o
`

n−1
 

n

b n  sx 2 adn,  b . 0

 30. o
`

n−2
 

b n

ln n
sx 2 adn,  b . 0

 31. o
`

n−1
 n!s2x 2 1dn 32. o

`

n−1
 

n 2 x n

2 � 4 � 6 � ∙ ∙ ∙ � s2nd

 33. o
`

n−1
 
s5x 2 4dn

n3  34. o
`

n−2
 

x 2n

nsln nd2

 35. o
`

n−1
 

x n

1 � 3 � 5 � ∙ ∙ ∙ � s2n 2 1d

 36. o
`

n−1
 

n!x n

1 � 3 � 5 � ∙ ∙ ∙ � s2n 2 1d

 37.   If �`
n−0 cn 4n is convergent, can we conclude that each of the 

following series is convergent?

 (a) o
`

n−0
 cns22dn (b) o

`

n−0
 cns24dn

 38.   Suppose that �`
n−0 cn x n converges when x − 24 and diverges 

when x − 6. What can be said about the convergence or 
divergence of the following series?

 (a) o
`

n−0
 cn (b) o

`

n−0
 cn 8n

 (c) o
`

n−0
 cns23dn (d) o

`

n−0
 s21dncn 9n

 39.   If k is a positive integer, find the radius of convergence of  
the series

o
`

n−0
 
sn!dk

sknd!
 x n

 40.   Let p and q be real numbers with p , q. Find a power  
series whose interval of convergence is 

  (a) sp, qd (b) sp, qg (c) fp, qd (d) fp, qg

 41.   Is it possible to find a power series whose interval of  
convergence is f0, `d? Explain.

 42.   Graph the first several partial sums snsxd of the series  
�`

n−0 x n, together with the sum function f sxd − 1ys1 2 xd, on 
a common screen. On what interval do these partial sums 
appear to be converging to f sxd?

 43.   Show that if lim n l ` sn | cn | − c, where c ± 0, then the radius 
of convergence of the power series � cn x n is R − 1yc.

 44.   Suppose that the power series � cnsx 2 ad n satisfies cn ± 0 
for all n. Show that if lim n l ` | cnycn11 | exists, then it is equal 
to the radius of convergence of the power series.

 45.   Suppose the series � cn x n has radius of convergence 2 and the 
series � dn x n has radius of convergence 3. What is the radius 
of convergence of the series � scn 1 dndx n ?

 46.   Suppose that the radius of convergence of the power series 
� cn x n is R. What is the radius of convergence of the power 
series � cn x 2n ?

;
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Representations of Functions as Power Series

In this section we learn how to represent some familiar functions as sums of power 
series. You might wonder why we would ever want to express a known function as a sum 
of infinitely many terms. We will see later that this strategy is useful for integrating func-
tions that don’t have elementary antiderivatives and for approximating functions by 
polynomials. (Scientists do this to simplify the expressions they deal with; computer 
scientists do this to evaluate functions on calculators and computers.)

■	 Representations of Functions using Geometric Series
We will obtain power series representations for several functions by manipulating geo-
metric series. We start with an equation that we have seen before.

1
 

1

1 2 x
− 1 1 x 1 x 2 1 x 3 1 ∙ ∙ ∙ − o

`

n−0
 xn    | x | , 1

We first encountered this equation in Example 11.2.7, where we obtained it by observing 
that the series is a geometric series with a − 1 and r − x. Here our point of view is dif-
ferent: we now regard Equation 1 as expressing the function f sxd − 1ys1 2 xd as a sum 
of a power series. We say that �`

n−0 x n, | x | , 1, is a power series representation of 
1ys1 2 xd on the interval s21, 1d.

A geometric illustration of Equation 1 is shown in Figure 1. Because the sum of a 
series is the limit of the sequence of partial sums, we have

1

1 2 x
− lim

n l `
 snsxd

where

snsxd − 1 1 x 1 x 2 1 ∙ ∙ ∙ 1 xn

is the n th partial sum. Notice that as n increases, snsxd becomes a better approximation  
to f sxd for 21 , x , 1.

0 x

y

1_1

f

s™

s∞
sˆ

s¡¡

The power series (1) that represents the function fsxd − 1ys1 2 xd can be used to 
obtain power series representations of many other functions, as we see in the following 
examples.

11.9

FIGURE 1
f sxd −

1

1 2 x
 and some  

of its partial sums
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EXAMPLE 1 Express 1ys1 1 x 2 d as the sum of a power series and find the interval of 
convergence.

SOLUTION Replacing x by 2x 2 in Equation 1, we have

 
1

1 1 x 2 −
1

1 2 s2x 2 d
− o

`

n−0
 s2x 2 dn

 − o
`

n−0
 s21dnx 2n − 1 2 x 2 1 x 4 2 x 6 1 x 8 2 ∙ ∙ ∙

Because this is a geometric series, it converges when | 2x 2 | , 1, that is, x 2 , 1, or 

| x | , 1. Therefore the interval of convergence is s21, 1d. (Of course, we could have 
determined the radius of convergence by applying the Ratio Test, but that much work is 
unnecessary here.)� ■

EXAMPLE 2 Find a power series representation for 1ysx 1 2d.

SOLUTION In order to put this function in the form of the left side of Equation 1, we 
first factor a 2 from the denominator:

 
1

2 1 x
−

1

2S1 1
x

2D
−

1

2F1 2 S2
x

2DG
 −

1

2
 o

`

n−0
 S2

x

2D
n

− o
`

n−0
 
s21dn

2n11  xn

This series converges when | 2xy2 | , 1, that is, | x | , 2. So the interval of conver-
gence is s22, 2d.� ■

EXAMPLE 3 Find a power series representation of x 3ysx 1 2d.

SOLUTION Since this function is just x 3 times the function in Example 2, all we have 
to do is to multiply that series by x 3:

 
x 3

x 1 2
− x 3 �

1

x 1 2
− x 3 o

`

n−0
 
s21dn

2n11  xn − o
`

n−0
 
s21dn

2n11  xn13

 − 1
2 x 3 2 1

4 x 4 1 1
8 x 5 2 1

16 x 6 1 ∙ ∙ ∙

Another way of writing this series is as follows:

x 3

x 1 2
− o

`

n−3
 
s21dn21

2n22  xn 

As in Example 2, the interval of convergence is s22, 2d.� ■

■	 Differentiation and Integration of Power Series
The sum of a power series is a function f sxd − �`

n−0 cnsx 2 adn whose domain is the 
interval of convergence of the series. We would like to be able to differentiate and inte-
grate such functions, and the following theorem (which we won’t prove) says that we  
can do so by dif ferentiating or integrating each individual term in the series, just as we 
would for a polynomial. This is called term-by-term differentiation and integration.

It’s legitimate to move x 3 across the 
sigma sign because it doesn’t depend 
on n. [Use Theorem 11.2.8(i) with 
c − x 3.]
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2  Theorem If the power series � cnsx 2 adn has radius of convergence  
R . 0, then the function f  defined by

f sxd − c0 1 c1sx 2 ad 1 c2sx 2 ad2 1 ∙ ∙ ∙ − o
`

n−0
 cnsx 2 adn

is differentiable (and therefore continuous) on the interval sa 2 R, a 1 Rd and

 (i) f 9sxd − c1 1 2c2sx 2 ad 1 3c3sx 2 ad2 1 ∙ ∙ ∙ − o
`

n−1
 ncnsx 2 adn21

 (ii)  y f sxd dx − C 1 c0sx 2 ad 1 c1 
sx 2 ad2

2
1 c2 

sx 2 ad3

3
1 ∙ ∙ ∙

   − C 1 o
`

n−0
 cn 

sx 2 adn11

n 1 1

The radii of convergence of the power series in Equations (i) and (ii) are both R.

In part (i), the sum starts at n − 1 
because the derivative of c0 , the con-
stant term of f, is 0.

In part (ii), y c0 dx − c0 x 1 C1 is  
written as c0sx 2 ad 1 C, where 
C − C1 1 ac0 , so all the terms of  
the series have the same form.

NOTE 1 Equations (i) and (ii) in Theorem 2 can be rewritten in the form

(iii) 
d

dxFo
`

n−0
 cnsx 2 adnG − o

`

n−0
 

d

dx
 fcnsx 2 adn g

(iv) y Fo
`

n−0
 cnsx 2 adnGdx − o

`

n−0
 y cnsx 2 adn dx

We know that, for finite sums, the derivative of a sum is the sum of the derivatives and 
the integral of a sum is the sum of the integrals. Equations (iii) and (iv) assert that the 
same is true for infinite sums, provided we are dealing with power series. (For other 
types of series of functions the situation is not as simple; see Exercise 44.)

NOTE 2 Although Theorem 2 says that the radius of convergence remains the same 
when a power series is differentiated or integrated, this does not mean that the interval of 
convergence remains the same. It may happen that the original series converges at an 
endpoint, whereas the differentiated series diverges there. (See Exercise 45.)

EXAMPLE 4 Express 1ys1 2 xd2 as a power series by differentiating Equation 1. What 
is the radius of convergence?

SOLUTION We start with

 
1

1 2 x
− 1 1 x 1 x 2 1 x 3 1 ∙ ∙ ∙ − o

`

n−0
 xn

Differentiating each side, we get

 
1

s1 2 xd2 − 1 1 2x 1 3x 2 1 ∙ ∙ ∙ − o
`

n−1
 nxn21

The idea of differentiating a power 
series term by term is the basis for a 
powerful method for solving differen-
tial equations. In Exercises 37–40 you 
will see how a function expressed as a 
power series can be a solution to a 
differential equation.
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If we wish, we can replace n by n 1 1 and write the answer as

1

s1 2 xd2 − o
`

n−0
 sn 1 1dxn

According to Theorem 2, the radius of convergence of the differentiated series is the 
same as the radius of convergence of the original series, namely, R − 1.� ■

EXAMPLE 5 Find a power series representation for lns1 1 xd and its radius of  
convergence.

SOLUTION We notice that the derivative of this function is 1ys1 1 xd. From Equation 1 
we have

1

1 1 x
−

1

1 2 s2xd
− 1 2 x 1 x 2 2 x 3 1 ∙ ∙ ∙    | x | , 1

Integrating both sides of this equation, we get

 lns1 1 xd − y 
1

1 1 x
 dx − y s1 2 x 1 x 2 2 x 3 1 ∙ ∙ ∙d dx

 − x 2
x 2

2
1

x 3

3
2

x 4

4
1 ∙ ∙ ∙ 1 C

   − o
`

n−1
 s21dn21 

xn

n
1 C | x | , 1

To determine the value of C we put x − 0 in this equation and obtain lns1 1 0d − C. 
Thus C − 0 and

lns1 1 xd − x 2
x 2

2
1

x 3

3
2

x 4

4
1 ∙ ∙ ∙ − o

`

n−1
 s21dn21 x

n

n
    | x | , 1

The radius of convergence is the same as for the original series: R − 1.� ■

EXAMPLE 6 Find a power series representation for f sxd − tan21x.

SOLUTION We observe that f 9sxd − 1ys1 1 x 2 d and find the required series by inte- 
grating the power series for 1ys1 1 x 2 d found in Example 1.

 tan21x − y 
1

1 1 x 2  dx − y s1 2 x 2 1 x 4 2 x 6 1 ∙ ∙ ∙d dx

 − C 1 x 2
x 3

3
1

x 5

5
2

x 7

7
1 ∙ ∙ ∙

To find C we put x − 0 and obtain C − tan21 0 − 0. Therefore

 tan21x − x 2
x 3

3
1

x 5

5
2

x 7

7
1 ∙ ∙ ∙

 − o
`

n−0
 s21dn 

x 2n11

2n 1 1

Since the radius of convergence of the series for 1ys1 1 x 2 d is 1, the radius of conver-
gence of this series for tan21x is also 1.� ■

The power series for tan21x obtained 
in Example 6 is called Gregory’s series 
after the Scottish mathematician 
James Gregory (1638–1675), who had 
anticipated some of Newton’s discov-
eries. We have shown that Gregory’s 
series is valid when 21 , x , 1, but 
it turns out (although it isn’t easy to 
prove) that it is also valid when 
x − 61. Notice that when x − 1 the 
series becomes

�

4
− 1 2

1

3
1

1

5
2

1

7
1 ∙ ∙ ∙

This beautiful result is known as the 
Leibniz formula for �.
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EXAMPLE 7 
(a) Evaluate y f1ys1 1 x 7 dg dx as a power series.

(b) Use part (a) to approximate y0.5
0  f1ys1 1 x 7 d g dx correct to within 1027.

SOLUTION
(a) The first step is to express the integrand, 1ys1 1 x 7 d, as the sum of a power series. 
As in Example 1, we start with Equation 1 and replace x by 2x 7:

 
1

1 1 x 7 −
1

1 2 s2x 7 d
− o

`

n−0
 s2x 7 dn

 − o
`

n−0
 s21dnx 7n − 1 2 x 7 1 x 14 2 ∙ ∙ ∙

Now we integrate term by term:

 y 
1

1 1 x 7  dx − y o
`

n−0
 s21dnx 7n dx − C 1 o

`

n−0
 s21dn 

x 7n11

7n 1 1

 − C 1 x 2
x 8

8
1

x 15

15
2

x 22

22
1 ∙ ∙ ∙

This series converges for | 2x 7 | , 1, that is, for | x | , 1.

(b) In applying the Fundamental Theorem of Calculus, it doesn’t matter which 
antiderivative we use, so let’s use the antiderivative from part (a) with C − 0:

 y0.5

0
 

1

1 1 x 7  dx − Fx 2
x 8

8
1

x 15

15
2

x 22

22
1 ∙ ∙ ∙G

0

1y2

 −
1

2
2

1

8 ∙ 28 1
1

15 ∙ 215 2
1

22 ∙ 222 1 ∙ ∙ ∙ 1
s21dn

s7n 1 1d27n11 1 ∙ ∙ ∙

This infinite series is the exact value of the definite integral, but since it is an alter- 
nating series, we can approximate the sum using the Alternating Series Estimation 
Theorem. If we stop adding after the term with n − 3, the error is smaller than the term 
with n − 4:

1

29 ∙ 229 < 6.4 3 10211

So we have

 y0.5

0
 

1

1 1 x 7  dx <
1

2
2

1

8 � 28 1
1

15 � 215 2
1

22 � 222 < 0.49951374� ■

■	 Functions Defined by Power Series
Some of the most important functions in the sciences are defined by power series and are 
not expressible in terms of elementary functions (as described in Section 7.5). Many of 
these arise naturally as solutions of differential equations. One such class of functions is the 
Bessel functions, named after the German astronomer Friedrich Bessel (1784 –1846). 
These functions first arose when Bessel solved Kepler’s equation for describing planetary 
motion. Since that time, Bessel functions have been applied in many different physical situ-
ations, including the temperature distribution in a circular plate and the shape of a vibrating 
drumhead. Bessel functions appear in the next example as well as in Exercises 39 and 40. 
Other examples of functions defined by power series are given in Exercises 38 and 41.

This example demonstrates one way 
in which power series representations 
are useful. Integrating 1ys1 1 x 7 d by 
hand is incredibly difficult. Different 
computer algebra systems return dif-
ferent forms of the answer, but they 
are all extremely complicated. The 
infinite series answer that we obtain 
in Exam ple 7(a) is actually much eas-
ier to deal with than the finite answer 
provided by a computer.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



792 CHAPTER 11   Sequences, Series, and Power Series 

EXAMPLE 8 The Bessel function of order 0 is defined by

J0sxd − o
`

n−0
 
s21dn x 2n

22n sn!d2

(a) Find the domain of J0.

(b) Find the derivative of J0.

SOLUTION 
(a) Let an − s21dn x 2nyf22n sn!d2g. Then

 Z an11

an
Z − Z s21dn11 x 2sn11d

22sn11d fsn 1 1d!g2 �
22n sn!d2

s21dn x 2n Z
 −

x 2n12

22n12 sn 1 1d2 sn!d2 �
22n sn!d2

x 2n

 −
x 2

4sn 1 1d2 l 0 , 1 for all x

Thus, by the Ratio Test, the given series converges for all values of x. In other words, 
the domain of the Bessel function J0 is s2`, `d − R.

(b) By Theorem 2, J0 is differentiable for all x and its derivative is found by term-by-
term differentiation as follows:

 J09sxd − o
`

n−0
 

d

dx
 
s21dn x 2n

22n sn!d2 − o
`

n−1
 
s21dn 2nx 2n21

22n sn!d2 � ■

Recall that the sum of a series is equal to the limit of the sequence of partial sums. So 
when we define the Bessel function in Example 8 as the sum of a series we mean that, for 
every real number x,

J0sxd − lim
nl`

 snsxd    where    snsxd − o
n

i−0
 
s21di x 2i

22i si!d2

The first few partial sums are

 s0sxd − 1

 s1sxd − 1 2
x 2

4

 s2sxd − 1 2
x 2

4
1

x 4

64

 s3sxd − 1 2
x 2

4
1

x 4

64
2

x 6

2304

 s4sxd − 1 2
x 2

4
1

x 4

64
2

x 6

2304
1

x 8

147,456

Figure 2 shows the graphs of these partial sums, which are polynomials. They are all 
approximations to the function J0, but the approximations become better when more 
terms are included. Figure 3 shows a more complete graph of the Bessel function.

A computer-generated model,  
involving Bessel functions and  
cosine functions, of a vibrating 
drumhead.

s¢

0 x

1

y

1

s¡

s™

s£

s¸

J¸

FIGURE 2  
Partial sums of the Bessel function J0

0 x

1

y

10_10

y=J¸(x)

FIGURE 3 
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11.9 Exercises
 1.  If the radius of convergence of the power series �`

n−0 cn x n  
is 10, what is the radius of convergence of the series 
�`

n−1 ncn x n21? Why?

 2.   Suppose you know that the series �`
n−0 bn x n converges for 

| x | , 2. What can you say about the following series? Why?

o
`

n−0
 

bn

n 1 1
 x n11

3–12 Find a power series representation for the function and 
determine the interval of convergence.

 3. f sxd −
1

1 1 x
 4. f sxd −

x

1 1 x

 5. f sxd −
1

1 2 x 2  6. f sxd −
5

1 2 4x 2

 7. f sxd −
2

3 2 x
 8. f sxd −

4

2x 1 3

 9. f sxd −
x 2

x 4 1 16
 10. f sxd −

x

2x 2 1 1

 11. f sxd −
x 2 1

x 1 2
 12. f sxd −

x 1 a

x 2 1 a 2 ,  a . 0

13–14 Express the function as the sum of a power series by first 
using partial fractions. Find the interval of convergence.

 13. f sxd −
2x 2 4

x 2 2 4x 1 3
 14. f sxd −

2x 1 3

x 2 1 3x 1 2

 15. (a)  Use differentiation to find a power series representation for

f sxd −
1

s1 1 xd2

 What is the radius of convergence?
 (b)  Use part (a) to find a power series for

f sxd −
1

s1 1 xd3

 (c)  Use part (b) to find a power series for

f sxd −
x 2

s1 1 xd3

 16. (a)  Use Equation 1 to find a power series representation for 
f sxd − lns1 2 xd. What is the radius of convergence?

 (b)  Use part (a) to find a power series for f sxd − x lns1 2 xd.
 (c)  By putting x − 1

2 in your result from part (a), express ln 2 
as the sum of an infinite series.

17–22 Find a power series representation for the function and 
determine the radius of convergence.

 17. f sxd −
x

s1 1 4xd2  18. f sxd − S x

2 2 xD
3

 19. f sxd −
1 1 x

s1 2 xd2  20. f sxd −
x 2 1 x

s1 2 xd3

 21. f sxd − lns5 2 xd 22. f sxd − x 2 tan21sx 3d

23–26 Find a power series representation for f , and graph f  and 
several partial sums snsxd on the same screen. What happens as n 
increases?

 23. f sxd −
x 2

x 2 1 1
 24. f sxd − lns1 1 x 4d

 25. f sxd − lnS 1 1 x

1 2 xD 26. f sxd − tan21s2xd

27–30 Evaluate the indefinite integral as a power series. What is 
the radius of convergence?

 27. y 
t

1 2 t 8  dt 28. y 
t

1 1 t 3  dt

 29. y  
 x 2 lns1 1 xd dx 30. y 

tan21x

x
 dx

31–34 Use a power series to approximate the definite integral to 
six decimal places.

 31. y0.3

0
 

x

1 1 x 3  dx 32. y1y2

0
 arctan 

x

2
 dx

 33. y0.2

0
 x lns1 1 x 2d dx 34. y0.3

0
 

x 2

1 1 x 4  dx

 35.  Use the result of Example 6 to compute arctan 0.2 correct to 
five decimal places.

 36. Use the result of Example 5 to compute ln 1.1 correct to four 
decimal places.

  37. (a)  Show that the function

f sxd − o
`

n−0
 
x n

n!

 is a solution of the differential equation

f 9sxd − f sxd

 (b) Show that f sxd − e x.

;
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 38. Show that the function

f sxd − o
`

n−0
 
s21dnx 2n

s2nd!

 is a solution of the differential equation

f 0sxd 1 f sxd − 0

 39. (a)  Show that J0 (the Bessel function of order 0 given in  
Example 8) satisfies the differential equation

x 2J00sxd 1 x J09sxd 1 x 2J0sxd − 0

 (b) Evaluate y1
0 J0sxd dx correct to three decimal places.

 40. The Bessel function of order 1 is defined by

J1sxd − o
`

n−0
 

s21dn x 2n11

n! sn 1 1d!22n11

 (a) Find the domain of J1.
 (b) Show that J1 satisfies the differential equation

x 2J10sxd 1 x J19sxd 1 sx 2 2 1dJ1sxd − 0

 (c) Show that J09sxd − 2J1sxd.

 41. The function A defined by

Asxd − 1 1
x 3

2 ? 3
1

x 6

2 ? 3 ? 5 ? 6
1

x 9

2 ? 3 ? 5 ? 6 ? 8 ? 9
1 ∙ ∙ ∙

is called an Airy function after the English mathematician 
and astronomer Sir George Airy (1801–1892).

 (a) Find the domain of the Airy function.
 (b)  Graph the first several partial sums on a common 

screen.
 (c)  Use a computer algebra system that has built-in Airy 

functions to graph A on the same screen as the partial 
sums in part (b) and observe how the partial sums 
approximate A.

 42.   If f sxd − �`
n−0 cn x n, where cn14 − cn for all n > 0, find the 

interval of convergence of the series and a formula for f sxd.

 43.  A function f  is defined by

f sxd − 1 1 2x 1 x 2 1 2x 3 1 x 4 1 ∙ ∙ ∙

that is, its coefficients are c2n − 1 and c2n11 − 2 for all  
n > 0. Find the interval of convergence of the series and 
find an explicit formula for f sxd.

 44.  Let fnsxd − ssin nxdyn2. Show that the series � fnsxd con-
verges for all values of x but the series of derivatives � fn9sxd 
diverges when x − 2n�, n an integer. For what values of x 
does the series � fn0sxd converge?

 45. Let

f sxd − o
`

n−1
 
x n

n2

 Find the intervals of convergence for f , f 9, and f 0.

;

 46. (a)  Starting with the geometric series �`
n−0 x n, find the sum 

of the series

o
`

n−1
 nx n21    | x | , 1 

 (b) Find the sum of each of the following series.

 (i) o
`

n−1
 nx n,  | x | , 1 (ii) o

`

n−1
 

n

2n

 (c) Find the sum of each of the following series.

 (i) o
`

n−2
 nsn 2 1dx n,  | x | , 1

 (ii) o
`

n−2
 
n2 2 n

2n  (iii) o
`

n−1
 
n2

2n

 47. If f sxd − 1ys1 2 xd, find a power series representation for 
hsxd − xf 9sxd 1 x 2f 0sxd and determine the radius of con-
vergence. Use this to show that 

o
`

n−1
 
n2

2n − 6

 48. Use the power series representation of f sxd − 1ys1 2 xd2

and the fact that 9801 − 992 to show that 1y9801 is a 
repeating decimal that contains every two digit number in 
order, except for 98, as shown.

1

9801
− 0.00 01 02 03c 96 97 99

fHint: Consider x − 1
100 .g

 49.  Use the power series for tan 21x to prove the following 
expression for � as the sum of an infinite series:

� − 2s3  o
`

n−0
 

s21dn

s2n 1 1d3n

 50. (a)  By completing the square, show that 

y1y2

0
 

dx

x 2 2 x 1 1
−

�

3s3 

 (b)  By factoring x 3 1 1 as a sum of cubes, rewrite the inte- 
gral in part (a). Then express 1ysx 3 1 1d as the sum of a 
power series and use it to prove the following formula  
for � :

� −
3s3 

4
 o

`

n−0
 
s21dn

8 n S 2

3n 1 1
1

1

3n 1 2D
 51. Use the Ratio Test to show that if the series �`

n−0 cn x n has 
radius of convergence R, then each of the series 

o
`

n−1
 ncn x n21  and  o

`

n−0
 cn 

x n11

n 1 1

also has radius of convergence R.
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Taylor and Maclaurin Series

In Section 11.9 we were able to find power series representations for a certain restricted 
class of functions, namely, those that can be obtained from geometric series. Here we 
investigate more general problems: Which functions have power series representations? 
How can we find such representations? We will see that some of the most important func-
tions in calculus, such as ex and sin x, can be represented as power series.

■	 Definitions of Taylor Series and Maclaurin Series
We start by supposing that f  is a function that can be represented by a power series

f sxd − c0 1 c1sx 2 ad 1 c2sx 2 ad2 1 c3sx 2 ad3 1 c4sx 2 ad4 1 ∙ ∙ ∙  | x 2 a | , R

Let’s try to determine what the coefficients cn must be in terms of f. To begin, notice that 
if we put x − a in Equation 1, then all terms after the first one are 0 and we get

f sad − c0

By Theorem 11.9.2, we can differentiate the series in Equation 1 term by term:

f 9sxd − c1 1 2c2sx 2 ad 1 3c3sx 2 ad2 1 4c4sx 2 ad3 1 ∙ ∙ ∙    | x 2 a | , R

and substitution of x − a in Equation 2 gives

f 9sad − c1

Now we differentiate both sides of Equation 2 and obtain

f 0sxd − 2c2 1 2 � 3c3sx 2 ad 1 3 � 4c4sx 2 ad2 1 ∙ ∙ ∙    | x 2 a | , R

Again we put x − a in Equation 3. The result is

f 0sad − 2c2

Let’s apply the procedure one more time. Differentiation of the series in Equation 3 gives

f -sxd − 2 � 3c3 1 2 � 3 � 4c4sx 2 ad 1 3 � 4 � 5c5sx 2 ad2 1 ∙ ∙ ∙    | x 2 a | , R

and substitution of x − a in Equation 4 gives

f -  sad − 2 � 3c3 − 3!c3

By now you can see the pattern. If we continue to differentiate and substitute x − a, we 
obtain

f sndsad − 2 � 3 � 4 � ∙ ∙ ∙ � ncn − n!cn

Solving this equation for the nth coefficient cn, we get

cn −
 f sndsad

n!

This formula remains valid even for n − 0 if we adopt the conventions that 0! − 1 and 
f s0d − f. Thus we have proved the following theorem.

11.10

1

2

3

4
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5  Theorem If f  has a power series representation (expansion) at a, that is, if

f sxd − o
`

n−0
 cnsx 2 adn    | x 2 a | , R

then its coefficients are given by the formula

cn −
 f sndsad

n!

Substituting this formula for cn back into the series, we see that if f  has a power series 
expansion at a, then it must be of the following form.

6    f sxd − o
`

n−0
 
 f sndsad

n!
 sx 2 adn

 − f sad 1
 f 9sad

1!
 sx 2 ad 1

 f 0sad
2!

 sx 2 ad2 1
 f - sad

3!
 sx 2 ad3 1 ∙ ∙ ∙

The series in Equation 6 is called the Taylor series of the function f  at a (or about 
a or centered at a). For the special case a − 0 the Taylor series becomes

7   f sxd − o
`

n−0
 
 f snds0d

n!
 xn − f s0d 1

 f 9s0d
1!

 x 1
 f 0s0d

2!
 x 2 1 ∙ ∙ ∙

This case arises frequently enough that it is given the special name Maclaurin series.

NOTE 1 When we find a Taylor series for a function f, there is no guarantee that the 
sum of the Taylor series is equal to f. Theorem 5 says that if f  has a power series 
representation about a, then that power series must be the Taylor series of f. There exist 
functions that are not equal to the sum of their Taylor series, such as the function given 
in Exercise 96.

NOTE 2 The power series representation at a of a function is unique, regardless of 
how it is found, because Theorem 5 states that if f  has a power series representation 
fsxd − � cnsx 2 adn, then cn must be f sndsadyn!. Thus all the power series representa- 
tions we developed in Section 11.9 are in fact the Taylor series of the functions they 
represent. 

EXAMPLE 1 We know from Equation 11.9.1 that the function fsxd − 1ys1 2 xd has a 
power series representation 

1

1 2 x
− o

`

n−0
 xn − 1 1 x 1 x 2 1 x 3 1 ∙ ∙ ∙  | x | , 1

Taylor and Maclaurin
The Taylor series is named after the 
English mathematician Brook Taylor 
(1685–1731) and the Maclaurin series 
is named in honor of the Scottish 
mathematician Colin Maclaurin 
(1698–1746) despite the fact that the 
Maclaurin series is really just a special 
case of the Taylor series. But the idea 
of representing particular functions  
as sums of power series goes back to 
Newton, and the general Taylor series 
was known to the Scottish mathe- 
matician James Gregory in 1668 and 
to the Swiss mathematician John 
Bernoulli in the 1690s. Taylor was 
apparently unaware of the work of 
Gregory and Bernoulli when he pub-
lished his discoveries on series in 1715 
in his book Methodus incrementorum 
directa et inversa. Maclaurin series are 
named after Colin Maclaurin because 
he popularized them in his calculus 
textbook Treatise of Fluxions published 
in 1742.
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According to Theorem 5, this series must be the Maclaurin series of f  with coefficients  
cn given by f snds0dyn!. To confirm this, we compute

 fsxd −
1

1 2 x
   fs0d − 1

 f 9sxd −
1

s1 2 xd2    f 9s0d − 1

 f 0sxd −
1 ? 2

s1 2 xd3    f 0s0d − 1 ? 2

   f -sxd −
1 ? 2 ? 3

s1 2 xd4      f -s0d − 1 ? 2 ? 3

and, in general, 

f sndsxd −
n!

s1 2 xdn11   f snds0d − n!

Thus

cn −
f snds0d

n!
−

n!

n!
− 1

and, from Equation 7, 

 
1

1 2 x
− o

`

n−0
 
f snds0d

n!
 xn − o

`

n−0
 xn� ■

EXAMPLE 2 For the function f sxd − ex, find the Maclaurin series and its radius of  
convergence.

SOLUTION If f sxd − ex, then f sndsxd − ex, so f snds0d − e 0 − 1 for all n. Therefore the 
Taylor series for f  at 0 (that is, the Maclaurin series) is

o
`

n−0
 
 f snds0d

n!
 xn − o

`

n−0
 
xn

n!
− 1 1

x

1!
1

x 2

2!
1

x 3

3!
1 ∙ ∙ ∙

To find the radius of convergence we let an − xnyn!. Then

Z an11

an
Z − Z xn11

sn 1 1d!
�

n!

xn Z − | x |
n 1 1

l 0 , 1

so, by the Ratio Test, the series converges for all x and the radius of convergence  
is R − `.� ■

■	 When Is a Function Represented by Its Taylor Series? 
From Theorem 5 and Example 2 we can conclude that if we know that ex has a power 
series representation at 0, then this power series must be its Maclaurin series

ex − o
`

n−0
 
xn

n!

So how can we determine whether ex does have a power series representation?
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Let’s investigate the more general question: under what circumstances is a function 
equal to the sum of its Taylor series? In other words, if f  has derivatives of all orders, 
when is it true that

f sxd − o
`

n−0
 
 f sndsad

n!
 sx 2 adn

As with any convergent series, this means that f sxd is the limit of the sequence of partial 
sums. In the case of the Taylor series, the partial sums are

 Tnsxd − o
n

i−0
 
 f sidsad

i!
 sx 2 adi

 − f sad 1
 f 9sad

1!
 sx 2 ad 1

 f 0sad
2!

 sx 2 ad2 1 ∙ ∙ ∙ 1
 f sndsad

n!
 sx 2 adn

Notice that Tn is a polynomial of degree n called the nth-degree Taylor polynomial of  
f  at a. For instance, for the exponential function f sxd − ex, the result of Example 2 shows 
that the Taylor polynomials at 0 (or Maclaurin polynomials) with n − 1, 2, and 3 are

T1sxd − 1 1 x      T2sxd − 1 1 x 1
x 2

2!
      T3sxd − 1 1 x 1

x 2

2!
1

x 3

3!

The graphs of the exponential function and these three Taylor polynomials are drawn in 
Figure 1.

In general, f sxd is the sum of its Taylor series if

f sxd − lim
nl`

 Tnsxd
If we let

Rnsxd − f sxd 2 Tnsxd    so that    f sxd − Tnsxd 1 Rnsxd

then Rnsxd is called the remainder of the Taylor series. If we can somehow show that 
lim n l ` Rnsxd − 0, then it follows that

lim
nl`

 Tnsxd − lim
nl`

 f f sxd 2 Rnsxdg − f sxd 2 lim
nl`

 Rnsxd − f sxd

We have therefore proved the following theorem.

8  Theorem If f sxd − Tnsxd 1 Rnsxd, where Tn is the nth-degree Taylor polyno-
mial of f  at a , and if

lim
nl`

 Rnsxd − 0

for | x 2 a | , R, then f  is equal to the sum of its Taylor series on the interval 

| x 2 a | , R.

In trying to show that lim n l ` Rnsxd − 0 for a specific function f , we usually use the 
following theorem.

9  Taylor’s Inequality If | f sn11dsxd | < M for | x 2 a | < d, then the remainder
Rnsxd of the Taylor series satisfies the inequality

| Rnsxd | <
M

sn 1 1d!
 | x 2 a |n11    for | x 2 a | < d

0 x

y
y=´

y=T£(x)

(0, 1)

y=T™(x)

y=T¡(x)

y=T™(x)

y=T£(x)

FIGURE 1 

As n increases, Tnsxd appears to 
approach e x in Figure 1. This suggests 
that e x is equal to the sum of its  
Taylor series.
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PROOF We first prove Taylor’s Inequality for n − 1. Assume that | f 0sxd | < M. In 
particular, we have f 0sxd < M, so for  a < x < a 1 d we have

y x

a
 f 0std dt < y x

a
 M dt

An antiderivative of f 0 is f 9, so by Part 2 of the Fundamental Theorem of Calculus, we 
have

f 9sxd 2 f 9sad < Msx 2 ad    or    f 9sxd < f 9sad 1 Msx 2 ad

Thus  y x

a
 f 9std dt < y x

a
 f f 9sad 1 Mst 2 adg dt

 f sxd 2 f sad < f 9sadsx 2 ad 1 M 
sx 2 ad2

2

 f sxd 2 f sad 2 f 9sadsx 2 ad <
M

2
 sx 2 ad2

But R1sxd − f sxd 2 T1sxd − f sxd 2 f sad 2 f 9sadsx 2 ad. So

R1sxd <
M

2
 sx 2 ad2

A similar argument, using f 0sxd > 2M, shows that

 R1sxd > 2
M

2
 sx 2 ad2

So  |R1sxd | <
M

2
 |x 2 a |2

Although we have assumed that x . a, similar calculations show that this inequality is 
also true for x , a.

This proves Taylor’s Inequality for the case where n − 1. The result for any n is 
proved in a similar way by integrating n 1 1 times. (See Exercise 95 for the case 
n − 2.) ■

NOTE In Section 11.11 we will explore the use of Taylor’s Inequality in approximating 
functions. Our immediate use of it is in conjunction with Theorem 8.

When we apply Theorems 8 and 9 it is often helpful to make use of the following fact.

 10
 

lim
nl`

 
xn

n!
− 0    for every real number x

This is true because we know from Example 2 that the series � xnyn! converges for all x 
and so its nth term approaches 0.

Formulas for the  
Taylor Remainder Term
As alternatives to Taylor’s Inequality, 
we have the following formulas for 
the remainder term. If f sn11d is contin-
uous on an interval I and x [ I, then

Rnsxd −
1

n!
 yx

a
 sx 2 tdn f sn11dstd dt

This is called the integral form of the 
remainder term. Another formula, 
called Lagrange’s form of the remain-
der term, states that there is a num- 
ber z between x and a such that

Rnsxd −
f sn11dszd
sn 1 1d!

 sx 2 adn11

This version is an extension of the 
Mean Value Theorem (which is the  
case n − 0).

Proofs of these formulas, together 
with discussions of how to use them 
to solve the examples of Sections 
11.10 and 11.11, are given on the 
website

www.StewartCalculus.com

Click on Additional Topics and then on 
Formulas for the Remainder Term in 
Taylor series.
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EXAMPLE 3 Prove that ex is equal to the sum of its Maclaurin series.

SOLUTION If f sxd − ex, then f sn11dsxd − ex for all n. If d is any positive number and 

| x | < d, then | f sn11dsxd | − ex < ed. So Taylor’s Inequality, with a − 0 and M − ed, 
says that

| Rnsxd | <
ed

sn 1 1d!
 | x |n11    for | x | < d

Notice that the same constant M − ed works for every value of n. But, from Equa-
tion 10, we have

lim
nl`

 
e d

sn 1 1d!
 | x |n11 − e d lim

nl`
 | x |n11

sn 1 1d!
− 0

It follows from the Squeeze Theorem that lim n l ` | Rnsxd | − 0 and therefore 
lim n l ` Rnsxd − 0 for all values of x. By Theorem 8, ex is equal to the sum of its  
Maclaurin series, that is,

 11
 

ex − o
`

n−0
 
xn

n!
    for all x

 ■

In particular, if we put x − 1 in Equation 11, we obtain the following expression for 
the number e as a sum of an infinite series:

 12
 

e − o
`

n−0
 

1

n!
− 1 1

1

1!
1

1

2!
1

1

3!
1 ∙ ∙ ∙

EXAMPLE 4 Find the Taylor series for f sxd − ex at a − 2.

SOLUTION We have f snds2d − e 2 and so, putting a − 2 in the definition of a Taylor 
series (6), we get

o
`

n−0
 
 f snds2d

n!
 sx 2 2dn − o

`

n−0
 
e 2

n!
 sx 2 2dn

Again it can be verified, as in Example 2, that the radius of convergence is R − `. As 
in Example 3 we can verify that lim n l ` Rnsxd − 0, so

 13  ex − o
`

n−0
 
e 2

n!
 sx 2 2dn    for all x� ■

We have two power series expansions for ex, the Maclaurin series in Equation 11 and 
the Taylor series in Equation 13. The first is better if we are interested in values of x near 
0 and the second is better if x is near 2.

■	 Taylor Series of Important Functions 
In Examples 2 and 4 we developed power series representations of the function ex, and 
in Section 11.9 we found power series representations for several other functions, includ-
ing ln s1 1 xd and tan21x. We now find representations for some additional important 
functions, including sin x and cos x.

With the help of computers, research-
ers have now accurately computed 
the value of e to trillions of decimal 
places.
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EXAMPLE 5 Find the Maclaurin series for sin x and prove that it represents sin x for 
all x.

SOLUTION We arrange our computation in two columns:

 f sxd − sin x  f s0d − 0

 f 9sxd − cos x  f 9s0d − 1

 f 0sxd − 2sin x  f 0s0d − 0

 f -sxd − 2cos x f -s0d − 21

 f s4dsxd − sin x  f s4ds0d − 0

Since the derivatives repeat in a cycle of four, we can write the Maclaurin series as  
follows:

f s0d 1
 f 9s0d

1!
 x 1

 f 0s0d
2!

 x 2 1
 f -s0d

3!
 x 3 1 ∙ ∙ ∙

− x 2
x 3

3!
1

x 5

5!
2

x 7

7!
1 ∙ ∙ ∙ − o

`

n−0
s21dn 

x 2n11

s2n 1 1d!

Since f sn11dsxd is 6sin x or 6cos x, we know that | f sn11dsxd | < 1 for all x. So we can  
take M − 1 in Taylor’s Inequality:

 14  | Rnsxd | <
M

sn 1 1d! | xn11 | − | x |n11

sn 1 1d!

By Equation 10 the right side of this inequality approaches 0 as n l `, so 

| Rnsxd |l 0 by the Squeeze Theorem. It follows that Rnsxd l 0 as n l `, so sin x is 
equal to the sum of its Maclaurin series by Theorem 8.� ■

We state the result of Example 5 for future reference.

 15

 

 sin x − x 2
x 3

3!
1

x 5

5!
2

x 7

7!
1 ∙ ∙ ∙

 − o
`

n−0
s21dn 

x 2n11

s2n 1 1d!
        for all x

EXAMPLE 6 Find the Maclaurin series for cos x.

SOLUTION We could proceed directly as in Example 5, but it’s easier to use Theorem 
11.9.2 to differentiate the Maclaurin series for sin x given by Equation 15:

 cos x −
d

dx
 ssin xd −

d

dx
 Sx 2

x 3

3!
1

x 5

5!
2

x 7

7!
1 ∙ ∙ ∙D

 − 1 2
3x 2

3!
1

5x 4

5!
2

7x 6

7!
1 ∙ ∙ ∙ − 1 2

x 2

2!
1

x 4

4!
2

x 6

6!
1 ∙ ∙ ∙

0 x

y

1

1

y=sin x

T∞

T£

T¡

FIGURE 2 

Figure 2 shows the graph of sin x 
together with its Taylor (or Maclaurin) 
polynomials

 T1sxd − x

 T3sxd − x 2
x 3

3!

 T5sxd − x 2
x 3

3!
1

x 5

5!

Notice that, as n increases, Tnsxd 
becomes a better approximation to  
sin x.
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Theorem 11.9.2 tells us that the differentiated series for sin x converges to the deriva-
tive of sin x, namely cos x, and the radius of convergence remains unchanged, so the 
series converges for all x.� ■

We state the result of Example 6 for future reference.

 16

 

 cos x − 1 2
x 2

2!
1

x 4

4!
2

x 6

6!
1 ∙ ∙ ∙

 − o
`

n−0
s21dn 

x 2n

s2nd!
    for all x

EXAMPLE 7 Represent f sxd − sin x as the sum of its Taylor series centered at �y3.

SOLUTION Arranging our work in columns, we have

 f sxd − sin x      fS�

3 D −
s3 

2

 f 9sxd − cos x      f 9S�

3 D −
1

2

 f 0sxd − 2sin x       f 0S�

3 D − 2
s3 

2

   f -sxd − 2cos x       f -S�

3 D − 2
1

2

and this pattern repeats indefinitely. Therefore the Taylor series at �y3 is

fS�

3 D 1

 f 9S�

3 D
1!

 Sx 2
�

3 D 1

 f 0S�

3 D
2!

 Sx 2
�

3 D2

1

 f -S�

3 D
3!

 Sx 2
�

3 D3

1 ∙ ∙ ∙

−
s3 

2
1

1

2 � 1!
 Sx 2

�

3 D 2
s3 

2 � 2!
 Sx 2

�

3 D2

2
1

2 � 3!
 Sx 2

�

3 D3

1 ∙ ∙ ∙

The proof that this series represents sin x for all x is very similar to that in Example 5. 
[Just replace x by x 2 �y3 in (14).] We can write the series in sigma notation if we 
separate the terms that contain s3 :

 sin x − o
`

n−0
 
s21dns3 

2s2nd! Sx 2
�

3 D2n

1 o
`

n−0
 

s21dn

2s2n 1 1d!Sx 2
�

3 D2n11

� ■

The Maclaurin series for e x, sin x, and 
cos x that we found in Examples 3, 5, 
and 6 were discovered, using different 
methods, by Newton. These equa-
tions are remarkable because they say 
we know everything about each of 
these functions if we know all its 
derivatives at the single number 0.

0 x

y

π
3

y=sin x

T£

FIGURE 3 

We have obtained two different  
series representations for sin x, the 
Maclaurin series in Example 5 and the 
Taylor series in Example 7. It is best to 
use the Maclaurin series for values of 
x near 0 and the Taylor series for x 
near �y3. Notice that the third Taylor 
polynomial T3 in Figure 3 is a good 
approximation to sin x near �y3 but 
not as accurate near 0. Compare it 
with the third Maclaurin polynomial 
T3 in Fig  ure 2, where the opposite is 
true.
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EXAMPLE 8 Find the Maclaurin series for f sxd − s1 1 xdk, where k is any real number.

SOLUTION We start by computing derivatives:

 f sxd − s1 1 xdk  f s0d − 1

 f 9sxd − ks1 1 xdk21  f 9s0d − k

 f 0sxd − ksk 2 1ds1 1 xdk22  f 0s0d − ksk 2 1d

 f -sxd − ksk 2 1dsk 2 2ds1 1 xdk23  f -s0d − ksk 2 1dsk 2 2d
 . .
 . .
 . .
  f sndsxd − ksk 2 1d ∙ ∙ ∙ sk 2 n 1 1ds1 1 xdk2n f snds0d − ksk 2 1d ∙ ∙ ∙ sk 2 n 1 1d

Therefore the Maclaurin series of f sxd − s1 1 xdk is

o
`

n−0
 
 f snds0d

n!
 xn − o

`

n−0
 
ksk 2 1d ∙ ∙ ∙ sk 2 n 1 1d

n!
 xn

This series is called the binomial series. Notice that if k is a nonnegative integer, then 
the terms are eventually 0 and so the series is finite. For other values of k none of the 
terms is 0 and so we can investigate the convergence of the series by using the Ratio 
Test. If the nth term is an, then

 Z an11

an
Z − Z ksk 2 1d ∙ ∙ ∙ sk 2 n 1 1dsk 2 ndxn11

sn 1 1d!
�

n!

ksk 2 1d ∙ ∙ ∙ sk 2 n 1 1dxn Z

 − | k 2 n |
n 1 1

 | x | −

Z 1 2
k

n
Z

1 1
1

n

 | x | l | x | as n l `

Thus, by the Ratio Test, the binomial series converges if | x | , 1 and diverges  
if | x | . 1.� ■

The traditional notation for the coefficients in the binomial series is

Sk
nD −

ksk 2 1dsk 2 2d ∙ ∙ ∙ sk 2 n 1 1d
n!

and these numbers are called the binomial coefficients.
The following theorem states that s1 1 xdk is equal to the sum of its Maclaurin series. 

It is possible to prove this by showing that the remainder term Rnsxd approaches 0, but 
that turns out to be quite difficult. The proof outlined in Exercise 97 is much easier.

 17  The Binomial Series If k is any real number and | x | , 1, then

s1 1 xdk − o
`

n−0
 Sk

nDxn − 1 1 kx 1
ksk 2 1d

2!
x 2 1

ksk 2 1dsk 2 2d
3!

x 3 1 ∙ ∙ ∙

Although the binomial series always converges when | x | , 1, the question of whether 
or not it converges at the endpoints, 61, depends on the value of k. It turns out that the 
series converges at 1 if 21 , k < 0 and at both endpoints if k > 0. Notice that if k is a pos-  
itive integer and n . k, then the expression for (n

k) contains a factor sk 2 kd, so (n
k)− 0 
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for n . k. This means that the series terminates and reduces to the ordinary Binomial 
Theorem when k is a positive integer. (See Reference Page 1.)

EXAMPLE 9 For the function f sxd −
1

s4 2 x 
 , find the Maclaurin series and its 

radius of convergence.

SOLUTION We rewrite f sxd in a form where we can use the binomial series:

1

s4 2 x 
−

1

Î4S1 2
x

4D
−

1

2Î1 2
x

4
 

−
1

2  S1 2
x

4D21y2

Using the binomial series with k − 21
2 and with x replaced by 2xy4, we have

 
1

s4 2 x 
−

1

2
 S1 2

x

4D
21y2

−
1

2
 o

`

n−0
 S21

2

n DS2
x

4D
n

 − 
1

2
 F1 1 S2

1

2DS2
x

4D 1
(21

2)(23
2)

2!
 S2

x

4D
2

1
(21

2)(23
2)(25

2)
3!

 S2
x

4D
3

1 ∙ ∙ ∙ 1
(21

2)(23
2)(25

2) ∙ ∙ ∙ (21
2 2 n 1 1)

n!
 S2

x

4D
n

1 ∙ ∙ ∙G
 −

1

2
 F1 1

1

8
 x 1

1 � 3

2!82  x 2 1
1 � 3 � 5

3!83  x 3 1 ∙ ∙ ∙ 1
1 � 3 � 5 � ∙ ∙ ∙ � s2n 2 1d

n!8n  xn 1 ∙ ∙ ∙G
We know from (17) that this series converges when | 2xy4 | , 1, that is, | x | , 4, so 
the radius of convergence is R − 4.� ■

For future reference we collect in the following table some important Maclaurin series 
that we have derived in this section and in Section 11.9.

1

1 2 x
− o

`

n−0
 xn − 1 1 x 1 x 2 1 x 3 1 ∙ ∙ ∙ R − 1

ex − o
`

n−0
 
xn

n!
− 1 1

x

1!
1

x 2

2!
1

x 3

3!
1 ∙ ∙ ∙ R − `

sin x − o
`

n−0
s21dn 

x 2n11

s2n 1 1d!
− x 2

x 3

3!
1

x 5

5!
2

x 7

7!
1 ∙ ∙ ∙ R − `

cos x − o
`

n−0
s21dn 

x 2n

s2nd!
− 1 2

x 2

2!
1

x 4

4!
2

x 6

6!
1 ∙ ∙ ∙ R − `

tan21x − o
`

n−0
s21dn 

x 2n11

2n 1 1
− x 2

x 3

3
1

x 5

5
2

x 7

7
1 ∙ ∙ ∙ R − 1

lns1 1 xd − o
`

n−1
s21dn21 

x n

n
− x 2

x 2

2
1

x 3

3
2

x 4

4
1 ∙ ∙ ∙ R − 1

s1 1 xdk − o
`

n−0
Sk

nDxn − 1 1 kx 1
ksk 2 1d

2!
x 2 1

ksk 2 1dsk 2 2d
3!

x 3 1 ∙ ∙ ∙ R − 1

Table 1 
Important Maclaurin Series 

and Their Radii of 
Convergence
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■	 New Taylor Series from Old
As we observed in Note 2, if a function has a power series representation at a, then the 
series is uniquely determined. That is, no matter how a power series representation for a 
function f  is obtained, it must be the Taylor series of f. So, we can obtain new Taylor 
series representations by manipulating series from Table 1, rather than using the coeffi-
cient formula given in Theorem 5. 

As we saw in the examples of Section 11.9, we can replace x in a given Taylor series 
by an expression of the form cxm, we can multiply (or divide) the series by such an 
expression, and we can differentiate or integrate term by term (Theorem 11.9.2). It can 
be shown that we can also obtain new Taylor series by adding, subtracting, multiplying, 
or dividing Taylor series.

EXAMPLE 10 Find the Maclaurin series for (a) f sxd − x cos x and  
(b) f sxd − lns1 1 3x 2d.

SOLUTION
(a) We multiply the Maclaurin series for cos x (see Table 1) by x : 

x cos x − x o
`

n−0
 s21dn 

x 2n

s2nd!
− o

`

n−0
 s21dn 

x 2n11

s2nd!
  for all x

(b) Replacing x by 3x 2 in the Maclaurin series for  lns1 1 xd gives 

lns1 1 3x 2d − o
`

n−1
 s21dn21 

s3x 2dn

n
− o

`

n−1
 s21dn21 

3nx 2n

n

We know from Table 1 that this series converges for | 3x 2 | , 1, that is | x | , 1ys3 , so 
the radius of convergence is R − 1ys3 .� ■

EXAMPLE 11 Find the function represented by the power series o
`

n−0
 s21dn 

2nxn

n!
. 

SOLUTION By writing

o
`

n−0
 s21dn 

2nxn

n!
− o

`

n−0
 
s22xdn

n!

we see that this series is obtained by replacing x with 22x in the series for ex (in 
Table 1). Thus the series represents the function e22x.� ■

EXAMPLE 12 Find the sum of the series 
1

1 � 2
2

1

2 � 22 1
1

3 � 23 2
1

4 � 24 1 ∙ ∙ ∙.

SOLUTION With sigma notation we can write the given series as

o
`

n−1
s21dn21 

1

n � 2n − o
`

n−1
s21dn21 

(1
2)n

n

Then from Table 1 we see that this series matches the entry for lns1 1 xd with x − 1
2. So

 o
`

n−1
s21dn21 

1

n � 2n − ln(1 1 1
2) − ln 32� ■

One reason that Taylor series are important is that they enable us to integrate functions 
that we couldn’t previously handle. In fact, in the introduction to this chapter we men-
tioned that Newton often integrated functions by first expressing them as power series and 
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then integrating the series term by term. The function f sxd − e2x 2 can’t be integrated by 
techniques discussed so far because its antiderivative is not an elementary function (see 
Section 7.5). In the following example we use Newton’s idea to integrate this function.

EXAMPLE 13
(a) Evaluate y e2x 2 dx as an infinite series.

(b) Evaluate y1

0
 e2x 2 dx correct to within an error of 0.001.

SOLUTION
(a) First we find the Maclaurin series for f sxd − e2x 2. Although it’s possible to use the 
direct method, let’s find it by simply replacing x with 2x 2 in the series for ex given in 
Table 1. Thus, for all values of x,

e2x 2 − o
`

n−0
 
s2x 2 dn

n!
− o

`

n−0
 s21dn 

x 2n

n!
− 1 2

x 2

1!
1

x 4

2!
2

x 6

3!
1 ∙ ∙ ∙

Now we integrate term by term:

 y e2x 2 dx − y S1 2
x 2

1!
1

x 4

2!
2

x 6

3!
1 ∙ ∙ ∙ 1 s21dn 

x 2n

n!
1 ∙ ∙ ∙D dx

 − C 1 x 2
x 3

3 � 1!
1

x 5

5 � 2!
2

x 7

7 � 3!
1 ∙ ∙ ∙ 1 s21dn 

x 2n11

s2n 1 1dn!
1 ∙ ∙ ∙

This series converges for all x because the original series for e2x 2 converges for all x.

(b) The Fundamental Theorem of Calculus gives

 y1

0
 e2x 2 dx − Fx 2

x 3

3 � 1!
1

x 5

5 � 2!
2

x 7

7 � 3!
1

x 9

9 � 4!
2 ∙ ∙ ∙G

0

1

 − 1 2 1
3 1 1

10 2 1
42 1 1

216 2 ∙ ∙ ∙ < 1 2 1
3 1 1

10 2 1
42 1 1

216 < 0.7475

The Alternating Series Estimation Theorem shows that the error involved in this 
approximation is less than

 
1

11 � 5!
−

1

1320
, 0.001� ■

Taylor series can also be used to evaluate limits, as illustrated in the next example. 
(Some mathematical software computes limits in this way.)

EXAMPLE 14 Evaluate lim
x l 0

 
ex 2 1 2 x

x 2 .

SOLUTION Using the Maclaurin series for ex from Table 1, we see that the Maclaurin 
series for sex 2 1 2 xdyx 2 is 

 
ex 2 1 2 x

x 2 − FS1 1
x

1!
1

x 2

2!
1

x 3

3!
1 ∙ ∙ ∙D 2 1 2 xG yx 2

 −
1

x 2  S x 2

2!
1

x 3

3!
1

x 4

4!
1 ∙ ∙ ∙D −

1

2!
1

x

3!
1

x 2

4!
1 ∙ ∙ ∙

We can take C − 0 in the  
anti derivative in part (a).

The limit in Example 14 could also be 
computed using l’Hospital’s Rule.
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Thus

 lim
x l 0

 
ex 2 1 2 x

x 2 − lim
x l 0 

S 1

2!
1

x

3!
1

x 2

4!
1 ∙ ∙ ∙D

 −
1

2!
1 0 1 0 1 ∙ ∙ ∙ −

1

2

because power series are continuous functions.� ■

■	 Multiplication and Division of Power Series
If power series are added or subtracted, they behave like polynomials (Theorem 11.2.8 
shows this). In fact, as the following example illustrates, they can also be multiplied and 
divided like polynomials. We find only the first few terms because the calculations for 
the later terms become tedious and the initial terms are the most important ones.

EXAMPLE 15 Find the first three nonzero terms in the Maclaurin series for (a) ex sin x 
and (b) tan x.

SOLUTION
(a) Using the Maclaurin series for ex and sin x in Table 1, we have

ex sin x − S1 1
x

1!
1

x 2

2!
1

x 3

3!
1 ∙ ∙ ∙DSx 2

x 3

3!
1 ∙ ∙ ∙D

We multiply these expressions, collecting like terms just as for polynomials:

1 1 x 1 1
2 x 2 1 1

6 x 3 1 ∙ ∙ ∙

 3  x 2 1
6 x 3 1 ∙ ∙ ∙

x 1  x 2 1 1
2 x 3 1 1

6 x 4 1 ∙ ∙ ∙

 1  2 1
6 x 3 2 1

6 x 4 2 ∙ ∙ ∙

x 1  x 2 1 1
3 x 3 1 ∙ ∙ ∙

Thus ex sin x − x 1 x 2 1 1
3 x 3 1 ∙ ∙ ∙

(b) Using the Maclaurin series in Table 1, we have

tan x −
sin x

cos x
−

x 2
x 3

3!
1

x 5

5!
2 ∙ ∙ ∙

1 2
x 2

2!
1

x 4

4!
2 ∙ ∙ ∙

We use a procedure like long division:
 x 1 1

3 x 3 1 2
15 x 5 1 ∙ ∙ ∙

 1 2 1
2 x 2 1 1

24 x 4 2 ∙ ∙ ∙)x 2 1
6 x 3 1  1

120 x 5 2 ∙ ∙ ∙
 

 x 2 1
2 x 3 1 1

24 x 5 2 ∙ ∙ ∙

   1
3 x 3 2 1

30 x 5 1 ∙ ∙ ∙

   1
3 x 3 2 1

6 x 5 1 ∙ ∙ ∙

      2
15 x 5 1 ∙ ∙ ∙

Thus tan x − x 1 1
3 x 3 1 2

15 x 5 1 ∙ ∙ ∙� ■
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Although we have not attempted to justify the formal manipulations that were used in 
Example 15, they are legitimate. There is a theorem which states that if both f sxd − � cn xn 
and tsxd − � bn xn converge for | x | , R and the series are multiplied as if they were 
polyno mials, then the resulting series also converges for | x | , R and represents f sxdtsxd. 
For divi sion we require b0 ± 0; the resulting series converges for sufficiently small | x |.

11.10 Exercises

 1.  If f sxd − �`
n−0 bnsx 2 5dn for all x, write a formula for b8.

 2.  The graph of f  is shown.

y

x

f

1

1

0

 (a)  Explain why the series 1.1 1 0.7x 2 1 2.2x 3 1 ∙ ∙ ∙ is not 
the Maclaurin series of f.

 (b) Explain why the series

 1.6 2 0.8sx 2 1d 1 0.4sx 2 1d2 2 0.1sx 2 1d3 1 ∙ ∙ ∙

 is not the Taylor series of f  centered at 1.
 (c) Explain why the series

 2.8 1 0.5sx 2 2d 1 1.5sx 2 2d2 2 0.1sx 2 2d3 1 ∙ ∙ ∙

 is not the Taylor series of f  centered at 2.

 3.   If f snds0d − sn 1 1d! for n − 0, 1, 2, . . . , find the Maclaurin 
series for f  and its radius of convergence.

 4.   Find the Taylor series for f  centered at 4 if

f snds4d −
s21dn n!

3nsn 1 1d

 What is the radius of convergence of the Taylor series?

5–10 Use the definition of a Taylor series to find the first four 
nonzero terms of the series for f sxd centered at the given value of a.

 5. f sxd − xe x,  a − 0 6. f sxd −
1

1 1 x
,  a − 2

 7. f sxd − s3 x  ,  a − 8 8. f sxd − ln x,  a − 1

 9. f sxd − sin x,  a − �y6 10. f sxd − cos2 x,  a − 0

11–20 Find the Maclaurin series for f sxd using the definition of a 
Maclaurin series. [Assume that f  has a power series expan sion. 
Do not show that Rnsxd l 0.] Also find the associated radius of 
convergence.

 11. f sxd − s1 2 xd22 12. f sxd − lns1 1 xd

 13. f sxd − cos x 14. f sxd − e22x

 15. f sxd − 2x 4 2 3x 2 1 3 16. f sxd − sin 3x

 17. f sxd − 2x 18. f sxd − x cos x

 19. f sxd − sinh x 20. f sxd − cosh x

21–30 Find the Taylor series for f sxd centered at the given value 
of a. [Assume that f  has a power series expansion. Do not show 
that Rnsxd l 0.] Also find the associated radius of convergence.

 21. f sxd − x 5 1 2x 3 1 x,  a − 2

 22. f sxd − x 6 2 x 4 1 2,  a − 22

 23. f sxd − ln x,  a − 2 24. f sxd − 1yx,  a − 23

 25. f sxd − e 2x,  a − 3 26. f sxd − 1yx 2, a − 1

 27. f sxd − sin x,  a − � 28. f sxd − cos x,  a − �y2

 29. f sxd − sin 2x, a − � 30. f sxd − sx  ,  a − 16

 31.   Prove that the series obtained in Exercise 13 represents cos x 
for all x.

 32.   Prove that the series obtained in Exercise 27 represents sin x 
for all x.

 33.    Prove that the series obtained in Exercise 19 represents sinh x 
for all x.

 34.    Prove that the series obtained in Exercise 20 represents cosh x 
for all x.

35–38 Use the binomial series to expand the given function as a 
power series. State the radius of convergence.

 35. s4 1 2 x   36. s3 8 1 x  

 37. 
1

s2 1 xd3  38. s1 2 xd3y4

39– 48 Use a Maclaurin series in Table 1 to obtain the Maclaurin 
series for the given function.

 39. f sxd − arctan sx 2d 40. f sxd − sins�xy4d

 41. f sxd − x cos 2x 42. f sxd − e3x 2 e 2x

 43. f sxd − x cos( 

1
2 x 2) 44. f sxd − x 2 lns1 1 x 3d
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63–66 Use series to approximate the definite integral to within 
the indicated accuracy.

 63. y1y2

0
 x 3 arctan x dx  (four decimal places)

 64. y1

0
 sinsx 4d dx  (four decimal places)

 65. y0.4

0
 s1 1 x 4  dx  (| error | , 5 3 1026)

 66. y0.5

0
 x 2e2x 2 dx  (| error | , 0.001)

67–71 Use series to evaluate the limit.

 67. lim
x l 0

 
x 2 lns1 1 xd

x 2  68. lim
x l 0

 
1 2 cos x

1 1 x 2 e x

 69. lim
x l 0

 
sin x 2 x 1 1

6 x 3

x 5

 70. lim
x l 0

 
s1 1 x  2 1 2 1

2 x

x 2

 71. lim
x l 0

 
x 3 2 3x 1 3 tan21x

x 5

 72. Use the series in Example 15(b) to evaluate

lim
x l 0

 
tan x 2 x

x 3

We found this limit in Example 4.4.4 using l’Hospital’s 
Rule three times. Which method do you prefer?

73–78 Use multiplication or division of power series to find the 
first three nonzero terms in the Maclaurin series for each function.

 73. y − e2x 2 cos x 74. y − sec x

 75. y −
x

sin x
 76. y − e x lns1 1 xd

 77. y − sarctan xd2 78. y − e x sin2x

79–82 Find the function represented by the given power series.

 79. o
`

n−0
s21dn 

x 4n

n!
 80. o

`

n−1
s21dn21 

x 4n

n

 81. o
`

n−0
s21dn 

x 2n11

22n11s2n 1 1d
 82. o

`

n−0
s21dn 

x 2n11

22n11s2n 1 1d!

83–90 Find the sum of the series.

 83. o
`

n−0
 
s21dn

n!
 84. o

`

n−0
 
s21dn � 2n

62ns2nd!

 85. o
`

n−1
 s21dn21 

3n

n 5n  86. o
`

n−0
 

3n

5n n!

 45. f sxd −
x

s4 1 x 2 

 46. f sxd −
x 2

s2 1 x 

 

 47. f sxd − sin2x  fHint: Use sin2x − 1
2 s1 2 cos 2xd.g

 48. f sxd − H x 2 sin x

x 3 if x ± 0

1
6 if x − 0

 49. Use the definitions

sinh x −
e x 2 e2x

2
   cosh x −

e x 1 e2x

2

and the Maclaurin series for e x to show that

 (a) sinh x − o
`

n−0
 

x 2n11

s2n 1 1d!

 (b) cosh x − o
`

n−0
 

x 2n

s2nd!

 50. Use the formula

tanh21x −
1

2
 lnS 1 1 x

1 2 xD  21 , x , 1

and the Maclaurin series for lns1 1 xd to show that

tanh21x − o
`

n−0
 

x 2n11

2n 1 1

51–54 Find the Maclaurin series of f  (by any method) and the 
associated radius of convergence. Graph f  and its first few 
Taylor polynomials on the same screen. What do you notice 
about the relation  ship between these polynomials and f ?

 51. f sxd − cossx 2 d 52. f sxd − lns1 1 x 2d

 53.  f sxd − xe2x 54.  f sxd − tan21sx 3d

 55.   Use the Maclaurin series for cos x to compute cos 5° correct 
to five decimal places.

 56.   Use the Maclaurin series for e x to calculate 1y se10  correct to 
five decimal places.

 57.  (a) Use the binomial series to expand 1ys1 2 x 2 .
 (b) Use part (a) to find the Maclaurin series for sin21x.

 58.  (a) Expand 1ys4 1 1 x   as a power series.
 (b)  Use part (a) to estimate 1ys4 1.1 correct to three decimal 

places.

59–62 Evaluate the indefinite integral as an infinite series.

 59. y s1 1 x 3  dx 60. y x 2 sinsx 2 d dx

 61. y 
cos x 2 1

x
 dx 62. y arctansx 2d dx

;
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 87. o
`

n−0
 

s21dn � 2n11

42n11s2n 1 1d!

 88. 1 2 ln 2 1
sln 2d2

2!
2

sln 2d3

3!
1 ∙ ∙ ∙

 89. 3 1
9

2!
1

27

3!
1

81

4!
1 ∙ ∙ ∙

 90. 
1

1 � 2
2

1

3 � 23 1
1

�5 � 25 2
1

7 � 27 1 ∙ ∙ ∙

 91.  Show that if p is an n th-degree polynomial, then

psx 1 1d − o
n

i−0
 
p sidsxd

i!

 92. Use the Maclaurin series for f sxd − xys1 1 x 2d to find 
f s101ds0d.

 93. Use the Maclaurin series for f sxd − x sinsx 2d to find f s203ds0d.

 94. If f sxd − s1 1 x 3d30, what is f s58ds0d?

 95.  Prove Taylor’s Inequality for n − 2, that is, prove that if 

| f -sxd | < M for | x 2 a | < d, then

| R2sxd | <
M

6
 | x 2 a |3 for | x 2 a | < d

 96. (a)  Show that the function defined by

f sxd − He21yx 2

0

if x ± 0

if x − 0

  is not equal to its Maclaurin series.
 (b)  Graph the function in part (a) and comment on its 

behavior near the origin.

 97.  Use the following steps to prove Theorem 17.
 (a)  Let tsxd − �`

n−0 (n
k)x n. Differentiate this series to show that

t9sxd −
ktsxd
1 1 x

    21 , x , 1

 (b) Let hsxd − s1 1 xd2k tsxd and show that h9sxd − 0.
 (c) Deduce that tsxd − s1 1 xdk.

 98.  In Exercise 10.2.62 it was shown that the length of the ellipse 
x − a sin �, y − b cos �, where a . b . 0, is

L − 4a y�y2

0
 s1 2 e 2 sin2 �   d�

where e − sa 2 2 b 2  ya is the eccentricity of the ellipse.
 Expand the integrand as a binomial series and use the 
result of Exercise 7.1.56 to express L as a series in powers of 
the eccentricity up to the term in e 6.

;

This project deals with the function

f sxd −
sinstan xd 2 tanssin xd

arcsinsarctan xd 2 arctansarcsin xd

 1.  Use a computer algebra system to evaluate f sxd for x − 1, 0.1, 0.01, 0.001, and 0.0001. 
(A calculator may not provide accurate values.) Does it appear that f  has a limit  
as x l 0 ?

 2.  Use the CAS to graph f  near x − 0. Does it appear that f  has a limit as x l 0 ?

 3.  Try to evaluate limx  l  0 f sxd with l’Hospital’s Rule, using the CAS to find derivatives  
of the numerator and denominator. What do you discover? How many applications of 
l’Hospital’s Rule are required?

 4.  Evaluate limx  l  0 f sxd by using the CAS to find sufficiently many terms in the Taylor series 
of the numerator and denominator.

 5.  Use the limit command on the CAS to find limx  l  0 f sxd directly. (Most computer  
algebra systems use the method of Problem 4 to compute limits.)

 6.  In view of the answers to Problems 4 and 5, how do you explain the results of  
Problems 1 and 2?

DISCOVERY PROJECT  AN ELUSIVE LIMIT
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Applications of  Taylor Polynomials

In this section we explore two types of applications of Taylor polynomials. First we look 
at how they are used to approximate functions –– computer scientists employ them 
because polynomials are the simplest of functions. Then we investigate how physicists 
and engineers use them in such fields as relativity, optics, blackbody radiation, electric 
dipoles, the velocity of water waves, and building highways across a desert.

■	 Approximating Functions by Polynomials
Suppose that f sxd is equal to the sum of its Taylor series at a:

f sxd − o
`

n−0
 
 f sndsad

n!
 sx 2 adn

11.11

WRITING PROJECT HOW NEWTON DISCOVERED THE BINOMIAL SERIES

The Binomial Theorem, which gives the expansion of sa 1 bdk, was known to Chinese 
mathe maticians many centuries before the time of Newton for the case where the exponent k 
is a positive integer. In 1665, when he was 22, Newton was the first to discover the infinite 
series expansion of sa 1 bdk when k is a fractional exponent (positive or negative). He didn’t 
publish his discovery, but he stated it and gave examples of how to use it in a letter (now 
called the epistola prior) dated June 13, 1676, that he sent to Henry Oldenburg, secretary of 
the Royal Society of London, to transmit to Leibniz. When Leibniz replied, he asked how 
Newton had discovered the binomial series. Newton wrote a second letter, the epistola  
posterior of October 24, 1676, in which he explained in great detail how he arrived at his 
discovery by a very indirect route. He was investigating the areas under the curves 
y − s1 2 x 2 d ny2 from 0 to x for n − 0, 1, 2, 3, 4, . . . . These are easy to calculate if n is 
even. By observing patterns and interpolating, Newton was able to guess the answers for 
odd values of n. Then he realized he could get the same answers by expressing s1 2 x 2 d ny2 
as an infinite series.

Write an essay on Newton’s discovery of the binomial series. Start by giving the state-
ment of the binomial series in Newton’s notation (see the epistola prior on page 285 of [4] 
or page 402 of [2]). Explain why Newton’s version is equivalent to Theorem 11.10.17. Then 
read Newton’s epistola posterior (page 287 in [4] or page 404 in [2]) and explain the pat-
terns that Newton discovered in the areas under the curves y − s1 2 x 2 d ny2. Show how he 
was able to guess the areas under the remaining curves and how he verified his answers. 
Finally, explain how these discoveries led to the binomial series. The books by Edwards [1] 
and Katz [3] contain commentaries on Newton’s letters.

 1. C. H. Edwards, Jr., The Historical Development of the Calculus (New York: Springer- 
Verlag, 1979), pp. 178–87.

 2. Jahn Fauvel and Jeremy Gray, eds., The History of Mathematics: A Reader (Basingstoke, 
UK: MacMillan Education, 1987).

 3. Victor Katz, A History of Mathematics: An Introduction, 3rd ed.  (Boston: Addison- 
Wesley, 2009), pp. 543–82.

 4. D. J. Struik, ed., A Source Book in Mathematics, 1200–1800 (Cambridge, MA: Harvard 
University Press, 1969).
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In Section 11.10 we introduced the notation Tnsxd for the nth partial sum of this series 
and called it the nth-degree Taylor polynomial of f  at a. Thus

 Tnsxd − o
n

i−0

 f sidsad
i!

 sx 2 adi

 − f sad 1
 f 9sad

1!
sx 2 ad 1

 f 0sad
2!

 sx 2 ad2 1 ∙ ∙ ∙ 1
 f sndsad

n!
 sx 2 adn

Since f  is the sum of its Taylor series, we know that Tnsxd l f sxd as n l ` and so Tn 
can be used as an approximation to f : f sxd < Tnsxd.

Notice that the first-degree Taylor polynomial

T1sxd − f sad 1 f 9sadsx 2 ad

is the same as the linearization of f  at a that we discussed in Section 3.10. Notice also 
that T1 and its derivative have the same values at a that f  and f 9 have. In general, it can 
be shown that the derivatives of Tn at a agree with those of f  up to and including deriva-
tives of order n.

To illustrate these ideas let’s take another look at the graphs of y − ex and its first  
few Taylor polynomials, as shown in Figure 1. The graph of T1 is the tangent line to 
y − ex at s0, 1d; this tangent line is the best linear approximation to ex near s0, 1d. The 
graph of T2 is the parabola y − 1 1 x 1 x 2y2, and the graph of T3 is the cubic curve 
y − 1 1 x 1 x 2y2 1 x 3y6, which is a closer fit to the exponential curve y − ex than T2. 
The next Taylor polynomial T4 would be an even better approximation, and so on.

The values in the table give a numerical demonstration of the convergence of the Tay-
lor polynomials Tnsxd to the function y − ex. We see that when x − 0.2 the convergence 
is very rapid, but when x − 3 it is somewhat slower. In fact, the farther x is from 0, the 
more slowly Tnsxd converges to ex.

When using a Taylor polynomial Tn to approximate a function f , we have to ask the 
ques tions: How good an approximation is it? How large should we take n to be in order 
to achieve a desired accuracy? To answer these questions we need to look at the absolute 
value of the remainder:

| Rnsxd | − | f sxd 2 Tnsxd |
There are three possible methods for estimating the size of the error:

1.  We can use a calculator or computer to graph | Rnsxd | − | f sxd 2 Tnsxd | and 
thereby estimate the error.

2.  If the series happens to be an alternating series, we can use the Alternating Series 
Estimation Theorem.

3.  In all cases we can use Taylor’s Inequality (Theorem 11.10.9), which says that if 

| f sn11dsxd | < M, then

| Rnsxd | <
M

sn 1 1d!
 | x 2 a |n11

EXAMPLE 1 
(a) Approximate the function f sxd − s3 x  by a Taylor polynomial of degree 2 at a − 8.
(b) How accurate is this approximation when 7 < x < 9?

0 x

y
y=´ y=T£(x)

(0, 1)

y=T™(x)

y=T¡(x)

FIGURE 1 

x − 0.2 x − 3.0

T2sxd 1.220000  8.500000
T4sxd 1.221400 16.375000
T6sxd 1.221403 19.412500
T8sxd 1.221403 20.009152
T10sxd 1.221403 20.079665

e x 1.221403 20.085537
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SOLUTION
(a)  f sxd − s3 x − x 1y3 f s8d − 2

 f 9sxd − 1
3 x22y3  f 9s8d − 1

12

  f 0sxd − 22
9 x25y3  f 0s8d − 1

144

   f -sxd − 10
27 x28y3

Thus the second-degree Taylor polynomial is

 T2sxd − f s8d 1
 f 9s8d

1!
 sx 2 8d 1

 f 0s8d
2!

 sx 2 8d2

 − 2 1 1
12 sx 2 8d 2 1

288 sx 2 8d2

The desired approximation is

s3 x < T2sxd − 2 1 1
12 sx 2 8d 2 1

288 sx 2 8d2

(b) The Taylor series is not alternating when x , 8, so we can’t use the Alternating 
Series Estimation Theorem in this example. But we can use Taylor’s Inequality with 
n − 2 and a − 8:

| R2sxd | <
M

3! | x 2 8 |3

where | f -sxd | < M . Because x > 7, we have x 8y3 > 78y3 and so

f -sxd −
10

27
�

1

x 8y3 <
10

27
�

1

78y3 , 0.0021

Therefore we can take M − 0.0021. Also 7 < x < 9, so 21 < x 2 8 < 1 and 

| x 2 8 | < 1. Then Taylor’s Inequality gives

| R2sxd | <
0.0021

3!
� 13 −

0.0021

6
, 0.0004

Thus, if 7 < x < 9, the approximation in part (a) is accurate to within 0.0004.� ■

Let’s check the calculation in Example 1 graphically. Figure 2 shows that the graphs 
of y − s3 x  and y − T2sxd are very close to each other when x is near 8. Fig ure 3 shows 
the graph of | R2sxd | computed from the expression

| R2sxd | − | s3 x 2 �2sxd |
We see from the graph that

| R2sxd | , 0.0003

when 7 < x < 9. Thus the error estimate from graphical methods is slightly better than 
the error estimate from Taylor’s Inequality in this case.

EXAMPLE 2 
(a) What is the maximum error possible in using the approximation 

sin x < x 2
x 3

3!
1

x 5

5!

when 20.3 < x < 0.3? Use this approximation to find sin 12° correct to six decimal 
places.
(b) For what values of x is this approximation accurate to within 0.00005?

2.5

0 15

T™

y=#œ„x

FIGURE 2 

0.0003

7 9

y=| R™(x)|

0

FIGURE 3 
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SOLUTION
(a) Notice that the Maclaurin series

sin x − x 2
x 3

3!
1

x 5

5!
2

x 7

7!
1 ∙ ∙ ∙

is alternating for all nonzero values of x, and the successive terms decrease in size 
because | x | , 1, so we can use the Alternating Series Estimation Theorem. The error 
in approximating sin x by the first three terms of its Maclaurin series is at most

Z x 7

7! Z − | x |7

5040

If 20.3 < x < 0.3, then | x | < 0.3, so the error is smaller than

s0.3d7

5040
< 4.3 3 1028

To find sin 12° we first convert to radian measure:

sin 12° − sinS 12�

180 D − sinS �

15D
 <

�

15
2 S �

15D3 1

3!
1 S �

15D5 1

5!
< 0.20791169

Thus, correct to six decimal places, sin 12° < 0.207912.

(b) The error will be smaller than 0.00005 if

| x |7

5040
, 0.00005

Solving this inequality for x, we get

| x |7 , 0.252    or    | x | , s0.252d1y7 < 0.821

So the given approximation is accurate to within 0.00005 when | x | , 0.82.� ■

What if we use Taylor’s Inequality to solve Example 2? Since f s7dsxd − 2cos x, we 
have | f s7dsxd | < 1 and so

| R6sxd | <
1

7!
 | x |7

So we get the same estimates as with the Alternating Series Estimation Theorem.
What about graphical methods? Figure 4 shows the graph of

| R6sxd | − | sin x 2 (x 2 1
6 x 3 1 1

120 x 5 ) |
and we see from it that | R6sxd | , 4.3 3 1028 when | x | < 0.3. This is the same estimate 
that we obtained in Example 2. For part (b) we want | R6sxd | , 0.00005, so we graph 
both y − | R6sxd | and y − 0.00005 in Figure 5. From the coordinates of the right inter-
section point we find that the inequality is satisfied when | x | , 0.82. Again this is the 
same estimate that we obtained in the solution to Example 2.

4.3  10–*

_0.3 0.3
0

y=|Rß(x)|

FIGURE 4 

0.00006

_1 1

y=|Rß(x)|

0

y=0.00005

FIGURE 5 
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If we had been asked to approximate sin 72° instead of sin 12° in Example 2, it would 
have been wise to use the Taylor polynomials at a − �y3 (instead of a − 0) because 
they are better approximations to sin x for values of x close to �y3. Notice that 72° is 
close to 60° (or �y3 radians) and the derivatives of sin x are easy to compute at �y3.

Figure 6 shows the graphs of the Maclaurin polynomial approximations

 T1sxd − x  T3sxd − x 2
x 3

3!

 T5sxd − x 2
x 3

3!
1

x 5

5!
 T7sxd − x 2

x 3

3!
1

x 5

5!
2

x 7

7!

to the sine curve. You can see that as n increases, Tnsxd is a good approximation to sin x 
on a larger and larger interval.

0 x

y

T¶

T∞

T£
y=sin x

T¡

One use of the type of calculation done in Examples 1 and 2 occurs in calculators and 
computers. For instance, when you press the sin or ex key on your calculator, or when a 
computer programmer uses a subroutine for a trigonometric or exponential or Bessel 
function, in many machines a polynomial approximation is calculated. The polynomial 
is often a Taylor polynomial that has been modified so that the error is spread more 
evenly throughout an interval.

■	 Applications to Physics
Taylor polynomials are also used frequently in physics. In order to gain insight into an 
equa tion, a physicist often simplifies a function by considering only the first two or three 
terms in its Taylor series. In other words, the physicist uses a Taylor polynomial as an 
approximation to the function. Taylor’s Inequality can then be used to gauge the accu-
racy of the approximation. The following example shows one way in which this idea is 
used in special relativity.

EXAMPLE 3 In Einstein’s theory of special relativity the mass m of an object moving 
with velocity v is

m −
m0

s1 2 v 2yc 2 

where m0 is the mass of the object when at rest and c is the speed of light. The kinetic 
energy k of the object is the difference between its total energy and its energy at rest:

K − mc2 2 m0c2

(a) Show that when v is very small compared with c, this expression for K agrees  
with classical Newtonian physics: K − 1

2 m0v2.

FIGURE 6
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(b) Use Taylor’s Inequality to estimate the difference in these expressions for K  
when | v | < 100 mys.

SOLUTION
(a) Using the expressions given for K and m, we get 

 K − mc2 2 m0 c2 −
m0c2

s1 2 v 2yc 2 
2 m0c2 − m0 c2FS1 2

v2

c2D21y2

2 1G
With x − 2v2yc2, the Maclaurin series for s1 1 xd21y2 is most easily computed as a 
binomial series with k − 21

2. (Notice that | x | , 1 because v , c.) Therefore we have

 s1 1 xd21y2 − 1 2 1
2 x 1

(21
2)(23

2)
2!

 x 2 1
(21

2)(23
2)(25

2)
3!

 x 3 1 ∙ ∙ ∙

 − 1 2 1
2 x 1 3

8 x 2 2 5
16 x 3 1 ∙ ∙ ∙

and  K − m0 c2FS1 1
1

2
 
v2

c2 1
3

8
 
v4

c 4 1
5

16
 
v6

c 6 1 ∙ ∙ ∙D 2 1G
 − m0 c2S 1

2
 
v2

c2 1
3

8
 
v4

c 4 1
5

16
 
v6

c 6 1 ∙ ∙ ∙D
If v is much smaller than c, then all terms after the first are very small when compared 
with the first term. If we omit them, we get

K < m0 c2S 1

2
 
v2

c2D − 1
2 m0 v2

(b) If x − 2v 2yc2, f sxd − m0 c2 fs1 1 xd21y2 2 1g, and M is a number such that 

| f 0sxd | < M, then we can use Taylor’s Inequality to write

| R1sxd | <
M

2!
 x 2

We have f 0sxd − 3
4 m0 c2s1 1 xd25y2 and we are given that | v | < 100 mys, so

| f 0sxd | −
3m0 c2

4s1 2 v 2yc2 d5y2 <
3m0 c2

4s1 2 1002yc2 d5y2 s−Md

Thus, with c − 3 3 108 mys,

| R1sxd | <
1

2
�

3m0 c2

4s1 2 1002yc2 d5y2 �
1004

c 4 , s4.17 3 10210 dm0

So when | v | < 100 mys, the magnitude of the error in using the Newtonian expression 
for kinetic energy is at most s4.2 3 10210 dm0.� ■

√

K

0

K=mc@-m¸c@

K =   m¸√ @1
2

c

FIGURE 7 

The upper curve in Figure 7 is the 
graph of the expression for the kinetic 
energy K of an object with velocity v 
in special relativity. The lower curve 
shows the function used for K in clas-
sical Newtonian physics. When v is 
much smaller than the speed of light, 
the curves are practically identical.
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Another application to physics occurs in optics. Figure 8 depicts a wave from the 
point source S meeting a spherical interface of radius R centered at C. The ray SA is 
refracted toward P.

A

V
h

C P

R

S

¨t

¨r

¨i

˙

Lo

so si

Li

n¡ n™

Using Fermat’s principle that light travels so as to minimize the time taken, one can 
derive the equation

1  
n1

,o
1

n2

,i
−

1

R
 S n2si

,i
2

n1so

,o
D

where n1 and n2 are indexes of refraction and ,o, ,i, so, and si are the distances indicated 
in Figure 8. By the Law of Cosines, applied to triangles ACS and ACP, we have

2   ,o − sR 2 1 sso 1 Rd2 2 2Rsso 1 Rd cos � 

 ,i − sR 2 1 ssi 2 Rd2 1 2Rssi 2 Rd cos � 

Because Equation 1 is cumbersome to work with, Gauss, in 1841, simplified it by using 
the linear approximation cos � < 1 for small values of �. (This amounts to using the 
Taylor polynomial of degree 1.) Then Equation 1 becomes the following simpler equa-
tion [as you are asked to show in Exercise 34(a)]:

3  
n1

so
1

n2

si
−

n2 2 n1

R

The resulting optical theory is known as Gaussian optics, or first-order optics, and has 
become the basic theoretical tool used to design lenses.

A more accurate theory is obtained by approximating cos � by its Taylor polynomial 
of degree 3 (which is the same as the Taylor polynomial of degree 2). This takes into 
account rays for which � is not so small, that is, rays that strike the surface at greater 
distances h above the axis. In Exercise 34(b) you are asked to use this approximation to 
derive the more accurate equation

4  
n1

so
1

n2

si
−

n2 2 n1

R
1 h 2F n1

2so
 S 1

so
1

1

RD2

1
n2

2si
 S 1

R
2

1

si
D2G

The resulting optical theory is known as third-order optics.
Other applications of Taylor polynomials to physics and engineering are explored in 

Exercises 32, 33, 35, 36, 37, and 38, and in the Applied Project following this section.

FIGURE 8 
Refraction at a spherical interface

Here we use the identity

coss� 2 �d − 2cos �
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11.11 Exercises

 1.  (a)  Find the Taylor polynomials up to degree 5 for 
f sxd − sin x centered at a − 0. Graph f  and these  
polynomials on a common screen.

 (b)  Evaluate f  and these polynomials at x − �y4, �y2,  
and �.

 (c)  Comment on how the Taylor polynomials converge  
to f sxd.

 2.  (a)  Find the Taylor polynomials up to degree 3 for 
f sxd − tan x centered at a − 0. Graph f  and these  
polynomials on a common screen.

 (b)  Evaluate f  and these polynomials at x − �y6, �y4,  
and �y3.

 (c)  Comment on how the Taylor polynomials converge  
to f sxd.

3–10 Find the Taylor polynomial T3sxd for the function f  
centered at the number a. Graph f  and T3 on the same screen.

 3. f sxd − e x,  a − 1 4. f sxd − sin x,  a − �y6

 5.  f sxd − cos x,  a − �y2 6.  f sxd − e2x sin x,  a − 0

 7.  f sxd − ln x,  a − 1 8.  f sxd − x cos x,  a − 0

 9.  f sxd − xe 22x,  a − 0 10.  f sxd − tan21x,  a − 1

11–12 Use a computer algebra system to find the Taylor poly- 
nomials Tn centered at a for n − 2, 3, 4, 5. Then graph these 
polynomials and f  on the same screen.

 11.  f sxd − cot x,  a − �y4

 12.  f sxd − s3 1 1 x 2 ,  a − 0

13–22
(a) Approximate f  by a Taylor polynomial with degree n at the 

number a.
(b) Use Taylor’s Inequality to estimate the accuracy of the approx - 

ima tion f sxd < Tnsxd when x lies in the given interval.
(c) Check your result in part (b) by graphing | Rnsxd |.
 13.  f sxd − 1yx,  a − 1,  n − 2,  0.7 < x < 1.3

 14.  f sxd − x21y2,  a − 4,  n − 2,  3.5 < x < 4.5

 15.  f sxd − x 2y3,  a − 1,  n − 3,  0.8 < x < 1.2

 16.  f sxd − sin x,  a − �y6,  n − 4,  0 < x < �y3

 17.  f sxd − sec x,  a − 0,  n − 2,  20.2 < x < 0.2

 18.  f sxd − lns1 1 2xd,  a − 1,  n − 3,  0.5 < x < 1.5

 19.  f sxd − e x2
,  a − 0,  n − 3,  0 < x < 0.1

 20.  f sxd − x ln x,  a − 1,  n − 3,  0.5 < x < 1.5

 21.  f sxd − x sin x,  a − 0,  n − 4,  21 < x < 1

 22.  f sxd − sinh 2x,  a − 0,  n − 5,  21 < x < 1

;

;

;

;

 23.   Use the information from Exercise 5 to estimate cos 80° 
correct to five decimal places.

 24.   Use the information from Exercise 16 to estimate sin 38°  
correct to five decimal places.

 25.   Use Taylor’s Inequality to determine the number of terms of 
the Maclaurin series for e x that should be used to estimate 
e 0.1 to within 0.00001.

 26.    How many terms of the Maclaurin series for lns1 1 xd do 
you need to use to estimate ln 1.4 to within 0.001?

27–29 Use the Alternating Series Estimation Theorem or  
Taylor’s Inequality to estimate the range of values of x for which 
the given approximation is accurate to within the stated error. 
Check your answer graphically.

 27.  sin x < x 2
x 3

6
  (| error | , 0.01)

 28.  cos x < 1 2
x 2

2
1

x 4

24
  (| error | , 0.005)

 29.   arctan x < x 2
x 3

3
1

x 5

5
  (| error | , 0.05)

 30.   Suppose you know that

f snds4d −
s21dn n!

3nsn 1 1d

and the Taylor series of f  centered at 4 converges to f sxd  
for all x in the interval of convergence. Show that the fifth-
degree Taylor polynomial approximates f s5d with error less 
than 0.0002.

 31.   A car is moving with speed 20 mys and acceleration  
2 mys2 at a given instant. Using a second-degree Taylor 
polyno mial, estimate how far the car moves in the next sec-
ond. Would it be reasonable to use this polynomial to esti-
mate the distance traveled during the next minute?

 32.   The resistivity � of a conducting wire is the reciprocal of the 
conductivity and is measured in units of ohm-meters (V-m). 
The resistivity of a given metal depends on the temperature 
according to the equation

�std − � 20 e �st220d

where t is the temperature in °C. There are tables that list 
the values of � (called the temperature coefficient) and � 20 
(the resistivity at 20°C) for various metals. Except at very 
low temperatures, the resis tivity varies almost linearly with 
tem perature and so it is common to approximate the expres-
sion for �std by its first- or second-degree Taylor polynomial  
at t − 20.

 (a)  Find expressions for these linear and quadratic  
approximations.

;
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where ke is a constant (called Coulomb’s constant). Show that

V <
�keR2�

d
    for large d

R

d
P

 37.   If a surveyor measures differences in elevation when mak-
ing plans for a highway across a desert, corrections must be 
made for the curvature of the earth.

 (a)  If R is the radius of the earth and L is the length of the 
highway, show that the correction is

C − R secsLyRd 2 R

 (b)  Use a Taylor polynomial to show that

C <
L 2

2R
1

5L 4

24R 3

 (c)  Compare the corrections given by the formulas in  
parts (a) and (b) for a highway that is 100 km long. 
(Take the radius of the earth to be 6370 km.)

R

L C

R

 38.   The period of a pendulum with length L that makes a maxi-
mum angle �0 with the vertical is

T − 4ÎL

t   y�y2

0
 

dx

s1 2 k2 sin2x

 where k − sin( 1
2 �0 ) and t is the acceleration due to gravity.  

(In Exercise 7.7.42 we approximated this integral using  
Simpson’s Rule.)

 (a)  Expand the integrand as a binomial series and use the 
result of Exercise 7.1.56 to show that

T − 2�ÎL

t  F1 1
12

22  k 2 1
1232

2242  k 4 1
123252

224262  k 6 1 ∙ ∙ ∙G
  If �0 is not too large, the approximation T < 2�sLyt , 

obtained by using only the first term in the series, is 
often used. A better approximation is obtained by using 
two terms:

T < 2�ÎL

t  (1 1 1
4 k 2 )

 (b)  For copper, the tables give � − 0.0039y°C and 
� 20 − 1.7 3 1028 V-m. Graph the resistivity of copper  
and the linear and quadratic approximations for  
2250°C < t < 1000°C.

 (c)  For what values of t does the linear approximation agree 
with the exponential expression to within one percent?

 33.   An electric dipole consists of two electric charges of equal 
magnitude and opposite sign. If the charges are q and 2q 
and are located at a distance d from each other, then the 
electric field E at the point P in the figure is

E −
q

D2 2
q

sD 1 dd2

By expanding this expression for E as a series in powers of 
dyD, show that E is approximately proportional to 1yD 3  
when P is far away from the dipole.

P
D d

q -q

 34.  (a)  Derive Equation 3 for Gaussian optics from Equation 1  
by approximating cos � in Equation 2 by its first-degree 
Taylor polynomial.

 (b)  Show that if cos � is replaced by its third-degree Taylor 
polynomial in Equation 2, then Equation 1 becomes 
Equation 4 for third-order optics. [Hint: Use the first 
two terms in the binomial series for ,o

21 and ,i
21. Also, 

use � < sin �.]

 35.   If a water wave with length L moves with velocity v across a 
body of water with depth d, as shown in the figure, then

v 2 −
tL

2�
 tanh 

2�d

L

 (a) If the water is deep, show that v < stLys2�d .
 (b)  If the water is shallow, use the Maclaurin series for  

tanh to show that v < std  . (Thus in shallow water  
the velocity of a wave tends to be independent of the 
length of the wave.)

 (c)  Use the Alternating Series Estimation Theorem to show 
that if L . 10d, then the estimate v 2 < td is accurate to 
within 0.014tL.

L

d

 36.   A uniformly charged disk has radius R and surface charge 
density � as in the figure. The electric potential V at a point 
P at a distance d along the perpendicular central axis of the 
disk is

V − 2�ke� (sd 2 1 R2 2 d)

;

;
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 (b)  Notice that all the terms in the series after the first one 
have coefficients that are at most 14. Use this fact to 
compare this series with a geometric series and show 
that

2�ÎL

t   (1 1 1
4 k 2 ) < T < 2�ÎL

t
 

4 2 3k 2

4 2 4k 2

 (c)  Use the inequalities in part (b) to estimate the period of  
a pendulum with L − 1 meter and �0 − 10°. How does  
it compare with the estimate T < 2�sLyt ? What if  
�0 − 42°?

 39.   In Section 4.8 we considered Newton’s method for approxi-
mating a solution r of the equation f sxd − 0, and from an ini-

tial approximation x1 we obtained successive approximations  
x2, x3, . . . , where

xn11 − xn 2
 f sxnd
f 9sxnd

 Use Taylor’s Inequality with n − 1, a − xn, and x − r to 
show that if f 0sxd exists on an interval I containing r, xn, and 
xn11, and | f 0sxd | < M, | f 9sxd | > K for all x [ I, then

| xn11 2 r | <
M

2K | xn 2 r |2

[This means that if xn is accurate to d decimal places, then 
xn11 is accurate to about 2d decimal places. More precisely,  
if the error at stage n is at most 102m, then the error at stage 
n 1 1 is at most sMy2K d1022m.] 

Any object emits radiation when heated. A blackbody is a system that absorbs all the radiation 
that falls on it. For instance, a matte black surface or a large cavity with a small hole in its wall 
(like a blast furnace) is a blackbody and emits blackbody radiation. Even the radiation from 
the sun is close to being blackbody radiation.

Proposed in the late 19th century, the Rayleigh-Jeans Law expresses the energy density of 
blackbody radiation of wavelength � as

f s�d −
8�kT

�4

where � is measured in meters, T is the temperature in kelvins (K), and k is Boltzmann’s con- 
stant. The Rayleigh-Jeans Law agrees with experimental measurements for long wavelengths  
but disagrees drastically for short wavelengths. [The law predicts that f s�d l ` as � l 01 
but experiments have shown that f s�d l 0.] This fact is known as the ultraviolet catastrophe.

In 1900 Max Planck found a better model (known now as Planck’s Law) for blackbody  
radiation:

f s�d −
8�hc�25

e hcys�kT d 2 1

where � is measured in meters, T is the temperature (in kelvins), and

 h − Planck>s constant − 6.6262 3 10234 J ∙ s

 c − speed of light − 2.997925 3 108 mys

 k − Boltzmann>s constant − 1.3807 3 10223 JyK

 1. Use l’Hospital’s Rule to show that

lim
� l 01

 f s�d − 0 and  lim
� l `

 f s�d − 0

   for Planck’s Law. So this law models blackbody radiation better than the Rayleigh-Jeans 
Law for short wavelengths.
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 2.  Use a Taylor polynomial to show that, for large wavelengths, Planck’s Law gives approxi-
mately the same values as the Rayleigh-Jeans Law.

 3.  Graph f  as given by both laws on the same screen and comment on the similarities and dif-
ferences. Use T − 5700 K (the temperature of the sun). (You may want to change from 
meters to the more convenient unit of micrometers: 1 mm − 1026 m.)

 4.  Use your graph in Problem 3 to estimate the value of � for which f s�d is a maximum 
under Planck’s Law.

 5.  Investigate how the graph of f  changes as T varies. (Use Planck’s Law.) In particular,  
graph f  for the stars Betelgeuse (T − 3400 K), Procyon (T − 6400 K), and Sirius  
(T − 9200 K), as well as the sun. How does the total radiation emitted (the area under  
the curve) vary with T? Use the graph to comment on why Sirius is known as a blue star 
and Betelgeuse as a red star.

;

;

 11 REVIEW

CONCEPT CHECK

 1.  (a) What is a convergent sequence?
 (b) What is a convergent series?
 (c) What does limn l ` an − 3 mean?
 (d) What does �`

n−1 an − 3 mean?

 2.  (a) What is a bounded sequence?
 (b) What is a monotonic sequence?
 (c)  What can you say about a bounded monotonic sequence?

 3.  (a)  What is a geometric series? Under what circumstances is  
it convergent? What is its sum?

 (b)  What is a p-series? Under what circumstances is it  
convergent?

 4.   Suppose o an − 3 and sn is the nth partial sum of the series. 
What is limn l ` an? What is limn l ` sn?

 5.  State the following.
 (a) The Test for Divergence
 (b) The Integral Test
 (c) The Direct Comparison Test
 (d) The Limit Comparison Test
 (e) The Alternating Series Test
 (f) The Ratio Test
 (g) The Root Test

 6.  (a) What is an absolutely convergent series?
 (b) What can you say about such a series?
 (c) What is a conditionally convergent series?

 7.  (a)  If a series is convergent by the Integral Test, how do you 
estimate its sum?

 (b)  If a series is convergent by the Direct Comparison Test, 
how do you estimate its sum?

 (c)  If a series is convergent by the Alternating Series Test, 
how do you estimate its sum?

 8.  (a) Write the general form of a power series.
 (b) What is the radius of convergence of a power series?
 (c)  What is the interval of convergence of a power series?

 9.   Suppose f sxd is the sum of a power series with radius of  
convergence R.

 (a)  How do you differentiate f  ? What is the radius of 
convergence of the series for f 9?

 (b)  How do you integrate f  ? What is the radius of conver-
gence of the series for y f sxd dx ?

 10.  (a)  Write an expression for the nth-degree Taylor polyno mial 
of f  centered at a.

 (b)  Write an expression for the Taylor series of f  centered at a.
 (c) Write an expression for the Maclaurin series of f .
 (d)  How do you show that f sxd is equal to the sum of its  

Taylor series?
 (e)  State Taylor’s Inequality.

 11.   Write the Maclaurin series and the interval of convergence for 
each of the following functions.

 (a) 1ys1 2 xd (b) e x (c) sin x
 (d) cos x (e) tan21x (f ) lns1 1 xd

 12.   Write the binomial series expansion of s1 1 xdk. What is the 
radius of convergence of this series?

Answers to the Concept Check are available at StewartCalculus.com.
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Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

 1.  If limn l ` an − 0, then � an is convergent.

 2.  The series �`
n−1 n 2sin 1 is convergent.

 3.  If limn l ` an − L, then limn l ` a2n11 − L.

 4.  If � cn6n is convergent, then � cns22dn is convergent.

 5.  If � cn6n is convergent, then � cns26dn is convergent.

 6.   If � cn x n diverges when x − 6, then it diverges when x − 10.

 7.   The Ratio Test can be used to determine whether � 1yn 3  
converges.

 8.   The Ratio Test can be used to determine whether � 1yn!  
converges.

 9.  If 0 < an < bn and � bn diverges, then � an diverges.

 10.  o
`

n−0
 
s21dn

n!
−

1

e

 11.  If 21 , � , 1, then limn l ` � n − 0.

 12.  If � an is divergent, then � | an | is divergent.

 13.   If f sxd − 2x 2 x 2 1 1
3 x 3 2 ∙ ∙ ∙ converges for all x,  

then   f -s0d − 2.

 14.  If han j and hbn j are divergent, then han 1 bn j is divergent.

 15.  If han j and hbn j are divergent, then han bn j is divergent.

 16.   If han j is decreasing and an . 0 for all n, then han j is  
convergent.

 17.  If an . 0 and � an converges, then � s21dnan converges.

 18.  If an . 0 and limn l ` san11yand , 1, then limn l ` an − 0.

 19.  0.99999 . . . − 1

 20.  If lim
n l `

 an − 2, then lim
n l `

 san13 2 and − 0.

 21.   If a finite number of terms are added to a convergent series, 
then the new series is still convergent.

 22.  If o
`

n−1
 an − A and o

`

n−1
 bn − B, then o

`

n−1
 an bn − AB.

TRUE-FALSE QUIZ

1–8 Determine whether the sequence is convergent or divergent.  
If it is convergent, find its limit.

 1. an −
2 1 n3

1 1 2n3  2. an −
9n11

10n

 3. an −
n3

1 1 n2  4. an − cossn�y2d

 5. an −
n sin n

n2 1 1
 6. an −

ln n

sn 

 7. hs1 1 3ynd4n j 8. hs210dnyn!j

 9.  A sequence is defined recursively by the equations a1 − 1,  
an11 − 1

3 san 1 4d. Show that han j is increasing and an , 2 
for all n. Deduce that han j is convergent and find its limit.

 10.  Show that lim n l ` n 4e 2n − 0 and use a graph to find the 
smallest value of N that corresponds to « − 0.1 in the pre-
cise definition of a limit.

11–22 Determine whether the series is convergent or divergent.

 11. o
`

n−1
 

n

n3 1 1
 12. o

`

n−1
 
n2 1 1

n3 1 1

 13. o
`

n−1
 
n3

5n  14. o
`

n−1
 

s21dn

sn 1 1

;

 15. o
`

n−2
 

1

nsln n 
 16. o

`

n−1
 lnS n

3n 1 1D
 17. o

`

n−1
 

cos 3n

1 1 s1.2dn  18. o
`

n−1
 

n2n

s1 1 2n2dn

 19. o
`

n−1
 
1 � 3 � 5 � ∙ ∙ ∙ � s2n 2 1d

5n n!

 20. o
`

n−1
 
s25d2n

n2 9n

 21. o
`

n−1
 s21dn21 

sn 

n 1 1

 22. o
`

n−1
 
sn 1 1 2 sn 2 1

n

23–26 Determine whether the series is absolutely conver- 
gent, conditionally convergent, or divergent.

 23. o
`

n−1
 s21dn21n 21y3 24. o

`

n−1
 s21dn21n 23

 25. o
`

n−1
 
s21dnsn 1 1d3n

22n11  26. o
`

n−2
 
s21dnsn 

ln n

EXERCISES
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 CHAPTER 11  Review 823

 44.  Find the radius of convergence of the series

o
`

n−1
 
s2nd!
sn!d2  x n

 45.  Find the Taylor series of f sxd − sin x at a − �y6.

 46.  Find the Taylor series of f sxd − cos x at a − �y3.

47–54 Find the Maclaurin series for f  and the associated radius 
of convergence. You may use either the direct method (definition 
of a Maclaurin series) or the Maclaurin series listed in Table 
11.10.1.

 47. f sxd −
x 2

1 1 x
 48. f sxd − tan21sx 2 d

 49. f sxd − lns4 2 xd 50. f sxd − xe 2x

 51. f sxd − sinsx 4 d 52. f sxd − 10 x

 53. f sxd − 1ys4 16 2 x 

 54. f sxd − s1 2 3xd25

 55. Evaluate y 
e x

x
 dx as an infinite series.

 56.  Use series to approximate y1

0
 s1 1 x 4  dx correct to two  

decimal places.

57–58
(a) Approximate f  by a Taylor polynomial with degree n at  

the number a.
(b) Graph f  and Tn on a common screen.
(c) Use Taylor’s Inequality to estimate the accuracy of the 

approximation f sxd < Tnsxd when x lies in the given  
interval.

(d) Check your result in part (c) by graphing | Rnsxd |.
 57. f sxd − sx ,  a − 1,  n − 3,  0.9 < x < 1.1

 58. f sxd − sec x,  a − 0,  n − 2,  0 < x < �y6

 59. Use series to evaluate the following limit.

lim
xl 0

 
sin x 2 x

x 3

 60.  The force due to gravity on an object with mass m at a  
height h above the surface of the earth is

F −
mtR2

sR 1 hd2

;

;

27–31 Find the sum of the series.

 27. o
`

n−1
 
s23dn21

23n  28. o
`

n−1
 

1

nsn 1 3d

 29. o
`

n−1
 ftan21sn 1 1d 2 tan21ng

 30. o
`

n−0
 
s21dn � n

32ns2nd!

 31. 1 2 e 1
e 2

2!
2

e 3

3!
1

e 4

4!
2 ∙ ∙ ∙

 32.  Express the repeating decimal 4.17326326326 . . . as a  
fraction.

 33.   Show that cosh x > 1 1 1
2 x 2 for all x.

 34.  For what values of x does the series �`
n−1 sln xdn converge?

 35.   Find the sum of the series

o
`

n−1
 
s21dn11

n 5

correct to four deci mal places.

 36.  (a)  Find the partial sum s5 of the series �`
n−1 1yn6 and esti-

mate the error in using it as an approximation to the sum 
of the series.

 (b)  Find the sum of this series correct to five decimal places.

 37.   Use the sum of the first eight terms to approximate the sum of 
the series �`

n−1 s2 1 5nd21. Estimate the error involved in this 
approximation.

 38.  (a) Show that the series o
`

n−1
 

n n

s2nd!
 is convergent.

 (b) Deduce that lim
n l `

 
n n

s2nd!
− 0.

 39.   Prove that if the series �`
n−1 an is absolutely convergent, then 

the series

o
`

n−1
 S n 1 1

n Dan

is also absolutely convergent.

40 – 43 Find the radius of convergence and interval of conver-
gence of the series.

 40. o
`

n−1
 s21dn 

x n

n2 5n  41. o
`

n−1
 
sx 1 2dn

n 4n

 42. o
`

n−1
 
2nsx 2 2dn

sn 1 2d!
 43. o

`

n−0
 
2nsx 2 3dn

sn 1 3 
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824 CHAPTER 11   Sequences, Series, and Power Series 

where R is the radius of the earth and t is the acceleration 
due to gravity for an object on the surface of the earth.

 (a) Express F as a series in powers of hyR.
 (b)  Observe that if we approximate F by the first term 

in the series, we get the expression F < mt that is 
usually used when h is much smaller than R. Use the 
Alter nating Series Estimation Theorem to estimate the 
range of values of h for which the approximation 
F < mt is accurate to within one percent. (Use 
R − 6400 km.)

;

 61. Suppose that f sxd − �`
n−0 cn x n for all x.

 (a) If f  is an odd function, show that

c0 − c2 − c4 − ∙ ∙ ∙ − 0

 (b) If f  is an even function, show that

c1 − c3 − c5 − ∙ ∙ ∙ − 0

 62. If f sxd − e x 2
, show that f s2nds0d −

s2nd!
n!

.
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EXAMPLE Find the sum of the series o
`

n−0
 
sx 1 2dn

sn 1 3d!
.

SOLUTION The problem-solving principle that is relevant here is recognizing some-
thing familiar. Does the given series look anything like a series that we already know? 
Well, it does have some ingredients in common with the Maclaurin series for the 
exponential function:

ex − o
`

n−0
 
xn

n!
− 1 1 x 1

x 2

2!
1

x 3

3!
1 ∙ ∙ ∙

We can make this series look more like our given series by replacing x by x 1 2:

ex12 − o
`

n−0
 
sx 1 2dn

n!
− 1 1 sx 1 2d 1

sx 1 2d2

2!
1

sx 1 2d3

3!
1 ∙ ∙ ∙

But here the exponent in the numerator matches the number in the denominator whose 
factorial is taken. To make that happen in the given series, let’s multiply and divide by 
sx 1 2d3:

 o
`

n−0
 
sx 1 2dn

sn 1 3d!
−

1

sx 1 2d3  o
`

n−0
 
sx 1 2dn13

sn 1 3d!

 − sx 1 2d23Fsx 1 2d3

3!
1

sx 1 2d4

4!
1 ∙ ∙ ∙G

We see that the series between brackets is just the series for ex12 with the first three 
terms missing. So

 o
`

n−0
 
sx 1 2dn

sn 1 3d!
− sx 1 2d23Fex12 2 1 2 sx 1 2d 2

sx 1 2d2

2! G� ■

 1. (a) Show that tan 12 x − cot 12 x 2 2 cot x.

  (b) Find the sum of the series

o
`

n−1
 

1

2n  tan 
x

2n

 2.  Let hPn j be a sequence of points determined as in the figure. Thus| AP1 | − 1, 

| Pn Pn11 | − 2n21, and angle APn Pn11 is a right angle. Find limn l ` /Pn APn11.

P∞

8

P¢ P£

P™

P¡A

4

2

1
1

Before you look at the solution of the 
example, cover it up and first try to 
solve the problem yourself.

Problems

825

Problems Plus
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 3.  To construct the snowflake curve, start with an equilateral triangle with sides of length 1.  
Step 1 in the construction is to divide each side into three equal parts, construct an equi- 
lateral triangle on the middle part, and then delete the middle part (see the figure). Step 2  
is to repeat step 1 for each side of the resulting polygon. This process is repeated at each 
succeeding step. The snowflake curve is the curve that results from repeating this process 
indefinitely.

  (a)  Let sn , ln , and pn represent the number of sides, the length of a side, and the total length 
of the nth approximating curve (the curve obtained after step n of the construction), 
respectively. Find formulas for sn , ln , and pn .

  (b) Show that pn l ` as n l `.
  (c)  Sum an infinite series to find the area enclosed by the snowflake curve. 

  Note: Parts (b) and (c) show that the snowflake curve is infinitely long but encloses only a 
finite area.

 4. Find the sum of the series

1 1
1

2
1

1

3
1

1

4
1

1

6
1

1

8
1

1

9
1

1

12
1 ∙ ∙ ∙

   where the terms are the reciprocals of the positive integers whose only prime factors are 2s 
and 3s.

 5. (a)  Show that for xy ± 21,

arctan x 2 arctan y − arctan 
x 2 y

1 1 xy

   if the left side lies between 2�y2 and �y2.

  (b) Show that arctan 120
119 2 arctan 1

239 − �y4.

  (c) Deduce the following formula of John Machin (1680–1751):

4 arctan 15 2 arctan 1
239 −

�

4

  (d) Use the Maclaurin series for arctan to show that

0.1973955597 , arctan 15 , 0.1973955616

  (e) Show that

0.004184075 , arctan 1
239 , 0.004184077 

  (f ) Deduce that, correct to seven decimal places, � < 3.1415927.

   Machin used this method in 1706 to find � correct to 100 decimal places. Recently, with  
the aid of computers, the value of � has been computed to increasingly greater accuracy, 
well into the trillions of decimal places.

 6. (a)  Prove a formula similar to the one in Problem 5(a) but involving arccot instead of  
arctan.

  (b) Find the sum of the series �`
n−0 arccotsn 2 1 n 1 1d.

 7. Use the result of Problem 5(a) to find the sum of the series g`
n−1 arctans2yn2d.

 8. If a0 1 a1 1 a2 1 ∙ ∙ ∙ 1 ak − 0, show that

lim
n l `

 (a0 sn 1 a1 sn 1 1 1 a2 sn 1 2 1 ∙ ∙ ∙ 1 ak sn 1 k ) − 0

   If you don’t see how to prove this, try the problem-solving strategy of using analogy. Try the 
special cases k − 1 and k − 2 first. If you can see how to prove the assertion for these cases, 
then you will probably see how to prove it in general.

2

1

3

FIGURE FOR PROBLEM  3

PS  See Principles of Problem Solving  
following Chapter 1.
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 9. Find the interval of convergence of �`
n−1 n3x n and find its sum.

 10.  Suppose you have a large supply of books, all the same size, and you stack them at the edge 
of a table, with each book extending farther beyond the edge of the table than the one 
beneath it. Show that it is possible to do this so that the top book extends entirely beyond  
the table. In fact, show that the top book can extend any distance at all beyond the edge of 
the table if the stack is high enough. Use the following method of stacking: The top book 
extends half its length beyond the second book. The second book extends a quarter of its 
length beyond the third. The third extends one-sixth of its length beyond the fourth, and so 
on. (Try it yourself with a deck of cards.) Consider centers of mass.

 11. Find the sum of the series  o
`

n−2
 lnS1 2

1

n 2D.

 12. If p . 1, evaluate the expression

1 1
1

2 p 1
1

3p 1
1

4 p 1 ∙ ∙ ∙

1 2
1

2 p 1
1

3p 2
1

4 p 1 ∙ ∙ ∙

 13.  Suppose that circles of equal diameter are packed tightly in n rows inside an equilateral  
triangle. (The figure illustrates the case n − 4.) If A is the area of the triangle and An is the 
total area occupied by the n rows of circles, show that

lim
n l `

 
An

A
−

�

2s3 

 14. A sequence han j is defined recursively by the equations

a0 − a1 − 1    nsn 2 1dan − sn 2 1dsn 2 2dan21 2 sn 2 3dan22

  Find the sum of the series �`
n−0 an .

 15.  If the curve y − e 2xy10 sin x, x > 0, is rotated about the x-axis, the resulting solid looks like 
an infinite decreasing string of beads.

  (a)  Find the exact volume of the nth bead. (Use either a table of integrals or a computer  
algebra system.)

  (b) Find the total volume of the beads.

 16.  Starting with the vertices P1s0, 1d, P2s1, 1d, P3s1, 0d, P4s0, 0d of a square, we construct  
further points as shown in the figure: P5 is the midpoint of P1P2, P6 is the midpoint of 
P2P3, P7 is the midpoint of P3P4, and so on. The polygonal spiral path P1P2P3P4 P5P6 P7 . . .  
approaches a point P inside the square.

  (a)  If the coordinates of Pn are sxn  
, yn d, show that 12 xn 1 xn11 1 xn12 1 xn13 − 2 and find a 

similar equation for the y-coordinates.
  (b) Find the coordinates of P.

 17. Find the sum of the series  o
`

n−1
 

s21dn

s2n 1 1d3n .

 18.  Carry out the following steps to show that

1

1 � 2
1

1

3 � 4
1

1

5 � 6
1

1

7 � 8
1 ∙ ∙ ∙ − ln 2

  (a)  Use the formula for the sum of a finite geometric series (11.2.3) to get an expression for

1 2 x 1 x 2 2 x 3 1 ∙ ∙ ∙ 1 x 2n22 2 x 2n21

FIGURE FOR PROBLEM  10 

1
21

41
61

8

FIGURE FOR PROBLEM  13 

FIGURE FOR PROBLEM  16 

P¡ P™

P¢ P£

P∞

Pß

P¶

Pˆ

P˜

P¡¸
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  (b) Integrate the result of part (a) from 0 to 1 to get an expression for

1 2
1

2
1

1

3
2

1

4
1 ∙ ∙ ∙ 1

1

2n 2 1
2

1

2n

   as an integral.

  (c)  Deduce from part (b) that

Z 1

1 � 2
1

1

3 � 4
1

1

5 � 6
1 ∙ ∙ ∙ 1

1

s2n 2 1ds2nd
2 y1

0
 

dx

1 1 x
 Z , y1

0
 x 2n dx

  (d)  Use part (c) to show that the sum of the given series is ln 2.

 19. Find all the solutions of the equation

1 1
x

2!
1

x 2

4!
1

x 3

6!
1

x 4

8!
1 ∙ ∙ ∙ − 0

  [Hint: Consider the cases x > 0 and x , 0 separately.]

 20.  Right-angled triangles are constructed as in the figure. Each triangle has height 1 and its 
base is the hypotenuse of the preceding triangle. Show that this sequence of triangles makes 
infinitely many turns around P by showing that � �n is a divergent series.

 21.  Consider the series whose terms are the reciprocals of the positive integers that can be writ-
ten in base 10 notation without using the digit 0. Show that this series is convergent and the 
sum is less than 90.

 22. (a)  Show that the Maclaurin series of the function 

f sxd −
x

1 2 x 2 x 2   is o
`

n−1
 fn x n

    where fn is the nth Fibonacci number, that is, f1 − 1, f2 − 1, and fn − fn21 1 fn22  
for n > 3. Find the radius of convergence of the series. [Hint: Write 
xys1 2 x 2 x 2d − c0 1 c1x 1 c2 x 2 1 . . .  and multiply both sides of this equation by 
1 2 x 2 x 2.]

  (b)  By writing f sxd as a sum of partial fractions and thereby obtaining the Maclaurin series 
in a different way, find an explicit formula for the nth Fibonacci number.

 23. Let  u − 1 1
x 3

3!
1

x 6

6!
1

x 9

9!
1 ∙ ∙ ∙

 v − x 1
x 4

4!
1

x 7

7!
1

x 10

10!
1 ∙ ∙ ∙

 w −
x 2

2!
1

x 5

5!
1

x 8

8!
1 ∙ ∙ ∙

  Show that u 3 1 v3 1 w3 2 3uvw − 1.

 24.  Prove that if n . 1, the nth partial sum of the harmonic series is not an integer.

   Hint: Let 2k be the largest power of 2 that is less than or equal to n and let M be the product 
of all odd integers that are less than or equal to n. Suppose that sn − m, an integer. Then 
M2ksn − M2km. The right side of this equation is even. Prove that the left side is odd by 
showing that each of its terms is an even integer, except for one.

¨¡
¨™

¨£

P

1

1

11

1

1

FIGURE FOR PROBLEM  20 
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The forces created by wind and water on the sails and keel of a sailboat determine the direction in which the boat travels. Forces such as 
these are conveniently represented by vectors because they have both magnitude and direction. In Exercise 12.3.52 you are asked to 
compute the work done by the wind in moving a sailboat along a specified p th.
Gaborturcsi / Shutterstock.com.

12 Vectors and  
the Geometry of Space
IN THIS CHAPTER WE INTRODUCE vectors and coordinate systems for three-dimensional space.
This will be the setting for our study of the calculus of curves in space and of functions of two 
variables (whose graphs are surfaces in space) in Chapters 13–16. Here we will also see that 
vectors provide particularly simple descriptions of lines and planes in space.
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830 CHAPTER 12  Vectors and the Geometry of Space 

Three-Dimensional Coordinate Systems

To locate a point in a plane, we need two numbers. We know that any point in the plane 
can be represented as an ordered pair sa, bd of real numbers, where a is the x-coordinate 
and b is the y-coordinate. For this reason, a plane is called two-dimensional. To locate a 
point in space, three numbers are required. We represent any point in space by an ordered 
triple sa, b, cd of real numbers.

■	 3D Space
In order to represent points in space, we first choose a fixed point O (the origin) and three 
directed lines through O that are perpendicular to each other, called the coordinate axes 
and labeled the x-axis, y-axis, and z-axis. Usually we think of the x- and y-axes as being 
horizontal and the z-axis as being vertical, and we draw the orientation of the axes as in 
Figure 1. The direction of the z-axis is determined by the right-hand rule as illustrated 
in Figure 2: if you curl the fingers of your right hand around the z-axis in the direction of 
a 90° counterclockwise rotation from the positive x-axis to the positive y-axis, then your 
thumb points in the positive direction of the z-axis.

The three coordinate axes determine the three coordinate planes illustrated in Fig- 
ure 3(a). The xy-plane is the plane that contains the x- and y-axes; the yz-plane contains  
the y- and z-axes; the xz-plane contains the x- and z-axes. These three coordinate planes 
divide space into eight parts, called octants. The first octant, in the foreground, is deter-
mined by the positive axes.

(a) Coordinate planes
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x

yz

xy -plane

xz

(b)

z

O

right wall
left w

all

y
x floor

O

-plane-plane

Because many people have some difficulty visualizing diagrams of three-dimensional 
figures, you may find it helpful to do the following [see Figure 3(b)]. Look at any bottom 
corner of a room and call the corner the origin. The wall on your left is in the xz-plane, 
the wall on your right is in the yz-plane, and the floor is in the xy-plane. The x-axis runs 
along the intersection of the floor and the left wall. The y-axis runs along the intersection 
of the floor and the right wall. The z-axis runs up from the floor toward the ceiling along 
the intersection of the two walls. You are situated in the first octant, and you can now 
imagine seven other rooms situated in the other seven octants (three on the same floor 
and four on the floor below), all connected by the common corner point O.

Now if P is any point in space, let a be the (directed) distance from the yz-plane to P,  
let b be the distance from the xz-plane to P, and let c be the distance from the xy-plane to  
P. We represent the point P by the ordered triple sa, b, cd of real numbers and we call  
a, b, and c the coordinates of P; a is the x-coordinate, b is the y-coordinate, and c is the  
z-coordinate. Thus, to locate the point sa, b, cd, we can start at the origin O and move  
a units along the x-axis, then b units parallel to the y-axis, and then c units parallel to the  
z-axis as in Figure 4.

12.1
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Coordinate axes
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The point Psa, b, cd determines a rectangular box as in Figure 5. If we drop a perpen-
dicular from P to the xy-plane, we get a point Q with coordinates sa, b, 0d called the pro-
jection of P onto the xy-plane. Similarly, Rs0, b, cd and Ssa, 0, cd are the projections of 
P onto the yz-plane and xz-plane, respectively.

As numerical illustrations, the points s24, 3, 25d and s3, 22, 26d are plotted in Fig-
ure 6.
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The Cartesian product R 3 R 3 R − hsx, y, zd | x, y, z [ Rj is the set of all ordered 
triples of real numbers and is denoted by R 3. We have given a one-to-one correspon- 
dence between points P in space and ordered triples sa, b, cd in R 3. It is called a three-
dimensional rectangular coordinate system. Notice that, in terms of coordinates, the  
first octant can be described as the set of points whose coordinates are all positive.

■	 Surfaces and Solids
In two-dimensional analytic geometry, the graph of an equation involving x and y is a 
curve in R 2. In three-dimensional analytic geometry, an equation in x, y, and z represents  
a surface in R 3.

EXAMPLE 1 What surface in R 3 is represented by each of the following equations?

(a) z − 3  (b) y − 5

SOLUTION
(a) The equation z − 3 represents the set hsx, y, zd | z − 3j, which is the set of all 
points in R 3 whose z-coordinate is 3 (x and y can each be any value). This is the hori-
zontal plane that is parallel to the xy-plane and three units above it as in Figure 7(a).

(b) y=5, a plane in R#(a) z=3, a plane in R#

y

0

z

x 50

z

yx

3

(b) The equation y − 5 represents the set of all points in R 3 whose y-coordinate is 5. 
This is the vertical plane that is parallel to the xz-plane and five units to the right of it as 
in Figure 7(b). ■

FIGURE 7
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NOTE When an equation is given, we must understand from the context whether it rep-
resents a curve in R 2 or a surface in R 3. For example, x − 2 represents a plane in R 3, but 
of course x − 2 can also represent a line in R 2 if we are dealing with two-dimensional 
analytic geometry. See Figure 8.

In general, if k is a constant, then x − k represents a plane parallel to the yz-plane,  
y − k is a plane parallel to the xz-plane, and z − k is a plane parallel to the xy-plane. In  
Figure 5, the faces of the rectangular box are formed by the three coordinate planes 
x − 0 (the yz-plane), y − 0 (the xz-plane), and z − 0 (the xy-plane), and the planes 
x − a, y − b, and z − c.

EXAMPLE 2 
(a) Which points sx, y, zd satisfy the equations

x 2 1 y 2 − 1    and    z − 3

(b) What does the equation x 2 1 y 2 − 1 represent as a surface in R 3?
(c) What solid region in R 3 is represented by the inequalities x 2 1 y 2 < 1, 2 < z < 4?

SOLUTION
(a) Because z − 3, the points lie in the horizontal plane z − 3 from Example 1(a). 
Because x 2 1 y 2 − 1, the points lie on the circle with radius 1 and center on the z-axis. 
See Figure 9.

(b) Given that x 2 1 y 2 − 1, with no restriction on z, we see that the point sx, y, zd 
could lie on a circle in any horizontal plane z − k. So the surface x 2 1 y 2 − 1 in R 3 
consists of all possible horizontal circles x 2 1 y 2 − 1, z − k, and is therefore the circu-
lar cylinder with radius 1 whose axis is the z-axis. See Figure 10.

(c) Because x 2 1 y 2 < 1, any point sx, y, zd in the region must lie on or inside the 
circle of radius 1, centered on the z-axis, in a horizontal plane z − k. We are given that 
2 < z < 4, so the given inequalities represent the portion of the solid circular cylinder 
of radius 1, with axis the z-axis, that lies on or between the planes z − 2 and z − 4. See 
Figure 11.
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FIGURE 9  
The circle x 2 1 y 2 − 1, z − 3

FIGURE 10  
The cylinder x 2 1 y 2 − 1

FIGURE 11  
The solid region x 2 1 y 2 < 1, 
2 < z < 4

� ■

0

y

2 x

(b) In R@, x=2 is a line.(a) In R#, x=2 is a plane.

0

z

yx

(2, 0, 0)

0

y

2 x

(b) In R@, x=2 is a line.

FIGURE 8

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 12.1  Three-Dimensional Coordinate Systems 833

EXAMPLE 3 Describe and sketch the surface in R 3 represented by the equation y − x.

SOLUTION The equation represents the set of all points in R 3 whose x- and 
y-coordinates are equal, that is, hsx, x, zd | x [ R, z [ Rj. This is a vertical plane that 
intersects the xy-plane in the line y − x, z − 0. The portion of this plane that lies in the 
first octant is sketched in Figure 12. ■

■	 Distance and Spheres
The familiar formula for the distance between two points in a plane is easily extended to 
the following three-dimensional formula.

Distance Formula in Three Dimensions The distance | P1P2 | between the 
points P1sx1, y1, z1d and P2sx2, y2, z2 d is

| P1P2 | − ssx2 2 x1d2 1 sy2 2 y1d2 1 sz2 2 z1d2 

To see why this formula is true, we construct a rectangular box as in Figure 13, where 
P1 and P2 are opposite vertices and the faces of the box are parallel to the coordinate  
planes. If Asx2, y1, z1d and Bsx2, y2, z1d are the vertices of the box indicated in the figure, 
then

| P1A | − | x2 2 x1 |      | AB | − | y2 2 y1 |      | BP2 | − | z2 2 z1 |
Because triangles P1BP2 and P1AB are both right-angled, two applications of the Pythago-
rean Theorem give

 | P1P2 |2 − | P1B |2 1 | BP2 |2

and  | P1B |2 − | P1A |2 1 | AB |2

Combining these equations, we get

 | P1P2 |2 − | P1A |2 1 | AB |2 1 | BP2 |2

 − | x2 2 x1 |2 1 | y2 2 y1 |2 1 | z2 2 z1 |2

 − sx2 2 x1d2 1 sy2 2 y1d2 1 sz2 2 z1d2

Therefore  | P1P2 | − ssx2 2 x1d2 1 sy2 2 y1d2 1 sz2 2 z1d2 

EXAMPLE 4 The distance from the point Ps2, 21, 7d to the point Qs1, 23, 5d is

  | PQ | − ss1 2 2d2 1 s23 1 1d2 1 s5 2 7d2 − s1 1 4 1 4 − 3 ■

A sphere with radius r and center Csh, k, ld is defined as the set of all points Psx, y, zd 
whose distance from C is r. (See Figure 14.) Thus P is on the sphere if and only if 

| PC | − r, that is 

ssx 2 hd2 1 s  y 2 kd2 1 sz 2 l d2 − r

Squaring both sides, we have the following result.
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Equation of a Sphere An equation of a sphere with center Csh, k, ld and radius r 
is

sx 2 hd2 1 sy 2 kd2 1 sz 2 ld2 − r 2

In particular, if the center is the origin O, then an equation of the sphere is

x 2 1 y 2 1 z2 − r 2

EXAMPLE 5 Find an equation of the sphere with center s3, 21, 6d that passes through 
the point s5, 2, 3d.

SOLUTION The radius r of the sphere is the distance between the points s3, 21, 6d  
and s5, 2, 3d:  

 r − ss5 2 3d2 1 f2 2 s21dg2 1 s3 2 6d2
 − s22 

Then an equation of the sphere is

sx 2 3d2 1 f  y 2 s21dg 

2 1 sz 2 6d2 − (s22 )2

or sx 2 3d2 1 s  y 1 1d 

2 1 sz 2 6d2 − 22 ■

EXAMPLE 6 Show that x 2 1 y 2 1 z2 1 4x 2 6y 1 2z 1 6 − 0 is the equation of a 
sphere, and find its center and radius.

SOLUTION We can rewrite the given equation in the form of an equation of a sphere if 
we complete squares:

 sx 2 1 4x 1 4d 1 sy 2 2 6y 1 9d 1 sz2 1 2z 1 1d − 26 1 4 1 9 1 1

 sx 1 2d2 1 sy 2 3d2 1 sz 1 1d2 − 8

Comparing this equation with the standard form, we see that it is the equation of a 
sphere with center s22, 3, 21d and radius s8 − 2s2 . ■

EXAMPLE 7 What region in R 3 is represented by the following inequalities?

1 < x 2 1 y 2 1 z2 < 4    z < 0

SOLUTION The inequalities

1 < x 2 1 y 2 1 z2 < 4

can be rewritten as

 1 < sx 2 1 y 2 1 z 2 < 2

so they represent the points sx, y, zd whose distance from the origin is at least 1 and at 
most 2. But we are also given that z < 0, so the points lie on or below the xy-plane.  
Thus the given inequalities represent the region that lies between (or on) the spheres 
x 2 1 y 2 1 z2 − 1 and x 2 1 y 2 1 z2 − 4 and beneath (or on) the xy-plane. It is 
sketched in Figure 15. ■
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12.1 Exercises
 1.  Suppose you start at the origin, move along the x-axis a dis-

tance of 4 units in the positive direction, and then move 
downward a distance of 3 units. What are the coordinates  
of your position?

 2.  Sketch the points s1, 5, 3d, s0, 2, 23d, s23, 0, 2d, and 
s2, 22, 21d on a single set of coordinate axes.

 3.  Which of the points As24, 0, 21d, Bs3, 1, 25d, and Cs2, 4, 6d 
is closest to the yz-plane? Which point lies in the xz-plane?

 4.  What are the projections of the point (2, 3, 5) on the xy-, yz-,  
and xz-planes? Draw a rectangular box with the origin and 
s2, 3, 5d as opposite vertices and with its faces parallel to the 
coordinate planes. Label all vertices of the box. Find the 
length of the diagonal of the box.

 5.  What does the equation x − 4 represent in R2 ? What does it 
represent in R3? Illustrate with sketches.

 6.  What does the equation y − 3 represent in R3 ? What does 
z − 5 represent? What does the pair of equations y − 3, 
z − 5 represent? In other words, describe the set of points 
sx, y, zd such that y − 3 and z − 5. Illustrate with a sketch.

 7.  Describe and sketch the surface in R3 represented by the 
equation x 1 y − 2.

 8.  Describe and sketch the surface in R3 represented by the 
equation x 2 1 z 2 − 9.

9–10 Find the distance between the given points.

 9. s3, 5, 22d,  s21, 1, 24d 10. s26, 23, 0d,  s2, 4, 5d

11–12 Find the lengths of the sides of the triangle PQR. Is it a 
right triangle? Is it an isosceles triangle?

 11. Ps3, 22, 23d,  Qs7, 0, 1d,  Rs1, 2, 1d

 12. Ps2, 21, 0d,  Qs4, 1, 1d,  Rs4, 25, 4d

 13.  Determine whether the points lie on a straight line.
 (a) As2, 4, 2d,  Bs3, 7, 22d,  Cs1, 3, 3d
 (b) Ds0, 25, 5d,  Es1, 22, 4d,  Fs3, 4, 2d

 14. Find the distance from s4, 22, 6d to each of the following.
  (a) The xy-plane (b) The yz-plane
  (c) The xz-plane (d) The x-axis
  (e) The y-axis (f ) The z-axis

 15.  Find an equation of the sphere with center s23, 2, 5d and 
radius 4. What is the intersection of this sphere with the  
yz-plane?

 16.  Find an equation of the sphere with center s2, 26, 4d and 
radius 5. Describe its intersection with each of the coordinate 
planes.

 17.  Find an equation of the sphere that passes through the point  
s4, 3, 21d and has center s3, 8, 1d.

 18.  Find an equation of the sphere that passes through the origin 
and whose center is s1, 2, 3d.

19–22 Show that the equation represents a sphere, and find its  
center and radius.

 19. x 2 1 y 2 1 z 2 1 8x 2 2z − 8 

 20. x 2 1 y 2 1 z 2 − 6x 2 4y 2 10z 

 21. 2x 2 1 2y 2 1 2z 2 2 2x 1 4y 1 1 − 0 

 22. 4x 2 1 4y 2 1 4z 2 − 16x 2 6y 2 12 

 23. Midpoint Formula Prove that the midpoint of the line seg-
ment from P1sx1, y1, z1d to P2sx2, y2, z2 d is

S x1 1 x2

2
, 

 y1 1 y2

2
, 

z1 1 z2

2 D
 24. Use the Midpoint Formula in Exercise 23 to find the center of 

a sphere if one of its diameters has endpoints s5, 4, 3d and 
s1, 6, 29d. Then find an equation of the sphere.

 25. Find an equation of the sphere with center s21, 4, 5d that  
just touches (at only one point) the (a) xy-plane, (b) yz-plane, 
and (c) xz-plane.

 26. Which coordinate plane is closest to the point s7, 3, 8d? Find 
an equation of the sphere with center s7, 3, 8d that just 
touches (at one point) that coordinate plane.

27–42 Describe in words the region of R 3 represented by the 
equation(s) or inequalities.

 27. z − 22  28. x − 3 

 29. y > 1  30. x , 4

 31. 21 < x < 2  32. z − y

 33. x 2 1 y 2 − 4,  z − 21 34. x 2 1 y 2 − 4

 35. y2 1 z2 < 25 36. x2 1 z2 < 25, 0 < y < 2 

 37. x 2 1 y 2 1 z 2 − 4 38. x 2 1 y 2 1 z 2 < 4

 39. 1 < x 2 1 y 2 1 z 2 < 5 40. 1 < x 2 1 y 2 < 5

 41. 0 < x < 3,  0 < y < 3,  0 < z < 3

 42. x 2 1 y 2 1 z 2 . 2z

43–46 Write inequalities to describe the region.

 43. The region between the yz-plane and the vertical plane x − 5

 44.  The solid cylinder that lies on or below the plane z − 8 and 
on or above the disk in the xy-plane with center the origin 
and radius 2

 45.  The region consisting of all points between (but not on) the 
spheres of radius r and R centered at the origin, where r , R
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836 CHAPTER 12  Vectors and the Geometry of Space 

 46.  The solid upper hemisphere of the sphere of radius 2 centered 
at the origin

 47.  The figure shows a line L1 in space and a second line L2, which 
is the projection of L1 onto the xy-plane. (In other words, the 
points on L2 are directly beneath, or above, the points on L1.)

 (a) Find the coordinates of the point P on the line L1.
 (b)  Locate on the diagram the points A, B, and C, where  

the line L1 intersects the xy-plane, the yz-plane, and the  
xz-plane, respectively.

x

0

z

y

1

1 1

P

L¡

L™

 48.  Consider the points P such that the distance from P to 
As21, 5, 3d is twice the distance from P to Bs6, 2, 22d. Show 
that the set of all such points is a sphere, and find its center 
and radius.

 49.  Find an equation of the set of all points equidistant from the 
points As21, 5, 3d and Bs6, 2, 22d. Describe the set.

 50.  Find the volume of the solid that lies inside both of the 
spheres

x 2 1 y 2 1 z2 1 4x 2 2y 1 4z 1 5 − 0

   and x 2 1 y 2 1 z2 − 4

 51.  Find the distance between the spheres x 2 1 y 2 1 z 2 − 4 and 
x 2 1 y 2 1 z 2 − 4x 1 4y 1 4z 2 11.

 52.  Describe and sketch a solid with the following properties: 
When illuminated by rays parallel to the z-axis, its shadow is 
a circular disk. If the rays are parallel to the y-axis, its shadow 
is a square. If the rays are parallel to the x-axis, its shadow is 
an isosceles triangle.

Vectors

The term vector is used in mathematics and the sciences to indicate a quantity that has 
both magnitude and direction. For instance, to describe the velocity of a moving object, 
we must specify both the speed of the object and the direction of travel. Other examples 
of vectors include force, displacement, and acceleration. 

■	 Geometric Description of Vectors
A vector is often represented by an arrow or a directed line segment. The length of the 
arrow represents the magnitude of the vector and the arrow points in the direction of the 
vector. We denote a vector by printing a letter in boldface svd or by putting an arrow 
above the letter svld.

For instance, suppose a particle moves along a line segment from point A to point B. 
The corresponding displacement vector v, shown in Figure 1, has initial point A (the tail)

and terminal point B (the tip) and we indicate this by writing v − AB
l

. Notice that the 

vector u − CD
l

 has the same length and the same direction as v even though it is in a 
different position. We say that u and v are equivalent (or equal) and we write u − v. 
The zero vector, denoted by 0, has length 0. It is the only vector with no specific 
direction.

We will often find it useful to combine vectors. For example, suppose a particle moves 

from A to B with displacement vector AB
l

, and then the particle changes direction and 

moves from B to C, with displacement vector BC
l

, as shown in Figure 2. The combined 
effect of these displacements is that the particle has moved from A to C. The resulting 

displacement vector AC
l

 is called the sum of AB
l

 and BC
l

 and we write

AC
l

− AB
l

1 BC
l

12.2
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C

B

A

FIGURE 2

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 12.2  Vectors 837

In general, if we start with vectors u and v, we first place v so that its tail coincides 
with the tip of u and define the sum of u and v as follows.

Definition of Vector Addition If u and v are vectors positioned so the initial 
point of v is at the terminal point of u, then the sum u 1 v is the vector from the 
initial point of u to the terminal point of v.

The definition of vector addition is illustrated in Figure 3. You can see why this defi-
nition is sometimes called the Triangle Law.

vu+v

u

v
v+

u

u

u

v

u+
v

FIGURE 3  
Triangle Law     

vu+v

u

v
v+

u

u

u

v

u+
v

FIGURE 4  
Parallelogram Law

In Figure 4 we start with the same vectors u and v as in Figure 3 and draw another  
copy of v with the same initial point as u. Completing the parallelogram, we see that 
u 1 v − v 1 u. This also gives another way to construct the sum: if we place u and v so 
they start at the same point, then u 1 v lies along the diagonal of the parallelogram with 
u and v as sides. (This is called the Parallelogram Law.)

EXAMPLE 1 Draw the sum of the vectors a and b shown in Figure 5.

SOLUTION First we place b with its tail at the tip of a, being careful to draw a copy of b 
that has the same length and direction. Then we draw the vector a 1 b [see Figure 6(a)] 
starting at the initial point of a and ending at the terminal point of the copy of b.

Alternatively, we could place b so it starts where a starts and construct a 1 b by the 
Parallelogram Law as shown in Figure 6(b).

 

a
b

a+b

(a)

a

a+b
b

(b)  ■

We now define multiplication of a vector v by a real number c. In this context we call 
the real number c a scalar to distinguish it from a vector. For instance, we want the sca-
lar multiple 2v to be the same vector as the sum v 1 v, which has the same direction as 
v but is twice as long. In general, we multiply a vector by a scalar as follows.

Definition of calar Multiplication If c is a scalar and v is a vector, then the 
scalar multiple cv is the vector whose length is | c | times the length of v and 
whose direction is the same as v if c . 0 and is opposite to v if c , 0. If c − 0 or 
v − 0, then cv − 0.

a b

FIGURE 5

FIGURE 6
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This definition is illustrated in Figure 7. We see that real numbers work like scaling fac- 
tors here; that’s why we call them scalars. Notice that two nonzero vectors are parallel 
if they are scalar multiples of one another. In particular, the vector 2v − s21dv has the 
same length as v but points in the opposite direction. We call it the negative of v.

_1.5vv 2v _vv1
2

By the difference u 2 v of two vectors we mean

u 2 v − u 1 s2vd

For the vectors u and v shown in Figure 8(a), we can construct the difference u 2 v by 
first drawing the negative of v, 2v, and then adding it to u by the Parallelogram Law as 
in Figure 8(b). Alternatively, since v 1 su 2 vd − u, the vector u 2 v, when added to v, 
gives u. So we could construct u 2 v as in Fig ure 8(c) by means of the Triangle Law. 
Notice that if u and v both start from the same initial point, then u 2 v connects the tip 
of v to the tip of u.

(b)

uv

u-v

_v

(c)

v

u-v

u

(a)

v u

EXAMPLE 2 If a and b are the vectors shown in Figure 9, draw a 2 2b.

SOLUTION We first draw the vector 22b pointing in the direction opposite to b and 
twice as long. We place it with its tail at the tip of a and then use the Triangle Law to 
draw a 1 s22bd as shown in Figure 10.

a
b

FIGURE 9

a_2b

a-2b

FIGURE 10  ■

■	 Components of a Vector
For some purposes it’s convenient to introduce a coordinate system that allows us to treat 
vectors algebraically. If we place the initial point of a vector a at the origin of a rectan-
gular coordinate system, then the terminal point of a has coordinates of the form sa1, a2d 
or sa1, a2, a3d, depending on whether our coordinate system is two- or three-dimensional 
(see Figure 11). These coordinates are called the components of a and we write

a − ka1, a2 l       or      a − ka1, a2, a3 l

FIGURE 7  
Scalar multiples of v

FIGURE 8  
Drawing the difference u 2 v
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We use the notation ka1, a2l for the ordered pair that refers to a vector so as not to confuse 
it with the ordered pair sa1, a2d that refers to a point in the plane.

a=ka¡, a™l a=ka¡, a™, a£l

(a¡, a™)

O

y

x

a

z

x y

a
O

(a¡, a™, a£)

For instance, all of the vectors shown in Figure 12 are equivalent to the vector 

OP
l

− k3, 2l whose terminal point is Ps3, 2d. What they have in common is that the 
terminal point is reached from the initial point by a displacement of three units to the 
right and two upward. We can think of all these geometric vectors as representations 

of the algebraic vector a − k3,  2l. The particular representation OP
l

 from the origin to 
the point Ps3, 2d is called the position vector of the point P.

In three dimensions, the vector a − OP
l

− ka1, a2, a3l is the position vector of the  
point Psa1, a2, a3d. (See Figure 13.) Let’s consider any other representation of a by a 

directed line segment AB
l

  with initial point Asx1, y1, z1d and terminal point Bsx2, y2, z2 d. 
Then we must have x1 1 a1 − x2, y1 1 a2 − y2, and z1 1 a3 − z2 and so a1 − x2 2 x1, 
a2 − y2 2 y1, and a3 − z2 2 z1. Thus we have the following result.

1  Given the points Asx1, y1, z1d and Bsx2, y2, z2 d, the vector a with represen-

tation AB
l

 is
a − kx2 2 x1, y2 2 y1, z2 2 z1l

EXAMPLE 3 Find the vector represented by the directed line segment with initial  
point As2, 23, 4) and terminal point Bs22, 1, 1d.

SOLUTION By (1), the vector corresponding to AB
l

 is

 a −  k22 2 2, 1 2 s23d, 1 2 4l −  k24, 4, 23l ■

The magnitude or length of the vector v is the length of any of its representations and 
is denoted by the symbol | v | or || v ||. By using the distance formula to compute the 
length of a segment OP, we obtain the following formulas.

The length of the two-dimensional vector a − k a1, a2 l is

|a | − sa 2
1 1 a 2

2
  

The length of the three-dimensional vector a − ka1, a2, a3l is

| a | − sa 2
1  1 a 2

2  1 a 2
3

 

FIGURE 11

(1, 3)

(4, 5)

x

y

O

P(3, 2)

FIGURE 12  
Representations of a − k3,  2l

O

z

y
x

position
vector of P

P(a¡, a™, a£)

A(x, y, z) B(x+a¡, y+a™, z+a£)

FIGURE 13  
Representations of a − ka1, a2, a3l
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How do we add vectors algebraically? Figure 14 shows that if a − ka1, a2l and 
b − kb1, b2l, then their sum is a 1 b − ka1 1 b1, a2 1 b2l, at least for the case where the 
components are positive. In other words, to add algebraic vectors we add corresponding 
components. Similarly, to subtract vectors we subtract corresponding components. From 
the similar triangles in Figure 15 we see that the components of ca are ca1 and ca2. So 
to multiply a vector by a scalar we multiply each component by that scalar.

If a − k a1,  a2 l and b − kb1,  b2l, then

a 1 b − ka1 1 b1, a2 1 b2l   a 2 b − ka1 2 b1, a2 2 b2l

ca − k ca1, ca2 l

Similarly, for three-dimensional vectors,

 k a1, a2, a3 l 1 k b1, b2, b3 l − k a1 1 b1, a2 1 b2, a3 1 b3 l

 k a1, a2, a3 l 2 k b1, b2, b3 l − k a1 2 b1, a2 2 b2, a3 2 b3 l

 ck a1, a2, a3 l − k ca1, ca2, ca3 l

EXAMPLE 4 If a − k 4, 0, 3 l and b − k 22, 1, 5 l, find | a | and the vectors a 1 b, 
a 2 b, 3b, and 2a 1 5b.

SOLUTION  | a | − s42 1 02 1 32 − s25 − 5

 a 1 b − k4, 0, 3l 1 k22, 1, 5l

 − k4 1 s22d, 0 1 1, 3 1 5l − k2, 1, 8l

 a 2 b − k4, 0, 3l 2 k22, 1, 5l

 − k4 2 s22d, 0 2 1, 3 2 5l − k6, 21, 22l

 3b − 3k22, 1, 5l − k3s22d, 3s1d, 3s5dl − k26, 3, 15l

 2a 1 5b − 2k4, 0, 3l 1 5k22, 1, 5l

  − k8, 0, 6l 1 k210, 5, 25l − k22, 5, 31l  ■

We denote by V2 the set of all two-dimensional vectors and by V3 the set of all three-
dimensional vectors. More generally, we will later need to consider the set Vn of all  
n-dimensional vectors. An n-dimensional vector is an ordered n-tuple:

a − k a1, a2, . . . , an l

where a1, a2, . . . , an are real numbers that are called the components of a. Addition and 
scalar multiplication in Vn are defined in terms of components just as for the cases n − 2 
and n − 3.

Properties of Vectors If a, b, and c are vectors in Vn and c and d are scalars, 
then

1. a 1 b − b 1 a 2. a 1 sb 1 cd − sa 1 bd 1 c

3. a 1 0 − a 4. a 1 s2ad − 0

5. csa 1 bd − ca 1 cb 6. sc 1 dda − ca 1 da

7. scdda − csdad 8. 1a − a

0

y

xb¡a¡

b¡

b™b
a+b

a

(a¡+b¡, a™+b™)

a™ a™

FIGURE 14

ca™

ca¡

ca
a™

a¡

a

FIGURE 15

Vectors in n dimensions are used to 
list various quantities in an organized 
way. For instance, the components of 
a six-dimensional vector

p − k p1, p2, p3, p4, p5, p6 l

might represent the prices of six 
dif erent ingredients required to  
make a particular product. Four-
dimensional vectors k x, y, z, t l are 
used in relativity theory, where the 
first three components specify a 
position in space and the fourth 
represents time.
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These eight properties of vectors can be readily verified either geometrically or alge-
braically. For instance, Property 1 can be seen from Figure 4 (it’s equivalent to the Paral-
lelogram Law) or as follows for the case n − 2:

 a 1 b − ka1, a2 l 1 kb1, b2 l − ka1 1 b1, a2 1 b2 l

 − kb1 1 a1, b2 1 a2 l − kb1, b2 l 1 ka1, a2 l

 − b 1 a

We can see why Property 2 (the associative law) is true by looking at Figure 16 and 

applying the Triangle Law several times: the vector PQ
l

 is obtained either by first con-
structing a 1 b and then adding c or by adding a to the vector b 1 c.

Three vectors in V3 play a special role. Let

 i − k1, 0, 0l       j − k0, 1, 0l      k − k0, 0, 1l

These vectors i, j, and k are called the standard basis vectors. They have length 1 and 
point in the directions of the positive x-, y-, and z-axes. Similarly, in two dimensions we 
define i − k1, 0l and j − k 0, 1l. (See Figure 17.)

(a)

0

y

x

j (1, 0)

(0, 0, 1)

i

(0, 1)

(b)

z

x
y

j

i

k

(1, 0, 0)
(0, 1, 0)

If a − ka1, a2, a3l, then we can write

 a − ka1, a2, a3 l − ka1, 0, 0 l 1 k0, a2, 0 l 1 k0, 0, a3 l

 − a1k1, 0, 0 l 1 a2k0, 1, 0 l 1 a3k0, 0, 1 l

2   a − a1 i 1 a2 j 1 a3 k  

Thus any vector in V3 can be expressed in terms of i, j, and k. For instance,

k1, 22, 6l − i 2 2j 1 6k

Similarly, in two dimensions, we can write

3  a − ka1, a2 l − a1 i 1 a2 j 

See Figure 18 for the geometric interpretation of Equations 3 and 2 and compare with  
Figure 17.

EXAMPLE 5 If a − i 1 2j 2 3k and b − 4 i 1 7 k, express the vector 2a 1 3b in 
terms of i, j, and k.

SOLUTION Using Properties 1, 2, 5, 6, and 7 of vectors, we have

 2a 1 3b − 2si 1 2j 2 3kd 1 3s4 i 1 7kd
  − 2 i 1 4j 2 6k 1 12 i 1 21k − 14 i 1 4j 1 15k ■

b

c

a

(a+b)+c

P

Q

=a+(b+c)
a+b

b+c

FIGURE 16

FIGURE 17  
Standard basis vectors in V2 and V3

(b) a=a¡i+a™ j+a£k

(a) a=a¡i+a™ j

0

a

a¡i

a™ j

(a¡, a™)

a™ j

a£k

(a¡, a™, a£)

a¡i

a

y

x

z

x
y

FIGURE 18
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A unit vector is a vector whose length is 1. For instance, i, j, and k are all unit vectors. 
In general, if a ± 0, then the unit vector that has the same direction as a is

4  u −
1

| a |  a −
a

| a |   

In order to verify this, we let c − 1y| a |. Then u − ca and c is a positive scalar, so u has 
the same direction as a. Also

| u | − | ca | − | c | | a | −
1

| a |  | a | − 1

EXAMPLE 6 Find the unit vector in the direction of the vector 2 i 2 j 2 2k.

SOLUTION The given vector has length

| 2 i 2 j 2 2k | − s22 1 s21d2 1 s22d2 − s9 − 3

so, by Equation 4, the unit vector with the same direction is

 1
3 s2 i 2 j 2 2kd − 2

3 i 2 1
3 j 2 2

3 k ■

■	 Applications
Vectors are useful in many aspects of physics and engineering. In Chapter 13 we will see 
how they describe the velocity and acceleration of objects moving in space. Here we first 
look at forces.

A force is represented by a vector because it has both magnitude (measured in pounds 
or newtons) and direction. If several forces are acting on an object, the resul tant force 
experienced by the object is the vector sum of these forces.

EXAMPLE 7 A 100 kg weight hangs from two wires as shown in Figure 19. Find the 
tensions (forces) T1 and T2 in the wires and the magnitudes of these tensions.

100

T¡

50° 32°

T™

SOLUTION We first express T1 and T2 in terms of their horizontal and vertical compo-
nents. From Figure 20 we see that

5   T1 − 2| T1 | cos 50° i 1 | T1 | sin 50° j

6   T2 − | T2 | cos 32° i 1 | T2 | sin 32° j

The force of gravity acting on the load is F − 2100s9.8d j − 2980 j. The resultant 
T1 1 T2 of the tensions counterbalances F and so we must have

T1 1 T2 − 2F − 980 j
Thus

(2| T1 | cos 50° 1 | T2 | cos 32°) i 1 (| T1 | sin 50° 1 | T2 | sin 32°) j − 980 j

Equating components, we get

 2| T1 | cos 50° 1 | T2 | cos 32° − 0

 | T1 | sin 50°  1 | T2 | sin 32°  − 980

Gibbs
Josiah Willard Gibbs (1839 –1903), a 
professor of mathematical physics at 
Yale College, published the first book 
on vectors, Vector Analysis, in 1881. 
More complicated objects, called qua-
ternions, had earlier been invented by 
Sir William Rowan Hamilton as math-
ematical tools for describing space, 
but they weren’t easy for scientists 
to use. Quaternions have a scalar 
part and a vector part. Gibb’s idea 
was to use the vector part separately. 
Maxwell and Heaviside had similar 
ideas, but Gibb’s approach has proved 
to be the most convenient way to 
study space.

FIGURE 19

50°

w

T¡
50° 32°

32°

T™

FIGURE 20
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 SECTION 12.2  Vectors 843

Solving the first of these equations for | T2 | and substituting into the second, we get

 | T1 | sin 50° 1 | T1| cos 50°

cos 32°
 sin 32° − 980

 | T1 | Ssin 50° 1 cos 50° 
sin 32°

cos 32°
 D − 980

So the magnitudes of the tensions are

 | T1 | −
980

sin 50° 1 tan 32° cos 50°
< 839 N

and  | T2 | − | T1 | cos 50°

cos 32°
< 636 N

Substituting these values in (5) and (6), we obtain the tension vectors

 T1 < 2539 i 1 643 j

  T2 < 539 i 1 337 j  ■

If an airplane is flying in wind, then the true course, or track, of the plane is the direc-
tion of the resultant of the velocity vectors of the plane and of the wind. The ground 
speed of the plane is the magnitude of the resultant. Similarly, a boat navigating through 
flowing water follows a true course in the direction of the resultant of the velocity vectors 
of the boat and of the water current.

EXAMPLE 8 A woman launches a boat from the south shore of a straight river that 
flows directly west at 4 kmyh. She wants to land at the point directly across on the 
opposite shore. If the speed of the boat (relative to the water) is 8 kmyh, in what 
direction should she steer the boat in order to arrive at the desired landing point? 

SOLUTION Let’s choose coordinate axes with the origin at the initial position of the boat, 
as shown in Figure 21. The velocity of the river current is vc − 24 i and, since the speed 
of the boat (in still water) is 8 kmyh, the boat’s velocity is vb − 8scos � i 1 sin � jd, 
where � is as shown in the figure. The resultant velocity is

 v − vb 1 vc

 − 8 cos � i 1 8 sin � j 2 4 i − s24 1 8 cos �di 1 s8 sin �d j

We want the true course of the boat to be directly north, so the x-component of v must 
be zero:

24 1 8 cos � − 0  ›?  cos � − 1
2  ›?  � − 60°

Thus the woman should steer the boat in the direction � − 60°, or N 30° E. ■

0

v

vc

y

x

vb

¨

FIGURE 21

When describing directions for 
navigation, we often use a bearing, 
such as N 20° W, which means from 
the northerly direction, turn 20° 
toward west. (Note that a bearing 
always begins with either north or 
south.)

12.2 Exercises
 1. Is each of the following quantities a vector or a scalar? 

Explain.

 (a) The cost of a theater ticket

 (b) The current in a river

 (c) The initial flight path from Houston to Dallas
 (d) The population of the world

 2.  What is the relationship between the point (4, 7) and the  
vector k4, 7 l? Illustrate with a sketch.
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 3.  Name all the equal vectors in the parallelogram shown.

B

E

A

D C

 4.  Using the vectors shown in the figure, write each sum or dif-
ference as a single vector.

  (a) AB
l

1 BC
l

 (b) CD
l

1 DB
l

  (c) DB
l

2 AB
l

 (d) DC
l

1 CA
l

1 AB
l

A

D
C

B

 5.  Copy the vectors in the figure and use them to draw the  
following vectors.

  (a) a 1 b (b) b 1 c
  (c) a 1 c (d) a 2 c
  (e) b 1 a 1 c (f ) a 2 b 2 c

c
b

a

 6.  Copy the vectors in the figure and use them to draw the  
following vectors.

  (a) u 1 v (b) u 2 v
  (c) 2u (d) 21

2 v
  (e) 3u 1 v (f) v 2 2u

u

v

 7.  In the figure, the tip of c and the tail of d are both the mid-
point of QR. Express c and d in terms of a and b.

b
a c

d

P

Q

R

 8.  If the vectors in the figure satisfy |u | − |v | − 1 and 
u 1 v 1 w − 0, what is |w |?

u

v

w

9–14 Find a vector a with representation given by the directed 

line segment AB
l

. Draw AB
l

 and the equivalent representation 
starting at the origin.

 9. As22, 1d, Bs1, 2d 10. As25, 21d, Bs23, 3d

 11. As3, 21d, Bs2, 3d 12. As3, 2d, Bs1, 0d

 13. As1, 22, 4d,  Bs22, 3, 0d 14. As3, 0, 22d, Bs0, 5, 0d

15–18 Find the sum of the given vectors and illustrate 
geometrically.

 15. k21, 4l, k6, 22l 16. k3, 21l, k21, 5l

 17. k3, 0, 1l, k0, 8, 0l 18. k1, 3, 22l, k0, 0, 6l

19–22 Find a 1 b, 4a 1 2b, | a |, and | a 2 b |.
 19. a − k23, 4l, b − k9, 21l

 20. a − 5 i 1 3 j, b − 2i 2 2 j

 21. a − 4 i 2 3 j 1 2k, b − 2 i 2 4 k

 22. a − k8, 1, 24l, b − k5, 22, 1l

23–25 Find a unit vector that has the same direction as the given 
vector.

 23. k6, 22l 24. 25 i 1 3 j 2 k

 25. 8 i 2 j 1 4k

 26.  Find the vector that has the same direction as k6, 2, 23l but 
has length 4.

27–28 What is the angle between the given vector and the posi- 
tive direction of the x-axis?

 27. i 1 s3
 

 j 28. 8 i 1 6 j

 29.  The initial point of a vector v in V2 is the origin and the termi-
nal point is in quadrant II. If v makes an angle 5�y6 with the 
positive x-axis and | v | − 4, find v in component form.

 30.  If a child pulls a sled through the snow on a level path with a 
force of 50 N exerted at an angle of 38° above the horizontal, 
find the horizontal and vertical components of the force.
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 37.  Three forces act on an object. Two of the forces are at an 
angle of 100° to each other and have magnitudes 25 N and 
12 N. The third is perpendicular to the plane of these two 
forces and has magnitude 4 N. Calculate the magnitude of the 
force that would exactly counterbalance these three forces.

 38. A rower wants to row her kayak across a channel that is 
400 m wide and land at a point 250 m upstream from her 
starting point. She can row (in still water) at 2 mys and the 
current in the channel flows at 0.5 mys. 

 (a) In what direction should she steer the kayak?
 (b) How long will the trip take?

 39. A pilot is steering a plane in the direction N 45° W at an air-
speed (speed in still air) of 290 kmyh. A wind is blowing in 
the direction S 30° E at a speed of 55 kmyh. Find the true 
course and the ground speed of the plane.

 40. A ship is sailing west at a speed of 32 kmyh and a dog is run-
ning due north on the deck of the ship at 4 kmyh. Find the 
speed and direction of the dog relative to the surface of the 
water. 

 41.  Find the unit vectors that are parallel to the tangent line to the 
parabola y − x 2 at the point s2, 4d.

 42. (a)  Find the unit vectors that are parallel to the tangent line to 
the curve y − 2 sin x at the point s�y6, 1d.

 (b)  Find the unit vectors that are perpendicular to the tangent 
line.

 (c)  Sketch the curve y − 2 sin x and the vectors in parts (a)  
and (b), all starting at s�y6, 1d.

 43.  If A, B, and C are the vertices of a triangle, find 

AB
l

1 BC
l

1 CA
l

 44.  Let C be the point on the line segment AB that is twice as far 

  from B as it is from A. If a − OA
l

, b − OB
l

, and c − OC
l

, 

  show that c − 2
3 a 1 1

3 b.

 45. (a)  Draw the vectors a − k3, 2l, b − k2, 21l, and c − k7, 1l.
 (b)  Show, by means of a sketch, that there are scalars s and t 

such that c − sa 1 tb.
 (c) Use the sketch to estimate the values of s and t.
 (d) Find the exact values of s and t.

 46.  Suppose that a and b are nonzero vectors that are not parallel 
and c is any vector in the plane determined by a and b. Give  
a geometric argument to show that c can be written as 
c − sa 1 tb for suitable scalars s and t. Then give an argu-
ment using components.

 47.  If r − kx, y, zl and r0 − kx0, y0, z0l, describe the set of all 
points sx, y, zd such that | r 2 r0 | − 1.

 48.  If r − kx, yl, r1 − kx1, y1l, and r2 − kx2, y2l, describe the  
set of all points sx, yd such that | r 2 r1 | 1 | r 2 r2 | − k, 
where k . | r1 2 r2 |.

 31.  A quarterback throws a football with angle of elevation 40° 
and speed 20 mys. Find the horizontal and vertical compo-
nents of the velocity vector.

32–33 Find the magnitude of the resultant force and the angle it 
makes with the positive x-axis.

 32. 
20 N

16 N

45°
0

y

x30°

 33. 

300 N

200 N

60°
0

y

x

 34.  A crane suspends a 500 kg steel beam horizontally by support 
cables (with negligible weight) attached from a hook to each 
end of the beam. The support cables each make an angle of 
60° with the beam. Find the tension vector in each support 
cable and the magnitude of each tension.

60° 60°

 35.  A block-and-tackle pulley hoist is suspended in a warehouse 
by ropes of lengths 2 m and 3 m. The hoist weighs 350 N. 
The ropes, fastened at different heights, make angles of 50° 
and 38° with the horizontal. Find the tension in each rope and 
the magnitude of each tension.

50°
38°

2 m 3 m

 36.  The tension vector at each end of a chain has magnitude 25 N 
(see the figure). What is the weight of the chain?

37° 37°
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 49.  Figure 16 gives a geometric demonstration of Property 2 of  
vectors. Use components to give an algebraic proof of this  
fact for the case n − 2.

 50.  Prove Property 5 of vectors algebraically for the case n − 3. 
Then use similar triangles to give a geometric proof.

 51.  Use vectors to prove that the line joining the midpoints of  
two sides of a triangle is parallel to the third side and half  
its length.

 52. Corner Reflectors Suppose the three coordinate planes are all 
mirrored, forming a corner reflector, and a light ray given by 
the vector a − ka1, a2, a3l first strikes the xz-plane, as shown 
in the figure. Use the fact that the angle of incidence equals 
the angle of reflection to show that the direction of the 
reflected ray is given by b − ka1, 2a2, a3l. Deduce that, after 
being reflected by all three mutually perpendicular mirrors, 

the resulting ray is parallel to the initial ray. (Scientists have 
used this principle, together with laser beams and an array of 
corner reflectors on the moon, to calculate very precisely the 
distance from Earth to the moon.)

b
a

z

x

y

 

In Section 3.11 we stated that a heavy flexible chain or cable suspended between two points 
at the same height takes the shape of a curve called a catenary (a term reportedly coined by 
Thomas Jefferson) with equation y − a coshsxyad. Here we use the interpretation of the deriv-
ative as the slope of a tangent to derive this equation.

Suppose that a chain (or cable) of uniform linear mass density � is hanging between two 
points, as shown in the figure. We place the origin at the vertex of the catenary, and let sx, yd be 
any point on the curve, x . 0. (By symmetry, if x , 0 we obtain a similar result.) 

0
w

T¸

T

y

x

(x, y) w

T¸

T

Consider the section of the chain from the origin to sx, yd. The forces that act on the section 
are the downward gravitational force w and the tensions T0 and T at each end of the section—
each of which is tangent to the curve. Because the section of chain is in equilibrium, we know 
that 

T0 1 T 1 w − 0

 1. Let y − f sxd be the equation of the curve and let ssxd be the arc length function (Equa-
tion 8.1.5) from the origin to the point sx, yd. Show that T − k |T0 |, t�ssxd l, where t is  
the acceleration due to gravity.

DISCOVERY PROJECT THE SHAPE OF A HANGING CHAIN
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The Dot Product

So far we have seen how to add two vectors and how to multiply a vector by a scalar. The 
question arises: is it possible to multiply two vectors so that their product is a useful 
quantity? One such product is the dot product, which we now define. Another is the cross 
product, which is discussed in the next section.

■	 The Dot Product of Two Vectors
To find the dot product of vectors a and b we multiply corresponding components and 
add.

1  Definition of the Dot roduct If a − ka1, a2, a3l and b − kb1, b2, b3l, then 
the dot product of a and b is the number a � b given by

a � b − a1b1 1 a2b2 1 a3b3

The dot product of two vectors is a real number, not a vector. For this reason, the dot 
product is sometimes called the scalar product (or inner product). Although Defini-
tion 1 is given for three-dimensional vectors, the dot product of two-dimensional vectors 
is defined in a similar fashion:

ka1, a2l � kb1, b2l − a1b1 1 a2b2

EXAMPLE 1
 k2, 4l � k3, 21l − 2s3d 1 4s21d − 2

 k21, 7, 4l � k6, 2, 21
2 l − s21ds6d 1 7s2d 1 4(21

2 ) − 6

  si 1 2j 2 3kd � s2j 2 kd − 1s0d 1 2s2d 1 s23ds21d − 7 ■

12.3

 
 2. By interpreting dyydx as the slope of a tangent at sx, yd, show that 

dy

dx
−

ssxd
a

  where a − | T0 |yst�d, a constant.

 3. Differentiate both sides of the differential equation in Problem 2 and use Equation 8.1.6 to 
obtain the second-order differential equation

d 2y

dx 2 −
1

a
Î1 1 S dy

dxD2

 

  with initial conditions ys0d − 0 (the curve passes through the origin) and y9s0d − 0 (the 
tangent at the origin is horizontal). Solve this equation by first substituting z − dyydx and 
then solving the resulting first-order differential equation. Conclude that the equation of the 
curve is

y − a cosh 
x

a
2 a

 4. Graph y − a coshsxyad 2 a for a − 1
2, a − 1, and a − 3. How does the value of a affect 

the shape of the curve?
;
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The dot product obeys many of the laws that hold for ordinary products of real num-
bers. These are stated in the following theorem.

2  Properties of the Dot Product If a, b, and c are vectors in V3 and c is a 
scalar, then

1. a � a − | a |2 2. a � b − b � a

3. a � sb 1 cd − a � b 1 a � c 4. scad � b − csa � bd − a � scbd
5. 0 � a − 0

PROOF These properties are easily proved using Definition 1. For instance, here are 
the proofs of Properties 1 and 3:

1. a � a − a 2
1 1 a 2

2 1 a 2
3 − | a |2

3.  a � sb 1 cd − ka1, a2, a3l � kb1 1 c1, b2 1 c2, b3 1 c3l

  − a1sb1 1 c1d 1 a2sb2 1 c2d 1 a3sb3 1 c3d

  − a1b1 1 a1c1 1 a2b2 1 a2c2 1 a3b3 1 a3c3

  − sa1b1 1 a2b2 1 a3b3d 1 sa1c1 1 a2c2 1 a3c3 d

  − a � b 1 a � c

The proofs of the remaining properties are left as exercises. ■

The dot product a � b can be given a geometric interpretation in terms of the angle � 
between a and b, which is defined to be the angle between the representations of a and  
b that start at the origin, where 0 < � < �. In other words, � is the angle between the 
line segments OA

l
 and OB

l
 in Figure 1. Note that if a and b are parallel vectors, then 

� − 0 or � − �.
The formula in the following theorem is used by physicists as the definition of the dot 

product.

3  Theorem If � is the angle between the vectors a and b, then

a � b − | a | | b | cos �

PROOF If we apply the Law of Cosines to triangle OAB in Figure 1, we get

4  | AB |2 − | OA |2 1 | OB |2 2 2 | OA | | OB | cos �

(Observe that the Law of Cosines still applies in the limiting cases when � − 0 or �, or 
a − 0 or b − 0.) But | OA | − | a |, | OB | − | b |, and | AB | − | a 2 b |, so Equation 4 
becomes

5  | a 2 b |2 − | a |2 1 | b |2 2 2 | a | | b | cos �

Using Properties 1, 2, and 3 of the dot product, we can rewrite the left side of this 
equation as follows:

 | a 2 b |2 − sa 2 bd � sa 2 bd

 − a � a 2 a � b 2 b � a 1 b � b

 − | a |2 2 2a � b 1 | b |2

z

x y

a
¨

b a-b
B

O
A

FIGURE 1

The Law of Cosines is reviewed in 
Appendix D.
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Therefore Equation 5 gives

 | a |2 2 2a � b 1 | b |2 − | a |2 1 | b |2 2 2 | a | | b | cos �

Thus  22a � b − 22 | a | | b | cos �

or  a � b − | a | | b | cos �  ■

EXAMPLE 2 If the vectors a and b have lengths 4 and 6, and the angle between them 
is �y3, find a � b.

SOLUTION Using Theorem 3, we have

 a � b − | a | | b | coss�y3d − 4 � 6 � 1
2 − 12 ■

The formula in Theorem 3 also enables us to find the angle between two vectors.

6  Corollary If � is the angle between the nonzero vectors a and b, then

cos � −
a � b

| a | | b |

EXAMPLE 3 Find the angle between the vectors a − k2, 2, 21l  and b − k5, 23, 2 l.

SOLUTION Since

| a | − s22 1 22 1 s21d2 − 3    and    | b | − s52 1 s23d2 1 22 − s38 

and since

a � b − 2s5d 1 2s23d 1 s21ds2d − 2

we have, from Corollary 6,

cos � −
a � b

| a | | b | −
2

3s38 

So the angle between a and b is

 � − cos21S 2

3s38 

D < 1.46  sor 84°d ■

Two nonzero vectors a and b are called perpendicular or orthogonal if the angle 
between them is � − �y2. Then Theorem 3 gives

a � b − | a | | b | coss�y2d − 0

and conversely if a � b − 0, then cos � − 0, so � − �y2. The zero vector 0 is considered 
to be perpendicular to all vectors. Therefore we have the following method for determin-
ing whether two vectors are orthogonal.

7  Two vectors a and b are orthogonal if and only if a � b − 0.
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EXAMPLE 4 Show that 2 i 1 2j 2 k is perpendicular to 5 i 2 4j 1 2k.

SOLUTION Since

s2 i 1 2j 2 kd � s5 i 2 4j 1 2kd − 2s5d 1 2s24d 1 s21ds2d − 0

these vectors are perpendicular by (7). ■

Because cos � . 0 if 0 < � , �y2 and cos � , 0 if �y2 , � < �, we see that 
a � b is positive for � , �y2 and negative for � . �y2. We can think of a � b as mea-
suring the extent to which a and b point in the same direction. The dot product a � b is 
positive if a and b point in the same general direction, 0 if they are perpendicular, and 
negative if they point in generally opposite directions (see Figure 2). In the extreme case 
where a and b point in exactly the same direction, we have � − 0, so cos � − 1 and

a � b − | a | | b |
If a and b point in exactly opposite directions, then we have � − � and so cos � − 21 
and a � b − 2| a | | b |.
■	 Direction Angles and Direction Cosines
The direction angles of a nonzero vector a are the angles �, �, and � (in the interval 
f0, �gd that a makes with the positive x-, y-, and z-axes, respectively (see Figure 3).

The cosines of these direction angles, cos �, cos �, and cos �, are called the direction 
cosines of the vector a. Using Corollary 6 with b replaced by i, we obtain

8  cos � −
a � i

| a | | i | −
a1

| a |
(This can also be seen directly from Figure 3.)

Similarly, we also have

9  cos � −
a2

| a |       cos � −
a3

| a |
By squaring the expressions in Equations 8 and 9 and adding, we see that

10  cos2� 1 cos2� 1 cos2� − 1

We can also use Equations 8 and 9 to write

 a − k a1, a2, a3 l − k | a | cos �, |a | cos �, |a | cos � l
 − | a | kcos �, cos �, cos �l

Therefore

11  
1

| a |  a − k cos �, cos �, cos � l

which says that the direction cosines of a are the components of the unit vector in the 
direction of a.

EXAMPLE 5 Find the direction angles of the vector a − k 1, 2, 3 l.

SOLUTION Since | a | − s12 1 22 1 32 − s14 , Equations 8 and 9 give

cos � −
1

s14 
      cos � −

2

s14 
      cos � −

3

s14 

a
b

a · b>0¨

a b
a · b=0

a
b

a · b<0
¨

¨ acute

¨ obtuse

¨=π/2

FIGURE 2

x
y

z

a¡

a

å
∫

ç

FIGURE 3
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and so

� − cos21S 1

s14 D < 74° � − cos21S 2

s14 D < 58° � − cos21S 3

s14 D < 37°

� ■

■	 Projections
Figure 4 shows representations PQ

l
 and PR

l
 of two vectors a and b with the same initial 

point P. If S is the foot of the perpendicular from R to the line containing PQ
l

, then the 
vector with representation PS

l
 is called the vector projection of b onto a and is denoted 

by proja b. (You can think of it as a shadow of b.)
The scalar projection of b onto a (also called the component of b along a) is defined 

to be the signed magnitude of the vector projection, which is the number | b | cos �, 
where � is the angle between a and b. (See Figure 5.) This is denoted by compa b. 
Observe that it is negative if �y2 , � < �. The equation

a � b − | a || b | cos � − | a |(| b | cos �)

shows that the dot product of a and b can be interpreted as the length of a times the  
scalar projection of b onto a. Since

| b | cos � −
a � b

| a | −
a

| a | � b

the component of b along a can be computed by taking the dot product of b with the unit 
vector in the direction of a. We summarize these ideas as follows.

Scalar projection of b onto a: compa b −
a � b

| a |

Vector projection of b onto a: proja b − S a � b

| a | D 
a

| a | −
a � b

| a |2  a

Notice that the vector projection is the scalar projection times the unit vector in the direc-
tion of a.

EXAMPLE 6 Find the scalar projection and vector projection of b − k 1, 1, 2 l  
onto a − k 22, 3, 1 l.

SOLUTION Since | a | − ss22d2 1 32 1 12 − s14 , the scalar projection of b onto a 
is

compa b −
a � b

| a | −
s22ds1d 1 3s1d 1 1s2d

s14 
−

3

s14 

The vector projection is this scalar projection times the unit vector in the direction of a:

 proja b −
3

s14 
 

a

| a | −
3

14
 a − K2

3

7
, 

9

14
, 

3

14L ■

Q

R

P
S

b
a

proja b

R

S
P

Q
a

proja b

b

FIGURE 4
Vector projections

�b � cos ¨ =

b
a

R

S Q¨

P
compa b

FIGURE 5
Scalar projection
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■	 Application: Work
One use of projections occurs in physics in calculating work. In Section 6.4 we  
defined the work done by a constant force F in moving an object through a distance d as 
W − Fd, but this applies only when the force is directed along the line of motion of the 

object. Suppose, however, that the constant force is a vector F − PR
l

 pointing in some 
other direction, as illustrated in Figure 6. If the force moves the object from P to Q, then 

the displacement vector is D − PQ
l

. The work done by this force is defined to be the 
product of the component of the force along D and the distance moved:

W − (| F | cos �) | D |
But then, from Theorem 3, we have

12  W − | F | | D | cos � − F � D

Thus the work done by a constant force F is the dot product F � D, where D is the dis-
placement vector.

EXAMPLE 7 A wagon is pulled a distance of 100 m along a horizontal path by a 
constant force of 70 N. The handle of the wagon is held at an angle 35° above the 
horizontal. Find the work done by the force.

SOLUTION If F and D are the force and displacement vectors, as pictured in Figure 7, 
then the work done is

 W − F � D − | F | | D | cos 35°

  − s70ds100d cos 35° < 5734 N∙m − 5734 J ■

EXAMPLE 8 A force is given by a vector F − 3 i 1 4j 1 5k and moves a particle 
from the point Ps2, 1, 0d to the point Qs4, 6, 2d. Find the work done.

SOLUTION The displacement vector is D − PQ
l

− k 2, 5, 2 l, so by Equation 12, the 
work done is

 W − F � D − k 3, 4, 5 l �  k 2, 5, 2 l

  − 6 1 20 1 10 − 36

If the unit of length is meters and the magnitude of the force is measured in newtons,  
then the work done is 36 J. ■

Q

F

R

S

P
¨

D

FIGURE 6

D

F
35°

35°

FIGURE 7

12.3 Exercises

 1.  Which of the following expressions are meaningful? Which 
are meaningless? Explain.

  (a) sa � bd � c (b) sa � bdc
  (c) | a | sb � cd (d) a � sb 1 cd
  (e) a � b 1 c (f ) | a | � sb 1 cd

2–10 Find a � b.

 2. a − k5, 22l, b − k3, 4l

 3. a − k1.5, 0.4l, b − k24, 6l

 4. a − k 6, 22, 3 l,  b − k 2, 5, 21 l

 5. a − k4, 1, 14 l ,  b − k 6, 23, 28 l

 6. a − k p, 2p, 2p l,  b − k 2q, q, 2q l

 7. a − 2 i 1 j,  b − i 2 j 1 k
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 24. (a) u − k25, 4, 22l, v − k3, 4, 21l
 (b) u − 9 i 2 6 j 1 3k, v − 26 i 1 4 j 2 2k
 (c) u − kc, c, cl, v − kc, 0, 2cl

 25.  Use vectors to determine whether the triangle with vertices 
Ps1, 23, 22d, Qs2, 0, 24d, and Rs6, 22, 25d is right-angled.

 26.  Find the values of x such that the angle between the vectors 
k 2, 1, 21 l, and k 1, x, 0 l is 45°.

 27. Find a unit vector that is orthogonal to both i 1 j and i 1 k.

 28.  Find two unit vectors that make an angle of 60° with  
v − k 3, 4 l.

29–30 Find the acute angle between the lines. Use degrees 
rounded to one decimal place.

 29. y − 4 2 3x, y − 3x 1 2 

 30. 5x 2 y − 8, x 1 3y − 15 

31–32 Find the acute angles between the curves at their points of 
intersection. Use degrees rounded to one decimal place. (The 
angle between two curves is the angle between their tangent lines 
at the point of intersection.)

 31. y − x 2,  y − x 3

 32. y − sin x,  y − cos x,  0 < x < �y2

33–37 Find the direction cosines and direction angles of the 
vector. (Give the direction angles correct to the nearest tenth of a 
degree.)

 33. k 4, 1, 8 l  34. k 26, 2, 9 l 

 35. 3 i 2 j 2 2k 36. 20.7 i 1 1.2 j 2 0.8k

 37. k c, c, c l,  where c . 0

 38.  If a vector has direction angles � − �y4 and � − �y3, find 
the third direction angle �.

39–44 Find the scalar and vector projections of b onto a.

 39. a − k 25, 12 l,  b − k 4, 6 l

 40. a − k 1, 4 l,  b − k 2, 3 l

 41. a − k4, 7, 24l, b − k3, 21, 1l

 42. a − k21, 4, 8l, b − k12, 1, 2l

 43. a − 3 i 2 3 j 1 k, b − 2 i 1 4 j 2 k

 44. a − i 1 2 j 1 3k, b − 5 i 2 k

 8. a − 3 i 1 2 j 2 k,  b − 4 i 1 5k

 9.  | a | − 7, | b | − 4, the angle between a and b is 30°

 10. | a | − 80, | b | − 50, the angle between a and b is 3�y4

11–12 If u is a unit vector, find u � v and u � w.

 11. 

w

u v

 12. 

w

u

v

 13. (a) Show that i � j − j � k − k � i − 0.

 (b) Show that i � i − j � j − k � k − 1.

 14.  A street vendor sells a hamburgers, b hot dogs, and c bottles 
of water on a given day. He charges $4 for a hamburger, 
$2.50 for a hot dog, and $1 for a bottle of water. If 
A − k a, b, c l and P − k 4, 2.5, 1 l, what is the meaning of 
the dot product A � P ?

15–20 Find the angle between the vectors. (First find an exact 
expression and then approximate to the nearest degree.)

 15. u − k 5, 1 l,  v − k 3, 2 l

 16. a −  i 2 3 j,  b − 23 i 1 4 j 

 17. a − k1, 24, 1l, b − k0, 2, 22l

 18. a − k21, 3, 4l, b − k5, 2, 1l

 19. u − i 2 4j 1 k,  v − 23i 1 j 1 5k

 20. a − 8 i 2 j 1 4k, b − 4 j 1 2k

21–22 Find, correct to the nearest degree, the three angles of the 
triangle with the given vertices.

 21. Ps2, 0d,  Qs0, 3d,  Rs3, 4d

 22. As1, 0, 21d,  Bs3, 22, 0d,  Cs1, 3, 3d

23–24 Determine whether the given vectors are orthogonal,  
parallel, or neither.

 23. (a) a − k9, 3l, b − k22, 6l
 (b) a − k4, 5, 22l, b − k3, 21, 5l
 (c) a − 28 i 1 12 j 1 4k, b − 6 i 2 9 j 2 3k

 (d) a − 3 i 2 j 1 3k, b − 5 i 1 9 j 2 2k
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 45.  Show that the vector ortha b − b 2 proja b is orthogonal to a. 
(It is called an orthogonal projection of b.)

 46.  For the vectors in Exercise 40, find ortha b and illustrate by 
drawing the vectors a, b, proja b, and ortha b.

 47. If a − k 3, 0, 21 l, find a vector b such that compa b − 2.

 48. Suppose that a and b are nonzero vectors.
 (a) Under what circumstances is compa b − compb a?

 (b) Under what circumstances is proja b − projb a?

 49.  Find the work done by a force F − 8 i 2 6 j 1 9k that 
moves an object from the point s0, 10, 8d along a straight line 
to the point s6, 12, 20d. The distance is measured in meters 
and the force in newtons.

 50.  A tow truck drags a stalled car along a road. The chain makes 
an angle of 30° with the road and the tension in the chain is 
1500 N. How much work is done by the truck in pulling the  
car 1 km?

 51.  A sled is pulled along a level path through snow by a rope.  
A 30 N force acting at an angle of 40° above the horizontal 
moves the sled 80 m. Find the work done by the force.

 52.  A boat sails south with the help of a wind blowing in the 
direction S 36° E with magnitude 2000 N. Find the work done 
by the wind as the boat moves 40 m.

 53.  Distance from a Point to a Line Use a scalar projection to 
show that the distance from a point P1sx1, y1d to the line 
ax 1 by 1 c − 0 is

| ax1 1 by1 1 c |
sa2 1 b 2 

Use this formula to find the distance from the point s22, 3d to 
the line 3x 2 4y 1 5 − 0.

 54.  If r − kx, y, z l, a − ka1,  a2,  a3 l, and b − kb1, b2, b3l, show 
that the vector equation sr 2 ad � sr 2 bd − 0 represents a 
sphere, and find its center and radius.

 55.  Find the angle, in degrees rounded to one decimal place, 
between a diagonal of a cube and one of its edges.

 56.  Find the angle, in degrees rounded to one decimal place, 
between a diagonal of a cube and a diagonal of one of its 
faces.

 57.   A molecule of methane, CH4, is structured with the four 
hydrogen atoms at the vertices of a regular tetrahedron and 
the carbon atom at the centroid. The bond angle is the angle 
formed by the H—C—H combination; it is the angle between 
the lines that join the carbon atom to two of the hydrogen 
atoms. Show that the bond angle is about 109.5°. 

fHint: Take the vertices of the tetrahedron to be the points 

s1, 0, 0d, s0, 1, 0d, s0, 0, 1d, and s1, 1, 1d, as shown in the fig-

ure. Then the centroid is ( 12 , 12 , 12 ).g

H

H
H

H

C

x

y

z

 58.  If c − | a | b 1 | b | a, where a, b, and c are all nonzero 
vectors, show that c bisects the angle between a and b.

 59.  Prove Properties 2, 4, and 5 of the dot product (Theorem 2).

 60.  Suppose that all sides of a quadrilateral are equal in length 
and opposite sides are parallel. Use vector methods to show 
that the diagonals are perpendicular.

 61. Cauchy-Schwartz Inequality Use Theorem 3 to prove the 
Cauchy-Schwarz Inequality:

| a � b | < | a | | b |
 62. Triangle Inequality The Triangle Inequality for vectors is

| a 1 b | < | a | 1 | b |
 (a)  Give a geometric interpretation of the Triangle Inequality.
 (b)  Use the Cauchy-Schwarz Inequality from Exercise 61 to 

prove the Triangle Inequality. [Hint: Use the fact that 

| a 1 b |2 − sa 1 bd ∙ sa 1 bd and use Property 3 of the 
dot product.]

 63. Parallelogram Identity The Parallelogram Identity states that 

| a 1 b |2 1 | a 2 b |2 − 2 | a |2 1 2 | b |2

 (a)  Give a geometric interpretation of the Parallelogram 
Identity.

 (b)  Prove the Parallelogram Identity. (See the hint in  
Exercise 62.)

 64.  Show that if u 1 v and u 2 v are orthogonal, then the 
vectors u and v must have the same length.

 65.  If � is the angle between vectors a and b, show that

proja b � projb a − sa � bd cos2�

 66. (a) Show that if u and v are nonzero orthogonal vectors, then 

| u 1 v |2 − | u |2 1 | v |2.
 (b)  Show that the converse of part (a) is also true: if 

| u 1 v |2 − | u |2 1 | v |2, then u and v are orthogonal. 
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The Cross Product

Given two nonzero vectors, it is very useful to be able to find a nonzero vector that is 
perpendicular to both of them, as we will see in the next section and in Chapters 13 and 
14. We now define an operation, called the cross product, that produces such a vector.

■	 The Cross Product of Two Vectors
Given two nonzero vectors a − k a1, a2, a3 l and b − k b1, b2, b3 l, suppose that a nonzero 
vector c − k c1, c2, c3 l is perpendicular to both a and b. Then a � c − 0 and b � c − 0 
and so

1  a1c1 1 a2c2 1 a3c3 − 0

2  b1c1 1 b2c2 1 b3c3 − 0

To eliminate c3 we multiply (1) by b3 and (2) by a3 and subtract:

3  sa1b3 2 a3b1dc1 1 sa2b3 2 a3b2dc2 − 0

Equation 3 has the form  pc1 1 qc2 − 0, for which an obvious solution is c1 − q and 
c2 − 2p. So a solution of (3) is

c1 − a2b3 2 a3b2      c2 − a3b1 2 a1b3

Substituting these values into (1) and (2), we then get

c3 − a1b2 2 a2b1

This means that a vector perpendicular to both a and b is

kc1, c2, c3 l − ka2b3 2 a3b2, a3b1 2 a1b3, a1b2 2 a2b1 l

The resulting vector is called the cross product of a and b and is denoted by a 3 b.

4  Definition of the ross Product If a − ka1, a2, a3 l and b − kb1, b2, b3 l, 
then the cross product of a and b is the vector

a 3 b − ka2b3 2 a3b2, a3b1 2 a1b3,  a1b2 2 a2b1 l

Hamilton
The cross product was invented by 
the Irish mathematician Sir William 
Rowan Hamilton (1805–1865), who 
had created a precursor of vectors, 
called quaternions. When he was fi e 
years old Hamilton could read Latin, 
Greek, and Hebrew. At age eight he 
added French and Italian and at ten 
he could read Arabic and Sanskrit. 
At the age of 21, while still an under-
graduate at Trinity College in Dublin, 
Hamilton was appointed Professor of 
Astronomy at the university and Royal 
Astronomer of Ireland!

Notice that the cross product a 3 b of two vectors a and b is a vector (whereas the dot 
product is a scalar). For this reason it is also called the vector product. Note that a 3 b 
is defined only when a and b are three-dimensional vectors.

In order to make Definition 4 easier to remember, we use the notation of determinants. 
A determinant of order 2 is defined by

Z a

c

b

d Z − ad 2 bc

12.4
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(Multiply across the diagonals and subtract.) For example,

Z 2

26

1

4 Z − 2s4d 2 1s26d − 14

A determinant of order 3 can be defined in terms of second-order determinants:

5
 Z a1

 b1

 c1

a2

b2

c2

a3

b3

c3

  Z − a1 Z b2

c2

b3

c3
Z 2 a2 Z b1

c1

b3

c3
Z 1 a3 Z b1

c1

b2

c2
Z

Observe that each term on the right side of Equation 5 involves a number ai in the first 
row of the determinant, and ai is multiplied by the second-order determinant obtained 
from the left side by deleting the row and column in which ai appears. Notice also the 
minus sign in the second term. For example,

 Z 1

3

25

2

0

4

21

1

2
Z − 1 Z 0

4

1

2
 Z 2 2 Z 3

25

1

2
 Z 1 s21d Z 3

25

0

4
  Z

 − 1s0 2 4d 2 2s6 1 5d 1 s21ds12 2 0d − 238

If we now rewrite Definition 4 using second-order determinants and the standard basis 
vectors i, j, and k, we see that the cross product of the vectors a − a1 i 1 a2 j 1 a3 k and 
b − b1 i 1 b2 j 1 b3 k is

6  a 3 b − Z a2

b2

a3

b3
 Z  i 2 Z a1

b1

a3

b3
 Z  j 1 Z a1

b1

a2

b2
 Z  k

In view of the similarity between Equations 5 and 6, we often write

7
 

a 3 b − Z i
 a1

 b1

j
a2

b2

k
a3

b3

Z
Although the first row of the symbolic determinant in Equation 7 consists of vectors, if 
we expand it as if it were an ordinary determinant using the rule in Equation 5, we obtain 
Equation 6. The symbolic formula in Equation 7 is probably the easiest way of remem-
bering and computing cross products.

EXAMPLE 1 If a − k1, 3, 4l and b − k2, 7,  25l, then

 
a 3 b − Z i

1

2

j
3

7

k
4

25
Z

 − Z 3

7

4

25
 Z  i 2 Z 1

2

4

25 Z  j 1 Z 1

2

3

7 Z  k
  − s215 2 28d i 2 s25 2 8d j 1 s7 2 6d k − 243 i 1 13j 1 k ■
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EXAMPLE 2 Show that a 3 a − 0 for any vector a in V3.

SOLUTION If a − k a1, a2, a3 l, then

 a 3 a − Z i
a1

a1

j
a2

a2

k
a3

a3

Z
 − sa2a3 2 a3a2d i 2 sa1a3 2 a3a1d j 1 sa1a2 2 a2a1d k

  − 0 i 2 0 j 1 0 k − 0  ■

■	 Properties of the Cross Product
We constructed the cross product a 3 b so that it would be perpendicular to both a and 
b. This is one of the most important properties of a cross product, so let’s emphasize and 
verify it in the following theorem and give a formal proof.

8  Theorem The vector a 3 b is orthogonal to both a and b.

PROOF In order to show that a 3 b is orthogonal to a, we compute their dot product 
as follows:

 sa 3 bd � a − Z a2

b2

a3

b3
Z  a1 2 Z a1

b1

a3

b3
Z  a2 1 Z a1

b1

a2

b2
Z  a3

 − a1sa2b3 2 a3b2 d 2 a2sa1b3 2 a3b1d 1 a3sa1b2 2 a2b1d

 − a1a2b3 2 a1b2a3 2 a1a2b3 1 b1a2a3 1 a1b2a3 2 b1a2a3

 − 0

A similar computation shows that sa 3 bd � b − 0. Therefore a 3 b is orthogonal to 
both a and b. ■

If a and b are represented by directed line segments with the same initial point (as 
in Figure 1), then Theorem 8 says that the cross product a 3 b points in a direction 
perpendicu lar to the plane through a and b. It turns out that the direction of a 3 b is 
given by the right-hand rule: if the fingers of your right hand curl in the direction of a 
rotation (through an angle less than 180°) from a to b, then your thumb points in the 
direction of a 3 b.

Now that we know the direction of the vector a 3 b, the remaining thing we need to 
complete its geometric description is its length | a 3 b |. This is given by the following  
theorem.

9  Theorem If � is the angle between a and b (so 0 < � < �), then the length 
of the cross product a 3 b is given by

| a 3 b | − | a | | b | sin �

a b

axb

¨

FIGURE 1  
The right-hand rule gives the direction 
of a 3 b.
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PROOF From the definitions of the cross product and length of a vector, we have

 | a 3 b |2 − sa2b3 2 a3b2d2 1 sa3b1 2 a1b3d2 1 sa1b2 2 a2b1d2

 − a 2
2 b 2

3 2 2a2a3b2b3 1 a 2
3 b 2

2 1 a 2
3 b 2

1 2 2a1a3b1b3 1 a 2
1 b 2

3

        1 a 2
1 b 2

2 2 2a1 a2 b1b2 1 a 2
2 b 2

1

 − sa 2
1 1 a 2

2 1 a 2
3 dsb 2

1 1 b 2
2 1 b 2

3 d 2 sa1b1 1 a2b2 1 a3b3d2

 − | a |2 | b |2 2 sa � bd2

 − | a |2 | b |2 2 | a |2 | b |2 cos2�    (by Theorem 12.3.3)

 − | a |2 | b |2 s1 2 cos2�d

 − | a |2 | b |2 sin2�

Taking square roots and observing that ssin2� − sin � because sin � > 0 when 
0 < � < �, we have

 | a 3 b | − | a | | b | sin � ■

10  Corollary Two nonzero vectors a and b are parallel if and only if

a 3 b − 0

PROOF Two nonzero vectors a and b are parallel if and only if � − 0 or �. In either 
case sin � − 0, so | a 3 b | − 0 and therefore a 3 b − 0. ■

Since a vector is completely determined by its magnitude and direction, we can now 
say that for nonparallel vectors a and b, a 3 b is the vector that is perpendicular to both 
a and b, whose orientation is determined by the right-hand rule, and whose length is 

| a | | b | sin �. In fact, that is exactly how physicists define a 3 b.
The geometric interpretation of Theorem 9 can be seen by looking at Figure 2. If a 

and b are represented by directed line segments with the same initial point, then they 
determine a parallelogram with base | a |, altitude | b | sin �, and area

A − | a | ( | b | sin �) − | a 3 b |
Thus we have the following way of interpreting the magnitude of a cross product.

The length of the cross product a 3 b is equal to the area of the parallelogram 
determined by a and b.

EXAMPLE 3 Find a vector perpendicular to the plane that passes through the points 
Ps1, 4, 6d, Qs22, 5, 21d, and Rs1, 21, 1d.

SOLUTION The vector PQ
l

3 PR
l

 is perpendicular to both PQ
l

 and PR
l

 and is therefore 
perpendicular to the plane through P, Q, and R. We know from (12.2.1) that

 PQ
l

− s22 2 1d i 1 s5 2 4d j 1 s21 2 6d k − 23 i 1 j 2 7k

 PR
l

− s1 2 1d i 1 s21 2 4d j 1 s1 2 6dk − 25 j 2 5k

Geometric characterization of a 3 b

a

b

¨

�b � sin ¨

FIGURE 2
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We compute the cross product of these vectors:

 PQ
l

3 PR
l

− Z i j k
23 1 27

0 25 25
Z

 − s25 2 35d i 2 s15 2 0d j 1 s15 2 0d k − 240 i 2 15 j 1 15k

So the vector k240, 215, 15 l is perpendicular to the given plane. Any nonzero scalar 
multiple of this vector, such as k28, 23, 3 l, is also perpendicular to the plane. ■

EXAMPLE 4 Find the area of the triangle with vertices Ps1, 4, 6d, Qs22, 5, 21d,  
and Rs1, 21, 1d.

SOLUTION In Example 3 we computed that PQ
l

3 PR
l

− k240, 215, 15 l. The area of 
the parallelogram with adjacent sides PQ and PR is the length of this cross product:

| PQ
l

3 PR
l

 | − ss240d2 1 s215d2 1 152
 

− 5s82 

The area A of the triangle PQR is half the area of this parallelogram, that is, 52 s82 . ■

If we apply Theorems 8 and 9 to the standard basis vectors i , j , and k using � − �y2,  
we obtain

 i 3 j − k     j 3 k − i     k 3 i − j

 j 3 i − 2k    k 3 j − 2i    i 3 k − 2j

Observe that i 3 j ± j 3 i

Thus the cross product is not commutative. Also

 i 3 si 3 jd − i 3 k − 2j

whereas  si 3 id 3 j − 0 3 j − 0

So the associative law for multiplication does not usually hold; that is, in general,

sa 3 bd 3 c ± a 3 sb 3 cd

However, some of the usual laws of algebra do hold for cross products. The following 
the orem summarizes the properties of vector products.

11  Properties of the Cross Product If a, b, and c are vectors and c is a  
scalar, then

1. a 3 b − 2b 3 a 2. scad 3 b − csa 3 bd − a 3 scbd
3. a 3 sb 1 cd − a 3 b 1 a 3 c 4. sa 1 bd 3 c − a 3 c 1 b 3 c

5. a � sb 3 cd − sa 3 bd � c 6. a 3 sb 3 cd − sa � cdb 2 sa � bdc

These properties can be proved by writing the vectors in terms of their components  
and using the definition of a cross product. We give the proof of Property 5 and leave the 
remaining proofs as exercises.
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PROOF OF PROPERTY 5 If a − k a1, a2, a3 l, b − kb1, b2, b3 l, and c − k c1, c2, c3 l, 
then

12   a � sb 3 cd − a1sb2c3 2 b3c2d 1 a2sb3c1 2 b1c3d 1 a3sb1c2 2 b2c1d

 − a1b2c3 2 a1b3c2 1 a2b3c1 2 a2b1c3 1 a3b1c2 2 a3b2c1

 − sa2b3 2 a3b2 dc1 1 sa3b1 2 a1b3 dc2 1 sa1b2 2 a2b1dc3

  − sa 3 bd � c  ■

■	 Triple Products
The product a � sb 3 cd that occurs in Property 5 is called the scalar triple product of 
the vectors a, b, and c. Notice from Equation 12 that we can write the scalar triple prod-
uct as a determinant:

13
 

a � sb 3 cd − Z a1

 b1

 c1

a2

b2

c2

a3

b3

c3

Z
The geometric significance of the scalar triple product can be seen by considering the 

par allelepiped determined by the vectors a, b, and c. (See Figure 3.) The area of the base  
parallelogram is A − | b 3 c |. If � is the angle between a and b 3 c, then the height h  
of the parallelepiped is h − | a | | cos � |. (We must use | cos � | instead of cos � in case 
� . �y2.) Therefore the volume of the parallelepiped is

V − Ah − | b 3 c | | a | | cos � | − | a � sb 3 cd |  (by Theorem 12.3.3)

Thus we have proved the following formula.

14  The volume of the parallelepiped determined by the vectors a, b, and c is the 
magnitude of their scalar triple product:

V − | a � sb 3 cd |

If we use the formula in (14) and discover that the volume of the parallelepiped  
determined by a, b, and c is 0, then the vectors must lie in the same plane; that is, they 
are coplanar.

EXAMPLE 5 Use the scalar triple product to show that the vectors a − k1, 4, 27 l, 
b − k2, 21, 4l, and c − k0, 29, 18l are coplanar.

SOLUTION We use Equation 13 to compute their scalar triple product:

 
a � sb 3 cd − Z 1

2

0

4

21

29

27

4

18
Z

 − 1 Z21

29

4

18
 Z 2 4 Z 20 4

18
 Z 2 7 Z 20 21

29
 Z

 − 1s18d 2 4s36d 2 7s218d − 0

a

b

¨

bxc

c
h

FIGURE 3
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Therefore, by (14), the volume of the parallelepiped determined by a, b, and c is 0.  
This means that a, b, and c are coplanar. ■

The product a 3 sb 3 cd that occurs in Property 6 is called the vector triple product 
of a, b, and c. Property 6 will be used to derive Kepler’s First Law of planetary motion 
in Chapter 13. Its proof is left as Exercise 50.

■	 Application: Torque
The idea of a cross product occurs often in physics. In particular, we consider a force F 
acting on a rigid body at a point given by a position vector r. (For instance, if we tighten 
a bolt by applying a force to a wrench as in Figure 4, we produce a turning effect.) The 
torque t (relative to the origin) is defined to be the cross product of the position and 
force vectors

t − r 3 F

and measures the tendency of the body to rotate about the origin. The direction of the 
torque vector indicates the axis of rotation. According to Theorem 9, the magnitude of 
the torque vector is

| t | − | r 3 F | − | r | | F | sin �

where � is the angle between the position and force vectors. Observe that the only com-
ponent of F that can cause a rotation is the one perpendicular to r, that is, | F | sin �.  
The magnitude of the torque is equal to the area of the parallelogram determined by r 
and F.

EXAMPLE 6 A bolt is tightened by applying a 40-N force to a 0.25-m wrench, as 
shown in Figure 5. Find the magnitude of the torque about the center of the bolt.

SOLUTION The magnitude of the torque vector is

 | t | − | r 3 F | − | r | | F | sin 75° − s0.25ds40d sin 75°

 − 10 sin 75° < 9.66 N∙m

If the bolt is right-threaded, then the torque vector itself is

t − | t | n < 9.66 n

where n is a unit vector directed down into the page (by the right-hand rule). ■

r

F
¨

t

FIGURE 4

75°

40 N0.25 m

FIGURE 5

12.4 Exercises
1–7 Find the cross product a 3 b and verify that it is orthogonal 
to both a and b.

 1. a − k2, 3, 0l, b − k1, 0, 5l

 2. a − k4, 3, 22l, b − k2, 21, 1l

 3. a − 2 j 2 4k, b − 2i 1 3 j 1 k

 4. a − 3 i 1 3 j 2 3k, b − 3 i 2 3 j 1 3k

 5. a − 1
2 i 1 1

3 j 1 1
4 k, b − i 1 2 j 2 3 k

 6. a − t i 1 cos t j 1 sin tk,  b − i 2 sin t j 1 cos tk

 7. a − k t 3, t 2, t l,  b − k t, 2t, 3t l

 8.  If a − i 2 2k and b − j 1 k, find a 3 b. Sketch a, b, and  
a 3 b as vectors starting at the origin.

9–12 Find the vector, not with determinants, but by using 
properties of cross products.

 9. si 3 jd 3 k 10. k 3 si 2 2 jd
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 11. s j 2 kd 3 sk 2 id 12. si 1 jd 3 si 2 jd

 13.  State whether each expression is meaningful. If not, explain 
why. If so, state whether it is a vector or a scalar.

  (a) a � sb 3 cd (b) a 3 sb � cd
  (c) a 3 sb 3 cd (d) a � sb � cd
  (e) sa � bd 3 sc � dd (f ) sa 3 bd � sc 3 dd

14–15 Find | u 3 v | and determine whether u 3 v is directed 
into the page or out of the page.

 14. 
60°

|u |=10
|v |=8

 15. 

|v |=3

150°

|u |=4

 16.  The figure shows a vector a in the xy-plane and a vector b in 
the direction of k. Their lengths are | a | − 3 and | b | − 2.

 (a) Find | a 3 b |.
 (b)  Use the right-hand rule to decide whether the com ponents 

of a 3 b are positive, negative, or 0.

x

z

y

b

a

 17. If a − k2, 21, 3 l and b − k4, 2, 1 l, find a 3 b and b 3 a.

 18.  If a − k1, 0, 1 l, b − k2, 1, 21 l , and c − k0, 1, 3 l, show 
that a 3 sb 3 cd ± sa 3 bd 3 c.

 19.  Find two unit vectors orthogonal to both k3, 2, 1 l and  
k21, 1, 0 l.

 20.  Find two unit vectors orthogonal to both j 2 k and i 1 j.

 21. Show that 0 3 a − 0 − a 3 0 for any vector a in V3.

 22. Show that sa 3 bd � b − 0 for all vectors a and b in V3.

23–26 Prove the specified property of cross products  
(Theorem 11).

 23. Property 1: a 3 b − 2b 3 a

 24. Property 2: scad 3 b − csa 3 bd − a 3 scbd

 25. Property 3: a 3 sb 1 cd − a 3 b 1 a 3 c

 26. Property 4: sa 1 bd 3 c − a 3 c 1 b 3 c

 27.  Find the area of the parallelogram with vertices As23, 0d, 
Bs21, 3d, Cs5, 2d, and Ds3, 21d.

 28.  Find the area of the parallelogram with vertices Ps1, 0, 2d, 
Qs3, 3, 3d, Rs7, 5, 8d, and Ss5, 2, 7d.

29–32 (a) Find a nonzero vector orthogonal to the plane through 
the points P, Q, and R, and (b) find the area of triangle PQR.

 29. Ps3, 1, 1d,  Qs5, 2, 4d,  Rs8, 5, 3d

 30. Ps22, 0, 4d,  Qs1, 3, 22d,  Rs0, 3, 5d

 31. Ps7, 22, 0d,  Qs3, 1, 3d,  Rs4, 24, 2d

 32. Ps2, 23, 4d, Qs21, 22, 2d, Rs3, 1, 23d

33–34 Find the volume of the parallelepiped determined by the  
vectors a, b, and c.

 33. a − k1, 2, 3 l,  b − k21, 1, 2 l,  c − k2, 1, 4 l

 34. a − i 1 j ,  b − j 1 k,  c − i 1 j 1 k

35–36 Find the volume of the parallelepiped with adjacent edges  
PQ, PR, and PS.

 35. Ps22, 1, 0d,  Qs2, 3, 2d,  Rs1, 4, 21d,  Ss3, 6, 1d

 36. Ps3, 0, 1d,  Qs21, 2, 5d,  Rs5, 1, 21d,  Ss0, 4, 2d

 37.  Use the scalar triple product to verify that the vectors 
u − i 1 5 j 2 2 k, v − 3 i 2 j, and w − 5 i 1 9 j 2 4 k  
are coplanar.

 38.  Use the scalar triple product to determine whether the points 
As1, 3, 2d, Bs3, 21, 6d, Cs5, 2, 0d, and Ds3, 6, 24d lie in the 
same plane.

 39.  A bicycle pedal is pushed by a foot with a 60-N force as 
shown in the figure. The shaft of the pedal is 18 cm long. 
Find the magnitude of the torque about P.

10°

70°
60 N

P
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 46. Distance from a Point to a Plane Let P be a point not on the 
plane that passes through the points Q, R, and S.

 (a) Show that the distance d from P to the plane is

d − | a � sb 3 cd |
| a 3 b |

  where a − QR
l

, b − QS
l

, and c − QP
l

.
 (b)  Use the formula in part (a) to find the distance from the 

point Ps2, 1, 4d to the plane through the points Qs1, 0, 0d, 
Rs0, 2, 0d, and Ss0, 0, 3d.

 47.  Show that | a 3 b |2 − | a |2 | b |2 2 sa � bd2.

 48.  If a 1 b 1 c − 0, show that

a 3 b − b 3 c − c 3 a

 49. Prove that sa 2 bd 3 sa 1 bd − 2sa 3 bd.

 50.  Prove Property 6 of cross products, that is,

a 3 sb 3 cd − sa � cdb 2 sa � bdc

 51. Use Exercise 50 to prove that

a 3 sb 3 cd 1 b 3 sc 3 ad 1 c 3 sa 3 bd − 0

 52. Prove that

sa 3 bd � sc 3 dd − Z a � c
a � d

b � c
b � d Z

 53. Suppose that a ± 0.
 (a) If a � b − a � c, does it follow that b − c ?
 (b) If a 3 b − a 3 c, does it follow that b − c ?
 (c)  If a � b − a � c and a 3 b − a 3 c, does it follow  

that b − c ?

 54. If v1, v2, and v3 are noncoplanar vectors, let

k1 −
v2 3 v3

v1 � sv2 3 v3 d
    k2 −

v3 3 v1

v1 � sv2 3 v3 d

k3 −
v1 3 v2

v1 � sv2 3 v3 d

(These vectors occur in the study of crystallography. Vectors  
of the form n1 v1 1 n2 v2 1 n3 v3 , where each ni is an integer, 
form a lattice for a crystal. Vectors written similarly in 
terms of k1, k2, and k3 form the reciprocal lattice.)

 (a) Show that k i is perpendicular to vj if i ± j.
 (b) Show that k i � vi − 1 for i − 1, 2, 3.

 (c) Show that k1 � sk2 3 k3 d −
1

v1 � sv2 3 v3 d
.

 40. (a)  A horizontal force of 90 N is applied to the handle of a 
gearshift lever as shown in the figure. Find the magnitude 
of the torque about the pivot point P.

 (b)  Find the magnitude of the torque about P if the same 
force is applied at the elbow Q of the lever.

20 cm

30 cm

60 cm

P

Q

20 cm

90 N

 41.  A wrench 30 cm long lies along the positive y-axis and grips 
a bolt at the origin. A force is applied in the direction 
k0, 3, 24 l at the end of the wrench. Find the magnitude of 
the force needed to supply 100 N∙m of torque to the bolt.

 42.  Let v − 5 j and let u be a vector with length 3 that starts at  
the origin and rotates in the xy -plane. Find the maximum and 
minimum values of the length of the vector u 3 v. In what 
direction does u 3 v point?

 43.  If a � b − s3  and a 3 b − k1, 2, 2 l, find the angle between 
a and b.

 44. (a)  Find all vectors v such that

k1, 2, 1 l 3 v − k3, 1, 25 l

 (b)  Explain why there is no vector v such that

k1, 2, 1 l 3 v − k3, 1, 5 l

 45. Distance from a Point to a Line Let P be a point not on the 
line L that passes through the points Q and R. 

 (a) Show that the distance d from the point P to the line L is

d − | a 3 b |
| a |

  where a − QR
l

 and b − QP
l

.
 (b)  Use the formula in part (a) to find the distance from  

the point Ps1, 1, 1d to the line through Qs0, 6, 8d and 
Rs21, 4, 7d.
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Equations of Lines and Planes

■	 Lines
A line in the xy-plane is determined when a point on the line and the direction of the line 
(its slope or angle of inclination) are given. The equation of the line can then be written 
using the point-slope form.

Likewise, a line L in three-dimensional space is determined when we know a point 
P0sx0, y0, z0d on L and a direction for L, which is conveniently described by a vector v 
parallel to the line. Let Psx, y, zd be an arbi trary point on L and let r0 and r be the posi-

tion vectors of P0 and P (that is, they have representations OPA̧ and OP
l

). If a is the vector 

with representation P¸PA, as in Figure 1, then the Triangle Law for vector addition gives 
r − r0 1 a.

x

O

z

y

a

v

rr¸L

P(x, y, z)

P¸(x¸, y¸, z¸)

12.5

FIGURE 1

 

A tetrahedron is a solid with four vertices, P, Q, R, and S, and four triangular faces, as shown 
in the figure.

 1.  Let v1, v2, v3, and v4 be vectors with lengths equal to the areas of the faces opposite the  
vertices P, Q, R, and S, respectively, and directions perpendicular to the respective 
faces and pointing outward. Show that

v1 1 v2 1 v3 1 v4 − 0

 2.  The volume V of a tetrahedron is one-third the distance from a vertex to the opposite face, 
times the area of that face.

  (a)  Find a formula for the volume of a tetrahedron in terms of the coordinates of its 
vertices P, Q, R, and S.

  (b)   Find the volume of the tetrahedron whose vertices are Ps1, 1, 1d, Qs1, 2, 3d,  
Rs1, 1, 2d, and Ss3, 21, 2d.

 3.  Suppose the tetrahedron in the figure has a trirectangular vertex S. (This means that the 
three angles at S are all right angles.) Let A, B, and C be the areas of the three faces that 
meet at S, and let D be the area of the opposite face PQR. Using the result of Problem 1, 
or otherwise, show that

D 2 − A2 1 B 2 1 C 2

  (This is a three-dimensional version of the Pythagorean Theorem.)

P

RQ
S

DISCOVERY PROJECT THE GEOMETRY OF A TETRAHEDRON
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Since a and v are parallel vectors, there is a scalar t such that a − tv. Thus 

1  r − r0 1 tv

which is a vector equation of L. Each value of the parameter t gives the position vector 
r of a point on L. In other words, as t varies, the line is traced out by the tip of the vector 
r. As Figure 2 indicates, positive values of t correspond to points on L that lie on one side  
of P0, whereas negative values of t correspond to points that lie on the other side of P0.

If the vector v that gives the direction of the line L is written in component form as 
v − ka, b, c l, then we have tv − kta, tb, tcl . We can also write r − k x, y, z l and 
r0 − k x0, y0, z0 l , so the vector equation (1) becomes

k x, y, z l − k x0 1 ta, y0 1 tb, z0 1 tc l

Two vectors are equal if and only if corresponding components are equal. Therefore we 
have the three scalar equations:

x − x0 1 at    y − y0 1 bt    z − z0 1 ct

where t [ R. These equations are called parametric equations of the line L through the 
point P0sx0, y0, z0d and parallel to the vector v − ka, b, cl. Each value of the parameter t 
gives a point sx, y, zd on L.

2  Parametric equations for a line through the point sx0, y0, z0d and parallel to the 
direction vector ka, b, cl are

x − x0 1 at    y − y0 1 bt    z − z0 1 ct

EXAMPLE 1 
(a) Find a vector equation and parametric equations for the line that passes through the 
point s5, 1, 3d and is parallel to the vector i 1 4 j 2 2k.
(b) Find two other points on the line.

SOLUTION

(a) Here r0 − k5, 1, 3 l − 5 i 1 j 1 3k and v − i 1 4 j 2 2k, so the vector equa- 
 tion (1) becomes

 r − s5 i 1 j 1 3kd 1 tsi 1 4 j 2 2kd

or  r − s5 1 td i 1 s1 1 4td j 1 s3 2 2td k 

Parametric equations are

x − 5 1 t    y − 1 1 4t    z − 3 2 2t

(b) Choosing the parameter value t − 1 gives x − 6, y − 5, and z − 1,  so s6, 5, 1d is 
a point on the line. Similarly, t − 21 gives the point s4, 23, 5d. ■

The vector equation and parametric equations of a line are not unique. If we change 
the point or the parameter or choose a different parallel vector, then the equations change. 
For instance, if, instead of s5, 1, 3d, we choose the point s6, 5, 1d in Example 1, then the 
parametric equations of the line become

x − 6 1 t    y − 5 1 4t    z − 1 2 2t

x

z

y

r¸

L
t=0 t>0

t<0
P¸

FIGURE 2

Figure 3 shows the line L in Exam ple 1 
and its relation to the given point and 
to the vector that gives its direction.

(5, 1, 3)
r¸

v=i+4j-2k

x

z

y

L

FIGURE 3
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866 CHAPTER 12  Vectors and the Geometry of Space 

Or, if we stay with the point s5, 1, 3d but choose the parallel vector 2 i 1 8j 2 4k, we 
arrive at the equations

x − 5 1 2t    y − 1 1 8t    z − 3 2 4t

In general, if a vector v − ka, b, c l is used to describe the direction of a line L , then 
the numbers a, b, and c are called direction numbers of L. Since any vector parallel to 
v could also be used, we see that any three numbers proportional to a, b, and c could also 
be used as a set of direction numbers for L.

Another way of describing a line L is to eliminate the parameter t from Equations 2. 
If none of a, b, or c is 0, we can solve each of these equations for t:

t −
x 2 x0

a
  t −

y 2 y0

b
  t −

z 2 z0

c

Equating the results, we obtain

3  
x 2 x0

a
−

y 2 y0

b
−

z 2 z0

c

These equations are called symmetric equations of L. Notice that the numbers a, b, and  
c that appear in the denominators of Equations 3 are direction numbers of L, that is, com-
ponents of a vector parallel to L. If one of a, b, or c is 0, we can still eliminate t. For 
instance, if a − 0, we could write the equations of L as

x − x0    
y 2 y0

b
−

z 2 z0

c

This means that L lies in the vertical plane x − x0.

EXAMPLE 2 
(a) Find parametric equations and symmetric equations of the line that passes through 
the points As2, 4, 23d and Bs3, 21, 1d.
(b) At what point does this line intersect the xy-plane?

SOLUTION

(a) We are not explicitly given a vector parallel to the line, but we observe that the 

vector v with representation AB
l

 is parallel to the line and

v − k3 2 2, 21 2 4, 1 2 s23d l − k1, 25, 4 l

Thus direction numbers are a − 1, b − 25, and c − 4. Taking the point s2, 4, 23d as  
P0, we see that parametric equations (2) are

x − 2 1 t    y − 4 2 5t    z − 23 1 4t

and symmetric equations (3) are

x 2 2

1
−

y 2 4

25
−

z 1 3

4

(b) The line intersects the xy-plane when z − 0. From the parametric equations we have 

z − 23 1 4t − 0, which gives t − 3
4. Using this value of t, we get x − 2 1 3

4 − 11
4  and 

y − 4 2 5( 

3
4 

) − 1
4. Thus the line intersects the xy-plane at the point ( 

11
4 , 14, 0) .

Figure 4 shows the line L in 
Example 2 and the point P where it 
intersects the xy-plane.

x

z

y

L

A

P

B 2
4

1

1
_1

FIGURE 4
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Alternatively, we can put z − 0 in the symmetric equations and obtain

x 2 2

1
−

y 2 4

25
−

3

4

which again gives x − 11
4  and y − 1

4 . ■

In general, the procedure of Example 2 shows that direction numbers of the line L 
through the points P0sx0, y0, z0 d and P1sx1, y1, z1d are x1 2 x0, y1 2 y0, and z1 2 z0 and so 
symmet ric equations of L are

x 2 x0

x1 2 x0
−

y 2 y0

y1 2 y0
−

z 2 z0

z1 2 z0

Often, we need a description, not of an entire line, but of just a line segment. How, for 
instance, could we describe the line segment AB in Example 2? If we put t − 0 in the 
parametric equations in Example 2(a), we get the point s2, 4, 23d and if we put t − 1 we 
get s3, 21, 1d. So the line segment AB is described by the parametric equations

x − 2 1 t y − 4 2 5t z − 23 1 4t      0 < t < 1

or by the corresponding vector equation

rstd − k2 1 t, 4 2 5t, 23 1 4 tl    0 < t < 1

In general, we know from Equation 1 that the vector equation of a line through the (tip 
of the) vector r0 in the direction of a vector v is r − r0 1 tv. If the line also passes 
through (the tip of) r1, then we can take v − r1 2 r0 and so its vector equation is

r − r0 1 tsr1 2 r0d − s1 2 tdr0 1 tr1

The line segment from r0 to r1 is given by the parameter interval 0 < t < 1.

4  The line segment from r0 to r1 is given by the vector equation

rstd − s1 2 tdr0 1 t r1    0 < t < 1

EXAMPLE 3 Show that the lines L1 and L 2 with parametric equations

L1:  x − 1 1 t y − 22 1 3t z − 4 2 t

L2:  x − 2s  y − 3 1 s  z − 23 1 4s

are skew lines; that is, they do not intersect and are not parallel (and therefore do not 
lie in the same plane).

SOLUTION The lines are not parallel because the corresponding direction vectors 
k1, 3, 21 l and k2, 1, 4 l are not parallel. (Their components are not proportional.) If L1 
and L 2 had a point of intersection, there would be values of t and s such that

 1 1  t − 2s

 22 1  3t − 3 1 s

 4 2   t − 23 1 4s

But if we solve the first two equations, we get t − 11
5  and s − 8

5, and these values don’t 
satisfy the third equation. Therefore there are no values of t and s that satisfy the three 
equations, so L1 and L 2 do not intersect. Thus L1 and L 2 are skew lines. ■

The lines L1 and L 2 in Example 3, 
shown in Figure 5, are skew lines.

x

z

y

L¡ L™
5

_5

5
105

FIGURE 5
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■	 Planes
Although a line in space is determined by a point and a direction, a plane in space is  
more difficult to describe. A single vector parallel to a plane is not enough to convey the 
“direction” of the plane, but a vector perpendicular to the plane does completely specify 
its direction. Thus a plane in space is determined by a point P0sx0, y0, z0d in the plane and 
a vector n that is orthogonal to the plane. This orthogonal vector n is called a normal  
vector. Let Psx, y, zd be an arbitrary point in the plane, and let r0 and r be the position

vectors of P0 and P. Then the vector r 2 r0 is represented by P¸PA. (See Figure 6.) The 
normal vector n is orthogonal to every vector in the given plane. In particular, n is 
orthogonal to r 2 r0 and so we have

5  n � sr 2 r0 d − 0

which can be rewritten as

6  n � r − n � r0

Either Equation 5 or Equation 6 is called a vector equation of the plane.
To obtain a scalar equation for the plane, we write n − ka, b,  c l, r − k x, y, z l, and 

r0 − kx0, y0, z0 l . Then the vector equation (5) becomes

 ka, b, c l � kx 2 x0, y 2 y0, z 2 z0 l − 0

Expanding the left side of this equation gives the following.

7  A scalar equation of the plane through point P0sx0, y0, z0 d with normal 
vector n − ka, b, c l is

asx 2 x0 d 1 bsy 2 y0 d 1 csz 2 z0 d − 0

EXAMPLE 4 Find an equation of the plane through the point s2, 4, 21d with normal 
vector n − k2, 3, 4 l . Find the intercepts and sketch the plane.

SOLUTION Putting a − 2, b − 3, c − 4, x0 − 2, y0 − 4, and z0 − 21 in Equation 7, 
we see that an equation of the plane is

 2sx 2 2d 1 3sy 2 4d 1 4sz 1 1d − 0

or  2x 1 3y 1 4z − 12

To find the x-intercept we set y − z − 0 in this equation and obtain x − 6. Similarly, 
the y-intercept is 4 and the z-intercept is 3. This enables us to sketch the portion of the 
plane that lies in the first octant (see Figure 7). ■

By collecting terms in Equation 7 as we did in Example 4, we can rewrite the equation 
of a plane as

8  ax 1 by 1 cz 1 d − 0

where d − 2sax0 1 by0 1 cz0 d. Equation 8 is called a linear equation in x, y, and z. 
Conversely, it can be shown that if a, b, and c are not all 0, then the linear equation (8) 
represents a plane with normal vector ka, b, c l . (See Exercise 83.)

0

n

r

r¸

r-r¸

P¸(x¸, y¸, z¸)

P(x, y, z)

y

z

x

FIGURE 6

x

z

y

(0, 0, 3)

(0, 4, 0)

(6, 0, 0)

FIGURE 7
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EXAMPLE 5 Find an equation of the plane that passes through the points Ps1, 3, 2d, 
Qs3, 21, 6d, and Rs5, 2, 0d.

SOLUTION The vectors a and b corresponding to PQ
l

 and PR
l

 are

a − k 2, 24, 4 l      b − k4, 21, 22 l

Since both a and b lie in the plane, their cross product a 3 b is orthogonal to the plane 
and can be taken as the normal vector. Thus

n − a 3 b − Z i
2

4

j
24

21

k
4

22
Z − 12 i 1 20 j 1 14 k

With the point Ps1, 3, 2d and the normal vector n, an equation of the plane is

 12sx 2 1d 1 20sy 2 3d 1 14sz 2 2d − 0

or  6x 1 10y 1 7z − 50 ■

EXAMPLE 6 Find the point at which the line with parametric equations x − 2 1 3t, 
y − 24t, z − 5 1 t intersects the plane 4x 1 5y 2 2z − 18.

SOLUTION We substitute the expressions for x, y, and z from the parametric equations 
into the equation of the plane:

4s2 1 3td 1 5s24td 2 2s5 1 td − 18

This simplifies to 210t − 20, so t − 22. Therefore the point of intersection occurs 
when the parameter value is t − 22. Then x − 2 1 3s22d − 24, y − 24s22d − 8, 
z − 5 2 2 − 3 and so the point of intersection is s24, 8, 3d. ■

Two planes are parallel if their normal vectors are parallel. For instance, the planes 
x 1 2y 2 3z − 4 and 2x 1 4y 2 6z − 3 are parallel because their normal vectors are 
n1 − k1, 2, 23 l  and n2 − k2, 4, 26 l and n2 − 2n1. If two planes are not parallel, then 
they intersect in a straight line and the angle between the two planes is defined as the 
acute angle between their normal vectors (see angle � in Figure 9).

EXAMPLE 7 
(a) Find the angle between the planes x 1 y 1 z − 1 and x 2 2y 1 3z − 1.
(b) Find symmetric equations for the line of intersection L of these two planes.

SOLUTION

(a) The normal vectors of these planes are

n1 − k1, 1, 1 l   n2 − k1, 22, 3 l

and so, if � is the angle between the planes, Corollary 12.3.6 gives

 cos � −
n1 � n2

| n1 || n2 | −
1s1d 1 1s22d 1 1s3d

s1 1 1 1 1  s1 1 4 1 9 
−

2

s42 

 � − cos21S 2

s42 D < 72°

(b) We first need to find a point on L. For instance, we can find the point where the line 
intersects the xy-plane by setting z − 0 in the equations of both planes. This gives the 

Figure 8 shows the portion of the 
plane in Example 5 that is enclosed 
by triangle PQR.

x

z

y

R(5, 2, 0)

P(1, 3, 2)

Q(3, _1, 6)

FIGURE 8

¨ n¡n™

¨

FIGURE 9

Figure 10 shows the planes in 
Example 7 and their line of 
intersection L.

x-2y+3z=1x+y+z=1

L

z

y x

6
4
2
0

_2
_4

0 2
_2 0

2
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FIGURE 10
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equations x 1 y − 1 and x 2 2y − 1, whose solution is x − 1, y − 0. So the point 
s1, 0, 0d lies on L.

Now we observe that, since L lies in both planes, it is perpendicular to both of the 
normal vectors. Thus a vector v parallel to L is given by the cross product

v − n1 3 n2 − Z i
1

1

j
1

22

k
1

3
Z − 5 i 2 2 j 2 3 k

and so the symmetric equations of L can be written as

 
x 2 1

5
−

 y

22
−

z

23
 ■

NOTE Since a linear equation in x, y, and z represents a plane and two nonparallel planes 
intersect in a line, it follows that two linear equations can represent a line. The points 
sx, y, zd that satisfy both a1 x 1 b1 y 1 c1z 1 d1 − 0 and a2 x 1 b2 y 1 c2 z 1 d2 − 0 lie 
on both of these planes, and so the pair of linear equations represents the line of 
intersection of the planes (if they are not parallel). For instance, in Example 7 the line L 
was given as the line of intersection of the planes x 1 y 1 z − 1 and x 2 2y 1 3z − 1. 
The symmetric equations that we found for L could be written as

x 2 1

5
−

y

22
    and    

y

22
−

z

23

which is again a pair of linear equations. They exhibit L as the line of intersection of the 
planes sx 2 1dy5 − yys22d and yys22d − zys23d. (See Figure 11.)

In general, when we write the equations of a line in the symmetric form

x 2 x0

a
−

y 2 y0

b
−

z 2 z0

c

we can regard the line as the line of intersection of the two planes

x 2 x0

a
−

y 2 y0

b
    and    

y 2 y0

b
−

z 2 z0

c

■	 Distances

In order to find a formula for the distance D from a point P1sx1, y1, z1d to the plane 
ax 1 by 1 cz 1 d − 0, we let P0sx0, y0, z0 d be any point in the given plane and b be the 

vector corresponding to P¸P¡A. Then

b − k x1 2 x0, y1 2 y0, z1 2 z0l

From Figure 12 you can see that the distance D from P1 to the plane is equal to the 
absolute value of the scalar projection of b onto the normal vector n − ka, b, c l . (See 
Section 12.3.) Thus

 D − | compn b | − | n � b |
| n |

 − | asx1 2 x0 d 1 bsy1 2 y0 d 1 csz1 2 z0 d |
sa2 1 b 2 1 c 2 

 − | sax1 1 by1 1 cz1d 2 sax0 1 by0 1 cz0 d |
sa 2 1 b 2 1 c 2 

Another way to find the line of inter- 
section is to solve the equations of 
the planes for two of the variables in 
terms of the third, which can be taken 
as the parameter.

y
2

z
3=

x-1
5

y
_2=

z

0
y x

2

0

0

1

_2

_1

_1
1 2 1

_1 _2

L

FIGURE 11

Figure 11 shows how the line L in 
Example 7 can also be regarded as the 
line of intersection of planes derived 
from its symmetric equations.

D
n

¨

b

P¸

P¡

FIGURE 12
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Since P0 lies in the plane, its coordinates satisfy the equation of the plane and so we have 
ax0 1 by0 1 cz0 1 d − 0. Thus we have the following formula.

9  The distance D from the point P1sx1, y1, z1 d to the plane 
ax 1 by 1 cz 1 d − 0 is

D − | ax1 1 by1 1 cz1 1 d |
sa 2 1 b 2 1 c 2 

EXAMPLE 8 Find the distance between the parallel planes 10x 1 2y 2 2z − 5  
and 5x 1 y 2 z − 1.

SOLUTION First we note that the planes are parallel because their normal vectors 
k10, 2, 22 l  and k5, 1, 21 l are parallel. To find the distance D between the planes, we 
choose any point on one plane and calculate its distance to the other plane. In par-
ticular, if we put y − z − 0 in the equation of the first plane, we get 10x − 5 and so 
( 12, 0, 0) is a point in this plane. By Formula 9, the distance between ( 12, 0, 0) and the 
plane 5x 1 y 2 z 2 1 − 0 is

D −
| 5( 12 ) 1 1s0d 2 1s0d 2 1|

s52 1 12 1 s21d2 

−
3
2

3s3 

−
s3 

6

So the distance between the planes is s3 y6. ■

EXAMPLE 9 In Example 3 we showed that the lines

 L1: x − 1 1 t y − 22 1 3t z − 4 2 t

 L2: x − 2s  y − 3 1 s  z − 23 1 4s

are skew. Find the distance between them.

SOLUTION Since the two lines L1 and L2 are skew, they can be viewed as lying on two 
parallel planes P1 and P2. The distance between L1 and L2 is the same as the distance 
between P1 and P2, which can be computed as in Example 8. The common normal 
vector to both planes must be orthogonal to both v1 − k1, 3, 21 l  (the direction of L1) 
and v2 − k2, 1, 4 l  (the direction of L2). So a normal vector is

n − v1 3 v2 − Z i
1

2

j
3

1

k
21

4
Z − 13 i 2 6 j 2 5k

If we put s − 0 in the equations of L2, we get the point s0, 3, 23d on L2 and so an 
equation for P2 is

13sx 2 0d 2 6sy 2 3d 2 5sz 1 3d − 0    or    13x 2 6y 2 5z 1 3 − 0

If we now set t − 0 in the equations for L1, we get the point s1, 22, 4d on P1. So  
the distance between L1 and L2 is the same as the distance from s1, 22, 4d to 
13x 2 6y 2 5z 1 3 − 0. By Formula 9, this distance is

 D −
|13s1d 2 6s22d 2 5s4d 1 3|

s132 1 s26d2 1 s25d2 

−
8

s230 
< 0.53 ■

FIGURE 13  
Skew lines, like those in Example 9, 
always lie on (nonidentical) parallel 
planes.
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12.5 Exercises

 1. Determine whether each statement is true or false in R3.
 (a) Two lines parallel to a third line are parallel.
 (b) Two lines perpendicular to a third line are parallel.
 (c) Two planes parallel to a third plane are parallel.
 (d) Two planes perpendicular to a third plane are parallel.
 (e) Two lines parallel to a plane are parallel.
 (f ) Two lines perpendicular to a plane are parallel.
 (g) Two planes parallel to a line are parallel.
 (h) Two planes perpendicular to a line are parallel.
 ( i ) Two planes either intersect or are parallel.
 ( j ) Two lines either intersect or are parallel.
 (k) A plane and a line either intersect or are parallel.

2–5 Find a vector equation and parametric equations for the line.

 2. The line through the point s4, 2, 23d and parallel to the  
vector 2 i 2 j 1 6 k

 3. The line through the point s21, 8, 7d and parallel to the  
vector k 12, 13, 14 l

 4. The line through the point s6, 0, 22d and parallel to the line

x − 4 2 3t  y − 21 1 4t  z − 6 1 5t

 5. The line through the point  s5, 7, 1d and perpendicular to the 
plane 3x 2 2y 1 2z − 8 

6–12 Find parametric equations and symmetric equations for the 
line.

 6. The line through the points s25, 2, 5d and s1, 6, 22d 

 7. The line through the origin and the point s8, 21, 3d 

 8. The line through the points s0.4, 20.2, 1.1d and 
s1.3, 0.8, 22.3d 

 9. The line through the points s12, 9, 213d and s27, 9, 11d 

 10.  The line through s2, 1, 0d and perpendicular to both i 1 j  
and j 1 k

 11.  The line through s26, 2, 3d and parallel to the line 
1
2 x − 1

3 y − z 1 1

 12.  The line of intersection of the planes x 1 2y 1 3z − 1  
and x 2 y 1 z − 1

 13.  Is the line through s24, 26, 1d and s22, 0, 23d parallel to 
the line through s10, 18, 4d and s5, 3, 14d?

 14.  Is the line through s22, 4, 0d and s1, 1, 1d perpendicular to 
the line through s2, 3, 4d and s3, 21, 28d?

 15. (a)  Find symmetric equations for the line that passes  
through the point s1, 25, 6d and is parallel to the vector 
k21, 2, 23 l.

 (b)  Find the points in which the required line in part (a) inter-
sects the coordinate planes.

 16. (a)  Find parametric equations for the line through s2, 4, 6d 
that is perpendicular to the plane x 2 y 1 3z − 7.

 (b)  In what points does this line intersect the coordinate 
planes?

 17.  Find a vector equation for the line segment from s6, 21, 9d  
to s7, 6, 0d.

 18.  Find parametric equations for the line segment from 
s22, 18, 31d to s11, 24, 48d.

19–22 Determine whether the lines L1 and L2 are parallel, skew, 
or intersecting. If they intersect, find the point of intersection.

 19. L1: x − 3 1 2t,  y − 4 2 t,  z − 1 1 3t

  L2: x − 1 1 4s,  y − 3 2 2s,  z − 4 1 5s

 20. L1: x − 5 2 12t,  y − 3 1 9t,  z − 1 2 3t

  L2: x − 3 1 8s,  y − 26s,  z − 7 1 2s

 21. L1: 
x 2 2

1
−

y 2 3

22
−

z 2 1

23

  L2: 
x 2 3

1
−

y 1 4

3
−

z 2 2

27

 22. L1: 
x

1
−

y 2 1

21
−

z 2 2

3

  L2: 
x 2 2

2
−

y 2 3

22
−

z

7

23–40 Find an equation of the plane.

 23. The plane through the point s3, 2, 1d and with normal  
vector 5 i 1 4 j 1 6 k 

 24. The plane through the point s23, 4, 2d and with normal  
vector k 6, 1, 21 l

 25. The plane through the point s5, 22, 4d and perpendicular to 
the vector 2 i 1 2 j 1 3 k 

 26. The plane through the origin and perpendicular to the line 

x − 1 2 8t  y − 21 2 7t  z − 4 1 2t 

 27. The plane through the point s1, 3, 21d and perpendicular to 
the line

x 1 3

4
− 2y −

z 2 1

5

 28. The plane through the point s9, 24, 25d and parallel to the 
plane z − 2x 2 3y 

 29. The plane through the point s2.1, 1.7, 20.9d and parallel to 
the plane 2x 2 y 1 3z − 1 

 30.  The plane that contains the line x − 1 1 t, y − 2 2 t, 
z − 4 2 3t and is parallel to the plane 5x 1 2y 1 z − 1
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 54. x 2 y 1 3z − 1, 3x 1 y 2 z − 2

 55. 2x 2 3y − z, 4x − 3 1 6y 1 2z

 56. 5x 1 2y 1 3z − 2, y − 4x 2 6z

57–58 
(a) Find parametric equations for the line of intersection of  

the planes.
(b) Find the angle, in degrees rounded to one decimal place, 

between the planes.

 57. x 1 y 1 z − 1,  x 1 2y 1 2z − 1

 58. 3x 2 2y 1 z − 1,  2x 1 y 2 3z − 3

59–60 Find symmetric equations for the line of intersection of the 
planes.

 59. 5x 2 2y 2 2z − 1,  4x 1 y 1 z − 6

 60. z − 2x 2 y 2 5,  z − 4x 1 3y 2 5

 61.  Find an equation for the plane consisting of all points that are 
equidistant from the points s1, 0, 22d and s3, 4, 0d.

 62.  Find an equation for the plane consisting of all points that are 
equidistant from the points s2, 5, 5d and s26, 3, 1d.

 63.  Find an equation of the plane with x-intercept a, y-intercept b, 
and z-intercept c.

 64. (a)  Find the point at which the given lines intersect:

 r − k1, 1, 0 l 1 t k1, 21, 2 l

 r − k2, 0, 2 l 1 sk21, 1, 0 l

 (b) Find an equation of the plane that contains these lines.

 65.  Find parametric equations for the line through the point 
s0, 1, 2d that is parallel to the plane x 1 y 1 z − 2 and  
perpendicular to the line x − 1 1 t, y − 1 2 t, z − 2t.

 66.  Find parametric equations for the line through the point 
s0, 1, 2d that is perpendicular to the line x − 1 1 t,  
y − 1 2 t, z − 2t and intersects this line.

 67.  Which of the following four planes are parallel? Are any of 
them identical?

P1: 3x 1 6y 2 3z − 6   P2: 4x 2 12y 1 8z − 5

P3:  9y − 1 1 3x 1 6z   P4: z − x 1 2y 2 2

 68.  Which of the following four lines are parallel? Are any of 
them identical?

L1: x − 1 1 6t,  y − 1 2 3t,  z − 12t 1 5

L2: x − 1 1 2t,  y − t,  z − 1 1 4t

L3:  2x 2 2 − 4 2 4y − z 1 1

L4: r − k3, 1, 5 l 1 t k4, 2, 8 l

 31.  The plane through the points s0, 1, 1d, s1, 0, 1d, and s1, 1, 0d

 32.  The plane through the origin and the points s3, 22, 1d  
and s1, 1, 1d

 33.  The plane through the points s2, 1, 2d, s3, 28, 6d, and 
s22, 23, 1d

 34.  The plane through the points s3, 0, 21d, s22, 22, 3d, and 
s7, 1, 24d

 35.  The plane that passes through the point s3, 5, 21d and con- 
tains the line x − 4 2 t, y − 2t 2 1, z − 23t

 36.  The plane that passes through the point s6, 21, 3d and  
contains the line with symmetric equations 
xy3 − y 1 4 − zy2

 37.  The plane that passes through the point s3, 1, 4d and contains 
the line of intersection of the planes x 1 2y 1 3z − 1 and 
2x 2 y 1 z − 23

 38.  The plane that passes through the points s0, 22, 5d and 
s21, 3, 1d and is perpendicular to the plane 2z − 5x 1 4y

 39.  The plane that passes through the point s1, 5, 1d and is per-
pendicular to the planes 2x 1 y 2 2z − 2 and x 1 3z − 4

 40.  The plane that passes through the line of intersection of the 
planes x 2 z − 1 and y 1 2z − 3 and is perpendicular to the 
plane x 1 y 2 2z − 1

41–44 Use intercepts to help sketch the plane.

 41. 2x 1 5y 1 z − 10 42. 3x 1 y 1 2z − 6

 43. 6x 2 3y 1 4z − 6 44. 6x 1 5y 2 3z − 15

45–47 Find the point at which the line intersects the given plane.

 45. x − 2 2 2t, y − 3t, z − 1 1 t; x 1 2y 2 z − 7

 46. x − t 2 1, y − 1 1 2t, z − 3 2 t; 3x 2 y 1 2z − 5

 47. 5x − yy2 − z 1 2; 10x 2 7y 1 3z 1 24 − 0

 48.  Where does the line through s23, 1, 0d and s21, 5, 6d inter-
sect the plane 2x 1 y 2 z − 22?

 49.  Find direction numbers for the line of intersection of the 
planes x 1 y 1 z − 1 and x 1 z − 0.

 50.  Find the cosine of the angle between the planes 
x 1 y 1 z − 0 and x 1 2y 1 3z − 1.

51–56 Determine whether the planes are parallel, perpendicular, 
or neither. If neither, find the angle between them. (Use degrees 
and round to one decimal place.)

 51. x 1 4y 2 3z − 1,  23x 1 6y 1 7z − 0

 52. 9x 2 3y 1 6z − 2, 2y − 6x 1 4z

 53. x 1 2y 2 z − 2, 2x 2 2y 1 z − 1
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69–70 Use the formula in Exercise 12.4.45 to find the distance 
from the point to the given line.

 69. s4, 1, 22d;  x − 1 1 t, y − 3 2 2t, z − 4 2 3t

 70. s0, 1, 3d;  x − 2t, y − 6 2 2t, z − 3 1 t

71–72 Find the distance from the point to the given plane.

 71. s1, 22, 4d,  3x 1 2y 1 6z − 5

 72. s26, 3, 5d,  x 2 2y 2 4z − 8

73–74 Find the distance between the given parallel planes.

 73. 2x 2 3y 1 z − 4,  4x 2 6y 1 2z − 3

 74. 6z − 4y 2 2x,  9z − 1 2 3x 1 6y

 75. Distance between Parallel Planes Show that the distance 
between the parallel planes ax 1 by 1 cz 1 d1 − 0 and 
ax 1 by 1 cz 1 d2 − 0 is

D − | d1 2 d2 |
sa 2 1 b 2 1 c 2 

 76.  Find equations of the planes that are parallel to the plane 
x 1 2y 2 2z − 1 and two units away from it.

 77.  Show that the lines with symmetric equations x − y − z and 
x 1 1 − yy2 − zy3 are skew, and find the distance between 
these lines.

 78.  Find the distance between the skew lines with parametric  
equations x − 1 1 t, y − 1 1 6t, z − 2t, and x − 1 1 2s, 
y − 5 1 15s, z − 22 1 6s.

 79.  Let L1 be the line through the origin and the point s2, 0, 21d.  
Let L2 be the line through the points s1, 21, 1d and s4, 1, 3d. 
Find the distance between L1 and L2.

 80.  Let L1 be the line through the points s1, 2, 6d and s2, 4, 8d.  
Let L2 be the line of intersection of the planes P1 and P2,  
where P1 is the plane x 2 y 1 2z 1 1 − 0 and P2 is the plane 
through the points s3, 2, 21d, s0, 0, 1d, and s1, 2, 1d. Calculate 
the distance between L1 and L2.

 81.  Two tanks are participating in a battle simulation. Tank A is 
at point s325, 810, 561d and tank B is positioned at point 
s765, 675, 599d.

 (a)  Find parametric equations for the line of sight between 
the tanks.

 (b)  If we divide the line of sight into 5 equal segments, the  
elevations of the terrain at the four intermediate points 
from tank A to tank B are 549, 566, 586, and 589. Can 
the tanks see each other?

 82. Give a geometric description of each family of planes.

 (a) x 1 y 1 z − c (b) x 1 y 1 cz − 1

 (c) y cos � 1 z sin � − 1

 83.  If a, b, and c are not all 0, show that the equation 
ax 1 by 1 cz 1 d − 0 represents a plane and ka, b, c l is  
a normal vector to the plane. 
  Hint: Suppose a ± 0 and rewrite the equation in the form

aSx 1
d

aD 1 bsy 2 0d 1 csz 2 0d − 0

 

Computer graphics programmers face the same challenge as the great painters of the past: how  
to represent a three-dimensional scene as a flat image on a two-dimensional plane (a screen or 
a canvas). To create the illusion of perspective, in which closer objects appear larger than those 
farther away, three-dimensional objects in the computer’s memory are projected onto a rectan-
gular screen window from a viewpoint where the eye, or camera, is located. The viewing 
volume––the portion of space that will be visible––is the region contained by the four planes 
that pass through the viewpoint and an edge of the screen window. If objects in the scene 
extend beyond these four planes, they must be truncated before pixel data are sent to the 
screen. These planes are therefore called clipping planes.

 1.  Suppose the screen is represented by a rectangle in the yz-plane with vertices s0, 6400, 0d 
and s0, 6400, 600d, and the camera is placed at s1000, 0, 0d. A line L in the scene passes 
through the points s230, 2285, 102d and s860, 105, 264d. At what points should L be 
clipped by the clipping planes?

DISCOVERY PROJECT PUTTING 3D IN PERSPECTIVE
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Cylinders and Quadric Surfaces

We have already looked at two special types of surfaces: planes (in Section 12.5) and 
spheres (in Section 12.1). Here we investigate two other types of surfaces: cylinders and 
quadric surfaces.

In order to sketch the graph of a surface, it is useful to determine the curves of inter-
section of the surface with planes parallel to the coordinate planes. These curves are 
called traces (or cross-sections) of the surface.

■	 Cylinders
A cylinder is a surface that consists of all lines (called rulings) that are parallel to a 
given line and pass through a given plane curve.

EXAMPLE 1 Sketch the graph of the surface z − x 2.

SOLUTION Notice that the equation of the graph, z − x 2, doesn’t involve y. This means 
that any vertical plane with equation y − k (parallel to the xz-plane) intersects the 
graph in a curve with equation z − x 2. So these vertical traces are parabolas. Figure 1 
shows how the graph is formed by taking the parabola z − x 2 in the xz-plane and mov- 
ing it in the direction of the y-axis. The graph is a surface, called a parabolic cylinder, 
made up of infinitely many shifted copies of the same parabola. Here the rulings of the 
cylinder are parallel to the y-axis. ■

In Example 1 the variable y is missing from the equation of the cylinder. This is 
typical of a surface whose rulings are parallel to one of the coordinate axes. If one of 
the variables x, y, or z is missing from the equation of a surface, then the surface is a 
cylinder.

EXAMPLE 2 Identify and sketch the surfaces.

(a) x 2 1 y 2 − 1 (b) y 2 1 z 2 − 1

SOLUTION

(a) Since z is missing and the equations x 2 1 y 2 − 1, z − k represent a circle with 
radius 1 in the plane z − k, the surface x 2 1 y 2 − 1 is a circular cylinder whose axis is 

12.6

x y

0

z

FIGURE 1 
The surface z − x 2 is a  
parabolic cylinder.

 
 2. If the clipped line segment is projected onto the screen window, identify the resulting line 

segment.

 3. Use parametric equations to plot the edges of the screen window, the clipped line segment, 
and its projection onto the screen window. Then add sight lines connecting the viewpoint to 
each end of the clipped segments to verify that the projection is correct.

 4. A rectangle with vertices s621, 2147, 206d, s563, 31, 242d, s657, 2111, 86d, and 
s599, 67, 122d is added to the scene. The line L intersects this rectangle. To make the rect-
angle appear opaque, a programmer can use hidden line rendering, which removes portions 
of objects that are behind other objects. Identify the portion of L that should be removed.

;
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the z-axis. (See Figure 2. We first encountered this surface in Example 12.1.2.) Here the 
rulings are vertical lines.

(b) In this case x is missing and the surface is a circular cylinder whose axis is the  
x-axis. (See Figure 3.) It is obtained by taking the circle y 2 1 z2 − 1, x − 0 in the  
yz-plane and moving it parallel to the x-axis.

0

y

x

z

FIGURE 2  
x 2 1 y 2 − 1

z

y

x

FIGURE 3  
y 2 1 z2 − 1  ■

NOTE When you are dealing with surfaces, it is important to recognize that an equation 
like x 2 1 y 2 − 1 represents a cylinder and not a circle. The trace of the cylinder  
x 2 1 y 2 − 1 in the xy-plane is the circle with equations x 2 1 y 2 − 1, z − 0.

■	 Quadric Surfaces
A quadric surface is the graph of a second-degree equation in three variables x, y, and 
z. The most general such equation is

Ax 2 1 By 2 1 Cz2 1 Dxy 1 Eyz 1 Fxz 1 Gx 1 Hy 1 Iz 1 J − 0

where A, B, C, . . . , J are constants, but by translation and rotation it can be brought into 
one of the two standard forms

Ax 2 1 By 2 1 Cz2 1 J − 0    or    Ax 2 1 By 2 1 Iz − 0

Quadric surfaces are the counterparts in three dimensions of the conic sections in the 
plane. (See Section 10.5 for a review of conic sections.)

EXAMPLE 3 Use traces to sketch the quadric surface with equation

x 2 1
y 2

9
1

z2

4
− 1

SOLUTION By substituting z − 0, we find that the trace in the xy-plane is 
x 2 1 y 2y9 − 1, which we recognize as an equation of an ellipse. In general, the 
horizontal trace in the plane z − k is

x 2 1
y 2

9
− 1 2

k 2

4
    z − k

which is an ellipse, provided that k 2 , 4, that is, 22 , k , 2. (If | k | − 2 , the trace 
consists of a single point, and the trace is empty for | k | . 2 .)
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Similarly, vertical traces parallel to the yz- and xz-planes are also ellipses:

 
y 2

9
1

z2

4
− 1 2 k 2 x − k sif 21 , k , 1d

 x 2 1
z2

4
− 1 2

k 2

9
 y − k sif 23 , k , 3d

Figure 4 shows how drawing some traces indicates the shape of the surface. It’s called 
an ellipsoid because all of its traces are ellipses. Notice that it is symmetric with 
respect to each coordinate plane; this is because its equation involves only even powers 
of x, y, and z. ■

EXAMPLE 4 Use traces to sketch the surface z − 4x 2 1 y 2.

SOLUTION If we put x − 0, we get z − y 2, so the yz-plane intersects the surface in a 
parabola. If we put x − k (a constant), we get z − y 2 1 4k 2. This means that if we  
slice the graph with any plane parallel to the yz-plane, we obtain a parabola that opens 
upward. Similarly, if y − k, the trace is z − 4x 2 1 k 2, which is again a parabola that 
opens upward. If we put z − k, we get the horizontal traces 4x 2 1 y 2 − k, which we  
recognize as a family of ellipses sk . 0d . Knowing the shapes of the traces, we can 
sketch the graph in Figure 5. Because of the elliptical and parabolic traces, the quadric 
surface z − 4x 2 1 y 2 is called an elliptic paraboloid. ■

EXAMPLE 5 Sketch the surface z − y 2 2 x 2.

SOLUTION The traces in the vertical planes x − k are the parabolas z − y 2 2 k 2, 
which open upward. The traces in y − k are the parabolas z − 2x 2 1 k 2, which open 
downward. The horizontal traces are y 2 2 x 2 − k, a family of hyperbolas. We draw the 
families of traces in Figure 6, and we show how the traces appear when placed in their  
correct planes in Figure 7.

Traces in x=k are z=¥-k@.

0

�1

�2

Traces in z=k are ¥-≈=k.

_1

1

1

0

_1

Traces in x=k

x
y

z

1

0
_1

Traces in y=k are z=_≈+k@.

0

�1

�2

Traces in y=k

1

x
y

z

_1 0

Traces in z=k

x
y

z

1

0

_1

z

y

y

x

z

x

x y

0

z

FIGURE 5 
The surface z − 4x 2 1 y 2 is an elliptic 
paraboloid. Horizontal traces are 
ellipses; vertical traces are parabolas.

FIGURE 6 
Vertical traces are parabolas; 
horizontal traces are hyperbolas. 
All traces are labeled with the 
value of k.

FIGURE 7  
Traces moved to their 
correct planes

FIGURE 4 

The ellipsoid x 2 1
y 2

9
1

z 2

4
− 1

(0, 3, 0)
0

(0, 0, 2)

(1, 0, 0)

x

y

z
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In Figure 8 we fit together the traces from Figure 7 to form the surface z − y 2 2 x 2,  
a hyperbolic paraboloid. Notice that the shape of the surface near the origin resembles 
that of a saddle. This surface will be investigated further in Section 14.7 when we 
discuss saddle points.

x

0

z

x

0

z

y y

x

 ■

EXAMPLE 6 Sketch the surface 
x 2

4
1 y 2 2

z 2

4
− 1.

SOLUTION The trace in any horizontal plane z − k is the ellipse

x 2

4
1 y 2 − 1 1

k 2

4
z − k

but the traces in the xz- and yz-planes are the hyperbolas

x 2

4
2

z2

4
− 1 y − 0 and y2 2

z2

4
− 1 x − 0

This surface is called a hyperboloid of one sheet and is sketched in Figure 9.

 

(0, 1, 0)(2, 0, 0)

yx

z

 ■

The idea of using traces to draw a surface is employed in three-dimensional graphing 
software. In most such software, traces in the vertical planes x − k and y − k are drawn 
for equally spaced values of k . 

Table 1 shows computer-drawn graphs of the six basic types of quadric surfaces in 
standard form. All surfaces are symmetric with respect to the z-axis. If a quadric surface 
is symmetric about a different axis, its equation changes accordingly.

FIGURE 8 
Two views of the surface z − y 2 2 x 2, 

a hyperbolic paraboloid

FIGURE 9 

The surface 
x 2

4
1 y2 2

z2

4
− 1, 

a hyperboloid of one sheet
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EXAMPLE 7 Identify and sketch the surface 4x 2 2 y 2 1 2z2 1 4 − 0.

SOLUTION Dividing by 24, we first put the equation in standard form:

2x 2 1
y 2

4
2

z2

2
− 1

Table 1 Graphs of Quadric Surfaces

Surface Equation Surface Equation

Ellipsoid

z

y

x

z

y
x

z

yx

x 2

a 2 1
y 2

b 2 1
z 2

c 2 − 1

All traces are ellipses.

If a − b − c, the ellipsoid is 
a sphere.

Cone

z

yx

z

yx

z

yx

z 2

c 2 −
x 2

a 2 1
y 2

b 2

Horizontal traces are  
ellipses.

Vertical traces in the planes 
x − k and y − k are  
hyperbolas if k ± 0 but are 
pairs of lines if k − 0.

Elliptic Paraboloid

z

y

x

z

y
x

z

yx

z

c
−

x 2

a 2 1
y 2

b 2

Horizontal traces are  
ellipses.

Vertical traces are parabolas.

The variable raised to the 
first power indicates the axis 
of the paraboloid.

Hyperboloid of One Sheet

z

yx

z

yx

z

yx

x 2

a 2 1
y 2

b 2 2
z 2

c 2 − 1

Horizontal traces are  
ellipses.

Vertical traces are  
hyperbolas.

The axis of symmetry corre- 
sponds to the variable whose 
coefficient is negative.

Hyperbolic Paraboloid

z

y

x

z

y
x

z

yx

z

c
−

x 2

a 2 2
y 2

b 2

Horizontal traces are  
hyperbolas.

Vertical traces are parabolas.

The case where c , 0 is 
illustrated.

Hyperboloid of Two Sheets

z

yx

z

yx

z

yx

2
x 2

a 2 2
y 2

b 2 1
z 2

c 2 − 1

Horizontal traces in z − k  
are ellipses if k . c or  
k , 2c.

Vertical traces are  
hyperbolas.

The two minus signs 
indicate two sheets.
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Comparing this equation with Table 1, we see that it represents a hyperboloid of two 
sheets, the only difference being that in this case the axis of the hyperboloid is the  
y-axis. The traces in the xy- and yz-planes are the hyperbolas

2x 2 1
 y 2

4
− 1     z − 0      and      

y 2

4
2

z2

2
− 1     x − 0

The surface has no trace in the xz-plane, but traces in the vertical planes y − k for 

| k | . 2 are the ellipses

x 2 1
z2

2
−

k 2

4
2 1    y − k

which can be written as

x 2

k 2

4
2 1

1
z 2

2S k 2

4
2 1D − 1    y − k

These traces are used to make the sketch in Figure 10. ■

EXAMPLE 8 Classify the quadric surface x 2 1 2z2 2 6x 2 y 1 10 − 0.

SOLUTION By completing the square we rewrite the equation as

y 2 1 − sx 2 3d2 1 2z2

Comparing this equation with Table 1, we see that it represents an elliptic paraboloid. 
Here, however, the axis of the paraboloid is parallel to the y-axis, and it has been 
shifted so that its vertex is the point s3, 1, 0d. The traces in the plane y − k sk . 1d are 
the ellipses

sx 2 3d2 1 2z2 − k 2 1    y − k

The trace in the xy-plane is the parabola with equation y − 1 1 sx 2 3d2, z − 0. The 
paraboloid is sketched in Figure 11. ■

■	 Applications of Quadric Surfaces
Examples of quadric surfaces can be found in the world around us. In fact, the world 
itself is a good example. Although the earth is commonly modeled as a sphere, a more 
accurate model is an ellipsoid because the earth’s rotation has caused a flattening at the 
poles. (See Exercise 51.)

Circular paraboloids, obtained by rotating a parabola about its axis, are used to collect 
and reflect light, sound, and radio and television signals [see Figure 12(a)]. In a radio 
telescope, for instance, signals from distant stars that strike the bowl are all reflected to the 
receiver at the focus and are therefore amplified. (The idea is explained in Problem 22 in 
the Problems Plus following Chapter 3.) The same principle applies to microphones and 
satellite dishes in the shape of paraboloids.

Cooling towers for nuclear reactors are usually designed in the shape of hyperboloids 
of one sheet [Figure 12(b)] for reasons of structural stability. Pairs of hyperboloids are 

0

z

x (0, 2, 0)

(0, _2, 0)

y

FIGURE 10  
The surface 4x 2 2 y 2 1 2z2 1 4 − 0, 
a hyperboloid of two sheets

(3, 1, 0)

0

y

x

z

FIGURE 11  
x 2 1 2z2 2 6x 2 y 1 10 − 0, 
a paraboloid
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used to transmit rotational motion between skew axes. [See Figure 12(c); the cogs of the 
gears are the generating lines of the hyperboloids. See Exercise 53.]

FIGURE 12 Applications of quadric surfaces
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(a) A satellite dish reflects signals to 
 the focus of a paraboloid.

(c) Gears in the shape of hyperboloids mesh
 and rotate along skew axes.

(b) Nuclear reactors have cooling towers in 
 the shape of hyperboloids.

12.6 Exercises

 1. (a)  What does the equation y − x 2 represent as a curve in R2 ?
 (b) What does it represent as a surface in R3?
 (c) What does the equation z − y 2 represent?

 2. (a) Sketch the graph of y − e x as a curve in R2.
 (b) Sketch the graph of y − e x as a surface in R3.
 (c) Describe and sketch the surface z − e y.

3–8 Describe and sketch the surface.

 3. x 2 1 z 2 − 4 4. y 2 1 9z 2 − 9

 5. x 2 1 y 1 1 − 0 6. z − 2sx 

 7. xy − 1 8. z − sin y

9–10 Write an equation whose graph could be the surface shown.

 9. z

yx

 10. z

y

x

 11. (a)  Find and identify the traces of the quadric surface 
x 2 1 y2 2 z2 − 1 and explain why the graph looks like  
the graph of the hyperboloid of one sheet in Table 1.

 (b)  If we change the equation in part (a) to 
x 2 2 y2 1 z2 − 1, how is the graph affected?

 (c)  What if we change the equation in part (a) to 
x 2 1 y2 1 2y 2 z2 − 0?

 12. (a)  Find and identify the traces of the quadric surface 
2x 2 2 y2 1 z2 − 1 and explain why the graph looks like 
the graph of the hyperboloid of two sheets in Table 1.

 (b)  If the equation in part (a) is changed to 
x 2 2 y2 2 z2 − 1, what happens to the graph? Sketch the 
new graph.

13–22 Use traces to sketch and identify the surface.

 13. x − y 2 1 4z2

 14. 4x 2 1 9y 2 1 9z 2 − 36

 15. x 2 − 4y 2 1 z 2 16. z 2 2 4x 2 2 y 2 − 4

 17. 9y 2 1 4z 2 − x 2 1 36 18. 3x 2 1 y 1 3z 2 − 0

 19. 
x 2

9
1

y 2

25
1

z 2

4
− 1 20. 3x 2 2 y 2 1 3z 2 − 0

 21. y − z2 2 x 2 22. x − y 2 2 z2
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23–30 Match the equation with its graph (labeled I–VIII). Give  
reasons for your choice.

 23. x 2 1 4y 2 1 9z2 − 1 24. 9x 2 1 4y 2 1 z2 − 1

 25. x 2 2 y 2 1 z2 − 1 26. 2x 2 1 y 2 2 z2 − 1

 27. y − 2x 2 1 z2 28. y 2 − x 2 1 2z2

 29. x 2 1 2z2 − 1 30. y − x 2 2 z2

I

III

V

z

x y

z

x

z

y

x

z

yx

z

y
x

z

yx

z

II

IV

VI

y

y

VII VIII

z

x

31–32 Sketch and identify a quadric surface that could have the 
traces shown.

 31. Traces in x − k Traces in y − k

z

x

k=_2
k=_1

k=1

k=0
k=�2

k=�1

k=0

z

y

 32. Traces in x − k Traces in z − k

y

x

k=�1

z

y

k=0

k=0

k=0

k=1
k=2k=2

k=�2

33–40 Reduce the equation to one of the standard forms, 
classify the surface, and sketch it.

 33. y 2 − x 2 1 1
9 z 2 34. 4x 2 2 y 1 2z 2 − 0

 35. x 2 1 2y 2 2z2 − 0 36. y 2 − x 2 1 4z 2 1 4

 37. x 2 1 y 2 2 2x 2 6y 2 z 1 10 − 0

 38. x 2 2 y 2 2 z 2 2 4x 2 2z 1 3 − 0

 39. x 2 2 y 2 1 z 2 2 4x 2 2z − 0

 40. 4x 2 1 y 2 1 z 2 2 24x 2 8y 1 4z 1 55 − 0

41–44 Graph the surface. Experiment with viewpoints and  
with domains for the variables until you get a good view of the 
surface.

 41. 24x 2 2 y 2 1 z2 − 1 42. x 2 2 y 2 2 z − 0

 43. 24x 2 2 y 2 1 z2 − 0 44. x 2 2 6x 1 4y 2 2 z − 0

 45.  Sketch the region bounded by the surfaces z − sx 2 1 y 2   
and x 2 1 y 2 − 1 for 1 < z < 2.

 46.  Sketch the region bounded by the paraboloids z − x 2 1 y 2  
and z − 2 2 x 2 2 y 2.

 47.  Find an equation for the surface obtained by rotating the 
curve y − sx  about the x-axis.

 48.  Find an equation for the surface obtained by rotating the 
line z − 2y about the z-axis.

 49.  Find an equation for the surface consisting of all points 
that are equidistant from the point s21, 0, 0d and the  
plane x − 1. Identify the surface.

 50.  Find an equation for the surface consisting of all points P 
for which the distance from P to the x-axis is twice the dis-
tance from P to the yz-plane. Identify the surface.

;
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 CHAPTER 12  Review 883

 51.  Traditionally, the earth’s surface has been modeled as a sphere, 
but the World Geodetic System of 1984 (WGS-84) uses an 
ellipsoid as a more accurate model. It places the center of the 
earth at the origin and the north pole on the positive z-axis. 
The distance from the center to the poles is 6356.523 km and 
the distance to a point on the equator is 6378.137 km.

 (a)  Find an equation of the earth’s surface as used by  
WGS-84.

 (b)  Curves of equal latitude are traces in the planes z − k. 
What is the shape of these curves?

 (c)  Meridians (curves of equal longitude) are traces in  
planes of the form y − mx. What is the shape of these 
meridians?

 52.  A cooling tower for a nuclear reactor is to be constructed in  
the shape of a hyperboloid of one sheet [see Figure 12(b)]. 
The diameter at the base is 280 m and the minimum diameter, 
500 m above the base, is 200 m. Find an equation for the  
tower.

 53.  Show that if the point sa, b, cd lies on the hyperbolic parabo-
loid z − y 2 2 x 2, then the lines with parametric equations 
x − a 1 t, y − b 1 t, z − c 1 2sb 2 adt and x − a 1 t,  
y − b 2 t, z − c 2 2sb 1 adt both lie entirely on this 
paraboloid. (This shows that the hyperbolic paraboloid is 
what is called a ruled surface; that is, it can be generated 
by the motion of a straight line. In fact, this exercise shows 
that through each point on the hyperbolic paraboloid there 
are two generating lines. The only other quadric surfaces 
that are ruled surfaces are cylinders, cones, and hyperbo-
loids of one sheet.)

 54.  Show that the curve of intersection of the surfaces 
x 2 1 2y 2 2 z2 1 3x − 1 and 2x 2 1 4y 2 2 2z2 2 5y − 0  
lies in a plane.

 55.  Graph the surfaces z − x 2 1 y 2 and z − 1 2 y 2 on a com-
mon screen using the domain | x | < 1.2, | y | < 1.2 and 
observe the curve of intersection of these surfaces. Show that 
the projection of this curve onto the xy-plane is an ellipse.

;

 12 REVIEW

CONCEPT CHECK

 1. What is the difference between a vector and a scalar?

 2.  How do you add two vectors geometrically? How do you add 
them algebraically?

 3.  If a is a vector and c is a scalar, how is ca related to a  
geo metrically? How do you find ca algebraically?

 4. How do you find the vector from one point to another?

 5.  How do you find the dot product a � b of two vectors if you 
know their lengths and the angle between them? What if you 
know their components?

 6. How are dot products useful?

 7.  Write expressions for the scalar and vector projections of b  
onto a. Illustrate with diagrams.

 8.  How do you find the cross product a 3 b of two vectors if 
you know their lengths and the angle between them? What if 
you know their components?

 9. How are cross products useful?

 10. (a)  How do you find the area of the parallelogram deter-
mined by a and b?

 (b)  How do you find the volume of the parallelepiped  
determined by a, b, and c?

 11. How do you find a vector perpendicular to a plane?

 12.  How do you find the angle between two intersecting  
planes?

 13.  Write a vector equation, parametric equations, and sym metric 
equations for a line.

 14. Write a vector equation and a scalar equation for a plane.

 15. (a)  How do you tell if two vectors are parallel?
 (b)  How do you tell if two vectors are perpendicular?
 (c)  How do you tell if two planes are parallel?

 16. (a)  Describe a method for determining whether three points  
P, Q, and R lie on the same line.

 (b)  Describe a method for determining whether four points  
P, Q, R, and S lie in the same plane.

 17. (a) How do you find the distance from a point to a line?
 (b)  How do you find the distance from a point to  

a plane?
 (c) How do you find the distance between two lines?

 18. What are the traces of a surface? How do you find them?

 19.  Write equations in standard form of the six types of quadric 
surfaces.

Answers to the Concept Check are available at StewartCalculus.com.
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 1. (a)  Find an equation of the sphere that passes through the 
point s6, 22, 3d and has center s21, 2, 1d.

 (b)  Find the curve in which this sphere intersects the 
yz-plane.

 (c)  Find the center and radius of the sphere

x 2 1 y2 1 z2 2 8x 1 2y 1 6z 1 1 − 0

 2.  Copy the vectors in the figure and use them to draw each of 
the following vectors.

 (a) a 1 b (b) a 2 b
 (c) 21

2 

a (d) 2a 1 b

a
b

 3.  If u and v are the vectors shown in the figure, find u � v and 

| u 3 v |. Is u 3 v directed into the page or out of it?

45°

|v |=3

|u |=2

 4. Calculate the given quantity if

 a − i 1 j 2 2k

 b − 3 i 2 2 j 1 k

 c − j 2 5k

 (a) 2a 1 3b (b) | b |
 (c) a � b (d) a 3 b

EXERCISES

Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

 1.  If u − ku1, u2 l  and v − kv1, v2 l , then u � v − ku1v1, u2v2 l.

 2. For any vectors u and v in V3 , | u 1 v | − | u | 1 | v |.
 3. For any vectors u and v in V3 , | u � v | − | u | | v |.
 4. For any vectors u and v in V3 , | u 3 v | − | u | | v |.
 5. For any vectors u and v in V3 , u � v − v � u.

 6. For any vectors u and v in V3 , u 3 v − v 3 u.

 7. For any vectors u and v in V3 , | u 3 v | − | v 3 u |.
 8.  For any vectors u and v in V3 and any scalar k , 

ksu � vd − skud � v

 9.  For any vectors u and v in V3 and any scalar k , 

ksu 3 vd − skud 3 v

 10.  For any vectors u, v, and w in V3 , 

su 1 vd 3 w − u 3 w 1 v 3 w

 11.  For any vectors u, v, and w in V3, 

u � sv 3 wd − su 3 vd � w

 12.  For any vectors u, v, and w in V3, 

u 3 sv 3 wd − su 3 vd 3 w

 13. For any vectors u and v in V3, su 3 vd � u − 0.

 14. For any vectors u and v in V3, su 1 vd 3 v − u 3 v.

 15.  The vector k3, 21, 2 l is parallel to the plane 

6x 2 2y 1 4z − 1

 16.  A linear equation Ax 1 By 1 Cz 1 D − 0 represents a line  
in space.

 17. The set of points 5sx, y, zd |  x 2 1 y 2 − 16  is a circle.

 18. In R3 the graph of y − x 2 is a paraboloid.

 19. If u � v − 0, then u − 0 or v − 0.

 20. If u 3 v − 0, then u − 0 or v − 0.

 21. If u � v − 0 and u 3 v − 0, then u − 0 or v − 0.

 22. If u and v are in V3, then | u � v | < | u | | v |.

TRUE-FALSE QUIZ
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15–17 Find parametric equations for the line.

 15.  The line through s4, 21, 2d and s1, 1, 5d

 16.  The line through s1, 0, 21d and parallel to the line 
1
3sx 2 4d − 1

2 y − z 1 2

 17.  The line through s22, 2, 4d and perpendicular to the  
plane 2x 2 y 1 5z − 12

18–20 Find an equation of the plane.

 18.  The plane through s2, 1, 0d and parallel to x 1 4y 2 3z − 1

 19.  The plane through s3, 21, 1d, s4, 0, 2d, and s6, 3, 1d

 20.  The plane through s1, 2, 22d that contains the line  
x − 2t, y − 3 2 t, z − 1 1 3t

 21.  Find the point in which the line with parametric equations 
x − 2 2 t, y − 1 1 3t, z − 4t intersects the plane 
2x 2 y 1 z − 2.

 22.  Find the distance from the origin to the line  
x − 1 1 t, y − 2 2 t, z − 21 1 2t.

 23.  Determine whether the lines given by the symmetric 
equations

 
x 2 1

2
−

y 2 2

3
−

z 2 3

4

  and   
x 1 1

6
−

y 2 3

21
−

z 1 5

2

  are parallel, skew, or intersecting.

 24. (a)  Show that the planes x 1 y 2 z − 1 and 
2x 2 3y 1 4z − 5 are neither parallel nor perpendicular.

 (b)  Find, correct to the nearest degree, the angle between 
these planes.

 25.  Find an equation of the plane through the line of intersection 
of the planes x 2 z − 1 and y 1 2z − 3 and perpendicular to 
the plane x 1 y 2 2z − 1.

 26. (a)  Find an equation of the plane that passes through the 
points As2, 1, 1d, Bs21, 21, 10d, and Cs1, 3, 24d.

 (b)  Find symmetric equations for the line through B that is  
perpendicular to the plane in part (a).

 (c)  A second plane passes through s2, 0, 4d and has normal 
vector k2,  24,  23 l. Show that the acute angle between 
the planes is approximately 43°.

 (d)  Find parametric equations for the line of intersection of 
the two planes.

 27.  Find the distance between the planes 3x 1 y 2 4z − 2  
and 3x 1 y 2 4z − 24.

 (e) | b 3 c | (f ) a � sb 3 cd
 (g) c 3 c (h) a 3 sb 3 cd
 (  i  ) compa b ( j) proja b
 (k)  The angle between a and b (correct to the nearest degree)

 5.  Find the values of x such that the vectors k3, 2, x l  and 
k2x, 4, x l  are orthogonal.

 6.  Find two unit vectors that are orthogonal to both j 1 2k  
and i 2 2 j 1 3k.

 7. Suppose that u � sv 3 wd − 2. Find the value of each of the 
following.

 (a) su 3 vd � w (b) u � sw 3 vd
 (c) v � su 3 wd (d) su 3 vd � v

 8. Show that if a, b, and c are in V3, then

sa 3 bd � fsb 3 cd 3 sc 3 adg − fa � sb 3 cdg 2

 9. Find the acute angle between two diagonals of a cube.

 10.  Given the points As1, 0, 1d, Bs2, 3, 0d, Cs21, 1, 4d, and 
Ds0, 3, 2d, find the volume of the parallelepiped with adjacent 
edges AB, AC, and AD.

 11. (a)  Find a vector perpendicular to the plane through the 
points As1, 0, 0d, Bs2, 0, 21d, and Cs1, 4, 3d.

 (b) Find the area of triangle ABC.

 12.  A constant force F − 3 i 1 5 j 1 10k moves an object along 
the line segment from s1, 0, 2d to s5, 3, 8d. Find the work 
done if the distance is measured in meters and the force in 
newtons.

 13.  A boat is pulled onto shore using two ropes, as shown in the 
diagram. If a force of 255 N is needed, find the magnitude of 
the force in each rope.

20°
30°

255 N

 14.  Find the magnitude of the torque about P if a 50-N force is 
applied as shown.

P

40 cm

50 N
30°

 CHAPTER 12  Review 885
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28–36 Identify and sketch the graph of each surface.

 28. x − 3 29. x − z

 30. y − z2 31. x 2 − y 2 1 4z2

 32. 4x 2 y 1 2z − 4

 33. 24x 2 1 y 2 2 4z2 − 4

 34. y 2 1 z2 − 1 1 x 2

 35. 4x 2 1 4y 2 2 8y 1 z2 − 0

 36. x − y2 1 z2 2 2y 2 4z 1 5

 37.  An ellipsoid is created by rotating the ellipse 4x 2 1 y 2 − 16 
about the x-axis. Find an equation of the ellipsoid.

 38.  A surface consists of all points P such that the distance  
from P to the plane y − 1 is twice the distance from P to  
the point s0, 21, 0d. Find an equation for this surface and 
identify it.
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 1.  Each edge of a cubical box has length 1 m. The box contains nine spherical balls with the 
same radius r. The center of one ball is at the center of the cube and it touches the other 
eight balls. Each of the other eight balls touches three sides of the box. Thus the balls are 
tightly packed in the box (see the figure). Find r. (If you have trouble with this problem, read 
about the problem-solving strategy entitled Use Analogy in Principles of Problem Solving 
following Chapter 1.)

 2.  Let B be a solid box with length L , width W, and height H. Let S be the set of all points that 
are a distance at most 1 from some point of B. Express the volume of S in terms of L, W,  
and H.

 3.  Let L be the line of intersection of the planes cx 1 y 1 z − c and x 2 cy 1 cz − 21,  
where c is a real number.

 (a) Find symmetric equations for L.
 (b)  As the number c varies, the line L sweeps out a surface S. Find an equation for the curve 

of intersection of S with the horizontal plane z − t (the trace of S in the plane z − t).
 (c) Find the volume of the solid bounded by S and the planes z − 0 and z − 1.

 4.  A plane is capable of flying at a speed of 180 kmyh in still air. The pilot takes off from an 
airfield and heads due north according to the plane’s compass. After 30 minutes of flight 
time, the pilot notices that, due to the wind, the plane has actually traveled 80 km in the 
direction N 5° E.

 (a) What is the wind velocity?
 (b) In what direction should the pilot have headed to reach the intended destination?

 5.  Suppose v1 and v2 are vectors with | v1 | − 2, | v2 | − 3, and v1 � v2 − 5. Let v3 − projv1 v2,

   v4 − projv2 v3, v5 − projv3 v4, and so on. Compute �`
n−1| vn |.

 6.  Find an equation of the largest sphere that passes through the point s21, 1, 4d and is such 
that each of the points sx, y, zd inside the sphere satisfies the condition

x 2 1 y 2 1 z 2 , 136 1 2sx 1 2y 1 3zd

 7.  Suppose a block of mass m is placed on an inclined plane, as shown in the figure. The 
block’s descent down the plane is slowed by friction; if � is not too large, friction will 
prevent the block from moving at all. The forces acting on the block are the weight W, 
where | W | − mt (t is the acceleration due to gravity); the normal force N (the normal 
component of the reac tionary force of the plane on the block), where | N | − n; and the force 
F due to friction, which acts parallel to the inclined plane, opposing the direction of motion. 
If the block is at rest and � is increased, | F | must also increase until ultimately | F | reaches 
its maximum, beyond which the block begins to slide. At this angle �s , it has been observed 
that | F | is proportional to n. Thus, when | F | is maximal, we can say that | F | − �s n , where 
�s is called the coefficient of static friction and depends on the materials that are in contact.

 (a) Observe that N 1 F 1 W − 0 and deduce that �s − tan �s .
 (b)  Suppose that, for � . �s , an additional outside force H is applied to the block, horizon-

tally from the left, and let | H | − h. If h is small, the block may still slide down the 
plane; if h is large enough, the block will move up the plane. Let hmin be the smallest 
value of h that allows the block to remain motionless (so that | F | is maximal).

   By choosing the coordinate axes so that F lies along the x-axis, resolve each force 
into components parallel and perpendicular to the inclined plane and show that

hmin sin � 1 mt cos � − n    and    hmin cos � 1 �s n − mt sin �

 (c) Show that hmin − mt tans� 2 �sd

   Does this equation seem reasonable? Does it make sense for  � − �s? Does it make sense 
as � l 90° ? Explain.

1 m 1 m 

1 m 

FIGURE FOR PROBLEM 1 

N F

W

¨

FIGURE FOR PROBLEM 7 

Problems Plus
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 (d)  Let hmax be the largest value of h that allows the block to remain motionless. (In which 
direction is F heading?) Show that

hmax − mt tans� 1 �sd

  Does this equation seem reasonable? Explain.

 8.  A solid has the following properties. When illuminated by rays parallel to the z-axis, its 
shadow is a circular disk. If the rays are parallel to the y-axis, its shadow is a square. If 
the rays are parallel to the x-axis, its shadow is an isosceles triangle. (In Exercise 12.1.52 
you were asked to describe and sketch an example of such a solid, but there are many 
such solids.) Assume that the projection onto the xz-plane is a square whose sides have 
length 1.

 (a) What is the volume of the largest such solid?
 (b) Is there a smallest volume?
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The paths of objects moving through space—like the planes pictured here—can be described by vector functions.  
In Section 13.1 we will see how to use these vector functions to determine whether or not two such objects will collide.
Magdalena Zeglen / EyeEm / Getty Images

13 Vector Functions
THE FUNCTIONS THAT WE HAVE been using so far have been real-valued functions. We now study 
functions whose values are vectors because such functions are needed to describe curves and sur-
faces in space. We will also use vector-valued functions to describe the motion of objects through 
space. In particular, we will use them to derive Kepler’s laws of planetary motion.
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890 CHAPTER 13  Vector Functions

Vector Functions and Space Curves

■	 Vector-Valued Functions
In general, a function is a rule that assigns to each element in the domain an element in 
the range. A vector-valued function, or vector function, is simply a function whose 
domain is a set of real numbers and whose range is a set of vectors. We are most inter-
ested in vector functions r whose values are three-dimensional vectors. This means that 
for every number t in the domain of r there is a unique vector in V3 denoted by rstd. If  
f std, tstd, and hstd are the components of the vector rstd, then f , t, and h are real-valued 
functions called the component functions of r and we can write

rstd − k f std, tstd, hstdl − f std i 1 tstd j 1 hstd k

We use the letter t to denote the independent variable because it represents time in most 
applications of vector functions.

EXAMPLE 1 If
rstd − k t 3, lns3 2 td, st l

then the component functions are

f std − t 3   tstd − lns3 2 td   hstd − st 

By our usual convention, the domain of r consists of all values of t for which the 
expression for rstd is defined. The expressions t 3, lns3 2 td, and st  are all defined 
when 3 2 t . 0 and t > 0. Therefore the domain of r is the interval f0, 3d.� ■

■	 Limits and Continuity
The limit of a vector function r is defined by taking the limits of its component functions 
as follows.

1  If rstd − k f std, tstd, hstdl, then

lim
t l a

 rstd − k lim
t l a

 f std, lim
t l a

 tstd, lim
t l a

 hstdl
provided the limits of the component functions exist.

If lim t la rstd − L, this definition is 
equivalent to saying that the length 
and direction of the vector rstd 
approach the length and direction of 
the vector L.

Equivalently, we could have used an «-� definition (see Exercise 62). Limits of vector 
functions obey the same rules as limits of real-valued functions (see Exercise 61).

EXAMPLE 2 Find lim
t l 0

 rstd, where rstd − s1 1 t 3 d i 1 te2t j 1
sin t

t
 k.

SOLUTION According to Definition 1, the limit of r is the vector whose components 
are the limits of the component functions of r:

 lim
t l 0

 rstd − f lim
t l 0

 s1 1 t 3 dg i 1 f lim
t l 0

 te2t g j 1 Flim
t l 0

 
sin t

t G k

 − i 1 k    (by Equation 3.3.5)� ■

13.1
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 SECTION 13.1  Vector Functions and Space Curves 891

A vector function r is continuous at a if

lim
t l a

 rstd − rsad

In view of Definition 1, we see that r is continuous at a if and only if its component func-
tions f , t, and h are continuous at a.

■	 Space Curves
There is a close connection between continuous vector functions and space curves. Sup-
pose that f , t, and h are continuous real-valued functions on an interval I. Then the set 
C of all points sx, y, zd in space, where

2  x − f std    y − tstd    z − hstd 

and t varies throughout the interval I, is called a space curve. The equations in (2) are 
called parametric equations of C and t is called a parameter. We can think of C as 
being traced out by a moving particle whose position at time t is s f std, tstd, hstdd. If we 
now consider the vector function  rstd − k f std, tstd, hstdl, then rstd is the position vector 
of the point Ps f std, tstd, hstdd on C. Thus any continuous vector function r defines a space 
curve C that is traced out by the tip of the moving vector rstd, as shown in Figure 1.

EXAMPLE 3 Describe the curve defined by the vector function

rstd − k1 1 t, 2 1 5t, 21 1 6t l

SOLUTION The corresponding parametric equations are

x − 1 1 t    y − 2 1 5t    z − 21 1 6t

which we recognize from Equations 12.5.2 as parametric equations of a line passing 
through the point s1, 2, 21d and parallel to the vector k1, 5, 6l. Alternatively, we could 
observe that the function can be written as r − r0 1 tv, where r0 − k1, 2, 21l and 
v − k1, 5, 6l, and this is the vector equation of a line as given by Equation 12.5.1.� ■

Plane curves can also be represented in vector notation. For instance, the curve given 
by the parametric equations x − t 2 2 2t and y − t 1 1 (see Example 10.1.1) could also 
be described by the vector equation

rstd − k t 2 2 2t, t 1 1l − st 2 2 2td i 1 st 1 1d j

where i − k1, 0l and j − k0, 1l.

EXAMPLE 4 Sketch the curve whose vector equation is

rstd − cos t i 1 sin t j 1 t k

SOLUTION The parametric equations for this curve are

x − cos t    y − sin t    z − t

Since x 2 1 y 2 − cos2t 1 sin2t − 1 for all values of t, the curve must lie on the cir- 
cular cylinder x 2 1 y 2 − 1. The point sx, y, zd lies directly above the point sx, y, 0d, 
which moves counterclockwise around the circle x 2 1 y 2 − 1 in the xy-plane. (The 
projection of the curve onto the xy-plane has vector equation rstd − kcos t, sin t, 0l. 
See Example 10.1.2.) Since z − t, the curve spirals upward around the cylinder as t 
increases. The curve, shown in Figure 2, is called a helix.� ■

C

0

z

x y

P{f(t), g(t), h(t)}

r(t)=kf(t), g(t), h(t)l

FIGURE 1  
C is traced out by the tip of a moving 
position vector rstd.

”0, 1,    ’
π
2

(1, 0, 0)

z

x

y

FIGURE 2
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892 CHAPTER 13  Vector Functions

The corkscrew shape of the helix in Example 4 is familiar from its occurrence in 
coiled springs. It also occurs in the model of DNA (deoxyribonucleic acid, the genetic 
material of living cells). In 1953 James Watson and Francis Crick showed that the struc-
ture of the DNA molecule is that of two linked, parallel helixes that are intertwined as in 
Figure 3.

In Examples 3 and 4 we were given vector equations of curves and asked for a geo- 
metric description or sketch. In the next three examples we are given a geometric descrip- 
tion of a curve and are asked to find parametric equations for the curve.

EXAMPLE 5 Find a vector equation and parametric equations for the line segment that 
joins the point Ps1, 3, 22d to the point Qs2, 21, 3d.

SOLUTION In Section 12.5 we found a vector equation for the line segment that joins 
the tip of the vector r 0 to the tip of the vector r1:

rstd − s1 2 tdr 0 1 tr1  0 < t < 1

(See Equation 12.5.4.) Here we take r 0 − k1, 3, 22l and r1 − k2, 21, 3l to obtain a 
vector equation of the line segment from P to Q:

rstd − s1 2 td k1, 3, 22l 1 tk2, 21, 3l  0 < t < 1

or rstd − k1 1 t, 3 2 4t, 22 1 5tl   0 < t < 1

The corresponding parametric equations are

 x − 1 1 t  y − 3 2 4t  z − 22 1 5t  0 < t < 1� ■

EXAMPLE 6 Find a vector function that represents the curve of intersection of the 
cylinder x 2 1 y 2 − 1 and the plane y 1 z − 2.

SOLUTION Figure 5 shows how the plane and the cylinder intersect, and Figure 6 
shows the curve of intersection C, which is an ellipse.

C

(0, _1, 3)

(1, 0, 2)

(_1, 0, 2)

(0, 1, 1)

y+z=2

≈+¥=1

z

y

0

xyx

z

FIGURE 5 FIGURE 6

FIGURE 3  
A double helix

FIGURE 4

Q(2, _1, 3)

P(1, 3, _2)

z

x y

Figure 4 shows the line segment PQ 
in Example 5.
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 SECTION 13.1  Vector Functions and Space Curves 893

The projection of C onto the xy-plane is the circle x 2 1 y 2 − 1, z − 0. So we know 
from Example 10.1.2 that we can write

x − cos t    y − sin t    0 < t < 2�

From the equation of the plane, we have

z − 2 2 y − 2 2 sin t

So we can write parametric equations for C as

x − cos t    y − sin t    z − 2 2 sin t    0 < t < 2�

The corresponding vector equation is

rstd − cos t i 1 sin t j 1 s2 2 sin td k    0 < t < 2�

This equation is called a parametrization of the curve C. The arrows in Figure 6 indi- 
cate the direction in which C is traced as the parameter t increases.� ■

EXAMPLE 7 Find parametric equations for the curve of intersection of the paraboloid 
4y − x 2 1 z 2 and the plane y − x .

SOLUTION Because any point on the curve C of intersection satisfies the equations of 
both surfaces, we can substitute y − x into the equation of the paraboloid, giving 
4x − x 2 1 z 2. Completing the square in x gives sx 2 2d2 1 z 2 − 4, so C must be 
contained in the circular cylinder sx 2 2d2 1 z 2 − 4, and the projection of C onto the 
xz-plane is the circle sx 2 2d2 1 z 2 − 4, y − 0 [with center s2, 0, 0d and radius 2]. 
From Example 10.1.4, we can write x − 2 1 2 cos t, z − 2 sin t, 0 < t < 2�, and 
because y − x , parametric equations for C are

 x − 2 1 2 cos t  y − 2 1 2 cos t  z − 2 sin t  0 < t < 2�� ■

■	 Using Technology to Draw Space Curves
Space curves are inherently more difficult to draw by hand than plane curves; for  
an accurate representation we need to use technology. For instance, Figure 8 shows a 
computer-generated graph of the curve with parametric equations

x − s4 1 sin 20td cos t    y − s4 1 sin 20td sin t    z − cos 20t

It’s called a toroidal spiral because it lies on a torus. Another interesting curve, the 
trefoil knot, with equations

x − s2 1 cos 1.5td cos t    y − s2 1 cos 1.5td sin t    z − sin 1.5t

is graphed in Figure 9. It wouldn’t be easy to plot either of these curves by hand.

FIGURE 9
A trefoil knot

z

x

y

z

x
y

FIGURE 8
A toroidal spiral

y=x

4y=≈+z@
z

y

x

FIGURE 7 

Figure 7 shows the surfaces 
of Example 7 and their curve of 
intersection.
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894 CHAPTER 13  Vector Functions

Even when a computer is used to draw a space curve, optical illusions make it difficult 
to get a good impression of what the curve really looks like. (This is especially true in 
Figure 9. See Exercise 60.) The next example shows how to cope with this problem.

EXAMPLE 8 Use a calculator or computer to draw the curve with vector equation 
rstd − kt, t 2, t 3l. This curve is called a twisted cubic.

SOLUTION We start by plotting the curve with parametric equations x − t, y − t 2, 
z − t 3 for 22 < t < 2. The result is shown in Figure 10(a), but it’s hard to see the true 
nature of the curve from that graph alone. Some three-dimensional graphing software 
allows the user to enclose a curve or surface in a box instead of displaying the coordi-
nate axes. When we look at the same curve in a box in Figure 10(b), we have a much 
clearer picture of the curve. We can see that it climbs from a lower corner of the box to 
the upper corner nearest us, and it twists as it climbs.
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(a) (b) (c)

(e)(d) (f)

FIGURE 10 Views of the twisted cubic

We get an even better idea of the curve when we view it from different vantage 
points. Part (c) shows the result of rotating the box to give another viewpoint. Parts (d), 
(e), and (f ) show the views we get when we look directly at a face of the box. In par - 
ticular, part (d) shows the view from directly above the box. It is the projection of the 
curve onto the xy-plane, namely, the parabola y − x 2. Part (e) shows the projection 
onto the xz-plane, the cubic curve z − x 3. It’s now obvious why the given curve is 
called a twisted cubic.� ■

Another method of visualizing a space curve is to draw it on a surface. For instance, 
the twisted cubic in Example 8 lies on the parabolic cylinder y − x 2. (Eliminate the 
parameter from the first two parametric equations, x − t and y − t 2.) Figure 11 shows 
both the cylin der and the twisted cubic, and we see that the curve moves upward through 
the origin along the surface of the cylinder. We also used this method in Example 4 to 
visualize the helix lying on the circular cylinder (see Figure 2). 

z

x y

FIGURE 11
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 SECTION 13.1  Vector Functions and Space Curves 895

A third method for visualizing the twisted cubic is to realize that it also lies on the 
cylin der z − x 3. So it can be viewed as the curve of intersection of the cylinders y − x 2 
and z − x 3. (See Figure 12.)

z

x

y

We have seen that an interesting space curve, the helix, occurs in the model of DNA.  
Another notable example of a space curve in science is the trajectory of a positively 
charged particle in orthogonally oriented electric and magnetic fields E and B. Depend-
ing on the initial velocity given the particle at the origin, the path of the particle is either 
a space curve whose projection onto the horizontal plane is the cycloid we studied in 
Section 10.1 [Figure 13(a)] or a curve whose projection is the trochoid investigated in 
Exercise 10.1.49 [Figure 13(b)].

(a)  r(t) = k t-sin t, 1-cos t, t l

B

E

t

(b)  r(t) = kt-    sin t, 1-    cos t, t l3
2

3
2

B

E

t

FIGURE 14 

For further details concerning the physics involved and animations of the trajectories 
of the particles, see the following websites:

●	 www.physics.ucla.edu/plasma-exp/Beam/

●	 www.phy.ntnu.edu.tw/ntnujava/index.php?topic=36

FIGURE 12
Some graphing software provides us 
with a clearer picture of a space curve 
by enclosing it in a tube. Such a plot 
enables us to see whether one part of 
a curve passes in front of or behind 
another part of the curve. For example, 
Figure 14 shows the curve of Fig
ure 13(b) as rendered by the tube-
plot command in Maple.

FIGURE 13  
Motion of a charged particle in 
orthogonally oriented electric and 
magnetic fields 

13.1 Exercises
1–2 Find the domain of the vector function.

 1. rstd − Klnst 1 1d, 
t

s9 2 t2
, 2 tL

 2. rstd − cos t i 1 ln t j 1
1

t 2 2
 k

3–6 Find the limit.

 3. lim
t l 0

 Se23 t i 1
t 2

sin2t
j 1 cos 2t kD

 4. lim
t l 1

 S t 2 2 t

t 2 1
 i 1 st 1 8  j 1

sin � t

ln t
 kD
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896 CHAPTER 13  Vector Functions

 5. lim
tl `

 K1 1 t 2

1 2 t 2 , tan21 t, 
1 2 e22 t

t L
 6. lim

tl `
 Kte2t, 

t 3 1 t

2t 3 2 1
, t sin 

1

t L
7–16 Sketch the curve with the given vector equation. Indicate 
with an arrow the direction in which t increases.

 7. rstd − k2cos t, t l 8. rstd − kt 2 2 1, tl

 9. rstd − k3 sin t, 2 cos tl 10. rstd − e t i 1 e2t j

 11. rstd − kt, 2 2 t, 2tl

 12. rstd − ksin � t, t, cos � tl

 13. rstd − k3, t, 2 2 t 2l

 14. rstd − 2 cos t i 1 2 sin t j 1 k

 15. rstd − t 2 i 1 t 4 j 1 t 6 k

 16. rstd − cos t i 2 cos t j 1 sin t k

17–18 Draw the projection of the curve onto the given plane.

 17. rstd − kt 2, t 3, t 23 l, yz-plane

 18. rstd − kt 1 1, 3t 1 1, cossty2dl, xy-plane

19–20 Draw the projections of the curve onto the three coordinate 
planes. Use these projections to help sketch the curve.

 19. rstd − kt, sin t, 2 cos tl 20. rstd − kt, t, t 2l

21–24 Find a vector equation and parametric equations for the 
line segment that joins P to Q.

 21. Ps22, 1, 0d,  Qs5, 2, 23d

 22. Ps0, 0, 0d,  Qs27, 4, 6d

 23. Ps3.5, 21.4, 2.1d,  Qs1.8, 0.3, 2.1d

 24. Psa, b, cd,  Qsu, v, wd

25–30 Match the parametric equations with the graphs  
(labeled I–VI). Give reasons for your choices.

 25. x − t cos t,  y − t,  z − t sin t,  t > 0

 26. x − cos t,  y − sin t,  z − 1ys1 1 t 2d

 27. x − t,  y − 1ys1 1 t 2 d,  z − t 2

 28. x − cos t,  y − sin t,  z − cos 2t

 29. x − cos 8t,  y − sin 8t,  z − e 0.8 t,  t > 0

 30. x − cos2 t,  y − sin2 t,  z − t

III IV

II

V VIz

x y
y

z

x

z

x y

yx

z

x y

z

I

x
y

z

31–34 Find an equation of the plane that contains the curve with 
the given vector equation.

 31. rstd − kt, 4, t 2 l 32. rstd − kt, t 2, tl

 33. rstd − ksin t, cos t, 2cos tl

 34. rstd − k2t, sin t, t 1 1l

 35.  Show that the curve with parametric equations x − t cos t, 
y − t sin t, z − t lies on the cone z2 − x 2 1 y 2, and use this 
fact to help sketch the curve.

 36.  Show that the curve with parametric equations x − sin t, 
y − cos t, z − sin2t is the curve of intersection of the surfaces 
z − x 2 and x 2 1 y 2 − 1. Use this fact to help sketch the 
curve.

 37.  Find three different surfaces that contain the curve 

rstd − 2t i 1 e t j 1 e 2 t k

 38.  Find three different surfaces that contain the curve 

rstd − t 2 i 1 ln t j 1 s1ytd k

39.   At what points does the curve rstd − t i 1 s2t 2 t 2d k inter-
sect the paraboloid z − x 2 1 y 2 ?

 40.  At what points does the helix rstd − ksin t, cos t, tl intersect 
the sphere x 2 1 y 2 1 z2 − 5?
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 SECTION 13.1  Vector Functions and Space Curves 897

 56.  Try to sketch by hand the curve of intersection of the  
parabolic cylinder y − x 2 and the top half of the ellipsoid 
x 2 1 4y 2 1 4z2 − 16. Then find parametric equations for  
this curve and use these equations and a computer to graph  
the curve.

57–58 Intersection and Collision If two objects travel through 
space along two different curves, it’s often important to know 
whether they will collide. (Will a missile hit its moving target? 
Will two aircraft collide?) Their paths might intersect, but we 
need to know whether the objects are in the same position at the 
same time. (See Exercises 10.1.55–57.)

 57. The trajectories of two particles are given by the vector 
functions

r1 std − kt 2, 7t 2 12, t 2l    r2 std − k4t 2 3, t 2, 5t 2 6l

for t > 0. Do the particles collide?

 58.  Two particles travel along the space curves

r1 std − kt, t 2, t 3l    r2 std − k1 1 2t, 1 1 6t, 1 1 14tl

  Do the particles collide? Do their paths intersect?

 59. (a)  Graph the curve with parametric equations

 x − 27
26 sin 8t 2 8

39 sin 18t

 y − 227
26 cos 8t 1 8

39 cos 18t

 z − 144
65  sin 5t

 (b)  Show that the curve lies on the hyperboloid of one  
sheet 144x 2 1 144y 2 2 25z 2 − 100.

 60.  Trefoil Knot The view of the trefoil knot shown in Figure 9 
is accurate, but it doesn’t reveal the whole story. Use the 
parametric equations

x − s2 1 cos 1.5td cos t

y − s2 1 cos 1.5td sin t

z − sin 1.5t

to sketch the curve by hand as viewed from above, with 
gaps indicating where the curve passes over itself. Start by 
showing that the projection of the curve onto the xy-plane 
has polar coordinates r − 2 1 cos 1.5t and � − t, so r var-
ies between 1 and 3. Then show that z has maximum and 
minimum values when the projection is halfway between 
r − 1 and r − 3.

     When you have finished your sketch, use a computer to 
draw the curve with viewpoint directly above and compare 
with your sketch. Then plot the curve from several other 
viewpoints. You can get a better impression of the curve if 
you plot a tube with radius 0.2 around the curve. (Use the 
tubeplot command in Maple or the tubecurve or 
Tube command in Mathematica.)

;

;

;

41–45 Graph the curve with the given vector equation. Make 
sure you choose a parameter domain and viewpoints that reveal 
the true nature of the curve.

 41. rstd − kcos t sin 2t, sin t sin 2t, cos 2tl

 42. rstd − k te t, e2t, tl

 43. rstd − ksin 3t cos t, 14 t, sin 3t sin tl
 44. rstd − kcoss8 cos td sin t, sins8 cos td sin t, cos tl

 45. rstd − kcos 2t, cos 3t, cos 4tl

 46.  Graph the curve with parametric equations

x − sin t  y − sin 2t  z − cos 4 t

Explain its shape by graphing its projections onto the three 
coordinate planes.

 47.  Graph the curve with parametric equations

x − s1 1 cos 16td cos t

y − s1 1 cos 16td sin t

z − 1 1 cos 16t

Explain the appearance of the graph by showing that it lies 
on a cone.

 48. Graph the curve with parametric equations

 x − s1 2 0.25 cos 2 10t  cos t

 y − s1 2 0.25 cos 2 10t  sin t

 z − 0.5 cos 10t

   Explain the appearance of the graph by showing that it lies 
on a sphere.

 49.  Show that the curve with parametric equations x − t 2, 
y − 1 2 3t, z − 1 1 t 3 passes through the points s1, 4, 0d 
and s9, 28, 28d but not through the point s4, 7, 26d.

50–54 Find a vector function that represents the curve of 
intersection of the two surfaces.

 50.  The cylinder x 2 1 y 2 − 4 and the surface z − xy

 51. The cone z − sx 2 1 y 2  and the plane z − 1 1 y

 52.  The paraboloid z − 4x 2 1 y 2 and the parabolic  
cylinder y − x 2

 53. The hyperbolic paraboloid z − x 2 2 y 2 and the  
cylinder x 2 1 y 2 − 1

 54.  The semiellipsoid x 2 1 y 2 1 4z 2 − 4, y > 0, and the  
cylinder x 2 1 z 2 − 1

 55.  Try to sketch by hand the curve of intersection of the circu-
lar cylinder x 2 1 y 2 − 4 and the parabolic cylinder z − x 2.  
Then find parametric equations for this curve and use these 
equations and a computer to graph the curve.

;

;

;

;

;

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



898 CHAPTER 13  Vector Functions

 61.  Properties of Limits Suppose u and v are vector functions 
that possess limits as t l a and let c be a constant. Prove the 
following prop erties of limits.

 (a) lim
t la

 fustd 1 vstdg − lim
t la

 ustd 1 lim
t la

 vstd

 (b) lim
t l a

 custd − c lim
t l a

 ustd

 (c) lim
t l a

 fustd � vstdg − lim
t l a

 ustd � lim
t l a

 vstd

 (d) lim
t l a

 fustd 3 vstdg − lim
t l a

 ustd 3 lim
t l a

 vstd

 62.  Show that lim t l a rstd − b if and only if for every « . 0  
there is a number � . 0 such that 

if 0 , | t 2 a | , �  then  | rstd 2 b | , «

Derivatives and Integrals of Vector Functions

Later in this chapter we are going to use vector functions to describe the motion of plan-
ets and other objects through space. Here we prepare the way by developing the calculus 
of vec tor functions.

■	 Derivatives
The derivative r9 of a vector function r is defined in much the same way as for real- 
valued functions:

1  
dr
dt

− r9std − lim
h l 0

 
rst 1 hd 2 rstd

h

if this limit exists. The geometric significance of this definition is shown in Figure 1. 
If the points P and Q have position vectors rstd and rst 1 hd, then PQ

l
 represents the vec-

tor rst 1 hd 2 rstd, which can therefore be regarded as a secant vector. If h . 0, the 
scalar multiple s1yhdsrst 1 hd 2 rstdd has the same direction as rst 1 hd 2 rstd. As 
h l 0, it appears that this vector approaches a vector that lies on the tangent line. For 
this reason, the vector r9std is called the tangent vector to the curve defined by r at the 
point P, provided that r9std exists and r9std ± 0. The tangent line to C at P is defined to 
be the line through P parallel to the tangent vector r9std. 

(b) The tangent vector rª(t)(a) The secant vector PQ

0

P

C

Q
r(t+h)-r(t)

r(t)
r(t+h)

0
C

P Q

r(t+h)
r(t)

rª(t)

y

z

x x

z

y

r(t+h)-r(t)
h

The following theorem gives us a convenient method for computing the derivative of 
a vector function r: just differentiate each component of r. 

2  Theorem If rstd − k f std, tstd, hstdl − f std i 1 tstd j 1 hstd k, where f , t, and 
h are differentiable functions, then

r9std − k f 9std, t9std, h9stdl − f 9std i 1 t9std j 1 h9std k

13.2

Notice that when 0 , h , 1, 
multiplying the secant vector by 1yh 
stretches the vector, as shown in 
Figure 1(b).

FIGURE 1
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PROOF

 r9std − lim
Dt l 0

 
1

Dt
 frst 1 Dtd 2 rstdg

 − lim
Dt l 0

 
1

Dt
 fk f st 1 Dtd, tst 1 Dtd, hst 1 Dtdl 2 k f std, tstd, hstdlg

 − lim
Dt l 0

 K  f st 1 Dtd 2 f std
Dt

, 
tst 1 Dtd 2 tstd

Dt
, 

hst 1 Dtd 2 hstd
Dt L

 − K lim
Dt l 0

 
f st 1 Dtd 2 f std

Dt
, lim

Dt l 0
 
tst 1 Dtd 2 tstd

Dt
, lim

Dt l 0
 
hst 1 Dtd 2 hstd

Dt L
  − k f 9std, t9std, h9stdl � ■

A unit vector that has the same direction as the tangent vector is called the unit tan-
gent vector T and is defined by

Tstd −
r9std

| r9std|
EXAMPLE 1 
(a) Find the derivative of rstd − s1 1 t 3 d

 

i 1 te2t j 1 sin 2t k.
(b) Find the unit tangent vector at the point where t − 0.

SOLUTION
(a) According to Theorem 2, we differentiate each component of r:

r9std − 3t 2 i 1 s1 2 tde2t j 1 2 cos 2t k

(b) Since rs0d − i and r9s0d − j 1 2k, the unit tangent vector at the point s1, 0, 0d is

 Ts0d −
r9s0d

| r9s0d | −
j 1 2k

s1 1 4 
−

1

s5 
 j 1

2

s5 
 k� ■

EXAMPLE 2 For the curve rstd − st  i 1 s2 2 td j, find r9std and sketch the position  
vector rs1d and the tangent vector r9s1d.

SOLUTION We have

r9std −
1

2st 
 i 2 j    and    r9s1d −

1

2
 i 2 j

The curve is a plane curve and elimination of the parameter from the equations  
x − st , y − 2 2 t gives y − 2 2 x 2, x > 0. In Figure 2 we draw the position vector 
rs1d − i 1 j starting at the origin and the tangent vector r9s1d starting at the corre-
sponding point s1, 1d.� ■

EXAMPLE 3 Find parametric equations for the tangent line to the helix with para- 
metric equations

x − 2 cos t    y − sin t    z − t

at the point s0, 1, �y2d.

SOLUTION The vector equation of the helix is rstd − k2 cos t, sin t, tl, so

r9std − k22 sin t, cos t, 1l

FIGURE 2

Notice from Figure 2 that the tangent 
vector points in the direction of 
increasing t. (See Exercise 60.)

r(1) rª(1)

(1, 1)

0

y

2

x1
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900 CHAPTER 13  Vector Functions

The parameter value corresponding to the point s0, 1, �y2d is t − �y2, so the tangent 
vector there is r9s�y2d − k22, 0, 1l. The tangent line is the line through s0, 1, �y2d 
parallel to the vector k22, 0, 1l, so by Equations 12.5.2 its parametric equations are

 x − 22t    y − 1    z −
�

2
1 t ■

z

0

12

10_1
2

0
_2

y
x

8

4

_0.5 0.5

Just as for real-valued functions, the second derivative of a vector function r is the  
derivative of r9, that is, r0 − sr9d9. For instance, the second derivative of the function in 
Example 3 is

r0std − k22 cos t, 2sin t, 0l

■	 Differentiation Rules
The next theorem shows that the differentiation formulas for real-valued functions have 
their counterparts for vector-valued functions.

3  Theorem Suppose u and v are differentiable vector functions, c is a scalar,  
and  f  is a real-valued function. Then

1. 
d

dt
 fustd 1 vstdg − u9std 1 v9std

2. 
d

dt
 fcustdg − cu9std

3. 
d

dt
 f f std ustdg − f 9std ustd 1 f std u9std

4. 
d

dt
 fustd � vstdg − u9std � vstd 1 ustd � v9std

5. 
d

dt
 fustd 3 vstdg − u9std 3 vstd 1 ustd 3 v9std

6. 
d

dt
 fus f stddg − f 9stdu9s f stdd    (Chain Rule)

This theorem can be proved either directly from Definition 1 or by using Theorem 2 
and the corresponding differentiation formulas for real-valued functions. The proof of 
Formula 4 follows; the remaining formulas are left as exercises.

The helix and the tangent line in 
Example 3 are shown in Figure 3.

FIGURE 3

In Section 13.4 we will see how r9std 
and r0std can be interpreted as the 
velocity and acceleration vectors of a 
particle moving through space with 
position vector rstd at time t.
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 SECTION 13.2  Derivatives and Integrals of Vector Functions 901

PROOF OF FORMULA 4 Let

ustd − k f1std, f2std, f3stdl   vstd − kt1std, t2std, t3stdl

Then ustd � vstd − f1std t1std 1 f2std t2std 1 f3std t3std − o
3

i−1
fistd tistd

so the ordinary Product Rule gives

 
d

dt
 fustd � vstdg −

d

dt
 o

3

i−1
fistd tistd − o

3

i−1

d

dt
 f fistd tistdg

 − o
3

i−1
f f 9i std tistd 1 fistd t9istdg

 − o
3

i−1
 f 9i std tistd 1 o

3

i−1
fistd t9istd

  − u9std � vstd 1 ustd � v9std � ■

We use Formula 4 to prove the following theorem.

4  Theorem If | rstd | − c (a constant), then r9std is orthogonal to rstd for all t.

PROOF Since
rstd � rstd − | rstd |2 − c 2

and c 2 is a constant, Formula 4 of Theorem 3 gives

0 −
d

dt
 frstd � rstdg − r9std � rstd 1 rstd � r9std − 2r9std � rstd

Thus r9std � rstd − 0, which says that r9std is orthogonal to rstd.� ■

Geometrically, Theorem 4 says that if a curve lies on a sphere with center the origin, 
then the tangent vector r9std is always perpendicular to the position vector rstd. (See  
Figure 4.)

■	 Integrals
The definite integral of a continuous vector function rstd can be defined in much the 
same way as for real-valued functions except that the integral is a vector. But then we can 
express the integral of r in terms of the integrals of its component functions f , t, and h 
as follows. (We use the notation of Chapter 5.)

 yb

a
 rstd dt − lim

nl `
 o

n

i−1
rst*i d Dt

 − lim
nl `

 FSo
n

i−1
f st*i d DtD i 1 So

n

i−1
tst*i d DtD j 1 So

n

i−1
hst*i d DtD kG

and so

 yb

a
 rstd dt − Syb

a
 f std dtD i 1 Syb

a
 tstd dtD j 1 Syb

a
 hstd dtD k

z

x

y

r(t)
rª(t)

FIGURE 4
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902 CHAPTER 13  Vector Functions

This means that we can evaluate an integral of a vector function by integrating each com- 
ponent function.

We can extend the Fundamental Theorem of Calculus to continuous vector functions 
as follows:

yb

a
 rstd dt − Rstdgb

a
− Rsbd 2 Rsad

where R is an antiderivative of r, that is, R9std − rstd. We use the notation y rstd dt for 
indefinite integrals (antiderivatives).

EXAMPLE 4 If rstd − 2 cos t i 1 sin t j 1 2t k, then

 y rstd dt − Sy 2 cos t dtD i 1 Sy sin t dtD j 1 Sy 2t dtD k

 − 2 sin t i 2 cos t j 1 t 2 k 1 C

where C is a vector constant of integration, and

 y�y2

0
 rstd dt − f2 sin t i 2 cos t j 1 t 2 kg0

�y2

− 2 i 1 j 1
� 2

4
 k� ■

13.2 Exercises

 1. The figure shows a curve C given by a vector function rstd.
 (a) Draw the vectors rs4.5d 2 rs4d and rs4.2d 2 rs4d.
 (b) Draw the vectors

rs4.5d 2 rs4d
0.5

    and    
rs4.2d 2 rs4d

0.2

 (c)  Write expressions for r9s4d and the unit tangent  
vector Ts4d.

 (d)  Draw the vector Ts4d.

x0 1

1

y
RC

Q

P

r(4.5)

r(4.2)

r(4)

 2. (a)  Make a large sketch of the curve described by the vector 
function rstd − kt 2, t l, 0 < t < 2, and draw the vectors 
rs1d, rs1.1d, and rs1.1d 2 rs1d.

 (b)  Draw the vector r9s1d starting at (1, 1), and compare it 
with the vector

rs1.1d 2 rs1d
0.1

   Explain why these vectors are so close to each other in 
length and direction.

3–8 
(a) Sketch the plane curve with the given vector equation.
(b) Find r9std.
(c)  Sketch the position vector rstd and the tangent vector r9std for 

the given value of t.

 3. rstd − kt 2 2, t 2 1 1l,  t − 21

 4. rstd − kt 2, t 3l,  t − 1

 5. rstd − e2 t i 1 et j,  t − 0

 6. rstd − e t i 1 2t j, t − 0

 7. rstd − 4 sin t i 2 2 cos t j, t − 3�y4

 8. rstd − scos t 1 1d i 1 ssin t 2 1d j, t − 2�y3

9–16 Find the derivative of the vector function.

 9. rstd − kst 2 2 , 3, 1yt 2l
 10. rstd − ke2t, t 2 t 3, ln tl

 11. rstd − t 2 i 1 cosst 2d j 1 sin2t k

 12. rstd −
1

1 1 t
 i 1

t

1 1 t
 j 1

t 2

1 1 t
 k

 13. rstd − t sin t i 1 e t cos t j 1 sin t cos t k

 14. rstd − sin2 at i 1 te bt j 1 cos2ct k

 15. rstd − a 1 t b 1 t 2 c

 16. rstd − t a 3 sb 1 t cd
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 SECTION 13.2  Derivatives and Integrals of Vector Functions 903

 36.  At what point do the curves r1std − kt, 1 2 t, 3 1 t 2l and 
r2ssd − k3 2 s, s 2 2, s 2 l intersect? Find their angle of 
intersection correct to the nearest degree.

37–42 Evaluate the integral.

 37. y2

0
 st i 2 t 3 j 1 3t 5 kd dt

 38. y4

1
 (2t 3y2 i 1 st 1 1dst  k) dt

 39. y1

0
 S 1

t 1 1
 i 1

1

t 2 1 1
 j 1

t

t 2 1 1
 kD dt

 40. y�y4

0
 ssec t tan t i 1 t cos 2t j 1 sin2  2t cos 2t kd dt

 41. y S 1

1 1 t 2  i 1 tet2
 j 1 st  kD dt

 42. y St cos t 2 i 1
1

t
 j 1 sec 2t kD dt

 43. Find rstd if r9std − 2t i 1 3t 2 j 1 st  k and rs1d − i 1 j.

 44.  Find rstd if r9std − t i 1 e t j 1 te t k and rs0d − i 1 j 1 k.

 45. Prove Formula 1 of Theorem 3.

 46. Prove Formula 3 of Theorem 3.

 47. Prove Formula 5 of Theorem 3.

 48. Prove Formula 6 of Theorem 3.

 49.  If ustd − ksin t, cos t, tl and vstd − kt, cos t, sin tl, use  
Formula 4 of Theorem 3 to find 

d

dt
fustd � vstdg

 50.  If u and v are the vector functions in Exercise 49, use  
Formula 5 of Theorem 3 to find 

d

dt
fustd 3 vstdg

 51.  Find f 9s2d, where f std − ustd � vstd, us2d − k1, 2, 21l, 
u9s2d − k3, 0, 4l, and vstd − kt, t 2, t 3l.

 52.  If rstd − ustd 3 vstd, where u and v are the vector func-
tions in Exercise 51, find r9s2d.

 53.  If rstd − a cos �t 1 b sin �t, where a and b are constant 
vectors, show that rstd 3 r9std − �a 3 b.

 54.  If r is the vector function in Exercise 53, show that 
r 0std 1 �2rstd − 0.

 55. Show that if r is a vector function such that r0 exists, then

d

dt
 frstd 3 r9stdg − rstd 3 r0std

17–20 Find the unit tangent vector Tstd at the point with the 
given value of the parameter t.

 17. rstd − kt 2 2 2t, 1 1 3t, 13t 3 1 1
2t 2l , t − 2

 18. rstd − ktan21 t, 2e 2 t, 8te t l, t − 0

 19. rstd − cos t i 1 3t j 1 2 sin 2t k,  t − 0

 20. rstd − sin2 t i 1 cos2 t j 1 tan2 t k,  t − �y4

21–22 Find the unit tangent vector Tstd at the given point on the 
curve.

 21. rstd − kt 3 1 1, 3t 2 5, 4yt l, s2, 22, 4d

 22. rstd − sin t i 1 5t j 1 cos t k, s0, 0, 1d

 23. If rstd − kt 4, t, t 2 l, find r9std, Ts1d, r0std, and r9std 3 r0std.

 24. If rstd − ke 2 t, e23 t, t l, find r9s0d, Ts0d, r0s0d, and 
r9s0d 3 r0s0d.

25–28 Find parametric equations for the tangent line to the 
curve with the given parametric equations at the specified point.

 25. x − t 2 1 1, y − 4st , z − e t 22t; s2, 4, 1d

 26. x − lnst 1 1d, y − t cos 2t, z − 2 t; s0, 0, 1d

 27. x − e2t cos t,  y − e2t sin t,  z − e2t;  s1, 0, 1d

 28. x − st 2 1 3 ,  y − lnst 2 1 3d,  z − t;  s2, ln 4, 1d

 29.  Find a vector equation for the tangent line to the curve  
of intersection of the cylinders x 2 1 y 2 − 25 and 
y 2 1 z 2 − 20 at the point s3, 4, 2d.

 30.  Find the point on the curve rstd − k2 cos t, 2 sin t, e t l,  
0 < t < �, where the tangent line is parallel to the plane 
s3 x 1 y − 1.

31–33 Find parametric equations for the tangent line to the 
curve with the given parametric equations at the specified point. 
Illustrate by graphing both the curve and the tangent line on a 
common screen.

 31.  x − t, y − e2t, z − 2t 2 t 2;  s0, 1, 0d

 32. x − 2 cos t, y − 2 sin t, z − 4 cos 2t;  (s3 , 1, 2)

 33. x − t cos t, y − t, z − t sin t;  s2�, �, 0d

 34. (a)  Find the point of intersection of the tangent lines to the 
curve rstd − ksin � t, 2 sin � t, cos � tl at the points 
where t − 0 and t − 0.5.

 (b) Illustrate by graphing the curve and both tangent lines.

 35.  The curves r1std − kt, t 2, t 3l and r2std − ksin t, sin 2t, tl 
intersect at the origin. Find their angle of intersection cor-
rect to the nearest degree.

;

;
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904 CHAPTER 13  Vector Functions

 56. Find an expression for 
d

dt
 fustd � svstd 3 wstddg.

 57. If rstd ± 0, show that 
d

dt
 | rstd | −

1

| rstd |  rstd � r9std.

  fHint: | rstd |2 − rstd � rstdg

 58.  Prove the converse of Theorem 4: if a curve has the property 
that the position vector rstd is always orthogonal to the 

tangent vector r9std, then | rstd | is constant and thus the curve 
lies on a sphere with center the origin.

 59. If ustd − rstd � fr9std 3 r0stdg, show that

u9std − rstd � fr9std 3 r-stdg

 60.  Show that the tangent vector to a curve defined by a vector 
function rstd points in the direction of increasing t.  
[Hint: Refer to Figure 1 and consider the cases h . 0 and 
h , 0 separately.]

Arc Length and Curvature

■	 Arc Length
In Section 10.2 we defined the length of a plane curve with parametric equations x − f std, 
y − tstd, a < t < b, as the limit of lengths of approximating polygonal paths and, for the 
case where f 9 and t9 are continuous, we arrived at the formula

1  L − yb

a
 sf f 9stdg2 1 ft9stdg2  dt − yb

a

 ÎS dx

dt D2

1 S dy

dt D2 

 dt 

The length of a space curve is defined in exactly the same way (see Figure 1). Suppose 
that the curve has the vector equation rstd − k f std, tstd, hstdl, a < t < b, or, equivalently, 
the parametric equations x − f std, y − tstd, z − hstd, where f 9, t9, and h9 are continu-
ous. If the curve is traversed exactly once as t increases from a to b, then it can be shown  
that its length is

2  

 L − yb

a
 sf f 9stdg2 1 ft9stdg2 1 fh9stdg2  dt

 − yb

a
 ÎS dx

dt D2

1 S dy

dt D2

1 S dz

dtD2 

 dt

Notice that both of the arc length formulas (1) and (2) can be put into the more com-
pact form

3  L − yb

a
 | r9std | dt

because, for plane curves rstd − f std i 1 tstd j,

| r9std | − | f 9std i 1 t9std j | − sf f 9stdg2 1 ft9stdg2 

and for space curves rstd − f std i 1 tstd j 1 hstd k,

| r9std | − | f 9std i 1 t9std j 1 h9std k | − sf f 9stdg2 1 ft9stdg2 1 fh9stdg2 

13.3

0

z

x
y

FIGURE 1  
The length of a space curve is the limit 
of lengths of approximating polygonal 
paths.

In Section 13.4 we will see that if rstd 
is the position vector of a moving 
object at time t, then r9std is the 
velocity vector and | r9std | is the 
speed. Thus Equation 3 says that to 
compute distance traveled, we 
integrate speed.
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 SECTION 13.3  Arc Length and Curvature 905

EXAMPLE 1 Find the length of the arc of the circular helix with vector equation 
rstd − cos t i 1 sin t j 1 t k from the point s1, 0, 0d to the point s1, 0, 2�d.

SOLUTION Since r9std − 2sin t i 1 cos t j 1 k, we have

| r9std | − ss2sin td2 1 cos2t 1 1 − s2 

The arc from s1, 0, 0d to s1, 0, 2�d is described by the parameter interval 0 < t < 2� 
and so, from Formula 3, we have

 L − y2�

0
 | r9std | dt − y2�

0
 s2  dt − 2s2 �� ■

A single curve C can be represented by more than one vector function. For instance, 
the twisted cubic

4  r1std − kt, t 2, t 3l     1 < t < 2

could also be represented by the function

5  r2sud − keu, e 2u, e 3ul    0 < u < ln 2

where the connection between the parameters t and u is given by t − eu. We say that 
Equations 4 and 5 are parametrizations of the curve C. If we were to use Equation 3 to 
com pute the length of C using Equations 4 and 5, we would get the same answer. This is 
because arc length is a geometric property of the curve and hence is independent of the 
parametrization that is used.

■	 The Arc Length Function
Now we suppose that C is a curve given by a vector function

rstd − f std i 1 tstd j 1 hstdk    a < t < b

where r9 is continuous and C is traversed exactly once as t increases from a to b. We 
define its arc length function s by

6  sstd − y t

a
 |r9sud| du − yt

a
 ÎS dx

duD
2

1 S dy

duD
2

1 S dz

duD
2 

 du

(Compare to Equation 10.2.7.) Thus sstd is the length of the part of C between rsad and 
rstd. (See Figure 3.) If we differentiate both sides of Equation 6 using Part 1 of the Fun-
damental Theorem of Cal cu lus, we obtain

7  
ds

dt
− | r9std |

It is often useful to parametrize a curve with respect to arc length because arc 
length arises naturally from the shape of the curve and does not depend on a particular 
coordinate system or a particular parametrization. If a curve rstd is already given in terms 
of a parameter t and sstd is the arc length function given by Equation 6, then we may be 
able to solve for t as a function of s: t − tssd. Then the curve can be reparametrized in 
terms of s by substituting for t: r − rstssdd. Thus, if s − 3 for instance, rsts3dd is the posi-
tion vector of the point 3 units of length along the curve from its starting point.

(1, 0, 2π)

z

x y

(1, 0, 0)

Figure 2 shows the arc of the helix 
whose length is computed in  
Example 1.

FIGURE 2

z

0

x y

C

r(t)
r(a)

s(t)

FIGURE 3
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906 CHAPTER 13  Vector Functions

EXAMPLE 2 Reparametrize the helix rstd − cos t i 1 sin t j 1 t k with respect to arc 
length measured from s1, 0, 0d in the direction of increasing t.

SOLUTION The initial point s1, 0, 0d corresponds to the parameter value t − 0. From  
Example 1 we have

ds

dt
− | r9std | − s2 

and so s − sstd − y t

0
 | r9sud | du − y t

0
 s2  du − s2 t

Therefore t − sys2  and the required reparametrization is obtained by substituting  
for t:

 rstssdd − cos(sys2 ) i 1 sin(sys2 ) j 1 (sys2 ) k� ■

■	 Curvature
A parametrization rstd is called smooth on an interval I if r9 is continuous and r9std ± 0  
on I. A curve is called smooth if it has a smooth parametrization. A smooth curve has no 
sharp corner or cusp; when the tangent vector turns, it does so continuously.

If C is a smooth curve defined by the vector function r, recall that the unit tangent 
vec tor Tstd is given by

Tstd −
r9std

| r9std |  

and indicates the direction of the curve. From Figure 4 you can see that Tstd changes 
direction very slowly when C is fairly straight, but it changes direction more quickly 
when C bends or twists more sharply.

The curvature of C at a given point is a measure of how quickly the curve changes 
direction at that point. Specifically, we define it to be the magnitude of the rate of change 
of the unit tangent vector with respect to arc length. (We use arc length so that the defini-
tion of curvature will be independent of the parametrization.) Because the unit tangent 
vector has constant length, only changes in direction contribute to the rate of change  
of T.

8  Definitio  The curvature of a curve is

� − Z dT
ds Z

where T is the unit tangent vector.

The curvature is easier to compute if it is expressed in terms of the parameter t instead 
of s, so we use the Chain Rule (Theorem 13.2.3, Formula 6) to write

dT
dt

−
dT
ds

 
ds

dt
  ›?   � − Z dT

ds Z − Z dTydt

dsydt Z

z

0

x y
C

FIGURE 4  
Unit tangent vectors at equally spaced 
points on C
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 SECTION 13.3  Arc Length and Curvature 907

But dsydt − | r9std | from Equation 7, so

9  �std − | T9std |
| r9std |

EXAMPLE 3 Show that the curvature of a circle of radius a is 1ya.

SOLUTION We can take the circle to have center the origin, and then a parametrization 
is

rstd − a cos t i 1 a sin t j

Therefore r9std − 2a sin t i 1 a cos t j    and    | r9std | − a

so Tstd −
r9std

| r9std | − 2sin t i 1 cos t j

and T9std − 2cos t i 2 sin t j

This gives | T9std | − 1, so using Formula 9, we have

 �std − | T9std |
| r9std | −

1

a
� ■

The result of Example 3 shows that small circles have large curvature and large circles 
have small curvature, in accordance with our intuition. We can see directly from the defi-
nition of curvature that the curvature of a straight line is always 0 because the tangent 
vec tor is constant.

Although Formula 9 can be used in all cases to compute the curvature, the formula 
given by the following theorem is often more convenient to apply.

 10  Theorem The curvature of the curve given by the vector function r is

�std − | r9std 3 r0std |
| r9std |3

PROOF Since T − r9y| r9| and | r9| − dsydt, we have

r9 − | r9|T −
ds

dt
 T

so the Product Rule (Theorem 13.2.3, Formula 3) gives

r0 −
d 2s

dt 2  T 1
ds

dt
 T9

Using the fact that T 3 T − 0 (see Example 12.4.2), we have

r9 3 r0 − S ds

dtD2

sT 3 T9d

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



908 CHAPTER 13  Vector Functions

Now | Tstd | − 1 for all t, so T and T9 are orthogonal by Theorem 13.2.4. Therefore, by 
Theorem 12.4.9,

| r9 3 r0 | − S ds

dtD2

| T 3 T9 | − S ds

dtD2

| T | | T9 | − S ds

dtD2

| T9 |

Thus | T9 | − | r9 3 r0 |
sdsydtd2 − | r9 3 r0 |

| r9 |2

and � − | T9 |
| r9 | − | r9 3 r0 |

| r9 |3 � ■

EXAMPLE 4 Find the curvature of the twisted cubic rstd − kt, t 2, t 3l at a general point 
and at s0, 0, 0d.

SOLUTION We first compute the required ingredients:

 r9std − k1, 2t, 3t 2l   r0std − k0, 2, 6tl

 | r9std | − s1 1 4t 2 1 9t 4 

 r9std 3 r0std − Z i
1

0

j
2t

2

k
3t 2

6t
Z − 6t 2 i 2 6t j 1 2 k

 | r9std 3 r0std | − s36t 4 1 36t 2 1 4 − 2s9t 4 1 9t 2 1 1

Theorem 10 then gives

�std − | r9std 3 r0std |
| r9std |3 −

2s1 1 9t 2 1 9t 4 

s1 1 4t 2 1 9t 4 d3y2

At the origin, where t − 0, the curvature is �s0d − 2.� ■

For the special case of a plane curve with equation y − f sxd, we choose x as the  
parameter and write rsxd − x i 1 f sxd j. Then r9sxd − i 1 f 9sxd j and r0sxd − f 0sxd j.  
Since i 3 j − k and j 3 j − 0, it follows that r9sxd 3 r0sxd − f 0sxd k. We also have 

| r9sxd | − s1 1 f f 9sxdg2  and so, by Theorem 10,

 11  �sxd − | f 0sxd |
f1 1 s f 9sxdd2 g3y2

EXAMPLE 5 Find the curvature of the parabola y − x 2 at the points s0, 0d, s1, 1d,  
and s2, 4d.

SOLUTION Since y9 − 2x and y0 − 2, Formula 11 gives

�sxd − | y0 |
f1 1 sy9d2 g3y2 −

2

s1 1 4x 2 d3y2

The curvature at s0, 0d is �s0d − 2. At s1, 1d it is �s1d − 2y53y2 < 0.18. At s2, 4d it is 
�s2d − 2y173y2 < 0.03. Observe from the expression for �sxd or the graph of � in 
Figure 5 that �sxd l 0 as x l 6`. This corresponds to the fact that the parabola 
appears to become nearly straight as x l 6`.� ■

2

1 x0

y
y=≈

y=k(x)

FIGURE 5  
The parabola y − x 2 and its curvature 
function
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 SECTION 13.3  Arc Length and Curvature 909

■	 The Normal and Binormal Vectors
At a given point on a smooth space curve rstd, there are many vectors that are orthogonal 
to the unit tangent vector Tstd. We single out one by observing that, because | Tstd | − 1 
for all t, we have Tstd � T9std − 0 by Theorem 13.2.4, so T9std is orthogonal to Tstd. Note 
that, typically, T9std is itself not a unit vector. But at any point where � ± 0 we can define 
the principal unit normal vector Nstd (or simply unit normal) as

Nstd −
T9std

| T9std |
We can think of the unit normal vector as indicating the direction in which the curve is 
turning at each point. The vector

Bstd − Tstd 3 Nstd

is called the binormal vector. It is perpendicular to both T and N and is also a unit vec-
tor. (See Figure 6.)

EXAMPLE 6 Find the unit normal and binormal vectors for the circular helix

rstd − cos t i 1 sin t j 1 t k

SOLUTION We first compute the ingredients needed for the unit normal vector:

 r9std − 2sin t i 1 cos t j 1 k      | r9std | − s2 

 Tstd −
r9std

| r9std | −
1

s2 
 s2sin t i 1 cos t j 1 kd

 T9std −
1

s2 
 s2cos t i 2 sin t jd      | T9std | −

1

s2 

 Nstd −
T9std

| T9std | − 2cos t i 2 sin t j − k2cos t, 2sin t, 0l

This shows that the unit normal vector at any point on the helix is horizontal and points 
toward the z-axis. The binormal vector is

 Bstd − Tstd 3 Nstd −
1

s2
 F i

2sin t

2cos t

j
cos t

2sin t

k
1

0
G −

1

s2 
 ksin t, 2cos t, 1l� ■

EXAMPLE 7 Find the unit tangent, unit normal, and binormal vectors and the curva-
ture for the curve r std − k t, s2  ln t, 1ytl  at the point s1, 0, 1d.

SOLUTION We start by finding T and T9 as functions of t.

 r9std − k1, s2 yt, 21yt 2 l

 | r9std | − Î1 1
2

t 2 1
1

t 4  −
1

t 2  st 4 1 2t 2 1 1 

 −
1

t 2  sst 2 1 1d 2 −
1

t 2  st 2 1 1d  sbecause t 2 1 1 . 0d

 Tstd −
r9std

| r9std | −
t 2

st 2 1 1d
 K1, 

s2 

t
, 2

1

t 2L −
1

st 2 1 1d
 k t 2, s2 t, 21l

T
N

B

y

x

z

FIGURE 6

Figure 7 illustrates Example 6 by 
showing the vectors T, N, and B at 
two locations on the helix. In general, 
the vectors T, N, and B, start  ing at 
the various points on a curve, form a 
set of orthogonal vectors, called the 
TNB frame, that moves along the 
curve as t varies. This TNB frame 
plays an important role in the branch 
of mathematics known as differential 
geometry and in its applications to 
the motion of spacecraft.

N

N B

T

T
B

x

y

z

FIGURE 7
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910 CHAPTER 13  Vector Functions

We use Formula 3 of Theorem 13.2.3 to differentiate T:

T9std −
22t

st 2 1 1d2  k t 2, s2  t, 21l 1
1

st 2 1 1d
 k2t, s2 , 0l

The point s1, 0, 1d corresponds to t − 1, so we have

 Ts1d − 1
2 k1, s2 , 21l

 T9s1d − 21
2 k1, s2 , 21l 1 1

2 k2, s2 , 0l − 1
2 k1, 0, 1l

 Ns1d −
T9s1d

| T9s1d | −
1
2 k1, 0, 1l

1
2 s1 1 0 1 1

−
1

s2 

k1, 0, 1l

 Bs1d − Ts1d 3 Ns1d −
1

2s2 

 ks2 , 22, 2s2  l − 1
2 k1, 2s2 , 21l

and, by Formula 9, the curvature is

 �s1d − | T9s1d |
| r9s1d | −

s2 y2

2
−

s2 

4

We could also use Theorem 10 to compute �s1d; you can check that we get the same 
answer.� ■

The plane determined by the normal and binormal vectors N and B at a point P on a 
curve C is called the normal plane of C at P. It consists of all lines that are orthogonal  
to the tangent vector T. The plane determined by the vectors T and N is called the oscu-
lating plane of C at P. (See Figure 8.) The name comes from the Latin osculum, mean-
ing “kiss.” It is the plane that comes closest to containing the part of the curve near P. 
(For a plane curve, the oscu lating plane is simply the plane that contains the curve.)

The circle of curvature, or the osculating circle, of C at P is the circle in the osculat-
ing plane that passes through P with radius 1y� and center a distance 1y� from P along 
the vector N. The center of the circle is called the center of curvature of C at P. We can 
think of the circle of curvature as the circle that best describes how C behaves near P— it 
shares the same tangent, normal, and curvature at P. Figure 9 illustrates two circles of 
curvature for a plane curve.

y

x0

N

N

P

P

C

EXAMPLE 8 Find equations of the normal plane and osculating plane of the helix in 
Example 6 at the point Ps0, 1, �y2d.

y

x

z

T
N

B

osculating plane
normal
plane

P

FIGURE 8

FIGURE 9
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 SECTION 13.3  Arc Length and Curvature 911

SOLUTION The point P corresponds to t − �y2 and the normal plane there has normal 
vector r9s�y2d − k21, 0, 1l, so an equa tion of the normal plane is

21sx 2 0d 1 0sy 2 1d 1 1Sz 2
�

2 D − 0    or    z − x 1
�

2

The osculating plane at P contains the vectors T and N, so a vector normal to the oscu-
lating plane is T 3 N − B. From Example 6 we have

Bstd −
1

s2 
 ksin t,  2cos t, 1 l      BS�

2 D − K 1

s2 
, 0, 

1

s2 L
The vector k1, 0, 1 l is parallel to Bs�y2d (so also normal to the oscu lating plane). Thus 
an equation of the oscu lating plane is

 1sx 2 0d 1 0sy 2 1d 1 1Sz 2
�

2 D − 0    or    z − 2x 1
�

2
� ■

EXAMPLE 9 Find and graph the osculating circle of the parabola y − x 2 at the origin.

SOLUTION From Example 5, the curvature of the parabola at the origin is �s0d − 2 so 
the radius of the osculating circle there is 1y� − 1

2. Moving this distance in the direction 
of N − k0, 1l (the tangent vector is horizontal at the origin so the normal vector is 
vertical) leads us to the center of curvature at (0, 12 ), so an equation of the circle of 
curvature is

x 2 1 (y 2 1
2 )2

− 1
4

This circle is graphed in Figure 11.� ■

We summarize here the formulas for unit tangent, unit normal and binormal vectors, 
and curvature.

Tstd −
r9std

| r9std |       Nstd −
T9std

| T9std |       Bstd − Tstd 3 Nstd

� − Z dT
ds Z − | T9std |

| r9std | − | r9std 3 r0std |
| r9std |3

■	 Torsion
Curvature � − | d Tyds | at a point P on a curve C indicates how tightly the curve 
“bends.” Since T is a normal vector for the normal plane, d Tyds tells us how the normal 
plane changes as P moves along C. [Note that the vector d Tyds is parallel to N 
(Exercise 63), so as P moves along C, the tangent vector at P rotates in the direction  
of N. A space curve can also lift or “twist” out of the osculating plane at P.] Since B is 
normal to the osculating plane, d Byds gives us information about how the osculating 
plane changes as P moves along C. (See Figure 12.)

In Exercise 65 you are asked to show that d Byds is parallel to N. Thus there is a scalar 
� such that

 12  
d B
ds

− 2�N

Figure 10 shows the helix and the 
osculating plane in Example 8.

y

P

x

z=_x+
π

2

z

FIGURE 10

y

x0

1
2

1

y=≈osculating
circle

FIGURE 11  
Notice that the circle and the parabola 
appear to bend similarly at the origin.

y

x

z

T
N

B

dB
ds

dT
ds

P

FIGURE 12 
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912 CHAPTER 13  Vector Functions

(It is customary to include the negative sign in Equation 12.) The number � is called the 
torsion of C at P. If we take the dot product with N of each side of Equation 12 and note 
that N � N − 1, we get the following definition.

 13  Definitio  The torsion of a curve is

� − 2
d B
ds

� N

Torsion is easier to compute if it is expressed in terms of the parameter t instead of s, 
so we use the Chain Rule to write

d B
dt

−
d B
ds

 
ds

dt
  so  

d B
ds

−
d Bydt

dsydt
−

B9std

| r9std|
Now from Definition 13 we have

 14  �std − 2
B9std � Nstd

| r9std |

EXAMPLE 10 Find the torsion of the helix rstd − kcos t, sin t, t l.

SOLUTION In Example 6 we computed dsydt − | r9std | − s2 , 
Nstd − k2cos t, 2sin t, 0l, and Bstd − (1ys2  ) ksin t, 2cos t, 1l. Then 
B9std − (1ys2  ) kcos t, sin t, 0l and Formula 14 gives

� �std − 2
B9std � Nstd

| r9std | − 2
1

2
 kcos t, sin t, 0l � k2cos t, 2sin t, 0l −

1

2
� ■

Figure 13 shows the unit circle rstd − kcos t, sin t, 0l in the xy-plane and Figure 14 
shows the helix of Example 10. Both curves have constant curvature, but the circle has 
constant torsion 0 whereas the helix has constant torsion 12 . We can think of the circle as 
bending at each point but never twisting, while the helix both bends and twists (upward) 
at each point.

FIGURE 13 � − 1, � − 0 FIGURE 14 � − 1
2, � − 1

2

x

y

z

0

x

y

z

0

1
1

1

1

2π

The following theorem gives a formula that is often more convenient for computing 
torsion; a proof is outlined in Exercise 72.

Intuitively, the torsion � at a point P 
on a curve is a measure of how much 
the curve “twists” at P. If � is positive, 
the curve twists out of the osculating 
plane at P in the direction of the 
binormal vector B; if � is negative, the 
curve twists in the opposite direction.

It can be shown that under certain 
conditions, the shape of a space curve 
is completely determined by the 
values of curvature and torsion at 
each point on the curve.
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 SECTION 13.3  Arc Length and Curvature 913

 15  Theorem The torsion of the curve given by the vector function r is

�std −
f r9std 3 r0stdg � r09std

| r9std 3 r0std|2

In Exercises 68–70 you are asked to use Theorem 15 to compute the torsion of a 
curve.

13.3 Exercises
1–2
(a) Use Equation 2 to compute the length of the given line 

segment. 
(b) Compute the length using the distance formula and compare 

to your answer from part (a).

 1. rstd − k3 2 t, 2t, 4t 1 1l,  1 < t < 3

 2. rstd − st 1 2d i 2 t j 1 s3t 2 5d k,  21 < t < 2

3–8 Find the length of the curve.

 3. rstd − k t, 3 cos t, 3 sin t l,  25 < t < 5

 4. rstd − k2t, t 2, 13 t 3l ,  0 < t < 1

 5. rstd − s2 t i 1 e t j 1 e2t k,  0 < t < 1

 6. rstd − cos t i 1 sin t j 1 ln cos t k,  0 < t < �y4

 7. rstd −  i 1 t 2 j 1 t 3 k,  0 < t < 1

 8. rstd − t 2 i 1 9t j 1 4t 3y2 k, 1 < t < 4

9–11 Find the length of the curve correct to four decimal places. 
(Use a calculator or computer to approximate the integral.)

 9. rstd − k t 2, t 3, t 4 l,  0 < t < 2

 10. rstd − k t, e2t, te2t l,  1 < t < 3

 11. rstd − kcos � t, 2t, sin 2�tl, from s1, 0, 0d to s1, 4, 0d

 12.  Graph the curve with parametric equations x − sin t, 
y − sin 2t, z − sin 3t. Find the total length of this curve,  
correct to four decimal places.

 13.  Let C be the curve of intersection of the parabolic cylinder 
x 2 − 2y and the surface 3z − xy. Find the exact length of C 
from the origin to the point s6, 18, 36d.

 14.  Find, correct to four decimal places, the length of the curve  
of intersection of the cylinder 4x 2 1 y 2 − 4 and the plane 
x 1 y 1 z − 2.

15–16
(a) Find the arc length function for the curve measured from the 

point P in the direction of increasing t and then reparam e-
trize the curve with respect to arc length starting from P.

(b) Find the point 4 units along the curve (in the direction of 
increasing t) from P.

 15. rstd − s5 2 td i 1 s4t 2 3d j 1 3t k, Ps4, 1, 3d

 16. rstd − e t sin t i 1 e t cos t j 1 s2 e t k, P(0, 1, s2 )

 17.  Suppose you start at the point s0, 0, 3d and move 5 units 
along the curve x − 3 sin t, y − 4t, z − 3 cos t in the posi-
tive direction. Where are you now?

 18. Reparametrize the curve

rstd − S 2

t 2 1 1
2 1D i 1

2t

t 2 1 1
 j

with respect to arc length measured from the point (1, 0) in 
the direction of increasing t. Express the reparametrization in 
its simplest form. What can you conclude about the curve?

19–24 
(a) Find the unit tangent and unit normal vectors Tstd and Nstd.
(b) Use Formula 9 to find the curvature.

 19. rstd − kt 2, sin t 2 t cos t, cos t 1 t sin t l,  t . 0

 20. rstd − k5 sin t, t, 5 cos t l

 21. rstd − k t, t 2, 4 l

 22. rstd − k t, t, 12 t 2l
 23. rstd − k t, 12 t 2, t 2l
 24. rstd − k s2 t, e t, e2t l

25–27 Use Theorem 10 to find the curvature.

 25. rstd − t 3 j 1 t 2 k 26. rstd − t i 1 t 2 j 1 e t k

 27. rstd − s6 t 2 i 1 2t j 1 2t 3 k
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914 CHAPTER 13  Vector Functions

 28.  Find the curvature of rstd − k t 2, ln t, t ln t l at the  
point s1, 0, 0d.

 29.  Find the curvature of rstd − k t, t 2, t 3 l at the point (1, 1, 1).

 30.  Graph the curve with parametric equations x − cos t, 
y − sin t, z − sin 5t and find the curvature at the  
point s1, 0, 0d.

31–33 Use Formula 11 to find the curvature.

 31. y − x 4 32. y − tan x

 33. y − xe x

34–35 At what point does the curve have maximum curvature? 
What happens to the curvature as x l ` ?

 34. y − ln x 35. y − e x

 36.  Find an equation of a parabola that has curvature 4 at the  
origin.

 37. (a)  Is the curvature of the curve C shown in the figure 
greater at P or at Q? Explain.

 (b)  Estimate the curvature at P and at Q by sketching the  
osculating circles at those points.

1

1 x0

y
P

Q

C

38–39 Use a graphing calculator or computer to graph both the 
curve and its curvature function �sxd on the same screen. Is the 
graph of � what you would expect?

 38. y − x 4 2 2x 2 39. y − x22

40–41 Use a computer algebra system to compute the curvature 
function �std. Then graph the space curve and its curvature 
function. Comment on how the curvature reflects the shape of 
the curve.

 40. rstd − k t 2 sin t, 1 2 cos t, 4 cossty2d l,  0 < t < 8�

 41. rstd − k tet, e2t, s2 tl ,  25 < t < 5

;

;

42–43 Two graphs, a and b, are shown. One is a curve y − f sxd 
and the other is the graph of its curvature function y − �sxd. 
Identify each curve and explain your choices.

 42.  43. 

y

x

a

b

  

y

x

a

b

 44. (a)  Graph the curve rstd − ksin 3t, sin 2t, sin 3t l. At how 
many points on the curve does it appear that the curva-
ture has a local or absolute maximum?

 (b)  Use a computer algebra system to find and graph the 
curvature function. Does this graph confirm your 
conclusion from part (a)?

 45.  The graph of rstd − k t 2 3
2 sin t, 1 2 3

2 cos t, tl  is shown in 
Figure 13.1.13(b). Where do you think the curvature is larg-
est? Use a computer algebra system to find and graph the 
curvature function. For which values of t is the curvature 
largest?

46–49 Curvature of Plane Parametric Curves The curvature of 
a plane parametric curve x − f std, y − tstd is given by

� − | x? y?? 2 y? x?? |
fx? 2 1 y? 2 g3y2

where the dots indicate derivatives with respect to t.

 46. Use Theorem 10 to prove the given formula for curvature.

 47. Find the curvature of the curve x − t 2, y − t 3.

 48. Find the curvature of the curve x − a cos �t, y − b sin �t.

 49. Find the curvature of the curve x − e t cos t, y − e t sin t.

 50.  Consider the curvature at x − 0 for each member of the 
family of functions f sxd − e cx. For which members is �s0d 
largest?

51–52 Find the vectors T, N, and B at the given point.

 51. rstd − k t 2, 23 t 3, tl ,  (1, 23, 1)

 52. rstd − kcos t, sin t, ln cos t l,   s1, 0, 0d

53–54 Find equations of the normal plane and osculating plane 
of the curve at the given point.

 53. x − sin 2t, y − 2cos 2t, z − 4t; s0, 1, 2�d

 54. x − ln t, y − 2t, z − t 2; s0, 2, 1d
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68–70 Use Theorem 15 to find the torsion of the given curve at 
a general point and at the point corresponding to t − 0.

 68. rstd −  k t, 12 t 2, 13 t
3l  69. rstd −  ke t, e2t, t l

 70. rstd − kcos t, sin t, sin t l

71–72 Frenet-Serret Formulas The following formulas, called 
the Frenet-Serret formulas, are of fundamental importance in 
differential geometry:
 1. dTyds − �N
 2. dNyds − 2�T 1 �B
 3. dByds − 2�N
(Formula 1 comes from Exercise 63 and Formula 3 is Equa-
tion 12.)

 71. Use the fact that N − B 3 T to deduce For mula 2 from  
Formulas 1 and 3.

 72.  Use the Frenet-Serret formulas to prove each of the follow- 
ing. (Primes denote derivatives with respect to t. Start as in  
the proof of Theorem 10.)

 (a) r0 − s0T 1 �ss9d2 N
 (b) r9 3 r0 − �ss9d3 B
 (c) r- − f s- 2 �2ss9d3 g T 1 f 3�s9s0 1 �9ss9d2  g N

1 ��ss9d3 B

 (d) � −
s r9 3 r0 d � r-

| r9 3 r0 |2

 73.  Show that the circular helix rstd − ka cos t, a sin t, bt l,  
where a and b are positive constants, has constant curvature 
and constant torsion. (Use Theorem 15.)

 74.  Find the curvature and torsion of the curve x − sinh t, 
y − cosh t, z − t at the point s0, 1, 0d.

 75.  Evolute of a Curve The evolute of a smooth curve C is the 
curve generated by the centers of curvature of C.

 (a)  Explain why the evolute of a curve given by r is 

restd − rstd 1
1

�std
Nstd  �std ± 0

 (b) Find the evolute of the helix in Example 6.
 (c) Find the evolute of the parabola in Example 5.

 76.  Planar Curves A space curve C given by 
rstd − kxstd, ystd, zstdl is called planar if it lies in a plane. 

 (a)  Show that C is planar if and only if there exist  
scalars a, b, c, and d, not all zero, such that 
axstd 1 bystd 1 czstd − d for all t .

 (b)  Show that if C is planar, then the binormal vector B is 
normal to the plane containing C. 

 (c)  Show that if C is a planar curve then the torsion of C is 
zero for all t .

 (d)  Show that the curve rstd − kt, 2t, t 2l is planar and find 
an equation of the plane that contains the curve. Use 
this equation to find the binormal vector B. 

 55.  Find equations of the osculating circles of the ellipse 
9x 2 1 4y 2 − 36 at the points s2, 0d and s0, 3d. Use a graph-
ing calculator or computer to graph the ellipse and both 
osculating circles on the same screen.

 56.  Find equations of the osculating circles of the parabola 
y − 1

2 x 2 at the points s0, 0d and (1, 12 ). Graph both oscu-
lating circles and the parabola on the same screen.

 57.  At what point on the curve x − t 3, y − 3t, z − t 4 is the  
normal plane parallel to the plane 6x 1 6y 2 8z − 1?

 58.  Is there a point on the curve in Exercise 57 where the  
oscu lating plane is parallel to the plane x 1 y 1 z − 1?  
[Note: You will need a computer algebra system for differ-
entiating, for simplifying, and for computing a cross 
product.]

 59.  Find equations of the normal and osculating planes of the 
curve of intersection of the parabolic cylinders x − y 2 and 
z − x 2 at the point s1, 1, 1d.

 60.  Show that the osculating plane at every point on the curve

   rstd − k t 1 2, 1 2 t, 12t 2l  is the same plane. What can you 
conclude about the curve?

 61.  Show that at every point on the curve

rstd − ke t cos t, e t sin t, e t l

   the angle between the unit tangent vector and the z-axis is 
the same. Then show that the same result holds true for the 
unit normal and binormal vectors.

 62.  The Rectifying Plane The rectifying plane of a curve  
at a point is the plane that contains the vectors T and B  
at that point. Find the rectifying plane of the curve 
rstd − sin t i 1 cos t j 1 tan t k at the point 
(s2 y2, s2 y2, 1).

 63.  Show that the curvature � is related to the tangent and  
normal vectors by the equation

dT
ds

− �N

 64.  Show that the curvature of a plane curve is � − | d�yds |, 
where � is the angle between T and i; that is, � is the angle 
of inclination of the tangent line. (This shows that the  
definition of curvature is consistent with the definition for 
plane curves given in Exercises 10.2.79 – 83.)

 65. (a)  Show that dByds is perpendicular to B.
 (b) Show that dByds is perpendicular to T.
 (c)  Deduce from parts (a) and (b) that dByds is parallel to N.

66–67 Use Formula 14 to find the torsion at the given value of t.

 66. rstd − ksin t, 3t, cos t l,   t − �y2

 67. rstd −  k1
2 t 2, 2t, tl , t − 1

;

;
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916 CHAPTER 13  Vector Functions

 77.  The DNA molecule has the shape of a double helix (see  
Figure 13.1.3). The radius of each helix is about 10 angstroms  
(1 Å − 1028 cm). Each helix rises about 34 Å during each 
complete turn, and there are about 2.9 3 108 complete turns. 
Estimate the length of each helix.

 78.  Let’s consider the problem of designing a railroad track to 
make a smooth transition between sections of straight track. 
Existing track along the negative x-axis is to be joined 
smoothly to a track along the line y − 1 for x > 1.

 (a)  Find a polynomial P − Psxd of degree 5 such that the 
function F defined by

Fsxd − H0

Psxd
1

if x < 0

if 0 , x , 1

if x > 1

   is continuous and has continuous slope and continuous  
curvature.

 (b)  Graph F.;

Motion in Space: Velocity and Acceleration

In this section we show how the ideas of tangent and normal vectors and curvature  
can be used in physics to study the motion of an object—including its velocity and 
acceleration—along a space curve. In particular, we follow in the footsteps of Newton by 
using these methods to derive Kepler’s First Law of planetary motion.

■	 Velocity, Speed, and Acceleration
Suppose a particle moves through space so that its position vector at time t is rstd. Notice 
from Figure 1 that, for small values of h, the vector

1  
rst 1 hd 2 rstd

h

approximates the direction of the particle moving along the curve rstd. Its magnitude mea- 
sures the size of the displacement vector per unit time. The vector (1) gives the average 
velocity over a time interval of length h and its limit is the velocity vector vstd at time t:

2  
vstd − lim 

h l 0
 
rst 1 hd 2 rstd

h
− r9std

Thus the velocity vector is also the tangent vector and points in the direction of the tan-
gent line.

The speed of the particle at time t is the magnitude of the velocity vector, that is, 

| vstd |. This is appropriate because, from (2) and from Equation 13.3.7, we have

| vstd | − | r9std | −
ds

dt
− rate of change of distance with respect to time

As in the case of one-dimensional motion, the acceleration of the particle is defined as 
the derivative of the velocity:

astd − v9std − r0std

EXAMPLE 1 The position vector of an object moving in a plane is given by 
rstd − t 3 i 1 t 2 j. Find its velocity, speed, and acceleration when t − 1 and illustrate  
geometrically.

SOLUTION The velocity and acceleration at time t are

 vstd − r9std − 3t 2 i 1 2t j    astd − r0std − 6t i 1 2 j

13.4

r(t+h)-r(t)
h

0

C

P
Qrª(t)

r(t+h)
r(t)

x

z

y

FIGURE 1

Compare to Equation 10.2.8, where 
we defined speed for plane para
metric curves.
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and the speed is

| vstd | − ss3t 2 d2 1 s2td2 − s9t 4 1 4t 2 

When t − 1, we have

vs1d − 3 i 1 2 j      as1d − 6 i 1 2 j      | vs1d | − s13 

These velocity and acceleration vectors are shown in Figure 2.� ■

EXAMPLE 2 Find the velocity, acceleration, and speed of a particle with position  
vector rstd − k t 2, e t, te t  l.

SOLUTION  vstd − r9std − k2t, e t, s1 1 tde t l

 astd − v9std − k2, e t, s2 1 tde t l

  | vstd | − s4t 2 1 e 2 t 1 s1 1 td2e 2 t � ■

NOTE Earlier in the chapter we saw that a curve can be parametrized in different ways 
but the geometric properties of a curve—arc length, curvature, and torsion—are indepen-
dent of the choice of parametrization. On the other hand, velocity, speed, and accelera-
tion do depend on the parametrizations used. You can think of the curve as a road and a 
parametrization as describing how you travel along that road. The length and curvature 
of the road do not depend on how you travel on it, but your velocity and acceleration do.

The vector integrals that were introduced in Section 13.2 can be used to find position 
vectors when velocity or acceleration vectors are known, as in the next example.

EXAMPLE 3 A moving particle starts at an initial position rs0d − k1, 0, 0 l with initial 
velocity vs0d − i 2 j 1 k. Its acceleration is astd − 4t i 1 6t j 1 k. Find its velocity 
and position at time t.

SOLUTION Since astd − v9std, we have

 vstd − y astd dt − y s4t i 1 6t j 1 kd dt

 − 2t 2 i 1 3t 2 j 1 t k 1 C

To determine the value of the constant vector C, we use the fact that vs0d − i 2 j 1 k. 
The preceding equation gives vs0d − C, so C − i 2 j 1 k and

 vstd − 2t 2 i 1 3t 2 j 1 t k 1 i 2 j 1 k

 − s2t 2 1 1d i 1 s3t 2 2 1d j 1 st 1 1d k

Since vstd − r9std, we have

 rstd − y vstd dt

 − y fs2t 2 1 1d i 1 s3t 2 2 1d j 1 st 1 1d kg dt

 − (  

2
3 t 3 1 t) i 1 st 3 2 td j 1 (  

1
2 t 2 1 t) k 1 D

Putting t − 0, we find that D − rs0d − i, so the position at time t is given by

 rstd − (  

2
3 t 3 1 t 1 1) i 1 st 3 2 td j 1 (  

1
2 t 2 1 t) k� ■

0

y

x

(1, 1)
a(1)

v(1)

FIGURE 2

z

y
x

1

a(1)

v(1)

FIGURE 3

Figure 3 shows the path of the par
ticle in Example 2 with the velocity 
and acceleration vectors when t − 1.

The expression for rstd that we 
obtained in Example 3 was used to 
plot the path of the particle in 
Figure 4 for 0 < t < 3.

(1, 0, 0) 0

20
x0 20

y

0

4z

6

2

5 10 15

FIGURE 4
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918 CHAPTER 13  Vector Functions

In general, vector integrals allow us to recover velocity when acceleration is known 
and position when velocity is known:

vstd − vst0d 1 y t

t0
 asud du      rstd − rst0d 1 y t

t0
 vsud du

If the force that acts on a particle is known, then the acceleration can be found from 
Newton’s Second Law of Motion. The vector version of this law states that if, at any 
time t, a force Fstd acts on an object of mass m producing an acceleration astd, then

Fstd − mastd

EXAMPLE 4 An object with mass m that moves in a circular path with constant 
angular speed � has position vector rstd − a cos �t i 1 a sin �t j. Find the force acting 
on the object and show that it is directed toward the origin.

SOLUTION To find the force, we first need to know the acceleration:

 vstd − r9std − 2a� sin �t i 1 a� cos �t j

 astd − v9std − 2a�2 cos �t i 2 a�2 sin �t j

Therefore Newton’s Second Law gives the force as

Fstd − mastd − 2m�2sa cos �t i 1 a sin �t jd

Notice that Fstd − 2m�2 rstd. This shows that the force acts in the direction opposite  
to the radius vector rstd and therefore points toward the origin (see Figure 5). Such a 
force is called a centripetal (center-seeking) force.� ■

■	 Projectile Motion

EXAMPLE 5 A projectile is fired with angle of elevation � and initial velocity v0 . (See 
Figure 6.) Assuming that air resistance is negligible and the only external force is due 
to gravity, find the position function rstd of the projectile. What value of � maximizes 
the range (the horizontal distance traveled)?

SOLUTION We set up the axes so that the projectile starts at the origin. Since the force 
due to gravity acts downward, we have

F − ma − 2mt j

where t − | a | < 9.8 mys 2. Thus

a − 2t j

Since v9std − a, we have vstd − 2tt j 1 C

where C − vs0d − v0. Therefore

r9std − vstd − 2tt j 1 v0

Integrating again, we obtain

rstd − 21
2 tt 2 j 1 t v0 1 D

But D − rs0d − 0, so the position vector of the projectile is given by

3  rstd − 21
2 tt 2 j 1 t v0

The object moving with position P 
has angular speed � − d�ydt, where 
� is the angle shown in Figure 5.

P

¨
0

y

x

FIGURE 5

0

y

x

a

d

v¸

FIGURE 6
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If we write | v0 | − v0 (the initial speed of the projectile), then

v0 − v0 cos � i 1 v0 sin � j
and Equation 3 becomes

rstd − sv0 cos �dt i 1 fsv0 sin �dt 2 1
2 tt 2 g j

The parametric equations of the trajectory are therefore 

4  x − sv0 cos �dt    y − sv0  sin �dt 2 1
2 tt 2

The horizontal distance d is the value of x when y − 0. Setting y − 0, we obtain t − 0 
or t − s2v0 sin �dyt. This second value of t then gives

d − x − sv0 cos �d 
2v0 sin �

t −
v 2

0 s2 sin � cos �d
t −

v 2
0  sin 2�

t

Clearly, d has its maximum value when sin 2� − 1, that is, � − 45°.� ■

EXAMPLE 6 A projectile is fired with initial speed 150 mys and angle of elevation 30° 
from a position 10 m above ground level. Where does the projectile hit the ground, and 
with what speed?

SOLUTION If we place the origin at ground level, then the initial position of the 
projectile is (0, 10) and so we need to adjust Equations 4 by adding 10 to the expres-
sion for y. With v0 − 150 mys, � − 30°, and t − 9.8 mys2, we have

 x − 150 coss30°dt − 75s3
 

t

 y − 10 1 150 sins30°d t 2 1
2 s9.8dt 2 − 10 1 75t 2 4.9t 2

Impact occurs when y − 0, that is, 4.9t 2 2 75t 2 10 − 0. Using the quadratic formula 
to solve this equation (and taking only the positive value of t), we get

t −
75 1 s5625 1 196 

9.8
< 15.44

Then x < 75s3s15.44d < 2006, so the projectile hits the ground about 2006 m away.
The velocity of the projectile is

vstd − r9std − 75s3  i 1 s75 2 9.8td j

So its speed at impact is

 |vs15.44d| − s  (75 s3 )2 1 s75 2 9.8 � 15.44d2 < 151 mys� ■

■	 Tangential and Normal Components of Acceleration
When we study the motion of a particle, it is often useful to resolve the acceleration into 
two components, one in the direction of the tangent and the other in the direction of the 
normal. If we write v − | v | for the speed of the particle, then

Tstd −
r9std

| r9std | −
vstd

| vstd | −
v
v

and so v − vT

If you eliminate t from Equations 4, 
you will see that y is a quadratic 
function of x. So the path of the 
projectile is part of a parabola.
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If we differentiate both sides of this equation with respect to t, we get

5  a − v9 − v9T 1 vT9

If we use the expression for the curvature given by Equation 13.3.9, then we have

6  � − | T9|
| r9| − | T9|

v
    so    | T9| − �v

The unit normal vector was defined in Section 13.3 as N − T9y| T9|, so (6) gives

T9 − | T9|N − �vN

and Equation 5 becomes

7  a − v9T 1 �v2 N

Writing aT and aN for the tangential and normal components of acceleration, we have

a − aT T 1 aN N

where

8  aT − v9    and    aN − �v2

This resolution is illustrated in Figure 7.
Let’s look at what Formula 7 says. The first thing to notice is that the binormal vector 

B is absent. No matter how an object moves through space, its acceleration always lies in 
the plane of T and N (the osculating plane). (Recall that T gives the direction of motion 
and N points in the direction the curve is turning.) Next we notice that the tangential 
component of acceleration is v9, the rate of change of speed, and the normal component 
of acceleration is �v2, the curvature times the square of the speed. This makes sense if we 
think of a passenger in a car—a sharp turn in a road means a large value of the curvature 
�, so the component of the acceleration perpendicular to the motion is large and the pas-
senger is thrown against the car door. High speed around the turn has the same effect; in 
fact, if you double your speed, aN is increased by a factor of 4.

Although we have expressions for the tangential and normal components of accelera-
tion in Equations 8, it’s desirable to have expressions that depend only on r, r9, and r0. 
To this end we take the dot product of v − vT with a as given by Equation 7:

 v � a − vT � sv9T 1 �v2 Nd

 − vv9T � T 1 �v3 T � N

 − vv9  (since T � T − 1 and T � N − 0)

Therefore

9  aT − v9 −
v � a

v
−

r9std � r0std

| r9std |  

Using the formula for curvature given by Theorem 13.3.10, we have

10  aN − �v2 − | r9std 3 r99std |
| r9std | 3 | r9std | 2 − | r9std 3 r99std |

| r9std |

aT

aN

N
a

T

FIGURE 7
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EXAMPLE 7 A particle moves with position function rstd − kt 2, t 2, t 3 l . Find the 
tangential and normal components of acceleration.

SOLUTION  rstd − t 2 i 1 t 2 j 1 t 3 k

 r9std − 2t i 1 2t j 1 3t 2 k

 r0std − 2 i 1 2 j 1 6t k

 | r9std | − s8t 2 1 9t 4 

Therefore Equation 9 gives the tangential component as

aT −
r9std � r0std

| r9std | −
8t 1 18t 3

s8t 2 1 9t 4 

Since r9std 3 r0std − Z i
2t

2

j
2t

2

k
3t2

6t
Z − 6t2 i 2 6t2 j

Equation 10 gives the normal component as

 aN − | r9std 3 r0std |
| r9std | −

6s2 t 2

s8t 2 1 9t 4 
� ■

■	 Kepler’s Laws of Planetary Motion
We now describe one of the great accomplishments of calculus by showing how the 
material of this chapter can be used to prove Kepler’s laws of planetary motion. After 
20  years of  studying the astronomical observations of the Danish astronomer Tycho 
Brahe, the German mathematician and astronomer Johannes Kepler (1571–1630) formu-
lated the following three laws.

Kepler’s Laws
1. A planet revolves around the sun in an elliptical orbit with the sun at one focus.

2. The line joining the sun to a planet sweeps out equal areas in equal times.

3. The square of the period of revolution of a planet is proportional to the cube of 
the length of the major axis of its orbit.

In his book Principia Mathematica of 1687, Sir Isaac Newton was able to show that 
these three laws are consequences of two of his own laws, the Second Law of Motion and 
the Law of Universal Gravitation. In what follows we prove Kepler’s First Law. The 
remaining laws are left as exercises (with hints).

Since the gravitational force of the sun on a planet is so much larger than the forces 
exerted by other celestial bodies, we can safely ignore all bodies in the universe except the 
sun and one planet revolving about it. We use a coordinate system with the sun at the 
ori gin and we let r − rstd be the position vector of the planet. (Equally well, r could be 
the position vector of the moon or a satellite moving around the earth or a comet moving 
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around a star.) The velocity vector is v − r9 and the acceleration vector is a − r0. We use 
the following laws of Newton:

 Second Law of Motion: F − ma

 Law of Gravitation:  F − 2
GMm

r 3  r − 2
GMm

r 2  u

where F is the gravitational force on the planet, m and M are the masses of the planet and 
the sun, G is the gravitational constant, r − | r |, and u − s1yrdr is the unit vector in the 
direction of r.

We first show that the planet moves in one plane. By equating the expressions for F in 
Newton’s two laws, we find that

a − 2
GM

r 3  r

and so a is parallel to r. It follows that r 3 a − 0. We use Formula 5 in Theorem 13.2.3 to 
write

 
d

dt
 sr 3 vd − r9 3 v 1 r 3 v9

 − v 3 v 1 r 3 a − 0 1 0 − 0

Therefore r 3 v − h

where h is a constant vector. (We may assume that h ± 0; that is, r and v are not paral-
lel.) This means that the vector r − rstd is perpendicular to h for all values of t, so the 
planet always lies in the plane through the origin perpendicular to h. Thus the orbit of  
the planet is a plane curve.

To prove Kepler’s First Law we rewrite the vector h as follows:

 h − r 3 v − r 3 r9 − r u 3 sr ud9

 − r u 3 sr u9 1 r9ud − r 2su 3 u9d 1 rr9su 3 ud

 − r 2su 3 u9d
Then

 a 3 h −
2GM

r 2  u 3 sr 2 u 3 u9d − 2GM u 3 su 3 u9d

 − 2GM fsu � u9du 2 su � udu9g    (by Theorem 12.4.11, Property 6)

But u � u − | u |2 − 1 and, since | ustd | − 1, it follows from Theorem 13.2.4 that 

u � u9 − 0

Therefore  a 3 h − GM u9

and so sv 3 hd9 − v9 3 h 1 v 3 h9 − v9 3 h − a 3 h − GM u9

Integrating both sides of this equation, we get

11  v 3 h − GM u 1 c

where c is a constant vector.
At this point it is convenient to choose the coordinate axes so that the standard 

basis  vector k points in the direction of the vector h. Then the planet moves in the  
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xy-plane. Since both v 3 h and u are perpendicular to h, Equation 11 shows that c lies 
in the xy-plane. This means that we can choose the x- and y-axes so that the vector i lies 
in the direction of c, as shown in Figure 8.

If � is the angle between c and r, then sr, �d are polar coordinates of the planet. From 
Equation 11 we have

 r � sv 3 hd − r � sGM u 1 cd − GM r � u 1 r � c

 − GMr u � u 1 | r | | c | cos � − GMr 1 rc cos �

where c − | c |. Then

r −
r � sv 3 hd

GM 1 c cos �
−

1

GM
 
r � sv 3 hd
1 1 e cos �

where e − cysGMd. But

r � sv 3 hd − sr 3 vd � h − h � h − | h | 2 − h 2

where h − | h |. So

r −
h 2ysGMd

1 1 e cos �
−

eh 2yc

1 1 e cos �

Writing d − h 2yc, we obtain the equation

12  r −
ed

1 1 e cos �

Comparing with Theorem 10.6.6, we see that Equation 12 is the polar equation of a conic 
section with focus at the origin and eccentricity e. We know that the orbit of a planet is a 
closed curve and so the conic must be an ellipse.

This completes the derivation of Kepler’s First Law. We will guide you through 
the der ivation of the Second and Third Laws in the Applied Project following this sec-
tion. The proofs of these three laws show that the methods of this chapter provide a 
powerful tool for describing some of the laws of nature.

y

z

x u

v
r

c

h

¨

FIGURE 8

13.4 Exercises
 1.  The table gives coordinates of a particle moving through  

space along a smooth curve.
 (a)  Find the average velocities over the time intervals  

[0, 1], [0.5, 1], [1, 2], and [1, 1.5].
 (b)  Estimate the velocity and speed of the particle  

at t − 1.

t x y z

0 2.7 9.8 3.7
0.5 3.5 7.2 3.3
1.0 4.5 6.0 3.0
1.5 5.9 6.4 2.8
2.0 7.3 7.8 2.7

 2.  The figure shows the path of a particle that moves with  
position vector rstd at time t.

 (a)  Draw a vector that represents the average velocity of  
the particle over the time interval 2 < t < 2.4.

 (b)  Draw a vector that represents the average velocity over  
the time interval 1.5 < t < 2.

 (c) Write an expression for the velocity vector vs2d.
 (d)  Draw an approximation to the vector vs2d and estimate  

the speed of the particle at t − 2.

y

x0 21

2

1

r(2.4)
r(2)

r(1.5)
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3–8 Find the velocity, acceleration, and speed of a particle with  
the given position function. Sketch the path of the particle and  
draw the velocity and acceleration vectors for the specified value  
of t.

 3. rstd − k21
2 t 2, tl ,  t − 2

 4. rstd − kt 2, 1yt 2l,  t − 1

 5. rstd − 3 cos t i 1 2 sin t j,  t − �y3

 6. rstd − e t i 1 e 2 t j,  t − 0

 7. rstd − t i 1 t 2 j 1 2 k,  t − 1

 8. rstd − t i 1 2 cos t j 1 sin t k,  t − 0

 9–14 Find the velocity, acceleration, and speed of a particle 
with the given position function.

 9. rstd − k t 2 1 t, t 2 2 t, t 3l

 10. rstd − k2 cos t, 3t, 2 sin t l

 11. rstd − s2
  t i 1 e t j 1 e2t k

 12. rstd − t 2 i 1 2t j 1 ln t k

 13. rstd − e tscos t i 1 sin t j 1 t kd

 14. rstd − k t 2, sin t 2 t cos t, cos t 1 t sin t l ,  t > 0

15–16 Find the velocity and position vectors of a particle that 
has the given acceleration and the given initial velocity and 
position.

 15. astd − 2 i 1 2t k,  vs0d − 3 i 2 j,  rs0d − j 1 k

 16. astd − sin t i 1 2 cos t j 1 6t k,  vs0d − 2k,  
rs0d − j 2 4 k

17–18
(a)  Find the position vector of a particle that has the given 

acceler ation and the specified initial velocity and position.
(b) Graph the path of the particle.

 17. astd − 2t i 1 sin t j 1 cos 2t k,  vs0d − i,  rs0d − j

 18. astd − t i 1 e t j 1 e2t k,  vs0d − k,  rs0d − j 1 k

 19.  The position function of a particle is given by 
rstd − k t 2, 5t, t 2 2 16t l . When is the speed a minimum?

 20.  What force is required so that a particle of mass m has the 
position function rstd − t 3 i 1 t 2 j 1 t 3 k ?

 21.  A force with magnitude 20 N acts directly upward from the  
xy-plane on an object with mass 4 kg. The object starts at 
the origin with initial velocity vs0d − i 2 j. Find its posi-
tion function and its speed at time t.

 22.  Show that if a particle moves with constant speed, then the 
velocity and acceleration vectors are orthogonal.

;

 23.  A projectile is fired with an initial speed of 200 mys and  
angle of elevation 60°. Find (a) the range of the projectile,  
(b) the maximum height reached, and (c) the speed at impact.

 24.  Rework Exercise 23 if the projectile is fired from a position 
100 m above the ground.

 25.  A ball is thrown upward at an angle of 45° to the ground. If 
the ball lands 90 m away, what was the initial speed of the 
ball?

 26.  A projectile is fired from a tank with initial speed 400 mys.  
Find two angles of elevation that can be used to hit a target 
3000 m away.

 27.  A rifle is fired with angle of elevation 36°. What is the ini-
tial speed if the maximum height of the bullet is 500 m?

 28.  A batter hits a baseball 1 m above the ground toward the  
center field fence, which is 4 m high and 120 m from home 
plate. The ball leaves the bat with speed 35 mys at an  
angle 50° above the horizontal. Is it a home run? (In other 
words, does the ball clear the fence?)

 29.  A medieval city has the shape of a square and is protected  
by walls with length 500 m and height 15 m. You are the 
commander of an attacking army and the closest you can 
get to the wall is 100 m. Your plan is to set fire to the city by 
cat apulting heated rocks over the wall (with an initial speed 
of 80 mys). At what range of angles should you tell your 
men to set the catapult? (Assume the path of the rocks is 
perpendicular to the wall.)

 30.  Show that a projectile reaches three-quarters of its maxi-
mum height in half the time needed to reach its maximum 
height.

 31.  A ball is thrown eastward into the air from the origin (in  
the direction of the positive x-axis). The initial velocity is 
50 i 1 80 k, with speed measured in meters per second. The 
spin of the ball results in a southward acceleration of  
4 mys2, so the acceleration vector is a − 24 j 2 32 k. 
Where does the ball land and with what speed?

 32.  A ball with mass 0.8 kg is thrown southward into the air 
with a speed of 30 mys at an angle of 30° to the ground.  
A west wind applies a steady force of 4 N to the ball in  
an easterly direction. Where does the ball land and with 
what speed?

 33.  Water traveling along a straight portion of a river normally 
flows fastest in the middle, and the speed slows to almost 
zero at the banks. Consider a long straight stretch of river 
flowing north, with parallel banks 40 m apart. If the maxi-
mum water speed is 3 mys, we can use a quadratic function 
as a basic model for the rate of water flow x units from the 
west bank: f sxd − 3

400 xs40 2 xd.
 (a)  A boat proceeds at a constant speed of 5 mys from a 

point A on the west bank while maintaining a heading 
perpendicular to the bank. How far down the river on 

;
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 43.  The magnitude of the acceleration vector a is 10 cmys2. Use 
the figure to estimate the tangential and normal components 
of a.

y

x0

a

 44.  Angular Momentum and Torque If a particle with mass m 
moves with position vector rstd, then its angular momen-
tum is defined as Lstd − mrstd 3 vstd and its torque as 
t std − mrstd 3 astd. Show that L9std − tstd. Deduce that if 
t std − 0 for all t, then Lstd is constant. (This is the law of 
conservation of angular momentum.)

 45. The position function of a spacecraft is

rstd − s3 1 td i 1 s2 1 ln td j 1 S7 2
4

t 2 1 1D k

and the coordinates of a space station are s6, 4, 9d. The cap-
tain wants the craft to coast into the space station. When 
should the engines be turned off?

 46.  A rocket burning its onboard fuel while moving through 
space has velocity vstd and mass mstd at time t. If the exhaust 
gases escape with velocity ve relative to the rocket, it can be 
deduced from Newton’s Second Law of Motion that

m 
dv
dt

−
dm

dt
 ve 

 (a) Show that vstd − vs0d 2 ln 
ms0d
mstd

 ve.

  (b)  For the rocket to accelerate in a straight line from rest to 
twice the speed of its own exhaust gases, what fraction of 
its initial mass would the rocket have to burn as fuel?

the opposite bank will the boat touch shore? Graph the 
path of the boat.

 (b)  Suppose we would like to pilot the boat to land at the 
point B on the east bank directly opposite A. If we 
maintain a constant speed of 5 mys and a constant 
heading, find the angle at which the boat should head. 
Then graph the actual path the boat follows. Does the 
path seem realistic?

 34.  Another reasonable model for the water speed of the river in 
Exercise 33 is a sine function: f sxd − 3 sins�xy40d. If a 
boater would like to cross the river from A to B with constant 
heading and a constant speed of 5 mys, determine the angle at 
which the boat should head.

 35.  A particle has position function rstd. If r9std − c 3 rstd, 
where c is a constant vector, describe the path of the particle.

 36. (a)  If a particle moves along a straight line, what can you say 
about its acceleration vector?

 (b)  If a particle moves with constant speed along a curve, 
what can you say about its acceleration vector?

 37–40 Find the tangential and normal components of the 
acceler ation vector.

 37. rstd − st 2 1 1d i 1 t 3 j,  t > 0

 38. rstd − 2t 2 i 1 (2
3 t 3 2 2t) j

 39. rstd − cos t i 1 sin t j 1 t k

 40. rstd − t i 1 2e t j 1 e 2 t k

 41–42 Find the tangential and normal components of the 
acceleration vector at the given point.

 41. rstd − ln t i 1 st 2 1 3td j 1 4st
  

 k,  s0, 4, 4d

 42. rstd −
1

t
 i 1

1

t 2  j 1
1

t 3  k,  s1, 1, 1d

APPLIED PROJECT KEPLER’S LAWS

Johannes Kepler stated the following three laws of planetary motion on the basis of massive 
amounts of data on the positions of the planets at various times.

Kepler’s Laws

1. A planet revolves around the sun in an elliptical orbit with the sun at one focus.

2. The line joining the sun to a planet sweeps out equal areas in equal times.

3. The square of the period of revolution of a planet is proportional to the cube of the 
length of the major axis of its orbit.

(continued )
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Kepler formulated these laws because they fitted the astronomical data. He wasn’t able to  
see why they were true or how they related to each other. But Sir Isaac Newton, in his  
Principia Mathemat ica of 1687, showed how to deduce Kepler’s three laws from two of  
Newton’s own laws, the Sec ond Law of Motion and the Law of Universal Gravitation. In  
Section 13.4 we proved Kepler’s First Law using the calculus of vector functions. In this  
project we guide you through the proofs of Kepler’s Second and Third Laws and explore  
some of their consequences.

 1.  Use the following steps to prove Kepler’s Second Law. The notation is the same as in  
the proof of the First Law in Section 13.4. In particular, use polar coordinates so that 
r − sr cos �d i 1 sr sin �d j.

  (a) Show that h − r 2 
d�

dt
 k.

  (b) Deduce that r 2 
d�

dt
− h.

  (c)  If A − Astd is the area swept out by the radius vector r − rstd in the time interval ft0, tg 
as in the figure, show that

dA

dt
− 1

2 r 2 
d�

dt

  (d) Deduce that

dA

dt
− 1

2 h − constant

   This says that the rate at which A is swept out is constant and proves Kepler’s Second 
Law.

 2.  Let T be the period of a planet about the sun; that is, T is the time required for it to travel 
once around its elliptical orbit. Suppose that the lengths of the major and minor axes of the 
ellipse are 2a and 2b.

  (a) Use part (d) of Problem 1 to show that T − 2�abyh.

  (b) Show that 
h 2

GM
− ed −

b 2

a
.

  (c) Use parts (a) and (b) to show that T 2 −
4� 2

GM
 a 3.

  This proves Kepler’s Third Law. [Notice that the proportionality constant 4� 2ysGMd is 
independent of the planet.]

 3.  The period of the earth’s orbit is approximately 365.25 days. Use this fact and Kepler’s 
Third Law to find the length of the major axis of the earth’s orbit. You will need  
the mass of the sun, M − 1.99 3 1030 kg, and the gravitational constant, 
G − 6,67 3 10211 N ∙m2ykg 2.

 4.  It’s possible to place a satellite into orbit about the earth so that it remains fixed above a 
given location on the equator. Compute the altitude that is needed for such a satellite. The 
earth’s mass is 5.98 3 1024 kg; its radius is 6.37 3 106 m. (This orbit is called the Clarke 
Geosynchronous Orbit after Arthur C. Clarke, who first proposed the idea in 1945. The first 
such satellite, Syncom II, was launched in July 1963.)

0

r(t)
r(t¸)A(t)

x

y
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 13 REVIEW

CONCEPT CHECK

 1.  What is a vector function? How do you find its derivative and 
its integral?

 2.  What is the connection between vector functions and space 
curves?

 3.  How do you find the tangent vector to a smooth curve at a 
point? How do you find the tangent line? The unit tangent  
vector?

 4.  If u and v are differentiable vector functions, c is a scalar, and 
f  is a real-valued function, write the rules for differentiating 
the following vector functions.

 (a) ustd 1 vstd (b) custd (c) f std ustd
 (d) ustd � vstd (e) ustd 3 vstd (f) us f stdd

 5.  How do you find the length of a space curve given by a vector 
function rstd?

 6. (a) What is the definition of curvature?
 (b) Write a formula for curvature in terms of r9std and T9std.
 (c) Write a formula for curvature in terms of r9std and r0std.
 (d)  Write a formula for the curvature of a plane curve with 

equation y − f sxd.

 7. (a)  Write formulas for the unit normal and binormal vectors 
of a smooth space curve rstd.

 (b)  What is the normal plane of a curve at a point? What is 
the osculating plane? What is the osculating circle?

 8. (a)  How do you find the velocity, speed, and acceleration of a 
particle that moves along a space curve?

 (b)  Write the acceleration in terms of its tangential and 
normal components.

 9. State Kepler’s Laws.

Answers to the Concept Check are available at StewartCalculus.com.

Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that  
disproves the statement.

 1.  The curve with vector equation rstd − t 3 i 1 2t 3 j 1 3t 3 k is  
a line.

 2.  The curve rstd − k0, t 2, 4t l is a parabola.

 3.  The curve rstd − k2t, 3 2 t, 0 l is a line that passes through 
the origin.

 4.  The derivative of a vector function is obtained by differen- 
ti ating each component function.

 5. If ustd and vstd are differentiable vector functions, then

d

dt
 fustd 3 vstdg − u9std 3 v9std

 6. If rstd is a differentiable vector function, then

d

dt | rstd | − | r9std |

 7.  If Tstd is the unit tangent vector of a smooth curve, then the 
curvature is � − | dTydt |.

 8. The binormal vector is Bstd − Nstd 3 Tstd.

 9.  Suppose f  is twice continuously differentiable. At an inflec-
tion point of the curve y − f sxd, the curvature is 0.

 10.  If �std − 0 for all t, the curve is a straight line.

 11.  If | rstd | − 1 for all t, then | r9std | is a constant.

 12.  If | rstd | − 1 for all t, then r9std is orthogonal to rstd for all t.

 13.  The osculating circle of a curve C at a point has the same tan-
gent vector, normal vector, and curvature as C at that point.

 14.  Different parametrizations of the same curve result in identi-
cal tangent vectors at a given point on the curve.

 15. The projection of the curve rstd − kcos 2t, t, sin 2t l onto the 
xz-plane is a circle.

 16. The vector equations rstd − kt, 2t, t 1 1l and 
rstd − kt 2 1, 2t 2 2, t l are parametrizations of the  
same line.

TRUE-FALSE QUIZ
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928 CHAPTER 13  Vector Functions

 1. (a)  Sketch the curve with vector function

rstd − t i 1 cos � t j 1 sin �t k     t > 0

 (b)  Find r9std and r0std.

 2.  Let rstd − ks2 2 t , set 2 1dyt, lnst 1 1dl .
 (a) Find the domain of r.
 (b) Find lim t l 0 rstd.
 (c) Find r9std.

 3.  Find a vector function that represents the curve of inter-
section of the cylinder x 2 1 y 2 − 16 and the plane 
x 1 z − 5.

 4.  Find parametric equations for the tangent line to the curve 
x − 2 sin t, y − 2 sin 2t , z − 2 sin 3t at the point 

   (1, s3 , 2). Graph the curve and the tangent line on a  
common screen.

 5.  If rstd − t 2 i 1 t cos � t j 1 sin � t k, evaluate y1
0 rstd dt .

 6.  Let C be the curve with equations x − 2 2 t 3, y − 2t 2 1, 
z − ln t. Find (a) the point where C intersects the xz-plane, 
(b) parametric equations of the tangent line at s1, 1, 0d, and 
(c) an equation of the normal plane to C at s1, 1, 0d.

 7.  Use Simpson’s Rule with n − 6 to estimate the length of  
the arc of the curve with equations x − t 2, y − t 3, z − t 4, 
0 < t < 3.

 8.  Find the length of the curve rstd − k2t 3y2, cos 2t, sin 2t l, 
0 < t < 1.

 9.  The helix r1std − cos t i 1 sin t j 1 t k intersects the curve 
r2std − s1 1 td i 1 t 2 j 1 t 3 k at the point s1, 0, 0d. Find the 
angle of intersection of these curves.

 10.  Reparametrize the curve rstd − e t i 1 e t sin t j 1 e t cos t k 
with respect to arc length measured from the point s1, 0, 1d 
in the direction of increasing t.

 11.  For the curve given by rstd − ksin 3t, cos 3t, sin 2tl, 
0 < t < �y2, find

 (a) the unit tangent vector.
 (b) the unit normal vector.
 (c) the unit binormal vector.
 (d) the curvature.
 (e) the torsion.

 12.  Find the curvature of the ellipse x − 3 cos t, y − 4 sin t at 
the points s3, 0d and s0, 4d.

 13. Find the curvature of the curve y − x 4 at the point s1, 1d.

 14.  Find an equation of the osculating circle of the curve 
y − x 4 2 x 2 at the origin. Graph both the curve and its  
osculating circle.

 15.  Find an equation of the osculating plane of the curve 
x − sin 2t, y − t, z − cos 2t at the point s0, �, 1d.

;

;

 16.  The figure shows the curve C traced by a particle with posi-
tion vector rstd at time t.

 (a)  Draw a vector that represents the average velocity of the 
particle over the time interval 3 < t < 3.2.

 (b) Write an expression for the velocity vs3d.
 (c)  Write an expression for the unit tangent vector Ts3d and 

draw it.

y

x0

C

r(3.2)

r(3)

1

1

 17.  A particle moves with position function 
rstd − t ln t i 1 t  j 1 e2t k. Find the velocity, speed, and  
acceleration of the particle.

 18.  Find the velocity, speed, and acceleration of a particle moving 
with position function rstd − s2t 2 2 3d i 1 2t j. Sketch the 
path of the particle and draw the position, velocity, and accel-
eration vectors for t − 1.

 19.  A particle starts at the origin with initial velocity i 2 j 1 3k. 
Its acceleration is astd − 6t i 1 12t 2 j 2 6t k. Find its posi-
tion function.

 20.  An athlete throws a shot at an angle of 45° to the horizontal  
at an initial speed of 13 mys. It leaves the athlete’s hand 2 m 
above the ground.

 (a) Where is the shot 2 seconds later?
 (b) How high does the shot go?
 (c) Where does the shot land?

 21.  A projectile is launched with an initial speed of 40 mys from 
the floor of a tunnel whose height is 30 m. What angle of ele-
vation should be used to achieve the maximum possible hori-
zontal range of the projectile? What is the maximum range?

 22.   Find the tangential and normal components of the accelera-
tion vector of a particle with position function

rstd − t i 1 2t j 1 t 2 k

 23.  A disk of radius 1 is rotating in the counterclockwise  
direction at a constant angular speed �. A particle starts at the 
center of the disk and moves toward the edge along a fixed 

EXERCISES
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shown in the figure. It looks reasonable at first glance. 
Show that the function

Fsxd − H1

s1 2 x 2 

s2 2 x

if x < 0

if 0 , x , 1ys2 

if x > 1ys2 

   is continuous and has continuous slope, but does not have 
continuous curvature. Therefore f  is not an appropriate 
transfer curve.

y

x0

y=F(x)
1

1
œ„2

 (b)  Find a fifth-degree polynomial to serve as a transfer curve 
between the following straight line segments: y − 0 for 
x < 0 and y − x for x > 1. Could this be done with a 
fourth-degree polynomial? Use a graphing calculator or 
computer to sketch the graph of the “connected” function 
and check to see that it looks like the one in the figure.

y

x0

y=x

y=0
transfer curve

1

;

radius so that its position at time t, t > 0, is given by 
rstd − tRstd, where

Rstd − cos �t i 1 sin �t j

 (a) Show that the velocity v of the particle is

v − cos �t i 1 sin �t j 1 tvd

   where vd − R9std is the velocity of a point on the edge of 
the disk.

 (b) Show that the acceleration a of the particle is

a − 2vd 1 t ad

   where ad − R0std is the acceleration of a point on 
the edge of the disk. The extra term 2vd is called the 
Coriolis acceleration; it is the result of the interaction of 
the rotation of the disk and the motion of the particle. 
One can obtain a physical demonstration of this accel-
eration by walking toward the edge of a moving  
merry-go-round.

 (c)  Determine the Coriolis acceleration of a particle that 
moves on a rotating disk according to the equation

rstd − e2t cos �t i 1 e2t sin �t j

 24.  In designing transfer curves to connect sections of straight rail-
road tracks, it’s important to realize that the acceleration of the 
train should be continuous so that the reactive force exerted by 
the train on the track is also continuous. Because of the formu-
las for the components of acceleration in Section 13.4, this will 
be the case if the curvature varies continuously.

 (a)  A logical candidate for a transfer curve to join existing 
tracks given by y − 1 for x < 0 and y − s2 2 x for 

    x > 1ys2  might be the function f sxd − s1 2 x 2 , 

    0 , x , 1ys2 , whose graph is the arc of the circle 
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 1.  A particle P moves with constant angular speed � around a circle whose center is at the ori-
gin and whose radius is R. The particle is said to be in uniform circular motion. Assume that 
the motion is counterclockwise and that the particle is at the point sR, 0d when t − 0. The 
position vector at time t > 0 is rstd − R cos �t i 1 R sin �t j.

  (a)  Find the velocity vector v and show that v � r − 0. Conclude that v is tangent to the  
circle and points in the direction of the motion.

  (b)  Show that the speed | v | of the particle is the constant �R. The period T of the particle is 
the time required for one complete revolution. Conclude that

T −
2�R

| v | −
2�

�

  (c)  Find the acceleration vector a. Show that it is proportional to r and that it points toward 
the origin. An acceleration with this property is called a centripetal acceleration. Show 
that the magnitude of the acceleration vector is | a | − R�2.

  (d)  Suppose that the particle has mass m. Show that the magnitude of the force F that is 
required to produce this motion, called a centripetal force, is

| F | −
m| v |2

R

 2.  A circular curve of radius R on a highway is banked at an angle � so that a car can safely 
traverse the curve without skidding when there is no friction between the road and the tires. 
The loss of friction could occur, for example, if the road is covered with a film of water or 
ice. The rated speed vR of the curve is the maximum speed that a car can attain without 
skidding. Suppose a car of mass m is traversing the curve at the rated speed vR. Two forces 
are acting on the car: the vertical force, mt, due to the weight of the car, and a force F 
exerted by, and normal to, the road (see the figure).

     The vertical component of F balances the weight of the car, so that | F | cos � − mt. The 
horizontal component of F produces a centripetal force on the car so that, by Newton’s 
Second Law and part (d) of Problem 1,

| F | sin � −
mv 2

R

R

  (a) Show that v 2
R  − Rt tan �.

  (b)  Find the rated speed of a circular curve with radius 120 m that is banked at an angle  
of 12°.

  (c)  Suppose the design engineers want to keep the banking at 12°, but wish to increase the 
rated speed by 50%. What should the radius of the curve be?

 3.  A projectile is fired from the origin with angle of elevation � and initial speed v0. Assuming 
that air resistance is negligible and that the only force acting on the projectile is gravity, t, 
we showed in Example 13.4.5 that the position vector of the projectile is 

rstd − sv0 cos �dt i 1 fsv0 sin �dt 2 1
2 tt 2 g j

   We also showed that the maximum horizontal distance of the projectile is achieved when 
� − 45° and in this case the range is R − v 2

0yt.
  (a)  At what angle should the projectile be fired to achieve maximum height and what is the 

maximum height?
  (b)  Fix the initial speed v0 and consider the parabola x 2 1 2Ry 2 R2 − 0, whose graph is 

shown in the figure at the left. Show that the projectile can hit any target inside or on the 
boundary of the region bounded by the parabola and the x-axis, and it can’t hit any tar-
get outside this region.

r
v v t

y

x

FIGURE FOR PROBLEM 1 
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¨

FIGURE FOR PROBLEM 2 

0 R_R
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x

FIGURE FOR PROBLEM 3 

Problems Plus

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



931

  (c)  Suppose that the gun is elevated to an angle of inclination � in order to aim at a target 
that is suspended at a height h directly over a point D units downrange (see the follow-
ing figure). The target is released at the instant the gun is fired. Show that the projectile 
always hits the target, regardless of the value v0, provided the projectile does not hit the 
ground “before” D.

0 D

y

x

h

 4. (a)  A projectile is fired from the origin down an inclined plane that makes an angle � with 
the horizontal. The angle of elevation of the gun and the initial speed of the projectile 
are � and v0, respectively. Find the position vector of the projectile and the parametric 
equations of the path of the projectile as functions of the time t. (Ignore air resistance.)

  (b)  Show that the angle of elevation � that will maximize the downhill range is the angle 
halfway between the plane and the vertical.

  (c)  Suppose the projectile is fired up an inclined plane whose angle of inclination is �. Show 
that, in order to maximize the (uphill) range, the projectile should be fired in the direc-
tion halfway between the plane and the vertical.

  (d)  In a paper presented in 1686, Edmond Halley summarized the laws of gravity and pro-
jectile motion and applied them to gunnery. One problem he posed involved firing a pro-
jectile to hit a target a distance R up an inclined plane. Show that the angle at which the 
projectile should be fired to hit the target but use the least amount of energy is the same 
as the angle in part (c). (Use the fact that the energy needed to fire the projectile is pro-
portional to the square of the initial speed, so minimizing the energy is equivalent to 
minimizing the initial speed.)

 5. A ball rolls off a table with a speed of 0.5 mys. The table is 1.2 m high.
  (a)  Determine the point at which the ball hits the floor and find its speed at the instant of 

impact.
  (b)  Find the angle  � between the path of the ball and the vertical line drawn through the 

point of impact (see the figure).
  (c)  Suppose the ball rebounds from the floor at the same angle with which it hits the floor, 

but loses 20% of its speed due to energy absorbed by the ball on impact. Where does the 
ball strike the floor on the second bounce?

 6.  Find the curvature of the curve with parametric equations 

x − y t

0
 sin(1

2 �� 2) d�    y − y t

0
 cos(1

2 �� 2) d�

 7.  If a projectile is fired with angle of elevation � and initial speed v, then parametric equa-
   tions for its trajectory are

x − sv cos �dt  y − sv sin �dt 2 1
2 tt 2

   (See Example 13.4.5.) We know that the range (horizontal distance traveled) is maximized 
when � − 45°. What value of � maximizes the total distance traveled by the projectile? 
(State your answer correct to the nearest degree.)

a
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v¸

x

y

FIGURE FOR PROBLEM 4 
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FIGURE FOR PROBLEM 5 
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 8.  A cable has radius r and length L and is wound around a spool with radius R without over -
lapping. What is the shortest length along the spool that is covered by the cable?

 9.  Show that the curve with vector equation 

rstd − ka1t 2 1 b1t 1 c1, a2t 2 1 b2t 1 c2, a3t 2 1 b3t 1 c3 l

   lies in a plane and find an equation of the plane.

932
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A function of two variables can describe the shape of a surface like the one formed by these sand dunes. In Exercise 14.6.40 you are 
asked to use partial derivatives to compute the rate of change of elevation as a hiker walks in different directions.
SeppFriedhuber / E+ / Getty Images

14 Partial Derivatives
SO FAR WE HAVE DEALT with the calculus of functions of a single variable. But, in the real world, 
physical quantities often depend on two or more variables, so in this chapter we turn our attention 
to functions of several variables and extend the basic ideas of differential calculus to such 
functions.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



934 CHAPTER 14  Partial Derivatives

Functions of Several Variables

In this section we study functions of two or more variables from four points of view:

●	 verbally (by a description in words)
●	 numerically (by a table of values)
●	 algebraically (by an explicit formula)
●	 visually (by a graph or level curves)

■	 Functions of Two Variables
The temperature T  at a point on the surface of the earth at any given time depends on the 
longitude x and latitude y of the point. We can think of T  as being a function of the 
two  variables x and y, or as a function of the pair sx, yd. We indicate this functional 
dependence by writing T − f sx, yd.

The volume V  of a circular cylinder depends on its radius r and its height h. In fact, 
we know that V − �r 2h. We say that V  is a function of r and h, and we can write 
Vsr, hd − �r 2h.

Definitio  A function f  of two variables is a rule that assigns to each ordered 
pair of real numbers sx, yd in a set D a unique real number denoted by f sx, yd.  
The set D is the domain of f  and its range is the set of values that f  takes on, that 
is, h f sx, yd | sx, yd [ Dj.

We often write z − f sx, yd to make explicit the value taken on by f  at the general  
point sx, yd. The variables x and y are independent variables and z is the dependent 
variable. [Compare this with the notation y − f sxd for functions of a single variable.]

A function of two variables is just a function whose domain is a subset of R2 and 
whose range is a subset of R. One way of visualizing such a function is by means of an 
arrow diagram (see Figure 1), where the domain D is represented as a subset of the  
xy-plane and the range is a set of numbers on a real line, shown as a z-axis. For instance, 
if f sx, yd represents the temperature at a point sx, yd in a flat metal plate with the shape 
of D, we can think of the z-axis as a thermometer displaying the recorded temperatures.

If a function f  is given by a formula and no domain is specified, then the domain of f  
is understood to be the set of all pairs sx, yd for which the given expression defines a real 
number.

EXAMPLE 1 For each of the following functions, evaluate f s3, 2d and find and sketch 
the domain.

(a) f sx, yd −
sx 1 y 1 1

x 2 1
 (b) f sx, yd − x lnsy 2 2 xd

SOLUTION

(a) f s3, 2d −
s3 1 2 1 1

3 2 1
−

s6 

2

The expression for f  makes sense if the denominator is not 0 and the quantity under the 
square root sign is nonnegative. So the domain of f  is

D − hsx, yd | x 1 y 1 1 > 0,  x ± 1j

14.1

y

x0

z

D f(a, b)

f(x, y)

(x, y)

(a, b)

0

FIGURE 1
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 SECTION 14.1  Functions of Several Variables 935

The inequality x 1 y 1 1 > 0, or y > 2x 2 1, describes the points that lie on or 
above the line y − 2x 2 1, while x ± 1 means that the points on the line x − 1 must 
be excluded from the domain (see Figure 2).

(b) f s3, 2d − 3 lns22 2 3d − 3 ln 1 − 0

Since lnsy 2 2 xd is defined only when y 2 2 x . 0, that is, x , y 2, the domain of f  is 
D − hsx, yd | x , y 2 j. This is the set of points to the left of the parabola x − y 2. 
(See Figure 3.)

x0

y

_1

_1

x=1

x+y+1=0

FIGURE 2 

Domain of f sx, yd −
sx 1 y 1 1

x 2 1

x0

y

x=¥

FIGURE 3   
Domain of f sx, yd − x lnsy 2 2 xd

� ■

EXAMPLE 2 Find the domain and range of tsx, yd − s9 2 x 2 2 y 2 .

SOLUTION The domain of t is

D − hsx, yd | 9 2 x 2 2 y 2 > 0j − hsx, yd | x 2 1 y 2 < 9j

which is the disk with center s0, 0d and radius 3. (See Figure 4.) The range of t is

5z | z − s9 2 x 2 2 y 2 , sx, yd [ D6
Since z is a positive square root, z > 0. Also, because 9 2 x 2 2 y 2 < 9, we have

s9 2 x 2 2 y 2 < 3

So the range is

 hz | 0 < z < 3j − f0, 3g ■

Not all functions can be represented by explicit formulas. The function in the next 
example is described verbally and by numerical estimates of its values.

EXAMPLE 3 In regions with severe winter weather, the wind-chill index is often used 
to describe the apparent severity of the cold. This index W  is a subjective temperature 
that depends on the actual temperature T  and the wind speed v. So W  is a function of  

≈+¥=9

3_3 x

y

FIGURE 4  
Domain of tsx, yd − s9 2 x 2 2 y 2 
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936 CHAPTER 14  Partial Derivatives

T  and v, and we can write W − f sT, vd.  Table 1 records values of W  compiled by the  
US National Weather Service and the Meteorological Service of Canada.

Table 1 Wind-chill index as a function of air temperature and wind speed
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For instance, the table shows that if the actual temperature is 25°C and the wind 
speed is 50 kmyh, then subjectively it would feel as cold as a temperature of about 
215°C with no wind. So

 f s25, 50d − 215 ■

EXAMPLE 4 In 1928 Charles Cobb and Paul Douglas published a study in which they 
modeled the growth of the American economy during the period 1899 – 1922. They 
considered a simplified view of the economy in which production output is determined 
by the amount of labor involved and the amount of capital invested. While many other 
factors affect economic performance, this model proved to be remarkably accurate. The 
function Cobb and Douglas used to model production was of the form

1  PsL, Kd − bL�K 12� 

where P is the total production (the monetary value of all goods produced in a year),  
L is the amount of labor (the total number of person-hours worked in a year), and K is  
the amount of capital invested (the monetary worth of all machinery, equipment, and 
buildings). In the Discovery Project following Section 14.3 we will show how the form 
of Equation 1 follows from certain economic assumptions.

Cobb and Douglas used economic data published by the government to obtain 
Table 2. They took the year 1899 as a baseline and P, L, and K for 1899 were each 
assigned the value 100. The values for other years were expressed as percentages of the 
1899 values.

Cobb and Douglas used the method of least squares to fit the data of Table 2 to the 
function

2  PsL, Kd − 1.01L0.75K 0.25

(See Exercise 81 for the details.)

The Wind-Chill Index
The wind-chill index measures how 
cold it feels when it’s windy. It is 
based on a model of how fast a 
human face loses heat. It was 
developed through clinical trials in 
which volunteers were exposed to a 
variety of temper atures and wind 
speeds in a refrigerated wind tunnel.

Table 2

Year P L K 

1899 100 100 100
1900 101 105 107
1901 112 110 114
1902 122 117 122
1903 124 122 131
1904 122 121 138
1905 143 125 149
1906 152 134 163
1907 151 140 176
1908 126 123 185
1909 155 143 198
1910 159 147 208
1911 153 148 216
1912 177 155 226
1913 184 156 236
1914 169 152 244
1915 189 156 266
1916 225 183 298
1917 227 198 335
1918 223 201 366
1919 218 196 387
1920 231 194 407
1921 179 146 417
1922 240 161 431
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 SECTION 14.1  Functions of Several Variables 937

If we use the model given by the function in Equation 2 to compute the production 
in the years 1910 and 1920, we get the values

 Ps147, 208d − 1.01s147d0.75s208d0.25 < 161.9

 Ps194, 407d − 1.01s194d0.75s407d0.25 < 235.8

which are quite close to the actual values, 159 and 231.
The production function (1) has subsequently been used in many settings, ranging 

from individual firms to global economics. It has become known as the Cobb-Douglas 
production function. Its domain is hsL, Kd | L > 0, K > 0j because L and K represent 
labor and capital and are therefore never negative.� ■

■	 Graphs
Another way of visualizing the behavior of a function of two variables is to consider its 
graph.

Definitio  If f  is a function of two variables with domain D, then the graph of f  
is the set of all points sx, y, zd in R3 such that z − f sx, yd and sx, yd is in D.

The graph of a function f  of two variables is a surface S with equation z − f sx, yd.  
We can visualize the graph S of f  as lying directly above or below its domain D in the  
xy-plane (see Figure 5).

EXAMPLE 5 Sketch the graph of the function f sx, yd − 6 2 3x 2 2y.

SOLUTION The graph of f  has the equation z − 6 2 3x 2 2y, or 3x 1 2y 1 z − 6,  
which represents a plane. To graph the plane we first find the intercepts. Putting 
y − z − 0 in the equation, we get x − 2 as the x-intercept. Similarly, the y-intercept  
is 3 and the z-intercept is 6. This helps us sketch the portion of the graph that lies in the 
first octant in Figure 6.� ■

The function in Example 5 is a special case of the function

f sx, yd − ax 1 by 1 c

which is called a linear function. The graph of such a function has the equation

z − ax 1 by 1 c    or    ax 1 by 2 z 1 c − 0

so it is a plane (see Section 12.5). In much the same way that linear functions of one vari-
able are important in single-variable calculus, we will see that linear functions of two 
variables play a central role in multivariable calculus.

EXAMPLE 6 Sketch the graph of tsx, yd − s9 2 x 2 2 y 2 .

SOLUTION In Example 2 we found that the domain of t is the disk with center s0, 0d 
and radius 3. The graph of t has equation z − s9 2 x 2 2 y 2 . We square both sides of 
this equation to obtain z2 − 9 2 x 2 2 y 2, or x 2 1 y 2 1 z2 − 9, which we recognize as 
an equation of the sphere with center the origin and radius 3. But, since z > 0, the 
graph of t is just the top half of this sphere (see Figure 7).� ■
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FIGURE 7
Graph of tsx, yd − s9 2 x 2 2 y 2 
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938 CHAPTER 14  Partial Derivatives

NOTE An entire sphere can’t be represented by a single function of x and y. As we saw 
in Example 6, the upper hemisphere of the sphere x 2 1 y 2 1 z2 − 9 is represented by 

the function tsx, yd − s9 2 x 2 2 y 2 . The lower hemisphere is represented by the 

function hsx, yd − 2s9 2 x 2 2 y 2 .

EXAMPLE 7 Use a computer to draw the graph of the Cobb-Douglas production 
function PsL, Kd − 1.01L0.75K 0.25.

SOLUTION Figure 8 shows the graph of P for values of the labor L and capital K that 
lie between 0 and 300. The computer has drawn the surface by plotting vertical traces.
We see from these traces that the value of the production P increases as either L or K 
increases, as expected.

 0 100 200 300
L

100
0

200
300

K

0

100

200

300

P

� ■

EXAMPLE 8 Find the domain and range and sketch the graph of hsx, yd − 4x 2 1 y 2.

SOLUTION Notice that hsx, yd is defined for all possible ordered pairs of real numbers 
sx, yd, so the domain is R2, the entire xy-plane. The range of h is the set f0, `d of all 
nonnegative real numbers. [Notice that x 2 > 0 and y 2 > 0, so hsx, yd > 0 for all x  
and y.] The graph of h has the equation z − 4x 2 1 y 2, which is the elliptic paraboloid 
that we sketched in Example 12.6.4. Horizontal traces are ellipses and vertical traces 
are parabolas (see Figure 9).

 

z

yx
� ■

Many software applications are available for graphing functions of two variables. In 
some programs, traces in the vertical planes x − k and y − k are drawn for equally 
spaced values of k.

FIGURE 8

FIGURE 9
Graph of hsx, yd − 4x 2 1 y 2
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 SECTION 14.1  Functions of Several Variables 939

Fig ure 10 shows computer-generated graphs of several functions. Notice that we get 
an especially good picture of a function when rotation is used to give views from dif- 
ferent vantage points. In parts (a) and (b) the graph of f  is very flat and close to the  
xy-plane except near the origin; this is because e2x 22y 2 is very small when x or y is large.

(c) f(x, y)=sin x+sin y

z

x y

x

z

y

(d) f(x, y)=
sin x  sin y

xy

(a) f(x, y)=(≈+3¥)e_≈_¥

z

y
x

(b) f(x, y)=(≈+3¥)e_≈_¥

x

z

■	 Level Curves and Contour Maps
So far we have two methods for visualizing functions: arrow diagrams and graphs. A 
third method, borrowed from mapmakers, is a contour map on which points of constant 
elevation are joined to form contour curves, or level curves.

Definitio  The level curves of a function f  of two variables are the curves with 
equations f sx, yd − k, where k is a constant (in the range of f  ).

A level curve f sx, yd − k is the set of all points in the domain of f  at which f  takes 
on a given value k . In other words, it is a curve in the xy-plane that shows where the 
graph of f  has height k (above or below the xy-plane). A collection of level curves is 
called a contour map. Contour maps are most descriptive when the level curves 

FIGURE 10
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940 CHAPTER 14  Partial Derivatives

f sx, yd − k are drawn for equally spaced values of k , and we assume that this is the case 
unless indicated otherwise. 

You can see from Figure 11 the relation between level curves and horizontal traces. 
The level curves f sx, yd − k are just the traces of the graph of f  in the horizontal plane 
z − k projected down to the xy-plane. So if you draw a contour map of a function and 
visualize the level curves being lifted up to the surface at the indicated height, then you 
can mentally piece together a picture of the graph. The surface is steeper where the level 
curves are close together and somewhat flatter where they are farther apart.
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FIGURE 11 FIGURE 12

One common example of level curves occurs in topographic maps of mountainous 
regions, such as the map in Figure 12. The level curves are curves of constant elevation 
above sea level. If you walk along one of these contour lines, you neither ascend nor 
descend. Another common example is the temperature function introduced in the open-
ing paragraph of this section. Here the level curves are called isothermals; they join 
locations with the same temperature. Figure 13 shows a weather map of the world indi-
cating the average July temperatures. The isothermals are the curves that separate the 
colored bands.

In weather maps of atmospheric pressure at a given time as a function of longitude 
and latitude, the level curves are called isobars; they join locations with the same pres-
sure (see Exercise 34). Surface winds tend to flow from areas of high pressure across the 
isobars toward areas of low pressure and are strongest where the isobars are tightly 
packed.

A contour map of worldwide precipitation is shown in Figure 14. Here the level 
curves are not labeled but they separate the colored regions and the amount of precipita-
tion in each region is indicated in the color key.
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FIGURE 14 Precipitation
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FIGURE 13 Average air temperature near sea level in July (degrees Celsius)
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942 CHAPTER 14  Partial Derivatives

EXAMPLE 9 A contour map for a function f  is shown in Figure 15. Use it to estimate 
the values of f s1, 3d and f s4, 5d.
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SOLUTION The point (1, 3) lies partway between the level curves with z-values 70 
and 80. We estimate that

   f s1, 3d < 73

Similarly, we estimate that    f s4, 5d < 56 ■

EXAMPLE 10 Sketch the level curves of the function f sx, yd − 6 2 3x 2 2y for the  
values k − 26, 0, 6, 12.

SOLUTION The level curves are

6 2 3x 2 2y − k    or    3x 1 2y 1 sk 2 6d − 0

This is a family of lines with slope 23
2. The four particular level curves with  

k − 26, 0, 6, and 12 are 3x 1 2y 2 12 − 0, 3x 1 2y 2 6 − 0, 3x 1 2y − 0, and 
3x 1 2y 1 6 − 0. They are sketched in Figure 16. For equally spaced values of k the 
level curves are equally spaced parallel lines because the graph of f  is a plane (see 
Figure 6).
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y

0k=
12

k=
6

k=
0

k=
_6

� ■

EXAMPLE 11 Sketch the level curves of the function

tsx, yd − s9 2 x 2 2 y 2     for  k − 0, 1, 2, 3

SOLUTION The level curves are

s9 2 x 2 2 y 2 − k    or    x 2 1 y 2 − 9 2 k 2

FIGURE 15

FIGURE 16
Contour map of 

f sx, yd − 6 2 3x 2 2y
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 SECTION 14.1  Functions of Several Variables 943

This is a family of concentric circles with center s0, 0d and radius s9 2 k 2 . The cases 
k − 0, 1, 2, 3 are shown in Figure 17. Try to visualize these level curves lifted up to  
form a surface and compare with the graph of t (a hemisphere) in Figure 7.� ■

EXAMPLE 12 Sketch some level curves of the function hsx, yd − 4x 2 1 y 2 1 1.

SOLUTION The level curves are

4x 2 1 y 2 1 1 − k    or    
x 2

1
4 sk 2 1d

1
 y 2

k 2 1
− 1

which, for k . 1, describes a family of ellipses with semiaxes 12 sk 2 1  and sk 2 1 . 
Figure 18(a) shows a contour map of h drawn by a computer. Figure 18(b) shows these 
level curves lifted up to the graph of h (an elliptic paraboloid) where they become 
horizontal traces. We see from Figure 18 how the graph of h is put together from the 
level curves.

 

z

x
y

x

y

(a) Contour map (b) Horizontal traces are raised level curves.� ■

EXAMPLE 13 Plot level curves for the Cobb-Douglas production function of  
Example 4.

SOLUTION In Figure 19 we use a computer to draw a contour plot for the Cobb- 
Douglas production function

PsL, Kd − 1.01L0.75K 0.25

Level curves are labeled with the value of the production P. For instance, the level 
curve labeled 140 shows all values of the labor L and capital investment K that result  
in a production of P − 140. We see that, for a fixed value of P, as L increases K 
decreases, and vice versa.� ■

For some purposes, a contour map is more useful than a graph. That is certainly 
true in Example 13. (Compare Figure 19 with Figure 8.) It is also true in estimating func-
tion values, as in Example 9.

FIGURE 18
The graph of hsx, yd − 4x 2 1 y 2 1 1  

is formed by lifting the level curves.

100

100

200

300
K
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FIGURE 19
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(3, 0)

FIGURE 17
Contour map of 
tsx, yd − s9 2 x 2 2 y 2 
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944 CHAPTER 14  Partial Derivatives

Figure 20 shows some computer-generated level curves together with the corre-
sponding computer-generated graphs. Notice that the level curves in part (c) crowd 
together near the origin. That corresponds to the fact that the graph in part (d) is very 
steep near the origin.

(a) Level curves of f(x, y)=_xye_≈_¥

x

y

(c) Level curves of f(x, y)=
_3y

≈+¥+1

y

x

(d) f(x, y)=
_3y

≈+¥+1

z

y

x

(b) Two views of f(x, y)=_xye_≈_¥

z

y
x

z

■	 Functions of  Three or More Variables
A function of three variables, f , is a rule that assigns to each ordered triple sx, y, zd in a 
domain D � R 3 a unique real number denoted by f sx, y, zd. For instance, the tempera-
ture T  at a point on the surface of the earth depends on the longitude x and latitude y of 
the point and on the time t, so we could write T − f sx, y, td.

EXAMPLE 14 Find the domain of f  if

f sx, y, zd − lnsz 2 yd 1 xy sin z

SOLUTION The expression for f sx, y, zd is defined as long as z 2 y . 0, so the domain 
of f  is

D − hsx, y, zd [ R 3 | z . yj

This is a half-space consisting of all points that lie above the plane z − y. ■

FIGURE 20
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 SECTION 14.1  Functions of Several Variables 945

It’s very difficult to visualize a function f  of three variables by its graph, since that 
would lie in a four-dimensional space. However, we do gain some insight into f  by 
examining its level surfaces, which are the surfaces with equations f sx, y, zd − k, where 
k is a constant. If the point sx, y, zd moves along a level surface, the value of f sx, y, zd 
remains fixed.

EXAMPLE 15 Find the level surfaces of the function

f sx, y, zd − x 2 1 y 2 1 z2

SOLUTION The level surfaces are x 2 1 y 2 1 z2 − k, where k > 0. These form a 
family of concentric spheres with radius sk . (See Figure 21.) Thus, as sx, y, zd varies 
over any sphere with center O, the value of f sx, y, zd remains fixed.

 

x

y

z ≈+¥+z@=3

≈+¥+z@=1

≈+¥+z@=2

� ■

EXAMPLE 16 Describe the level surfaces of the function

f sx, y, zd − x 2 2 y 2 z 2

SOLUTION The level surfaces are x 2 2 y 2 z 2 − k, or y − x 2 2 z 2 2 k, a family of 
hyperbolic paraboloids. Figure 22 shows the level surfaces for k − 0 and k − 65.

 

x

y

z

k=0k=5 k=_5 � ■

Functions of any number of variables can be considered. A function of n vari-
ables is a rule that assigns a number z − f sx1, x2, . . . , xn d to an n-tuple sx1, x2, . . . , xn d 

FIGURE 21

FIGURE 22
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946 CHAPTER 14  Partial Derivatives

of real numbers. We denote by Rn the set of all such n-tuples. For example, if a company 
uses n different ingredients in making a food product, ci is the cost per unit of the ith 
ingredient, and xi units of the ith ingredient are used, then the total cost C of the ingredi-
ents is a function of the n variables x1, x2, . . . , xn:

3  C − f sx1, x2, . . . , xn d − c1 x1 1 c2 x2 1 ∙ ∙ ∙ 1 cn xn 

The function f  is a real-valued function whose domain is a subset of R n. Some times 
we use vector notation to write such functions more compactly: If x − kx1, x2, . . . , xn l, 
we often write f sxd in place of f sx1, x2, . . . , xn d. With this notation we can rewrite the 
function defined in Equation 3 as

f sxd − c � x

where c − kc1, c2, . . . , cn l and c � x denotes the dot product of the vectors c and x in Vn .
In view of the one-to-one correspondence between points sx1, x2, . . . , xnd in R n and 

their position vectors x − kx1, x2, . . . , xn l in Vn , we have three ways of looking at a func-
tion f  defined on a subset of Rn :

1. As a function of n real variables x1, x2, . . . , xn

2. As a function of a single point variable sx1, x2, . . . , xn d
3. As a function of a single vector variable x − kx1, x2, . . . , xn l

We will see that all three points of view are useful.

14.1 Exercises

 1. If f sx, yd − x 2yys2x 2 y 2d, find
  (a) f s1, 3d  (b) f s22, 21d 
  (c) f sx 1 h, yd (d) f sx, xd 

 2. If tsx, yd − x sin y 1 y sin x, find
  (a) ts�, 0d  (b) ts�y2, �y4d 
  (c) ts0, yd  (d) tsx, y 1 hd 

 3. Let tsx, yd − x 2 lnsx 1 yd.
 (a) Evaluate ts3, 1d.
 (b) Find and sketch the domain of t.
 (c) Find the range of t.

 4. Let hsx, yd − esy2x2  .
 (a) Evaluate hs22, 5d.
 (b) Find and sketch the domain of h.
 (c) Find the range of h.

 5. Let Fsx, y, zd − sy 2 sx 2 2z .
 (a) Evaluate Fs3, 4, 1d.
 (b) Find and describe the domain of F.

 6. Let f sx, y, zd −  ln (z 2 sx 2 1 y 2 ).
 (a) Evaluate f s4, 23, 6d.
 (b) Find and describe the domain of f.

7–16 Find and sketch the domain of the function.

 7. f sx, yd − sx 2 2 1 sy 2 1

 8. f sx, yd − s4 x 2 3y 

 9. qsx, yd − sx 1 s4 2 4x 2 2 y 2
 

 10. tsx, yd −  lnsx 2 1 y 2 2 9d

 11. tsx, yd −
x 2 y

x 1 y

 12. tsx, yd −
lns2 2 xd

1 2 x 2 2 y2

 13. psx, yd −
sxy 

x 1 1

 14. f sx, yd − sin21sx 1 yd

 15. f sx, y, zd − s4 2 x 2 1 s9 2 y2 1 s1 2 z 2 

 16. f sx, y, zd − lns16 2 4x 2 2 4y2 2 z2 d

 17.  A model for the surface area of a human body is given by the 
function

S − f sw, hd − 0.0072w 0.425h 0.725

where w is the weight (in kilograms), h is the height (in centi-
meters), and S is measured in square meters.

 (a)  Find f s73, 178d and interpret it.
 (b)  What is your own surface area?
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 SECTION 14.1  Functions of Several Variables 947

 21.  The wave heights h in the open sea depend on the speed v  
of the wind and the length of time t that the wind has been 
blowing at that speed. Values of the function h − f sv, td are 
recorded in feet in Table 4.

 (a)  What is the value of f s40, 15d? What is its meaning?
 (b)  What is the meaning of the function h − f s30, td?  

Describe the behavior of this function.
 (c)  What is the meaning of the function h − f sv, 30d?  

Describe the behavior of this function.

Table 4 Wave height as a function of wind speed and duration
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 22.  A company makes three sizes of cardboard boxes: small, 
medium, and large. It costs $2.50 to make a small box,  
$4.00 for a medium box, and $4.50 for a large box. Fixed 
costs are $8000.

 (a)  Express the cost of making x small boxes, y medium  
boxes, and z large boxes as a function of three variables: 
C − f sx, y, zd.

 (b)  Find f s3000, 5000, 4000d and interpret it.
 (c) What is the domain of f ?

23–31  Sketch the graph of the function.

 23. f sx, yd − y

 24. f sx, yd − x 2

 25. f sx, yd − 10 2 4x 2 5y

 26. f sx, yd − cos y

 27. f sx, yd − sin x

 28. f sx, yd − 2 2 x 2 2 y 2

 29. f sx, yd − x 2 1 4y 2 1 1

 30. f sx, yd − s4x 2 1 y 2 

 31. f sx, yd − s4 2 4x 2 2 y 2 

 18.  A manufacturer has modeled its yearly production function P 
(the monetary value of its entire production in millions of  
dollars) as a Cobb-Douglas function

PsL, Kd − 1.47L 0.65K 0.35

where L is the number of labor hours (in thousands) and K is 
the invested capital (in millions of dollars). Find Ps120, 20d  
and interpret it.

 19.  In Example 3 we considered the function W − f sT, vd, where 
W is the wind-chill index, T is the actual temperature, and v  
is the wind speed. A numerical representation is given in 
Table 1.

 (a)  What is the value of f s215, 40d? What is its meaning?
 (b)  Describe in words the meaning of the question “For  

what value of v is f s220, vd − 230?” Then answer the 
question.

 (c)  Describe in words the meaning of the question “For  
what value of T is f sT, 20d − 249?” Then answer the 
question.

 (d)  What is the meaning of the function W − f s25, vd?  
Describe the behavior of this function.

 (e)  What is the meaning of the function W − f sT, 50d?  
Describe the behavior of this function.

 20.  The temperature-humidity index I (or humidex, for short) is 
the perceived air temperature when the actual temperature is 
T and the relative humidity is h, so we can write I − f sT, hd. 
The following table of values of I is an excerpt from a  
table compiled by the National Oceanic & Atmospheric 
Administration.

Table 3  Apparent temperature as a function  
of temperature and humidity
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 (a) What is the value of f s95, 70d? What is its meaning?
 (b) For what value of h is f s90, hd − 100?
 (c) For what value of T is f sT, 50d − 88?
 (d)  What are the meanings of the functions I − f s80, hd  

and I − f s100, hd? Compare the behavior of these two 
functions of h.
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948 CHAPTER 14  Partial Derivatives

 32.  Match the function with its graph (labeled I –VI). Give rea-
sons for your choices.

 (a) f sx, yd −
1

1 1 x 2 1 y 2  (b) f sx, yd −
1

1 1 x 2y 2

 (c) f sx, yd − lnsx 2 1 y2d (d) f sx, yd − cos sx 2 1 y2 

 (e) f sx, yd − | xy | (f ) f sx, yd − coss xyd

z

yx

I
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II

III z

yx  

y
x

zIV

y

x

zV

 

VI z

yx

 33.  A contour map for a function f  is shown. Use it to esti mate 
the values of f s23, 3d and f s3, 22d. What can you say about 
the shape of the graph?
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x0 1

1
70 60 50 40

30

20
10

 34.  Shown is a contour map of atmospheric pressure in North 
America on a particular day. On the level curves (isobars) the 
pressure is indicated in millibars (mb).

 (a)  Estimate the pressure at C (Chicago), N (Nashville),  
S (San Francisco), and V (Vancouver).

 (b)  At which of these locations were the winds strongest? 
(See the discussion preceding Example 9.)
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10121008

1016

 35.  Level curves (isothermals) are shown for the typical water 
temperature sin °Cd in Long Lake (Minnesota) as a function 
of depth and time of year. Estimate the temperature in the 
lake on June 9 (day 160) at a depth of 10 m and on June 29 
(day 180) at a depth of 5 m.
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0

160 200

Day of the year

240 280

 36.  Two contour maps are shown. One is for a function f  whose 
graph is a cone. The other is for a function t whose graph is a 
paraboloid. Which is which, and why?

I II

x x

y y
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 43. 
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 45–52 Draw a contour map of the function showing several level 
curves.

 45. f sx, yd − x 2 2 y2 46. f sx, yd − xy

 47. f sx, yd − sx 1 y 48. f sx, yd − lnsx 2 1 4y 2d

 49. f sx, yd − ye x 50. f sx, yd − y 2 arctan x

 51. f sx, yd − s3 x 2 1 y2  52. f sx, yd − yysx 2 1 y2d

 53–54 Sketch both a contour map and a graph of the given 
function and compare them.

 53. f sx, yd − x 2 1 9y 2

 54. f sx, yd − s36 2 9x 2 2 4y 2 

 55.  A thin metal plate, located in the xy-plane, has temperature 
Tsx, yd at the point sx, yd. Sketch some level curves (isother-
mals) if the temperature function is given by

Tsx, yd −
100

1 1 x 2 1 2y 2

 56.  If Vsx, yd is the electric potential at a point sx, yd in the  
xy-plane, then the level curves of V are called equipotential 
curves because at all points on such a curve the electric 
potential is the same. Sketch some equipotential curves if 
Vsx, yd − cysr 2 2 x 2 2 y 2 , where c is a positive constant.

57–60 Graph the function using various domains and viewpoints. 
If your software also produces level curves, then plot some 
contour lines of the same function and compare with the graph.

 57. f sx, yd − xy 2 2 x 3  (monkey saddle)

 58. f sx, yd − xy 3 2 yx 3  (dog saddle)

 59. f sx, yd − e2sx 21y 2dy3ssinsx 2d 1 cossy 2dd

 60. f sx, yd − cos x cos y

;

 37.  Locate the points A and B on the map of Lonesome Mountain 
(Figure 12). How would you describe the terrain near A ?  
Near B ?

 38.  Make a rough sketch of a contour map for the function whose 
graph is shown.

y

x

z

 39.  The body mass index (BMI) of a person is defined by

Bsm, hd −
m

h2

where m is the person’s mass (in kilograms) and h is 
the person’s height (in meters). Draw the level curves 
Bsm, hd − 18.5, Bsm, hd − 25, Bsm, hd − 30, and 
Bsm, hd − 40. A rough guideline is that a person is under-
weight if the BMI is less than 18.5; optimal if the BMI  
lies between 18.5 and 25; overweight if the BMI lies  
between 25 and 30; and obese if the BMI exceeds 30.  
Shade the region corresponding to optimal BMI. Does  
someone who weighs 62 kg and is 152 cm tall fall into the 
optimal category?

 40.  The body mass index is defined in Exercise 39. Draw the 
level curve of this function corresponding to someone who is 
200 cm tall and weighs 80 kg. Find the weights and heights 
of two other people with that same level curve.

 41–44 A contour map of a function is shown. Use it to make a 
rough sketch of the graph of f .
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950 CHAPTER 14  Partial Derivatives

 61–66 Match the function (a) with its graph (labeled A – F below) 
and (b) with its contour map (labeled I –VI). Give reasons for your 
choices.

 61. z − sinsxyd 62. z − e x cos y

 63. z − sinsx 2 yd 64. z − sin x 2 sin y

 65. z − s1 2 x 2ds1 2 y 2d 66. z −
x 2 y

1 1 x 2 1 y 2

67–70 Describe the level surfaces of the function.

 67. f sx, y, zd − 2y 2 z 1 1

 68. tsx, y, zd − x 1 y 2 2 z 2

 69. tsx, y, zd − x 2 1 y 2 2 z 2

 70. f sx, y, zd − x 2 1 2y 2 1 3z 2
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Graphs and Contour Maps for Exercises 61–66
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 SECTION 14.2  Limits and Continuity 951

 79.  Investigate the family of surfaces z − x 2 1 y 2 1 cxy. In 
particular, you should determine the transitional values of c 
for which the surface changes from one type of quadric sur-
face to another.

 80.  Graph the functions

 f sx, yd − sx 2 1 y 2 

 f sx, yd − esx21y2
 

 

 f sx, yd − lnsx 2 1 y 2 

 f sx, yd − sin(sx 2 1 y 2 )

and    f sx, yd −
1

sx 2 1 y 2 

 In general, if t is a function of one variable, how is the 
graph of 

 f sx, yd − t(sx 2 1 y 2 )

 obtained from the graph of t?

 81. (a)  Show that, by taking logarithms, the general Cobb-
Douglas function P − bL�K 12� can be expressed as

ln 
P

K
− ln b 1 � ln 

L

K

 (b)  If we let x − lnsLyK d and y − lnsPyK d, the equation  
in part (a) becomes the linear equation y − �x 1 ln b.  
Use Table 2 (in Example 4) to make a table of values of 
lnsLyKd and lnsPyKd for the years 1899–1922. Then 
find the least squares regression line through the points 
slnsLyKd, lnsPyKdd.

 (c)  Deduce that the Cobb-Douglas production function  
is P − 1.01L0.75K 0.25.

;

;

 71–72 Describe how the graph of t is obtained from the graph 
of f .

 71. (a) tsx, yd − f sx, yd 1 2

 (b) tsx, yd − 2 f sx, yd
 (c) tsx, yd − 2f sx, yd
 (d) tsx, yd − 2 2 f sx, yd

 72. (a) tsx, yd − f sx 2 2, yd
 (b) tsx, yd − f sx, y 1 2d
 (c) tsx, yd − f sx 1 3, y 2 4d

73–74 Graph the function using various domains and view-
points that give good views of the “peaks and valleys.” Would 
you say the function has a maxi mum value? Can you identify 
any points on the graph that you might consider to be “local 
maximum points”? What about “local minimum points”?

 73. f sx, yd − 3x 2 x 4 2 4y 2 2 10xy

 74. f sx, yd − xye2x 22y 2

75–76 Graph the function using various domains and view-
points. Comment on the limiting behavior of the function. What 
happens as both x and y become large? What happens as sx, yd 
approaches the origin?

 75. f sx, yd −
x 1 y

x 2 1 y 2  76. f sx, yd −
xy

x 2 1 y 2

 77.  Investigate the family of functions f sx, yd − e cx 21y 2

 . How 
does the shape of the graph depend on c ?

 78.  Investigate the family of surfaces

z − sax 2 1 by 2de2x 22y 2

How does the shape of the graph depend on the numbers a 
and b ?

;

;

;

;

Limits and Continuity

■	 Limits of Functions of Two Variables
Let’s compare the behavior of the functions

f sx, yd −
sinsx 2 1 y 2 d

x 2 1 y 2     and    tsx, yd −
x 2 2 y 2

x 2 1 y 2

as x and y both approach 0 [and therefore the point sx, yd approaches the origin].

14.2
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Tables 1 and 2 show values of f sx, yd and tsx, yd, correct to three decimal places, for 
points sx, yd near the origin. (Notice that neither function is defined at the origin.) 
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 Table 1 Values of f sx, yd Table 2 Values of tsx, yd

It appears that as sx, yd approaches (0, 0), the values of f sx, yd are approaching 1 
whereas the values of tsx, yd aren’t approaching any particular number. It turns out that 
these guesses based on numerical evidence are correct, and we write

lim
s x, yd l s 0, 0d

 
 
sinsx 2 1 y 2 d

x 2 1 y 2 − 1    and    lim
s x, yd l s 0, 0d

 
 
x 2 2 y 2

x 2 1 y 2   does not exist

In general, we use the notation

lim
s x, yd l s a, bd

 
 f sx, yd − L

to indicate that the values of f sx, yd approach the number L as the point sx, yd approaches 
the point sa, bd (staying within the domain of f  ). In other words, we can make the values 
of f sx, yd as close to L as we like by taking the point sx, yd sufficiently close to the point 
sa, bd, but not equal to sa, bd. A more precise definition follows.

1  Definitio  Let f  be a function of two variables whose domain D includes 
points arbitrarily close to sa, bd. Then we say that the limit of f sx, yd as sx, yd 
approaches sa, bd is L and we write

lim 
sx, yd l sa, bd

 f sx, yd − L

if for every number « . 0 there is a corresponding number � . 0 such that

if  sx, yd [ D  and  0 , ssx 2 ad2 1 sy 2 bd2 , �  then  | f sx, yd 2 L | , «

Other notations for the limit in Definition 1 are

lim 
x l a
y l b

f sx, yd − L    and    f sx, yd l L  as  sx, yd l sa, bd

Notice that | f sx, yd 2 L | is the distance between the numbers f sx, yd and L, and 

ssx 2 ad 2 1 sy 2 bd 2  is the distance between the point sx, yd and the point sa, bd. Thus 
Definition 1 says that the distance between f sx, yd and L can be made arbitrarily small by  
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 SECTION 14.2  Limits and Continuity 953

making the distance from sx, yd to sa, bd sufficiently small, but not 0. (Compare to the 
definition of a limit for a function of a single variable, Definition 2.4.2.) Figure 1 illus-
trates Definition 1 by means of an arrow diagram. If any small interval sL 2 «, L 1 «d is 
given around L, then we can find a disk D� with center sa, bd and radius � . 0 such that 
f  maps all the points in D� [except possibly sa, bd] into the interval sL 2 «, L 1 «d.

FIGURE 1

y

0 x

z

L

L-∑

L+∑

0

fD

(x, y)

(a, b)

∂

x
y

z

0

L+∑
L

L-∑

(a, b)

D
∂

S

D
∂

FIGURE 2

Another illustration of Definition 1 is given in Figure 2 where the surface S is the 
graph of f . If « . 0 is given, we can find � . 0 such that if sx, yd is restricted to lie in 
the disk D� and sx, yd ± sa, bd, then the corresponding part of S lies between the horizon-
tal planes z − L 2 « and z − L 1 «.

■	 Showing That a Limit Does Not Exist
For functions of a single variable, when we let x approach a, there are only two possible 
directions of approach, from the left or from the right. We recall from Chap ter 2 that if 
limx l a2 f sxd ± limx l a1 f sxd, then limx l a f sxd

 

 does not exist.
For functions of two variables, the situation is not as simple because we can let sx, yd 

approach sa, bd from an infinite number of directions in any manner whatsoever (see 
Figure 3) as long as sx, yd stays within the domain of f .

Definition 1 says that the distance between f sx, yd and L can be made arbitrarily small 
by making the distance from sx, yd to sa, bd sufficiently small (but not 0). The definition 
refers only to the distance between sx, yd and sa, bd. It does not refer to the direction of 
approach. Therefore, if the limit exists, then f sx, yd must approach the same limit no mat-
ter how sx, yd approaches sa, bd. Thus one way to show that limsx, yd l sa, bd f sx, yd does not 
exist is to find different paths of approach along which the function has different limits.

If f sx, yd l L1 as sx, yd l sa, bd along a path C1 and f sx, yd l L2 as 
sx, yd l sa, bd along a path C2, where L1 ± L2, then limsx, yd l sa, bd f sx, yd does  
not exist.

EXAMPLE 1  Show that lim
s x, yd l s0, 0d

 
x 2 2 y 2

x 2 1 y 2  does not exist.

SOLUTION Let f sx, yd − sx 2 2 y 2 dysx 2 1 y 2 d. First let’s approach s0, 0d along the  
x-axis. On this path y − 0 for every point sx, yd, so the function becomes 
f sx, 0d − x 2yx 2 − 1 for all x ± 0 and thus

f sx, yd l 1    as    sx, yd l s0, 0d along the x@axis

b

a0

y

x

FIGURE 3  
Different paths approaching sa, bd
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We now approach along the y-axis by putting x − 0. Then f s0, yd −
2y 2

y 2 − 21 for all 
y ± 0, so

f sx, yd l 21    as    sx, yd l s0, 0d along the y@axis

(See Figure 4.) Since f  has two different limits as sx, yd approaches s0, 0d along two 
different lines, the given limit does not exist. (This confirms the conjecture we made on 
the basis of numerical evidence at the beginning of this section.)� ■

EXAMPLE 2 If f sx, yd −
xy

x 2 1 y 2 , does lim 
sx, ydl s0, 0d

 f sx, yd exist?

SOLUTION If y − 0, then f sx, 0d − 0yx 2 − 0. Therefore

f sx, yd l 0    as    sx, yd l s0, 0d along the x@axis

If x − 0, then f s0, yd − 0yy 2 − 0, so

f sx, yd l 0    as    sx, yd l s0, 0d along the y@axis

Although we have obtained identical limits along the two axes, that does not show that 
the given limit is 0. Let’s now approach s0, 0d along another line, say y − x. For all 
x ± 0,

f sx, xd −
x 2

x 2 1 x 2 −
1

2

Therefore f sx, yd l 1
2    as    sx, yd l s0, 0d along y − x

(See Figure 5.) Since we have obtained different limits along different paths, the given 
limit does not exist.� ■

Figure 6 sheds some light on Example 2. The ridge that occurs above the line y − x 
corresponds to the fact that f sx, yd − 1

2 for all points sx, yd on that line except the origin.

 

z y

x

EXAMPLE 3 If f sx, yd −
xy 2

x 2 1 y 4 , does lim
s x, yd l s0, 0d

 
 f sx, yd exist?

SOLUTION With the solution of Example 2 in mind, let’s try to save time by letting 
sx, yd l s0, 0d along any line through the origin. If the line is not the y-axis, then 
y − mx, where m is the slope, and

f sx, yd − f sx, mxd −
xsmxd2

x 2 1 smxd4 −
m 2x 3

x 2 1 m 4x 4 −
m 2x

1 1 m 4x 2

y

f(x, y)=_1

xf(x, y)=1

FIGURE 4

y

f(x, y)=0

f(x, y)=0 x

y=x

1
2f(x, y)=

FIGURE 5

FIGURE 6

f sx, yd −
xy

x 2 1 y 2
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So f sx, yd l 0    as    sx, yd l s0, 0d along y − mx

We get the same result as sx, yd l s0, 0d along the line x − 0. Thus f  has the same 
limiting value along every line through the origin. But that does not show that the given 
limit is 0, for if we now let sx, yd l s0, 0d along the parabola x − y 2, we have

f sx, yd − f sy 2, yd −
y 2 � y 2

sy 2 d2 1 y 4 −
y 4

2y 4 −
1

2

so f sx, yd l 12    as    sx, yd l s0, 0d along x − y 2

Since different paths lead to different limiting values, the given limit does not exist.� ■

■	 Properties of Limits
Just as for functions of one variable, the calculation of limits for functions of two vari-
ables can be greatly simplified by the use of properties of limits. The Limit Laws listed 
in Section 2.3 can be extended to functions of two variables. Assuming that the indicated 
limits exist, we can state these laws verbally as follows:

1. The limit of a sum is the sum of the limits.

2. The limit of a difference is the difference of the limits.

3. The limit of a constant times a function is the constant times the limit of the  
function.

4. The limit of a product is the product of the limits.

5. The limit of a quotient is the quotient of the limits (provided that the limit of the 
denominator is not 0).

In Exercise 54, you are asked to prove the following special limits:

2  lim
sx, yd l sa, bd

 x − a      lim
sx, yd l sa, bd

 y − b      lim
sx, yd l sa, bd

 c − c

A polynomial function of two variables (or polynomial, for short) is a sum of terms 
of the form cx myn, where c is a constant and m and n are nonnegative integers. A rational 
function is a ratio of two polynomials. For instance, 

psx, yd − x 4 1 5x 3y 2 1 6xy 4 2 7y 1 6

is a polynomial, whereas

qsx, yd −
2xy 1 1

x 2 1 y 2

is a rational function.
The special limits in (2) along with the limit laws allow us to evaluate the limit of any 

polynomial function p by direct substitution:

3  lim
sx, yd l sa, bd

 psx, yd − psa, bd

Similarly, for any rational function qsx, yd − psx, ydyr sx, yd we have 

4  lim
sx, yd l sa, bd

 qsx, yd − lim
sx, yd l sa, bd

 
psx, yd
r sx, yd

−
psa, bd
r sa, bd

− qsa, bd

provided that sa, bd is in the domain of q.

_202
x

z
_202 y_0.5

0

0.5

FIGURE 7

Figure 7 shows the graph of the func- 
tion in Example 3. Notice the ridge 
above the parabola x − y 2.

Sum Law
Difference Law

Constant Multiple Law

Product Law
Quotient Law
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EXAMPLE 4 Evaluate lim
sx, yd l s1, 2d

 
 sx 2y 3 2 x 3y 2 1 3x 1 2yd.

SOLUTION Since f sx, yd − x 2 y 3 2 x 3y 2 1 3x 1 2y is a polynomial, we can find the 
limit by direct substitution:

 lim
sx, yd l s1, 2d

 
 sx 2y 3 2 x 3y 2 1 3x 1 2yd − 12 � 23 2 13 � 22 1 3 � 1 1 2 � 2 − 11 ■

EXAMPLE 5 Evaluate lim
sx, yd l s22, 3d

 
 

x 2y 1 1

x 3y2 2 2x
 if it exists.

SOLUTION The function f sx, yd − sx 2 y 1 1dysx 3y 2 2 2xd is a rational function and 
the point s22, 3d is in its domain (the denominator is not 0 there), so we can evaluate 
the limit by direct substitution:

 lim
sx, yd l s22, 3d

 
 

x 2y 1 1

x 3y2 2 2x
−

s22d2s3d 1 1

s22d3s3d2 2 2s22d
− 2

13

68
 ■

The Squeeze Theorem also holds for functions of two or more variables. In the next 
example we find a limit in two different ways: by using the definition of limit and by 
using the Squeeze Theorem.

EXAMPLE 6 Find lim
sx, yd l s0, 0d

 
3x 2 y

x 2 1 y 2  if it exists. 

SOLUTION 1 As in Example 3, we could show that the limit along any line through the 
origin is 0. This doesn’t prove that the given limit is 0, but the limits along the parabo-
las y − x 2 and x − y 2 also turn out to be 0, so we begin to suspect that the limit does 
exist and is equal to 0.

Let « . 0. We want to find � . 0 such that

if   0 , sx 2 1 y 2 , �  then  Z 3x 2 y

x 2 1 y 2 2 0 Z , «

that is, if   0 , sx 2 1 y 2 , �  then  
3x 2| y |
x 2 1 y 2 , «

But x 2 < x 2 1 y 2 since y 2 > 0, so x 2ysx 2 1 y 2 d < 1 and therefore

5  
3x 2| y |
x 2 1 y 2 < 3 | y | − 3sy 2 < 3sx 2 1 y 2 

Thus if we choose � − «y3 and let 0 , sx 2 1 y 2 , �, then by (5) we have

Z 3x 2 y

x 2 1 y 2 2 0 Z < 3sx 2 1 y 2 , 3� − 3S «

3D − «

Hence, by Definition 1,

lim
sx, yd l s0, 0d

 
3x 2 y

x 2 1 y 2 − 0
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SOLUTION 2 As in Solution 1, 

Z 3x 2 y

x 2 1 y 2 Z −
3x 2| y |
x 2 1 y 2 < 3| y |

so

23| y | <
3x 2 y

x 2 1 y 2 < 3| y |

Now | y | l 0 as y l 0 so lim
sx, yd l s0, 0d

 (23| y |) − 0 and lim
sx, yd l s0, 0d

 (3| y |) − 0 (using Limit 

Law 3). Thus, by the Squeeze Theorem, 

 lim
sx, yd l s0, 0d

 
3x 2 y

x 2 1 y 2 − 0 ■

■	 Continuity
Recall that evaluating limits of continuous functions of a single variable is easy. It can  
be accomplished by direct substitution because the defining property of a continuous 
function is limx l a f sxd − f sad. Continuous functions of two variables are also defined 
by the direct substitution property.

6  Definitio  A function f  of two variables is called continuous at sa, bd if

lim
sx, yd l sa, bd

 
 f sx, yd − f sa, bd

We say that f  is continuous on D if f  is continuous at every point sa, bd in D.

The intuitive meaning of continuity is that if the point sx, yd changes by a small 
amount, then the value of f sx, yd changes by a small amount. This means that a surface 
that is the graph of a continuous function has no hole or break.

We have already seen that limits of polynomial functions can be evaluated by direct 
substitution (Equation 3). It follows by the definition of continuity that all polynomials 
are continuous on R2. Likewise, Equation 4 shows that any rational function is continu-
ous on its domain. In general, using properties of limits, you can see that sums, differ-
ences, products, and quotients of continuous functions are continuous on their domains.

EXAMPLE 7 Where is the function f sx, yd −
x 2 2 y 2

x 2 1 y 2  continuous?

SOLUTION The function f  is discontinuous at s0, 0d because it is not defined there.  
Since f  is a rational function, it is continuous on its domain, which is the set 
D − hsx, yd | sx, yd ± s0, 0dj.� ■

EXAMPLE 8 Let

tsx, yd−H
0

x 2 2 y 2

x 2 1 y 2
if

if

sx, yd ± s0, 0d

sx, yd − s0, 0d

Here t is defined at s0, 0d but t is still discontinuous there because limsx, yd l s0, 0d tsx, yd 
does not exist (see Example 1).� ■
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EXAMPLE 9 Let

f sx, yd − H 3x 2 y

x 2 1 y 2 if sx, yd ± s0, 0d

0 if sx, yd − s0, 0d

We know f  is continuous for sx, yd ± s0, 0d since it is equal to a rational function there. 
Also, from Example 6, we have

lim
sx, yd l s0, 0d

  fsx, yd − lim
sx, yd l s0, 0d

 
3x 2 y

x 2 1 y 2 − 0 − f s0, 0d

Therefore f  is continuous at s0, 0d, and so it is continuous on R 2. ■

Just as for functions of one variable, composition is another way of combining two 
continuous functions to get a third. In fact, it can be shown that if f  is a continuous func-
tion of two variables and t is a continuous function of a single variable that is defined on 
the range of f , then the composite function h − t 8 f  defined by hsx, yd − ts f sx, ydd is 
also a contin uous function.

EXAMPLE 10 Where is the function hsx, yd − e2sx 21y 2d continuous?

SOLUTION The function f sx, yd − x 2 1 y 2 is a polynomial and thus is continuous  
on R2. Because the function tstd − e2t is continuous for all values of t, the composite 
function 

hsx, yd − ts f sx, ydd − e2sx 21y 2d

is continuous on R2. The function h is graphed in Figure 9.

 

z

y

x  ■

EXAMPLE 11 Where is the function hsx, yd − arctansyyxd continuous?

SOLUTION The function f sx, yd − yyx is a rational function and therefore continuous 
except on the line x − 0. The function tstd − arctan t is continuous everywhere. So the 
composite function

ts f sx, ydd − arctansyyxd − hsx, yd

y

x

z

FIGURE 8

Figure 8 shows the graph of the 
continuous function in Example 9.

FIGURE 9 
The function hsx, yd − e2sx21y2d is 

continuous everywhere.
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is continuous except where x − 0. The graph in Figure 10 shows the break in the graph 
of h above the y-axis.

 
y

x

z

 ■

■	 Functions of  Three or More Variables
Everything that we have done in this section can be extended to functions of three or 
more variables. The notation

lim
sx, y, zd l sa, b, cd

 
 f sx, y, zd − L

means that the values of f sx, y, zd approach the number L as the point sx, y, zd approaches 
the point sa, b, cd (staying within the domain of f  ). Because the distance between two 
points sx, y, zd and sa, b, cd in R 3 is given by ssx 2 ad 2 1 sy 2 bd 2 1 sz 2 cd 2 , we can 
write the precise definition as follows: for every number « . 0 there is a corresponding 
number � . 0 such that

if sx, y, zd is in the domain of f  and 0 , ssx 2 ad 2 1 sy 2 bd 2 1 sz 2 cd 2 , �

then | f sx, y, zd 2 L | , «

The function f  is continuous at sa, b, cd if

lim
sx, y, zd l sa, b, cd

 
 f sx, y, zd − f sa, b, cd

For instance, the function

f sx, y, zd −
1

x 2 1 y 2 1 z2 2 1

is a rational function of three variables and so is continuous at every point in R 3 except 
where x 2 1 y 2 1 z2 − 1. In other words, it is discontinuous on the sphere with center 
the origin and radius 1.

If we use the vector notation introduced at the end of Section 14.1, then we can write 
the definitions of a limit for functions of two or three variables in a single compact form 
as follows.

7  If f  is defined on a subset D of Rn, then lim x l a f sxd − L means that for every  
number « . 0 there is a corresponding number � . 0 such that

if  x [ D  and  0 , | x 2 a | , �  then  | f sxd 2 L | , «

Notice that if n − 1, then x − x and a − a, and (7) is just the definition of a limit for 
functions of a single variable (Definition 2.4.2). For the case n − 2, we have x − kx, y l, 
a − ka, b l, and |x 2 a | − ssx 2 ad 2 1 sy 2 bd 2 , so (7) becomes Definition 1. If 
n − 3, then x − kx, y, z l, a − ka, b, c l, and (7) becomes the definition of a limit of a 
function of three variables. In each case the definition of continuity can be written as

 lim 
x l a

 f sxd − f sad

FIGURE 10 
The function hsx, yd − arctansyyxd  

is discontinuous where x − 0.
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14.2 Exercises

 1.  Suppose that limsx, yd l s3, 1d f sx, yd − 6. What can you say  
about the value of f s3, 1d? What if f  is continuous?

 2.  Explain why each function is continuous or discontinuous.
  (a)  The outdoor temperature as a function of longitude,  

latitude, and time
  (b)  Elevation (height above sea level) as a function of  

longitude, latitude, and time
  (c)  The cost of a taxi ride as a function of distance traveled  

and time

 3–4 Use a table of numerical values of f sx, yd for sx, yd near the 
origin to make a conjecture about the value of the limit of f sx, yd  
as sx, yd l s0, 0d. Then explain why your guess is correct.

 3. f sx, yd −
x 2y 3 1 x 3y 2 2 5

2 2 xy
 4. f sx, yd −

2xy

x 2 1 2y 2

 5–12  Find the limit.

 5. lim
sx, ydls3, 2d

 sx 2 y 3 2 4y 2d

 6. lim
sx, yd l s5, 22d

 sx 2y 1 3xy 2 1 4d

 7. lim
sx, yd l s23, 1d

 
x 2y 2 xy 3

x 2 y 1 2
 8. lim

sx, yd l s2, 21d
 
x 2y 1 xy 2

x 2 2 y 2

 9. lim
sx, yd l s�, �y2d

 y sinsx 2 yd 10. lim
sx, yd l s3, 2d

 e s2x2y 

 11. lim
sx, ydls1, 1d

S x2y3 2 x3y2

x2 2 y2 D 12. lim
sx, yd l s�, �y2d

 
cos  y 2 sin 2y

cos x cos y

13–18 Show that the limit does not exist.

 13. lim
sx, yd l s0, 0d

 
y 2

x 2 1 y 2  14. lim
sx, yd l s0, 0d

 
2xy

x 2 1 3y 2

 15. lim
sx, yd l s0, 0d

 
sx 1 yd2

x 2 1 y 2  16. lim
sx, yd l s0, 0d

 
x 2 1 xy 2

x 4 1 y 2

 17. lim
sx, ydls0, 0d

 
y 2 sin2x

x 4 1 y 4  18. lim
sx, yd l s1, 1d

 
y 2 x

1 2 y 1 ln x

19–30 Find the limit, if it exists, or show that the limit does not 
exist.

 19. lim
sx, yd l s21, 22d

 sx 2y 2 xy 2 1 3d3

 20. lim
sx, yd l s�, 1y2d

 e xy sin xy

 21. lim
sx, yd l s2, 3d

 
3x 2 2y

4x 2 2 y 2  22. lim
sx, yd l s1, 2d

 
2x 2 y

4x 2 2 y 2

 23. lim
sx, ydl s0, 0d

 
xy 2 cos y

x 2 1 y 4  24. lim
sx, yd l s0, 0d

 
x 3 2 y 3

x 2 1 xy 1 y 2

 25. lim
sx, ydl s0, 0d

 
x 2 1 y 2

sx 2 1 y 2 1 1 2 1

 26. lim
sx, yd l s0, 0d

 
xy 4

x 2 1 y 8

 27. lim
sx, y, zd l s6, 1, 22d

 sx 1 z  coss�yd

 28. lim
sx, y, zdls0, 0, 0d

 
xy 1 yz

x 2 1 y 2 1 z2

 29. lim
sx, y, zd l s0, 0, 0d

 
xy 1 yz 2 1 xz 2

x 2 1 y 2 1 z 4

 30. lim
sx, y, zd l s0, 0, 0d

 
x 4 1 y 2 1 z 3

x 4 1 2y 2 1 z

31–34 Use the Squeeze Theorem to find the limit.

 31. lim
sx, yd l s0, 0d

 xy sin 
1

x 2 1 y 2  32. lim
sx, ydl s0, 0d

 
xy

sx 2 1 y 2

 33. lim
sx, yd l s0, 0d

 
xy 4

x 4 1 y 4

 34. lim
sx, y, zd l s0, 0, 0d

 
x 2 y 2z 2

x 2 1 y 2 1 z2

35–36 Use a graph of the function to explain why the limit does 
not exist.

 35. lim
sx, yd l s0, 0d

 
2x 2 1 3xy 1 4y 2

3x 2 1 5y 2  36. lim
sx, yd l s0, 0d

 
xy 3

x 2 1 y6

37–38 Find hsx, yd − ts f sx, ydd and the set of points at which h 
is continuous.

 37. tstd − t 2 1 st  ,  f sx, yd − 2x 1 3y 2 6

 38. tstd − t 1 ln t,   f sx, yd −
1 2 xy

1 1 x 2 y 2

39–40 Graph the function and observe where it is discontinuous. 
Then use the formula to explain what you have observed.

 39. f sx, yd − e 1ysx2yd 40. f sx, yd −
1

1 2 x 2 2 y 2

41–50 Determine the set of points at which the function is 
continuous.

 41. Fsx, yd −
xy

1 1 e x2y  42. Fsx, yd − coss1 1 x 2 y 

 43. Fsx, yd −
1 1 x 2 1 y 2

1 2 x 2 2 y 2  44. Hsx, yd −
e x 1 e y

e xy 2 1

;

;
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 54. Prove the three special limits in (2).

 55. At the beginning of this section we considered the function

f sx, yd −
sinsx 2 1 y 2 d

x 2 1 y 2

and guessed on the basis of numerical evidence that 
f sx, yd l 1 as sx, yd l s0, 0d. Use polar coordinates to con-
firm the value of the limit. Then graph the function.

 56.  Graph and discuss the continuity of the function

f sx, yd − H
1

sin xy

xy
if

if

xy ± 0

xy − 0

 57.  Let

f sx, yd − H0  if y < 0  or  y > x 4

1  if 0 , y , x 4

 (a)  Show that f sx, yd l 0 as sx, yd l s0, 0d along any path 
through s0, 0d of the form y − mx a with 0 , a , 4.

 (b)  Despite part (a), show that f  is discontinuous at s0, 0d.
 (c)  Show that f  is discontinuous on two entire curves.

 58.  Show that the function f  given by f sxd − | x | is continuous 
on R n.  [Hint: Consider | x 2 a |2 − sx 2 ad � sx 2 ad.]

 59.  If c [ Vn, show that the function f  given by f sxd − c � x is 
continuous on R n.

;

;

 45. Gsx, yd − sx 1 s1 2 x 2 2 y 2 

 46. Gsx, yd − lns1 1 x 2 yd

 47. f sx, y, zd − arcsinsx 2 1 y 2 1 z 2d

 48. f sx, y, zd − sy 2 x 2  ln z

 49. f sx, yd − H
1

x 2 y 3

2x 2 1 y 2 if

if

sx, yd ± s0, 0d

sx, yd − s0, 0d

 50. f sx, yd − H
0

xy

x 2 1 xy 1 y 2 if

if

sx, yd ± s0, 0d

sx, yd − s0, 0d

51–53 Use polar coordinates to find the limit. [If sr, �d are  
polar coordinates of the point sx, yd with r > 0, note that r l 01 
as sx, yd l s0, 0d.]

 51. lim
sx, yd l s0, 0d

 
 
x3 1 y3

x2 1 y2

 52. lim
sx, yd l s0, 0d

 
 sx2 1 y2 d lnsx2 1 y2 d

 53. lim
sx, yd l s0, 0d

 
 
e2x 22y 2

2 1

x 2 1 y 2

Partial Derivatives

■	 Partial Derivatives of Functions of Two Variables
On a hot day, extreme humidity makes us think the temperature is higher than it really  
is, whereas in very dry air we perceive the temperature to be lower than the thermom- 
eter indicates. The National Weather Service has devised the heat index (also called the 
temperature-humidity index, or humidex, in some countries) to describe the combined 
effects of temperature and humidity. The heat index I is the perceived air tempera-
ture when the actual temperature is T  and the relative humidity is H. So I is a function of 
T  and H and we can write I − f sT, H d. The following table of values of I is an excerpt 
from a table compiled by the National Weather Service.

Table 1 Heat index I as a function of temperature and humidity

T
H

Relative humidity (%)

Actual
temperature

(°C)

26

28

30

32

34

36

40 45 50 55 60 65 70 75 80

28

31

34

37

41

43

28

32

35

38

42

45

29

33

36

39

43

47

31

34

37

41

45

48

31

35

38

42

47

50

32

36

40

43

48

51

33

37

41

45

49

53

34

38

42

46

51

54

35

39

43

47

52

56

14.3

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



962 CHAPTER 14  Partial Derivatives

If we concentrate on the highlighted column of the table, which corresponds to a rela-
tive humidity of H − 60%, we are considering the heat index as a function of the single 
variable T  for a fixed value of H. Let’s write tsT d − f sT, 60d. Then tsT d de scribes how 
the heat index I increases as the actual temperature T  increases when the relative humid-
ity is 60%. The derivative of t when T − 30°C is the rate of change of I with respect to 
T  when T − 30°C:

t9s30d − lim
h l 0

 
ts30 1 hd 2 ts30d

h
− lim

h l 0
 
 f s30 1 h, 60d 2 f s30, 60d

h

We can approximate t9s30d using the values in Table 1 by taking h − 2 and 22:

 t9s30d <
ts32d 2 ts30d

2
−

 f s32, 60d 2 f s30, 60d
2

−
42 2 38

2
− 2

 t9s30d <
ts28d 2 ts30d

22
−

 f s28, 60d 2 f s30, 60d
22

−
35 2 38

22
− 1.5

Averaging these values, we can say that the derivative t9s30d is approximately 1.75. This 
means that, when the actual temperature is 30°C and the relative humidity is 60%, the 
apparent temperature (heat index) rises by about 1.75°C for every degree that the actual 
temperature rises.

Now let’s look at the highlighted row in Table 1, which corresponds to a fixed temper-
a ture of T − 30°C. The numbers in this row are values of the function GsH d − f s30, H d, 
which describes how the heat index increases as the relative humidity H increases when 
the actual temperature is T − 30°C. The derivative of this function when H − 60% is  
the rate of change of I with respect to H when H − 60%:

G9s60d − lim
h l 0

 
Gs60 1 hd 2 Gs60d

h
− lim

h l 0
 
 f s30, 60 1 hd 2 f s30, 60d

h

By taking h − 5 and 25, we approximate G9s60d using the tabular values:

 G9s60d <
Gs65d 2 Gs60d

5
−

 f s30, 65d 2 f s30, 60d
5

−
42 2 38

5
− 0.4

 G9s60d <
Gs55d 2 Gs60d

25
−

 f s30, 55d 2 f s30, 60d
25

−
37 2 38

25
− 0.2

By averaging these values we get the estimate G9s60d < 0.3. This says that, when the 
temperature is 30°C and the relative humidity is 60%, the heat index rises about 0.3°C 
for every percent that the relative humidity rises.

In general, if f  is a function of two variables x and y, suppose we let only x vary while 
keeping y fixed, say y − b, where b is a constant. Then we are really considering a func-
tion of a single variable x, namely, tsxd − f sx, bd. If t has a derivative at a, then we call 
it the partial derivative of f  with respect to x at sa, bd and denote it by fxsa, bd. Thus

1  fxsa, bd − t9sad    where    tsxd − f sx, bd

By the definition of a derivative, we have

t9sad − lim
h l 0

 
tsa 1 hd 2 tsad

h
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and so Equation 1 becomes

2
 

fxsa, bd − lim
h l 0

 
 f sa 1 h, bd 2 f sa, bd

h

Similarly, the partial derivative of f  with respect to y at sa, bd, denoted by fysa, bd, is 
obtained by keeping x fixed sx − ad and finding the ordinary derivative at b of the func-
tion Gsyd − f sa, yd:

3
 

fysa, bd − lim
h l 0

 
 f sa, b 1 hd 2 f sa, bd

h

With this notation for partial derivatives, we can write the rates of change of the heat 
index I with respect to the actual temperature T  and relative humidity H when T − 30°C 
and H − 60% as follows:

fTs30, 60d < 1.75      fHs30, 60d < 0.3

If we now let the point sa, bd vary in Equations 2 and 3, fx and fy become functions of 
two variables.

4  Definitio  If f  is a function of two variables, its partial derivatives are the 
functions fx and fy defined by

 fxsx, yd − lim
h l 0

 
 f sx 1 h, yd 2 f sx, yd

h

 fysx, yd − lim
h l 0

 
 f sx, y 1 hd 2 f sx, yd

h

There are many alternative notations for partial derivatives. For instance, instead of  
fx we can write f1 or D1 f  (to indicate differentiation with respect to the first variable) or 
−fy−x. But here −fy−x can’t be interpreted as a ratio of differentials.

Notations for Partial Derivatives If z − f sx, yd, we write

  fxsx, yd − fx −
−f

−x
−

−

−x
 f sx, yd −

−z

−x
− f1 − D1 f − Dx f

  fysx, yd − fy −
−f

−y
−

−

−y
 f sx, yd −

−z

−y
− f2 − D2 f − Dy f

To compute partial derivatives, all we have to do is remember from Equation 1 that  
the partial derivative with respect to x is just the ordinary derivative of the function t of 
a single variable that we get by keeping y fixed. Thus we have the following rule.

Rule for Finding Partial Derivatives of z − f sx, yd
1. To find fx , regard y as a constant and differentiate f sx, yd with respect to x.

2. To find fy , regard x as a constant and differentiate f sx, yd with respect to y.
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EXAMPLE 1 If f sx, yd − x 3 1 x 2 y 3 2 2y 2, find fxs2, 1d and fys2, 1d.

SOLUTION Holding y constant and differentiating with respect to x, we get

fxsx, yd − 3x 2 1 2xy 3

and so fxs2, 1d − 3 � 22 1 2 � 2 � 13 − 16

Holding x constant and differentiating with respect to y, we get

fysx, yd − 3x 2 y 2 2 4y

 fys2, 1d − 3 � 22 � 12 2 4 � 1 − 8 ■

EXAMPLE 2 If f sx, yd − sinS x

1 1 yD, calculate 
−f

−x
 and 

−f

−y
.

SOLUTION Using the Chain Rule for functions of one variable, we have

 
−f

−x
− cosS x

1 1 yD �
−

−x
 S x

1 1 yD − cosS x

1 1 yD �
1

1 1 y

  
−f

−y
− cosS x

1 1 yD �
−

−y
 S x

1 1 yD − 2cosS x

1 1 yD �
x

s1 1 yd2  ■

■	 Interpretations of Partial Derivatives
To give a geometric interpretation of partial derivatives, we recall that the equation 
z − f sx, yd represents a surface S (the graph of f ). If f sa, bd − c, then the point Psa, b, cd 
lies on S. By fixing y − b, we are restricting our attention to the curve C1 in which the 
ver tical plane y − b intersects S. (In other words, C1 is the trace of S in the plane y − b.d 
Likewise, the vertical plane x − a intersects S in a curve C2. Both of the curves C1 and 
C2 pass through the point P. (See Figure 1.)

Note that the curve C1 is the graph of the function tsxd − f sx, bd, so the slope of its tan- 
gent T1 at P is t9sad − fxsa, bd. The curve C2 is the graph of the function Gsyd − f sa, yd, 
so the slope of its tangent T2 at P is G9sbd − fysa, bd.

Thus the partial derivatives fxsa, bd and fy sa, bd can be interpreted geometrically as 
the slopes of the tangent lines at Psa, b, cd to the traces C1 and C2 of S in the planes y − b 
and x − a.

EXAMPLE 3 If f sx, yd − 4 2 x 2 2 2y 2, find fxs1, 1d and fys1, 1d and interpret these 
numbers as slopes.

SOLUTION We have
  fxsx, yd − 22x        fysx, yd − 24y

  fxs1, 1d − 22         fys1, 1d − 24

The graph of f  is the paraboloid z − 4 2 x 2 2 2y 2 and the vertical plane y − 1  
intersects it in the parabola z − 2 2 x 2, y − 1. (As in the preceding discussion, we 
label it C1 in Figure 2.) The slope of the tangent line to this parabola at the point 
s1, 1, 1d is fxs1, 1d − 22. (Notice that the tangent line slopes downward in the posi- 
tive x-direction.) Similarly, the curve C2 in which the plane x − 1 intersects the 
paraboloid is the parabola z − 3 2 2y 2, x − 1, and the slope of the tangent line at 
s1, 1, 1d is fys1, 1d − 24. (See Figure 3.)

0

(a, b, 0)

C™

C¡

T¡

P(a, b, c)

S T™

z

yx

FIGURE 1  
The partial derivatives of f  at sa, bd are 
the slopes of the tangents to C1 and C2.
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(1, 1, 1)

z=4-≈-2¥

(1, 1)
2

y=1

C¡

(1, 1, 1)

z=4-≈-2¥

(1, 1)
2

x=1

C™

z

y

x

z

y

x

FIGURE 2 FIGURE 3  ■

As we have seen in the case of the heat index function at the beginning of this section, 
partial derivatives can also be interpreted as rates of change. If z − f sx, yd, then −zy−x 
represents the rate of change of z with respect to x when y is fixed. Similarly, −zy−y rep-
resents the rate of change of z with respect to y when x is fixed.

EXAMPLE 4 In Exercise 14.1.39 we defined the body mass index (BMI) of a person as

Bsm, hd −
m

h2

Calculate the partial derivatives of B for a young man with m − 64 kg and h − 1.68 m 
and interpret them.

SOLUTION Regarding h as a constant, we see that the partial derivative with respect  
to m is

−B

−m
 sm, hd −

−

−m
 Sm

h2D −
1

h2

so 
−B

−m
 s64, 1.68d −

1

s1.68d2  < 0.35 skgym2dykg

This is the rate at which the man’s BMI increases with respect to his weight when he 
weighs 64 kg and his height is 1.68 m. So if his weight increases by a small amount, 
one kilogram for instance, and his height remains unchanged, then his BMI will 
increase from Bs64, 1.68d < 22.68 by about 0.35.

Now we regard m as a constant. The partial derivative with respect to h is

−B

−h
 sm, hd −

−

−h
 Sm

h2D − mS2
2

h3D − 2
2m

h3

so  
−B

−h
 s64, 1.68d − 2

2 � 64

s1.68d3  < 227 skgym2dym

This is the rate at which the man’s BMI increases with respect to his height when he 
weighs 64 kg and his height is 1.68 m. So if the man is still growing and his weight 
stays unchanged while his height increases by a small amount, say 1 cm, then his BMI 
will decrease by about 27s0.01d − 0.27.� ■
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EXAMPLE 5 Find −zy−x and −zy−y if z is defined implicitly as a function of x and y by 
the equation

x 3 1 y 3 1 z3 1 6xyz 1 4 − 0

Then evaluate these partial derivatives at the point s21, 1, 2d.

SOLUTION To find −zy−x, we differentiate implicitly with respect to x, being careful to 
treat y as a constant and z as a function (of x):

3x 2 1 3z2 
−z

−x
1 6yz 1 6xy 

−z

−x
− 0

Solving this equation for −zy−x , we obtain

−z

−x
− 2

x 2 1 2yz

z 2 1 2xy

Similarly, implicit differentiation with respect to y gives

−z

−y
− 2

y 2 1 2xz

z 2 1 2xy

Notice that the point s21, 1, 2d satisfies the equation x 3 1 y 3 1 z 3 1 6xyz 1 4 − 0 so 
it lies on the surface. At this point 

 
−z

−x
− 2

s21d2 1 2 � 1 � 2

22 1 2s21d � 1
− 2

5

2
    and    

−z

−y
− 2

12 1 2s21d � 2

22 1 2s21d � 1
−

3

2
 ■

■	 Functions of  Three or More Variables
Partial derivatives can also be defined for functions of three or more variables. For  
example, if f  is a function of three variables x, y, and z, then its partial derivative with 
respect to x is defined as

fxsx, y, zd − lim
h l 0

 
 f sx 1 h, y, zd 2 f sx, y, zd

h

and it is found by regarding y and z as constants and differentiating f sx, y, zd with respect 
to x. If w − f sx, y, zd, then fx − −wy−x can be interpreted as the rate of change of w with 
respect to x when y and z are held fixed. But we can’t interpret it geometrically because 
the graph of f  lies in four-dimensional space.

In general, if u is a function of n variables, u − f sx1, x2, . . . , xn d, its partial deriva tive 
with respect to the ith variable xi is

−u

−xi
− lim

h l 0
 
 f sx1, . . . , xi21, xi 1 h, xi11, . . . , xn d 2 f sx1, . . . , xi , . . . , xnd

h

and we also write 
−u

−xi
−

−f

−xi
− fxi − fi − Di f

EXAMPLE 6 Find fx, fy, and fz if f sx, y, zd − ex y ln z.

SOLUTION Holding y and z constant and differentiating with respect to x, we have

fx − yex y ln z

Similarly, fy − xex y ln z    and    fz −
exy

z
 ■

z

y

x

(_1, 1, 2)

Some software can plot surfaces 
defined by implicit equations in three 
variables. Figure 4 shows such a plot 
of the surface defined by the equation 
in Example 5.

FIGURE 4
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■	 Higher Derivatives
If f  is a function of two variables, then its partial derivatives fx and fy are also functions 
of two variables, so we can consider their partial derivatives s fx dx , s fx dy , s fy dx , and s fy dy , 
which are called the second partial derivatives of f. If z − f sx, yd, we use the following 
notation:

 s fx dx − fxx − f11 −
−

−x
 S −f

−xD −
−2f

−x 2 −
−2z

−x 2

 s fx dy − fxy − f12 −
−

−y
 S −f

−xD −
−2f

−y −x
−

−2z

−y −x

 s fy dx − fyx − f21 −
−

−x
 S −f

−yD −
−2f

−x −y
−

−2z

−x −y

 s fy dy − fyy − f22 −
−

−y
 S −f

−yD −
−2f

−y 2 −
−2z

−y 2

Thus the notation fx y (or −2fy−y −x) means that we first differentiate with respect to x and 
then with respect to y, whereas in computing fyx the order is reversed.

EXAMPLE 7 Find the second partial derivatives of

f sx, yd − x 3 1 x 2 y 3 2 2y 2

SOLUTION In Example 1 we found that

fxsx, yd − 3x 2 1 2xy 3      fysx, yd − 3x 2 y 2 2 4y
Therefore

  fxx −
−

−x
 s3x 2 1 2xy 3 d − 6x 1 2y 3        fxy −

−

−y
 s3x 2 1 2xy 3 d − 6xy 2

   fyx −
−

−x
 s3x 2 y 2 2 4yd − 6xy 2         fyy −

−

−y
 s3x 2 y 2 2 4yd − 6x 2 y 2 4 ■

Notice that fx y − fyx in Example 7. This is not just a coincidence. It turns out that the 
mixed partial derivatives fx y and fyx are equal for most functions that one meets in prac-
tice. The following theorem, which was discovered by the French mathematician Alexis 
Clairaut (1713–1765), gives conditions under which we can assert that fx y − fyx. The 
proof is given in Appendix F.

Clairaut’s Theorem Suppose f  is defined on a disk D that contains the point 
sa, bd. If the functions fx y and fyx are both continuous on D, then

fx ysa, bd − fyxsa, bd

Partial derivatives of order 3 or higher can also be defined. For instance,

fx yy − s fx y dy −
−

−y
 S −2f

−y −xD −
−3f

−y 2 −x

and using Clairaut’s Theorem it can be shown that fx yy − fyx y − fyyx if these functions are 
continuous.

Clairaut
Alexis Clairaut was a child prodigy in 
mathematics: he read l’Hospital’s text-
book on calculus when he was 10  
and presented a paper on geometry 
to the French Academy of Sciences 
when he was 13. At the age of 18,  
Clairaut published Recherches sur les 
courbes à double courbure, which was 
the first s stematic treatise on three-
dimensional analytic geometry and 
included the calculus of space curves.
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968 CHAPTER 14  Partial Derivatives

EXAMPLE 8 Calculate fxx yz if f sx, y, zd − sins3x 1 yzd.

SOLUTION  fx − 3 coss3x 1 yzd

 fxx − 29 sins3x 1 yzd

 fxx y − 29z coss3x 1 yzd

   fxx yz − 29 coss3x 1 yzd 1 9yz sins3x 1 yzd ■

■	 Partial Differential Equations
Partial derivatives occur in partial differential equations that express certain physical 
laws. For instance, the partial differential equation

−2u

−x 2 1
−2u

−y 2 − 0

is called Laplace’s equation after Pierre Laplace (1749–1827). Solutions of this equa -
tion are called harmonic functions; they play a role in problems of heat conduction, 
fluid flow, and electric potential.

EXAMPLE 9 Show that the function usx, yd − ex sin y is a solution of Laplace’s 
equation. 

SOLUTION We first compute the needed second-order partial derivatives:

 ux − ex sin y       uy − ex cos y

 uxx − ex sin y       uyy − 2ex sin y

So uxx 1 uyy − ex sin y 2 ex sin y − 0 

Therefore u satisfies Laplace’s equation.� ■

The wave equation

−2u

−t 2 − a2 
−2u

−x 2

describes the motion of a waveform, which could be an ocean wave, a sound wave, a 
light wave, or a wave traveling along a vibrating string. For instance, if usx, td represents 
the displacement of a vibrating violin string at time t and at a distance x from one end of 
the string (as in Figure 5), then usx, td satisfies the wave equation. Here the constant a 
depends on the density of the string and on the tension in the string.

EXAMPLE 10 Verify that the function usx, td − sinsx 2 atd satisfies the wave 
equation.

SOLUTION  ux − cossx 2 atd        ut − 2a cossx 2 atd

 uxx − 2sinsx 2 atd       utt − 2a 2 sinsx 2 atd − a 2uxx

So u satisfies the wave equation.� ■

u(x, t)

x

FIGURE 5
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Partial differential equations involving functions of three variables are also very 
important in science and engineering. The three-dimensional Laplace equation is

5  
−2u

−x 2 1
−2u

−y 2 1
−2u

−z 2 − 0

and one application is in geophysics. If usx, y, zd represents magnetic field strength at 
position sx, y, zd, then it satisfies Equation 5. The strength of the magnetic field indicates 
the distribution of iron-rich minerals and reflects different rock types and the location of 
faults.

14.3 Exercises
 1.  At the beginning of this section we discussed the function 

I − f sT, H d, where I is the heat index, T is the actual temper-
ature, and H is the relative humidity. Use Table 1 to estimate 
fT s34, 75d and fH s34, 75d. What are the practical interpreta-
tions of these values?

 2.  The wave heights h in the open sea depend on the speed v  
of the wind and the length of time t that the wind has been 
blowing at that speed. Values of the function h − f sv, td are 
recorded in feet in the following table.

0.6

1.2

1.5

2.8

4.3

5.8

7.4

0.6

1.3

2.2

4.0

6.4

8.9

11.3

0.6

1.5

2.4

4.9

7.7

11.0

14.4

0.6

1.5

2.5

5.2

8.6

12.2

16.6

0.6

1.5

2.7

5.5

9.5

13.8

19.0

0.6

1.6

2.8

5.8

10.1

14.7

20.5

0.6

1.6

2.8

5.9

10.2

15.3

21.1

v
t

20

30

40

60

80

100

120

Duration (hours)

W
in

d 
sp

ee
d 

(k
m

/h
)

5 10 15 20 30 40 50

 (a)  What are the meanings of the partial derivatives −hy−v  
and −hy−t ?

 (b)  Estimate the values of fvs40, 15d and fts40, 15d. What are 
the practical interpretations of these values?

 (c) What appears to be the value of the following limit?

lim
t l `

 
−h

−t

 3.  The temperature T (in °Cd at a location in the Northern  
Hemisphere depends on the longitude x, latitude y, and time t, 
so we can write T − f sx, y, td. Let’s measure time in hours 
from the beginning of January.

 (a)  What are the meanings of the partial derivatives −Ty−x,
−Ty−y, and −Ty−t?

 (b)  Honolulu has longitude 158°W and latitude 21°N. 
Suppose that at 9:00 am on January 1 the wind is 
blowing hot air to the northeast, so the air to the west and 
south is warm and the air to the north and east is cooler. 
Would you expect fxs158, 21, 9d, fys158, 21, 9d, and 
fts158, 21, 9d to be positive or negative? Explain.

 4–5 Determine the signs of the partial derivatives for the  
function f  whose graph is shown.

1x

y

z

2

 4. (a) fxs1, 2d (b) fys1, 2d

 5. (a) fxs21, 2d (b) fys21, 2d

 6.  A contour map is given for a function f . Use it to estimate 
fxs2, 1d and fys2, 1d.

3 x

y

3

_2
0

6 8

10

14
16

12

18

2
4

_4

1

 7.  If f sx, yd − 16 2 4x 2 2 y 2, find fxs1, 2d and fys1, 2d and 
interpret these numbers as slopes. Illustrate with either hand-
drawn sketches or computer plots.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



970 CHAPTER 14  Partial Derivatives

 8.  If f sx, yd − s4 2 x 2 2 4y 2 , find fxs1, 0d and fys1, 0d and 
inter pret these numbers as slopes. Illustrate with either hand-
drawn sketches or computer plots.

9–36 Find the first partial derivatives of the function.

 9. f sx, yd − x 4 1 5xy 3 10. f sx, yd − x 2y 2 3y 4

 11. tsx, yd − x 3 sin y 12. tsx, td − e xt

 13. z − lnsx 1 t 2d 14. w −
u

v2

 15. f sx, yd − ye xy 16. tsx, yd − sx 2 1 xyd3

 17. tsx, yd − ysx 1 x 2yd5 18. f sx, yd −
x

sx 1 yd2

 19. f sx, yd −
ax 1 by

cx 1 dy
 20. w −

ev

u 1 v 2

 21. tsu, vd − su 2v 2 v 3d5 22. usr, �d − sinsr cos �d

 23. Rsp, qd − tan21spq 2d 24. f sx, yd − x y

 25. Fsx, yd − yx

y
 cosse td dt 26. Fs�, �d − y�

�
 st 3 1 1

 
 dt

 27. f sx, y, zd − x 3 yz 2 1 2yz 28. f sx, y, zd − xy 2e2xz

 29. w − lnsx 1 2y 1 3zd 30. w − y tansx 1 2zd

 31. p − st 4 1 u 2 cos v  32. u − x yyz

 33. hsx, y, z, td − x 2y cosszytd 34. �sx, y, z, td −
�x 1 �y 2

�z 1 �t 2

 35. u − sx 2
1 1 x 2

2 1 ∙ ∙ ∙ 1 x 2
n  

 36. u − sinsx1 1 2x2 1 ∙ ∙ ∙ 1 nxn d

37–40 Find the indicated partial derivative.

 37. Rss, td − te syt; Rt s0, 1d

 38. f sx, yd − y sin21 sxyd; fy (1, 12)

 39. f sx, y, zd − ln 
1 2 sx 2 1 y 2 1 z 2 

1 1 sx 2 1 y 2 1 z 2 
 ; fy s1, 2, 2d

 40. f sx, y, zd − x yz;  fz se, 1, 0d

 41–44 Use implicit differentiation to find −zy−x and −zy−y.

 41. x 2 1 2y 2 1 3z2 − 1 42. x 2 2 y 2 1 z 2 2 2z − 4

 43. e z − xyz 44. yz 1 x ln y − z2

45–46 Find −zy−x and −zy−y.

 45. (a) z − f sxd 1 tsyd (b) z − f sx 1 yd

 46. (a) z − f sxdtsyd (b) z − f sxyd

  (c) z − f sxyyd

47–52 Find all the second partial derivatives.

 47. f sx, yd − x 4y 2 2x 3y 2 48. f sx, yd − lnsax 1 byd

 49. z −
y

2x 1 3y
 50. T − e22r cos �

 51. v − sinss 2 2 t 2d 52. z − arctan 
x 1 y

1 2 xy

53–56 Verify that the conclusion of Clairaut’s Theorem holds, 
that is, ux y − uy x.

 53. u − x 4y 3 2 y 4 54. u − e xy sin y

 55. u − cossx 2yd 56. u − lnsx 1 2yd

57–64 Find the indicated partial derivative(s).

 57. f sx, yd − x 4y 2 2 x 3y;   fx x x,   fxyx

 58. f sx, yd − sins2x 1 5yd;  fyxy

 59. f sx, y, zd − exyz 2

;   fxyz

 60. tsr, s, td − e r sinsstd;  trst

 61. W − su 1 v 2 ;   
− 3W

−u 2 −v

 62. V − lnsr 1 s 2 1 t 3d;  
− 3V

−r −s −t

 63. w −
x

y 1 2z
;  

− 3w

−z −y −x
,  

− 3w

−x 2 −y

 64. u − x a y bz c;  
−6u

−x −y 2 −z 3

65–66 Use Definition 4 to find fxsx, yd and fysx, yd.

 65. f sx, yd − xy 2 2 x 3y 66. f sx, yd −
x

x 1 y 2

 67.  If f sx, y, zd − xy 2z3 1 arcsin(xsz
 
), find fxzy.  

[Hint: Which order of differentiation is easiest?]

 68.  If tsx, y, zd − s1 1 xz 1 s1 2 xy , find txyz. [Hint: Use a 
different order of differentiation for each term.]
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 SECTION 14.3  Partial Derivatives 971

 74.  Level curves are shown for a function f . Determine whether  
the following partial derivatives are positive or negative at 
the point P.

 (a) fx   (b) fy   (c) fxx   (d) fxy   (e) fyy

10 8 6 4 2

y

x

P

 75. (a)  In Example 3 we found that fxs1, 1d − 22 for the 
function f sx, yd − 4 2 x 2 2 2y 2. We interpreted this 
result geometrically as the slope of the tangent line to 
the curve C1 at the point Ps1, 1, 1d, where C1 is the trace 
of the graph of f  in the plane y − 1 . (See the figure.) 
Verify this interpretation by finding a vector equation 
for C1, computing the tangent vector to C1 at P, and then 
finding the slope of the tangent line to C1 at P in the 
plane y − 1 .

 (b)  Use a similar method to verify that fys1, 1d − 24.

1
y

z

1

2

3

4

0

4

1
x

0

1

z

1 x

T¡

C¡

1

2

3

4

0

y
2 2

0

T™

(1, 1, 1)

C™

(1, 1, 1)

 76.  If u − e a1x11a2 x 21 ∙ ∙ ∙1an xn, where a 2
1 1 a 2

2 1 ∙ ∙ ∙ 1 a 2
n − 1,  

show that
−2u

−x 2
1

1
−2u

−x 2
2

1 ∙ ∙ ∙ 1
−2u

−x 2
n

− u

 77.  Show that the function u − usx, td is a solution of the wave 
equation ut t − a 2uxx.

  (a) u − sinskxd sinsaktd
  (b) u − tysa 2t 2 2 x 2 d
 (c) u − sx 2 atd6 1 sx 1 atd6

 (d) u − sinsx 2 atd 1 lnsx 1 atd

 78.  Determine whether each of the following functions is a  
solution of Laplace’s equation uxx 1 uyy − 0.

  (a) u − x 2 1 y 2 (b) u − x 2 2 y 2

  (c) u − x 3 1 3xy 2 (d) u − ln sx 2 1 y 2 

 (e) u − sin x cosh y 1 cos x sinh y
 (f ) u − e2x cos y 2 e2y cos x

 79.  Verify that the function u − 1ysx 2 1 y 2 1 z 2  is a  
solution of the three-dimensional Laplace equation 
uxx 1 u yy 1 uzz − 0.

 69.  The following surfaces, labeled a, b, and c, are graphs of a 
function f  and its partial derivatives fx and fy. Identify each 
surface and give reasons for your choices.

b_4

_3 _1 0 1 3
0 _2

y
x

z 0

2

4

2_2

a

8

_8

_4

_3 _1 0 1 3
0

_2

y
x

z 0

2

4

2_2

c

8

_8
_3 _1 0 1 3

0 _2

y
x

z 0

2

4

2_2

_4

70–71 Find fx and fy and graph f , fx, and fy with domains and  
viewpoints that enable you to see the relationships between 
them.

 70. f sx, yd −
y

1 1 x 2y2  71. f sx, yd − x 2y3

 72. Determine the signs of the partial derivatives for the func-
tion f  whose graph is shown in Exercises 4–5.

  (a)  fxxs21, 2d (b) fyys21, 2d
  (c)  fxys1, 2d (d) fxys21, 2d

 73.  Use the table of values of f sx, yd to estimate the values of 
fxs3, 2d, fxs3, 2.2d, and fxys3, 2d.

12.5

18.1

20.0

10.2

17.5

22.4

9.3

15.9

26.1

x
y

2.5

3.0

3.5

1.8 2.0 2.2

;
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972 CHAPTER 14  Partial Derivatives

 80.  The Heat Equation Verify that the function u − e2�2k 2 t sin kx 
is a solution of the heat conduction equation ut − �2uxx .

 81.  The Diffusion Equation The diffusion equation

−c

−t
− D 

−2c

−x 2

where D is a positive constant, describes the diffusion of heat 
through a solid, or the concentration of a pollutant at time t at 
a distance x from the source of the pollution, or the invasion 
of alien species into a new habitat. Verify that the function

csx, td −
1

s4�Dt 
 e2x 2ys4Dtd

is a solution of the diffusion equation.

 82.  The temperature at a point sx, yd on a flat metal plate is  
given by Tsx, yd − 60ys1 1 x 2 1 y 2 d, where T is measured 
in °C and x, y in meters. Find the rate of change of temper-
ature with respect to distance at the point s2, 1d in (a) the  
x-direction and (b) the y-direction.

 83.  The total resistance R produced by three conductors with 
resistances R1, R2, R3 connected in a parallel electrical circuit 
is given by the formula

1

R
−

1

R1
1

1

R2
1

1

R3

Find −Ry−R1.

 84.  Ideal Gas Law The gas law for a fixed mass m of an ideal  
gas at absolute temperature T, pressure P, and volume V is 
PV − mRT, where R is the gas constant. 

 (a) Show that 
−P

−V
 
−V

−T
 
−T

−P
− 21.

 (b) Show that T  

−P

−T
 
−V

−T
− mR .

 85.  Van der Waals Equation The Van der Waals equation for 
n moles of a gas is

SP 1
n 2a

V 2  DsV 2 nbd − nRT

where P is the pressure, V is the volume, and T is the temper-
ature of the gas. The constant R is the universal gas constant  
and a and b are positive constants that are characteristic of a 
particular gas. Calculate −Ty−P and −Py−V .

 86.  The wind-chill index is modeled by the function

W − 13.12 1 0.6215T 2 11.37v 0.16 1 0.3965Tv 0.16 

where T is the temperature s°Cd and v is the wind speed (in 
kmyh). When T − 215°C and v − 30 kmyh, by how much 
would you expect the apparent temperature W to drop if the  
actual temperature decreases by 1°C? What if the wind speed 
increases by 1 kmyh?

 87.  A model for the surface area of a human body is given by the 
function

S − f sw, hd − 0.0072w0.425h0.725

where w is the weight (in kilograms), h is the height (in centi-
meters), and S is measured in square meters. Calculate and 
interpret the partial derivatives.

  (a) 
−S

−w
 s73, 178d  (b) 

−S

−h
 s73, 178d 

 88.  One of Poiseuille’s laws states that the resistance of blood 
flowing through an artery is

R − C 
L

r 4

where L and r are the length and radius of the artery and C is 
a positive constant determined by the viscosity of the blood. 
Calculate −Ry−L and −Ry−r and interpret them.

 89.  In the project following Section 4.7 we expressed the power 
needed by a bird during its flapping mode as

Psv, x, md − Av 3 1
Bsmtyxd2

v

where A and B are constants specific to a species of bird, v is 
the velocity of the bird, m is the mass of the bird, and x is the 
fraction of the flying time spent in flapping mode. Calculate 
−Py−v, −Py−x, and −Py−m and interpret them.

 90.  In a study of frost penetration it was found that the tempera-
ture T at time t (measured in days) at a depth x (measured in 
meters) can be modeled by the function

Tsx, td − T0 1 T1e2�x sins�t 2 �xd

where � − 2�y365 and � is a positive constant.
 (a) Find −Ty−x. What is its physical significance?
 (b) Find −Ty−t. What is its physical significance?
 (c)  Show that T satisfies the heat equation Tt − kTxx for a 

certain constant k.
 (d) Graph T sx, td for � − 0.2, T0 − 0, and T1 − 10.
 (e)  What is the physical significance of the term 2�x in the 

expression sins�t 2 �xd?

 91.  The kinetic energy of a body with mass m and velocity v is 
K − 1

2 mv2. Show that

−K

−m
 
−2K

−v2 − K

 92.  The average energy E (in kcal) needed for a lizard to walk or 
run a distance of 1 km has been modeled by the equation 

Esm, vd − 2.65m0.66 1
3.5m0.75

v

where m is the body mass of the lizard (in grams) and v is its 
speed (in kmyh). Calculate Ems400, 8d and Evs400, 8d and 
interpret your answers.

Source: C. Robbins, Wildlife Feeding and Nutrition, 2d ed. (San Diego: 
Academic Press, 1993).

;
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 (b)  If these partial derivatives are all continuous, how 
many of them can be distinct?

 (c)  Answer the question in part (a) for a function of three  
variables.

 99.  If
 f sx, yd − xsx 2 1 y 2 d23y2e sinsx2yd 

find fxs1, 0d. [Hint: Instead of finding fxsx, yd first, note 
that it’s easier to use Equation 1 or Equation 2.]

 100. If f sx, yd − s3 x 3 1 y 3 , find fxs0, 0d.

 101. Let

f sx, yd − H x 3y 2 xy 3

x 2 1 y 2 if sx, yd ± s0, 0d

0 if sx, yd − s0, 0d

  (a)  Graph f .
  (b) Find fxsx, yd and fysx, yd when sx, yd ± s0, 0d.
  (c) Find fxs0, 0d and fys0, 0d using Equations 2 and 3.
  (d) Show that fxys0, 0d − 21 and fyxs0, 0d − 1.
  (e)  Does the result of part (d) contradict Clairaut’s  

Theorem? Use graphs of fxy and fyx to illustrate your 
answer.

;

 93.  The ellipsoid 4x 2 1 2y 2 1 z2 − 16 intersects the plane 
y − 2 in an ellipse. Find parametric equations for the tan-
gent line to this ellipse at the point s1, 2, 2d.

 94.  The paraboloid z − 6 2 x 2 x 2 2 2y 2 intersects the plane 
x − 1 in a parabola. Find parametric equations for the tan-
gent line to this parabola at the point s1, 2, 24d. Use a com-
puter to graph the paraboloid, the parabola, and the tangent 
line on the same screen.

 95.  You are told that there is a function f  whose partial deriva- 
tives are fxsx, yd − x 1 4y and fysx, yd − 3x 2 y. Should 
you believe it?

 96.  If a, b, c are the sides of a triangle and A, B, C are the oppo-
site angles, find −Ay−a, −Ay−b, −Ay−c by implicit differen-
tiation of the Law of Cosines.

 97.  Use Clairaut’s Theorem to show that if the third-order  
partial derivatives of f  are continuous, then

fx yy − fyx y − fyyx

 98. (a)  How many nth-order partial derivatives does a function 
of two variables have?

;

   
DISCOVERY PROJECT DERIVING THE COBB-DOUGLAS PRODUCTION FUNCTION

In Example 14.1.4 we described the work of Cobb and Douglas in modeling the total produc-
tion P of an economic system as a function of the amount of labor L and the capital invest-
ment K. If the production function is denoted by P − PsL, K d, then −Py−L , the rate at which 
production changes with respect to the amount of labor, is called the marginal productivity  
of labor. Similarly, −Py−K is the marginal productivity of capital. 

Here we use these partial derivatives to show how the particular form of the model used by 
Cobb and Douglas follows from the following assumptions they made about the economy.

 (i) If either labor or capital vanishes, then so will production.

 (ii) The marginal productivity of labor is proportional to the amount of production per 
unit of labor sPyLd.

 (iii) The marginal productivity of capital is proportional to the amount of production per 
unit of capital sPyK d.

 1. Assumption (ii) says that 
−P

−L
− � 

P

L

  for some constant �. If K is held constant sK − K0d, then this partial differential equation 
becomes the ordinary differential equation

dP

dL
− � 

P

L

  Solve this separable differential equation by the methods of Section 9.3 to get 
PsL, K0d − C1sK0d L�, where the constant C1 is written as C1sK0d because it could depend 
on the value of K0 . (continued )
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974 CHAPTER 14  Partial Derivatives

Tangent Planes and Linear Approximations

One of the most important ideas in single-variable calculus is that as we zoom in toward  
a point on the graph of a differentiable function, the graph becomes indistinguishable  
from its tangent line and we can approximate the function by a linear function. (See Sec- 
t ion 3.10.) Here we develop similar ideas in three dimensions. As we zoom in toward a 
point on a surface that is the graph of a differentiable func tion of two variables, the sur-
face looks more and more like a plane (its tangent plane) and we can approximate the 
function by a linear function of two variables. We also extend the idea of a differential to 
functions of two or more variables.

■	 Tangent Planes
Suppose a surface S has equation z − f sx, yd, where f  has continuous first partial deriva-
tives, and let Psx0, y0, z0 d be a point on S. As in Section 14.3, let C1 and C2 be the curves 
obtained by intersecting the vertical planes y − y0 and x − x0 with the surface S. Then 
the point P lies on both C1 and C2. Let T1 and T2 be the tangent lines to the curves C1 and 
C2 at the point P. Then the tangent plane to the surface S at the point P is defined to be 
the plane that contains both tangent lines T1 and T2. (See Figure 1.)

We will see in Section 14.6 that if C is any other curve that lies on the surface S and 
passes through P, then its tangent line at P also lies in the tangent plane. Therefore you 
can think of the tangent plane to S at P as consisting of all possible tangent lines at P to 
curves that lie on S and pass through P. The tangent plane at P is the plane that most 
closely approx imates the surface S near the point P.

We know from Equation 12.5.7 that any plane passing through the point Psx0, y0, z0 d 
has an equation of the form

Asx 2 x0 d 1 Bsy 2 y0 d 1 Csz 2 z0 d − 0

14.4

FIGURE 1  
The tangent plane contains the  
tangent lines T1 and T2.

y

x

z

T¡

T™

C¡

C™
P

0

   
 2. Similarly, show that assumption (iii) implies that if L is held constant sL − L 0d, then 

PsL0, K d − C2sL0 dK �. 

 3. Comparing the results of Problems 1 and 2, conclude that 

PsL, K d − bL�K �

  where b is a constant that is independent of both L and K. Cobb and Douglas assumed that 
� 1 � − 1, so that 

PsL, K d − bL�K 12�

  In this case, if labor and capital are both increased by a factor m, then by what factor is 
production increased?

 4. Show that PsL, K d − bL�K 12� satisfies the partial differential equation

L  
−P

−L
1 K  

−P

−K
− P

 5. Cobb and Douglas used the function PsL, K d − 1.01L0.75K 0.25 to model the American econ-
omy from 1899 to 1922. Find the marginal productivity of labor and the marginal produc-
tivity of capital in the year 1920, when L − 194 and K − 407, and interpret the results. In 
that year, which would have benefited production more, an increase in capital investment 
or an increase in spending on labor?
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 SECTION 14.4  Tangent Planes and Linear Approximations 975

By dividing this equation by C and letting a − 2AyC and b − 2ByC, we can write it in 
the form

1  z 2 z0 − asx 2 x0d 1 bsy 2 y0 d

If Equation 1 represents the tangent plane at P, then its intersection with the plane y − y0 
must be the tangent line T1. Setting y − y0 in Equation 1 gives

z 2 z0 − asx 2 x0 d      where y − y0

and we recognize this as the equation (in point-slope form) of a line with slope a. But 
from Section 14.3 we know that the slope of the tangent T1 is fxsx0, y0 d. Therefore 
a − fxsx0, y0 d.

Similarly, putting x − x0 in Equation 1, we get z 2 z0 − bsy 2 y0 d, which must rep-
resent the tangent line T2, so b − fysx0, y0 d.

2  Equation of a Tangent Plane Suppose f  has continuous partial deriva-
tives. An equation of the tangent plane to the surface z − f sx, yd at the point  
Psx0, y0, z0 d is

z 2 z0 − fxsx0, y0 dsx 2 x0 d 1 fysx0, y0 dsy 2 y0 d

EXAMPLE 1 Find the tangent plane to the elliptic paraboloid z − 2x 2 1 y 2 at the  
point s1, 1, 3d.

SOLUTION Let f sx, yd − 2x 2 1 y 2. Then

  fxsx, yd − 4x fysx, yd − 2y

  fxs1, 1d − 4  fys1, 1d − 2

Then (2) gives the equation of the tangent plane at s1, 1, 3d as

 z 2 3 − 4sx 2 1d 1 2sy 2 1d

or  z − 4x 1 2y 2 3  ■

Figure 2(a) shows the elliptic paraboloid and its tangent plane at (1, 1, 3) that we found 
in Example 1. In parts (b) and (c) we zoom in toward the point (1, 1, 3). Notice that the 
more we zoom in, the flatter the graph appears and the more it resembles its tangent plane.

(c)

2
1

0

2
1

0

40

20

0

_20

y

z

x

(b)

2
0

_2

2
0

_2

40

20

0

_20

y

z

x

(a)

40

20

0

_20

y

z

4
2

0
_2

_4

x
4

2
0

_2
_4

FIGURE 2 The elliptic paraboloid z − 2x 2 1 y 2 appears to coincide with its tangent plane as we zoom in toward s1, 1, 3d.

Note the similarity between the 
equation of a tangent plane and the 
equation of a tangent line:

y 2 y0 − f 9sx0 dsx 2 x0 d
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976 CHAPTER 14  Partial Derivatives

In Figure 3 we corroborate this impression by zooming in toward the point (1, 1) on a 
contour map of the function f sx, yd − 2x 2 1 y 2. Notice that the more we zoom in, the 
more the level curves look like equally spaced parallel lines, which is characteristic of a 
plane.

0.95 1.05

1.05

0.8 1.2

1.2

0.5 1.5

1.5

■	 Linear Approximations
In Example 1 we found that an equation of the tangent plane to the graph of the function 
f sx, yd − 2x 2 1 y 2 at the point s1, 1, 3d is z − 4x 1 2y 2 3. Therefore, in view of the 
visual evidence in Figures 2 and 3, the linear function of two variables

Lsx, yd − 4x 1 2y 2 3

is a good approximation to f sx, yd when sx, yd is near s1, 1d. The function L is called the 
linearization of f  at s1, 1d and the approximation

f sx, yd < 4x 1 2y 2 3

is called the linear approximation or tangent plane approximation of f  at s1, 1d.
For instance, at the point s1.1, 0.95d the linear approximation gives

f s1.1, 0.95d < 4s1.1d 1 2s0.95d 2 3 − 3.3

which is quite close to the true value of f s1.1, 0.95d − 2s1.1d2 1 s0.95d2 − 3.3225. But 
if we take a point farther away from s1, 1d, such as s2, 3d, we no longer get a good 
approxi mation. In fact, Ls2, 3d − 11 whereas f s2, 3d − 17.

In general, we know from (2) that an equation of the tangent plane to the graph of 
a function f  of two variables at the point sa, b, f sa, bdd is

z − f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd

The linear function whose graph is this tangent plane, namely

3  Lsx, yd − f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd

is called the linearization of f  at sa, bd and the approximation

4  f sx, yd < f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd

is called the linear approximation or the tangent plane approximation of f  at sa, bd.

FIGURE 3  
Zooming in toward (1, 1)  
on a contour map of  
f sx, yd − 2x 2 1 y 2
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We have defined tangent planes for surfaces z − f sx, yd, where f  has continuous first 
partial derivatives. What happens if fx and fy are not continuous? Figure 4 pictures such 
a function; its equation is

f sx, yd − H
0

xy

x 2 1 y 2 if

if

sx, yd ± s0, 0d

sx, yd − s0, 0d

You can verify (see Exercise 54) that its partial derivatives exist at the origin and, in fact, 
fxs0, 0d − 0 and fys0, 0d − 0, but fx and fy are not continuous. The linear approximation 
would be f sx, yd < 0, but f sx, yd − 1

2 at all points on the line y − x. So a function of two 
variables can behave badly even though both of its partial derivatives exist. To rule out 
such behavior, we formulate the idea of a differentiable function of two variables.

Recall that for a function of one variable, y − f sxd, if x changes from a to a 1 Dx, we 
defined the increment of y as

Dy − f sa 1 Dxd 2 f sad

In Chapter 3 we showed that if f  is differentiable at a, then

5  Dy − f 9sad Dx 1 « Dx    where  « l 0  as  Dx l 0

Now consider a function of two variables, z − f sx, yd, and suppose x changes from a 
to a 1 Dx and y changes from b to b 1 Dy. Then the corresponding increment of z is

6  Dz − f sa 1 Dx, b 1 Dyd 2 f sa, bd

Thus the increment Dz represents the change in the value of f  when sx, yd changes from 
sa, bd to sa 1 Dx, b 1 Dyd. By analogy with (5) we define the differentiability of a func-
tion of two variables as follows.

7  Definitio  If z − f sx, yd, then f  is differentiable at sa, bd if Dz can be 
expressed in the form

Dz − fxsa, bd Dx 1 fysa, bd Dy 1 «1 Dx 1 «2 Dy

where «1 and «2 are functions of Dx and Dy such that «1 and «2 l 0 as 
sDx, Dyd l s0, 0d.

Definition 7 says that a differentiable function is one for which the linear approxima-
tion (4) is a good approximation when sx, yd is near sa, bd. In other words, the tangent 
plane approximates the graph of f  well near the point of tangency.

It’s sometimes hard to use Definition 7 directly to check the differentiability of a func-
tion, but the next theorem provides a convenient sufficient condition for differentiability.

8  Theorem If the partial derivatives fx and fy  exist near sa, bd and are continu-
ous at sa, bd, then f  is differentiable at sa, bd.

Theorem 8 is proved in Appendix F.

z y

x

FIGURE 4  

f sx, yd −
xy

x 2 1 y 2   if sx, yd ± s0, 0d,

f s0, 0d − 0

This is Equation 3.4.7.
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EXAMPLE 2 Show that f sx, yd − xexy is differentiable at (1, 0) and find its 
linearization there. Then use it to approximate f s1.1, 20.1d.

SOLUTION The partial derivatives are

  fxsx, yd − exy 1 xyexy        fysx, yd − x 2exy

  fxs1, 0d − 1         fys1, 0d − 1

Both fx and fy are continuous functions, so f  is differentiable by Theorem 8. The 
lin earization is

 Lsx, yd − f s1, 0d 1 fxs1, 0dsx 2 1d 1 fys1, 0dsy 2 0d

 − 1 1 1sx 2 1d 1 1 � y − x 1 y

The corresponding linear approximation is

 xexy < x 1 y

so    f s1.1, 20.1d < 1.1 2 0.1 − 1 

Compare this with the actual value of f s1.1, 20.1d − 1.1e20.11 < 0.98542. ■

EXAMPLE 3 At the beginning of Section 14.3 we discussed the heat index (perceived 
temperature) I as a function of the actual temperature T  and the relative humidity H 
and gave the following table of values from the National Weather Service.

T
H

Relative humidity (%)

Actual
temperature

(°C)

26

28

30

32

34

36

40 45 50 55 60 65 70 75 80

28

31

34

37

41

43

28

32

35

38

42

45

29

33

36

39

43

47

31

34

37

41

45

48

31

35

38

42

47

50

32

36

40

43

48

51

33

37

41

45

49

53

34

38

42

46

51

54

35

39

43

47

52

56

Find a linear approximation for the heat index I − f sT, H d when T  is near 30°C and H 
is near 60%. Use it to estimate the heat index when the actual temperature is 31°C and 
the relative humidity is 62%.

SOLUTION We read from the table that f s30, 60d − 38. At the beginning of Sec-
tion 14.3 we used the tabular values to estimate that fTs30, 60d < 1.75 and 
fHs30, 60d < 0.3. So the linear approximation is

  f sT, H d < f s30, 60d 1 fTs30, 60dsT 2 30d 1 fHs30, 60dsH 2 60d

 < 38 1 1.75sT 2 30d 1 0.3sH 2 60d

In particular,
f s31, 62d < 38 1 1.75s1d 1 0.3s2d − 40.35

Therefore, when T − 31°C and H − 62%, the heat index is

 I < 40.4°C ■

1
0

_1

6

4

2

0

yx

z

1
0

Figure 5 shows the graphs of the 
function f  and its linearization L in 
Example 2.

FIGURE 5
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■	 Differentials
For a differentiable function of one variable, y − f sxd, we define the differential dx to be 
an independent variable; that is, dx can be given the value of any real number. The dif-
ferential of y is then defined as

9  dy − f 9sxd dx 

(See Section 3.10.) Figure 6 shows the relationship between the increment Dy and the 
differential dy : Dy represents the change in height of the curve y − f sxd and dy repre-
sents the change in height of the tangent line when x changes by an amount dx − Dx.

For a differentiable function of two variables, z − f sx, yd, we define the differentials  
dx and dy to be independent variables; that is, they can be given any values. Then the  
differential dz, also called the total differential, is defined by

10  dz − fxsx, yd dx 1 fysx, yd dy −
−z

−x
 dx 1

−z

−y
 dy

(Compare with Equation 9.) Sometimes the notation df  is used in place of dz.
If we take dx − Dx − x 2 a and dy − Dy − y 2 b in Equation 10, then the differen-

tial of z is
dz − fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd

So, in the notation of differentials, the linear approximation (4) can be written as

f sx, yd < f sa, bd 1 dz

Figure 7 is the three-dimensional counterpart of Figure 6 and shows the geometric inter-
pretation of the differential dz and the increment Dz: dz represents the change in height 
of the tangent plane, whereas Dz represents the change in height of the surface z − f sx, yd 
when sx, yd changes from sa, bd to sa 1 Dx, b 1 Dyd.

y

x

z

Îx=
dx

0

{a, b, f(a, b)}

(a, b, 0)

(a+Îx, b+Îy, 0)

{a+Îx, b+Îy, f (a+Îx, b+Îy)}

f(a, b)

f(a, b)

Îy=dy
tangent plane

z-f(a, b)=fx(a, b)(x-a)+fy(a, b)(y-b)

surface z=f(x, y)

dz
Îz

EXAMPLE 4
(a) If z − f sx, yd − x 2 1 3xy 2 y 2, find the differential dz.
(b) If x changes from 2 to 2.05 and y changes from 3 to 2.96, compare the values  
of Dz and dz.

xa a+Îx

y

0

dx=Îx

y=ƒ

dy

Îy

y=f(a)+fª(a)(x-a)
tangent line

FIGURE 6

FIGURE 7
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SOLUTION
(a) Definition 10 gives

dz −
−z

−x
 dx 1

−z

−y
 dy − s2x 1 3yd dx 1 s3x 2 2yd dy

(b) Putting x − 2, dx − Dx − 0.05, y − 3, and dy − Dy − 20.04, we get

 dz − f2s2d 1 3s3dg0.05 1 f3s2d 2 2s3dgs20.04d − 0.65

The increment of z is

 Dz − f s2.05, 2.96d 2 f s2, 3d

 − fs2.05d2 1 3s2.05ds2.96d 2 s2.96d2 g 2 f22 1 3s2ds3d 2 32 g

 − 0.6449

Notice that Dz < dz but dz is easier to compute.� ■

EXAMPLE 5 The base radius and height of a right circular cone are measured as 
10 cm and 25 cm, respectively, with a possible error in measurement of as much as 
« cm in each.
(a) Use differentials to estimate the maximum error in the calculated volume of the 
cone.
(b) What is the estimated maximum error in volume if the radius and height are mea-
sured with errors up to 0.1 cm?

SOLUTION 
(a) The volume V  of a cone with base radius r and height h is V − �r 2hy3.  
So the differential of V  is

dV −
−V

−r
 dr 1

−V

−h
 dh −

2�rh

3
 dr 1

�r 2

3
 dh

Since each error is at most « cm, we have | Dr | < «, | Dh | < «. To estimate the largest 
error in the volume, we take the largest error in the measurement of r and of h. There-
fore we take dr − « and dh − « along with r − 10, h − 25. This gives

DV < dV −
500�

3
 « 1

100�

3
 « − 200�«

Thus the maximum error in the calculated volume is about 200�« cm3.

(b) If the largest error in each measurement is « − 0.1 cm, then 
dV − 200�s0.1d < 63, so the estimated maximum error in volume is about 63 cm3. 
(Note that since the measured volume of the cone is V − �s10d2s25dy3 < 2618, this is 
a relative error of 63y2618 < 0.024 or 2.4%.) ■

■	 Functions of  Three or More Variables
Linear approximations, differentiability, and differentials can be defined in a similar 
manner for functions of more than two variables. A differentiable function is defined by 
an expression similar to the one in Definition 7. For such functions the linear approxi-
mation is

f sx, y, zd < f sa, b, cd 1 fxsa, b, cdsx 2 ad 1 fysa, b, cdsy 2 bd 1 fzsa, b, cdsz 2 cd

and the linearization Lsx, y, zd is the right side of this expression.

In Example 4, dz is close to Dz 
because the tangent plane is a good 
approximation to the surface 
z − x 2 1 3xy 2 y 2 near s2, 3, 13d. 
(See Figure 8.)

60

0

5 3 1 2
x y

z 20

4

40

24
_20

0
0

FIGURE 8
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If w − f sx, y, zd, then the increment of w is

Dw − f sx 1 Dx, y 1 Dy, z 1 Dzd 2 f sx, y, zd

The differential dw is defined in terms of the differentials dx, dy, and dz of the independ-
ent variables by

dw −
−w

−x
 dx 1

−w

−y
 dy 1

−w

−z
 dz

EXAMPLE 6 The dimensions of a rectangular box are measured to be 75 cm, 60 cm, 
and 40 cm, and each measurement is correct to within « cm.
(a) Use differentials to estimate the largest possible error when the volume of the box 
is calculated from these measurements.
(b) What is the estimated maximum error in the calculated volume if the measured 
dimensions are correct to within 0.2 cm?

SOLUTION 
(a) If the dimensions of the box are x, y, and z, then its volume is V − xyz and so

dV −
−V

−x
 dx 1

−V

−y
 dy 1

−V

−z
 dz − yz dx 1 xz dy 1 xy dz

We are given that | Dx | < «, | Dy | < «, and | Dz | < «. To estimate the largest error  
in the volume, we therefore use dx − «, dy − «, and dz − « together with x − 75, 
y − 60, and z − 40:

 DV < dV − s60ds40d« 1 s75ds40d« 1 s75ds60d« − 9900«

Thus the maximum error in the calculated volume is about 9900 times larger than the 
error in each measurement taken.

(b) If the largest error in each measurement is « − 0.2 cm, then 
dV − 9900s0.2d − 1980, so an error of only 0.2 cm in measuring each dimension 
could lead to an error of approximately 1980 cm3 in the calculated volume. (This may 
seem like a large error, but you can verify that it’s only about 1% of the volume of the 
box.)� ■

14.4 Exercises
1–2 The graph of a function f  is shown. Find an equation of the 
tangent plane to the surface z − f sx, yd at the specified point.

 1. f sx, yd − 16 2 x 2 2 y 2 2. f sx, yd − y 2 sin x

z=16-≈-¥

(2, 2, 8)

y

x

z

z=¥ x

(π/2, _2, 4)

x

z

y

3–10 Find an equation of the tangent plane to the given surface at 
the specified point.

 3. z − 2x 2 1 y 2 2 5y,  s1, 2, 24d

 4. z − sx 1 2d2 2 2sy 2 1d2 2 5,  s2, 3, 3d

 5. z − e x2y,  s2, 2, 1d

 6. z − y 2e x, s0, 3, 9d

 7. z − 2sy yx, s21, 1, 22d

 8. z − xyy 2,  s24, 2, 21d

 9. z − x sinsx 1 yd,  s21, 1, 0d

 10. z − lnsx 2 2yd,  s3, 1, 0d
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11–12 Graph the surface and the tangent plane at the given 
point. (Choose the domain and viewpoint so that you get a good 
view of both the surface and the tangent plane.) Then zoom in 
until the surface and the tangent plane become indistinguishable.

 11. z − x 2 1 xy 1 3y 2,  s1, 1, 5d

 12. z − s9 1 x 2 y 2 ,  s2, 2, 5d

13–14 Draw the graph of f  and its tangent plane at the given 
point. (Use a computer to compute the partial derivatives.)  
Then zoom in until the surface and the tangent plane become 
indistinguishable.

 13. f sx, yd −
1 1 cos2sx 2 yd
1 1 cos2 sx 1 yd

,  S�

3
, 

�

6
, 

7

4D
 14. f sx, yd − e2xyy10 (sx 1 sy 1 sxy ),  s1, 1, 3e20.1d

 15–22 Explain why the function is differentiable at the given 
point. Then find the linearization Lsx, yd of the function at  
that point.

 15. f sx, yd − x 3y 2, s22, 1d

 16. f sx, yd − y tan x, s�y4, 2d

 17. f sx, yd − 1 1 x lnsxy 2 5d,  s2, 3d

 18. f sx, yd − sxy ,  s1, 4d

 19. f sx, yd − x 2e y,  s1, 0d

 20. f sx, yd −
1 1 y

1 1 x
,  s1, 3d

 21. f sx, yd − 4 arctansxyd,  s1, 1d

 22. f sx, yd − y 1 sinsxyyd,  s0, 3d

23–24 Verify the linear approximation at s0, 0d.

 23. e x cossxyd < x 1 1 24. 
y 2 1

x 1 1
< x 1 y 2 1

 25.  Given that f  is a differentiable function with f s2, 5d − 6, 
fx s2, 5d − 1, and fy s2, 5d − 21, use a linear approximation  
to estimate f s2.2, 4.9d.

 26.  Find the linear approximation of the function 
f sx, yd − 1 2 xy cos �y at s1, 1d and use it to approximate 
f s1.02, 0.97d. Illustrate by graphing f  and the tangent plane.

 27.  Find the linear approximation of the function  

f sx, y, zd − sx 2 1 y 2 1 z 2  at s3, 2, 6d and use it to  

approximate the number ss3.02d 2 1 s1.97d 2 1 s5.99d 2 .

 28.  The wave heights h in the open sea depend on the speed v  
of the wind and the length of time t that the wind has been 
blowing at that speed. Values of the function h − f sv, td are 

;

;

recorded in meters in the following table. Use the table to 
find a linear approximation to the wave height function 
when v is near 40 km/h and t is near 20 hours. Then esti-
mate the wave heights when the wind has been blowing for 
24 hours at 43 km/h.

1.5

2.8

4.3

5.8

7.4

2.2

4.0

6.4

8.9

11.3

2.4

4.9

7.7

11.0

14.4

2.5

5.2

8.6

12.2

16.6

2.7

5.5

9.5

13.8

19.0

2.8

5.8

10.1

14.7

20.5

2.8

5.9

10.2

15.3

21.1

v
t 5 10 15 20 30 40 50

40

60

80

100

120

Duration (hours)

W
in

d 
sp

ee
d 

(k
m

/h
)

 29.  Use the table in Example 3 to find a linear approximation to 
the heat index function when the actual temperature is near 
32°C and the relative humidity is near 65%. Then estimate 
the heat index when the actual temperature is 33°C and the 
relative humidity is 63%.

 30.  The wind-chill index W is the perceived temperature when 
the actual temperature is T and the wind speed is v, so we 
can write W − f sT, vd. The following table of values is an 
excerpt from Table 1 in Section 14.1. Use the table to find a 
linear approximation to the wind-chill index function when 
T is near 215°C and v is near 50 kmyh. Then estimate the 
wind-chill index when the temperature is 217°C and the 
wind speed is 55 kmyh.

�18

�24

�30

�37

�20

�26

�33

�39

�21

�27

�34

�41

�22

�29

�35

�42

�23

�30

�36

�43

T
v 20 30 40 50 60

�10

�15

�20

�25A
ct

ua
l t

em
pe

ra
tu

re
 (

°C
) 70

�23

�30

�37

�44

Wind speed (km/h)

31–38 Find the differential of the function.

 31. m − p5q3 32. z − x lnsy 2 1 1d

 33. z − e22x cos 2�t 34. u − sx 2 1 3y 2 

 35. H − x 2y 4 1 y 3z 5 36. w − xze2y22z2

 37. R − �� 2 cos � 38. T −
v

1 1 uvw

 39.  If z − 5x 2 1 y 2 and sx, yd changes from s1, 2d to s1.05, 2.1d, 
compare the values of Dz and dz.

 40.  If z − x 2 2 xy 1 3y 2 and sx, yd changes from s3, 21d to 
s2.96, 20.95d, compare the values of Dz and dz.
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 48.  The pressure, volume, and temperature of a mole of an ideal 
gas are related by the equation PV − 8.31T, where P is mea-
sured in kilopascals, V in liters, and T in kelvins. Use differ- 
entials to find the approximate change in the pressure if the 
volume increases from 12 L to 12.3 L and the temperature 
decreases from 310 K to 305 K.

 49.  If R is the total resistance of three resistors, connected in  
paral lel, with resistances R1, R2, R3, then

1

R
−

1

R1
1

1

R2
1

1

R3

If the resistances are measured in ohms as R1 − 25 V, 
R2 − 40 V, and R3 − 50 V, with a possible error of 0.5% in 
each case, estimate the maximum error in the calculated value 
of R.

 50.  A model for the surface area of a human body is given by 
S − 0.0072w 0.425h 0.725, where w is the weight (in kilograms), 
h is the height (in centimeters), and S is measured in square 
meters. If the errors in measurement of w and h are at most 
2%, use differentials to estimate the maximum percentage 
error in the calculated surface area.

 51.  In Exercise 14.1.39 and Example 14.3.4, the body mass index 
of a person was defined as Bsm, hd − myh2, where m is the 
mass in kilograms and h is the height in meters.

 (a)  What is the linear approximation of Bsm, hd for a child 
with mass 23 kg and height 1.10 m?

 (b)  If the child’s mass increases by 1 kg and height by 3 cm, 
use the linear approximation to estimate the new BMI. 
Compare with the actual new BMI.

 52.  Suppose you need to know an equation of the tangent plane to 
a surface S at the point Ps2, 1, 3d. You don’t have an equation 
for S but you know that the curves

 r1std − k2 1 3t, 1 2 t 2, 3 2 4t 1 t 2 l

 r2sud − k1 1 u2, 2u3 2 1, 2u 1 1 l

both lie on S. Find an equation of the tangent plane at P.

 53.  Prove that if f  is a function of two variables that is differen-
tiable at sa, bd, then f  is continuous at sa, bd.  

Hint: Show that

lim
sDx, Dyd l s0, 0d

 
 f sa 1 Dx, b 1 Dyd − f sa, bd

 54. (a) The function

f sx, yd − H
0

xy

x 2 1 y 2 if

if

sx, yd ± s0, 0d

sx, yd − s0, 0d

  was graphed in Figure 4. Show that fxs0, 0d and fys0, 0d 
both exist but f  is not differentiable at s0, 0d. [Hint: Use 
the result of Exercise 53.]

 (b)  Explain why fx and fy are not continuous at s0, 0d.

 41.  The length and width of a rectangle are measured as 30 cm 
and 24 cm, respectively, with an error in measurement of at 
most 0.1 cm in each. Use differentials to estimate the maxi-
mum error in the calculated area of the rectangle.

 42.  Use differentials to estimate the amount of metal in a closed 
cylindrical can that is 10 cm high and 4 cm in diameter if the 
metal in the top and bottom is 0.1 cm thick and the metal in 
the sides is 0.05 cm thick.

 43.  Use differentials to estimate the amount of tin in a closed tin 
can with diameter 8 cm and height 12 cm if the tin is 0.04 cm 
thick.

 44. The base and height of a triangle are measured as 70 cm and 
40 cm, respectively. Suppose that each measurement has a 
possible error of at most « inches.

 (a)  Use differentials to estimate the maximum error in the 
calculated area of the triangle.

 (b)  What is the estimated maximum error in the area of the 
triangle if the base and height are measured with errors at 
most 0.64 cm?

 45. The radius of a right circular cylinder is measured as 1 m, and 
the height is measured as 4 m. Suppose that each measure-
ment has a possible error of at most « feet.

 (a)  Use differentials to estimate the maximum error in the 
calculated volume of the cylinder.

 (b)  If the computed volume must be accurate to within one 
cubic foot, determine the largest allowable value of «. 

 46.  The wind-chill index is modeled by the function

W − 13.12 1 0.6215T 2 11.37v 0.16 1 0.3965Tv 0.16

where T is the actual temperature sin °Cd and v is the wind 
speed sin kmyhd. The wind speed is measured as 26 kmyh, 
with a possible error of 62 kmyh, and the actual temperature 
is measured as 211°C, with a possible error of 61°C. Use 
differentials to estimate the maximum error in the calculated 
value of W due to the measurement errors in T and v.

 47.  The tension T in the string of the yo-yo in the figure is

T −
mtR

2r 2 1 R 2

where m is the mass of the yo-yo and t is acceleration due to 
gravity. Use differentials to estimate the change in the tension  
if R is increased from 3 cm to 3.1 cm and r is increased from 
0.7 cm to 0.8 cm. Does the tension increase or decrease?

R

T

r
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984 CHAPTER 14  Partial Derivatives

Many technological advances have occurred in sports that have contributed to increased  
athletic performance. One of the best known is the introduction, in 2008, of the Speedo  
LZR racer. It was claimed that this full-body swimsuit reduced a swimmer’s drag in the  
water. Figure 1 shows the number of world records broken in men’s and women’s long-course 
freestyle swimming events from 1990 to 2011.1 The dramatic increase in 2008 when the suit 
was introduced led people to claim that such suits were a form of technological doping. As a 
result, all full-body suits were banned from competition starting in 2010.

y

1990 1992 1994 1996 1998 2000 2002 2004 2006 2008 2010

2
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10

14
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T
ot

al
 n

um
be

r 
of

re
co

rd
s 

br
ok

en

Women
Men

FIGURE 1 Number of world records set in long-course men’s and women’s freestyle swimming event 1990 – 2011

It might be surprising that a simple reduction in drag could have such a big effect on per-
formance. We can gain some insight into this using a simple mathematical model.2

The speed v of an object being propelled through water is given by

vsP, Cd − S 2P

kCD
1y3

where P is the power being used to propel the object, C is the drag coefficient, and k is a posi-
tive constant. Athletes can therefore increase their swimming speeds by increasing their power 
or reducing their drag coefficients. But how effective is each of these?

To compare the effect of increasing power versus reducing drag, we need to somehow com- 
pare the two in common units. A frequently used approach is to determine the percentage 
change in speed that results from a given percentage change in power and in drag.

If we work with percentages as fractions, then when power is changed by a fraction x swith 
x corresponding to 100x percent), P changes from P to P 1 xP. Likewise, if the drag coeffi-
cient is changed by a fraction y, this means that it has changed from C to C 1 yC. Finally, the 
fractional change in speed resulting from both effects is

1  
vsP 1 xP, C 1 yC d 2 vsP, C d

vsP, C d

 1.  Expression 1 gives the fractional change in speed that results from a change x in power and 
a change y in drag. Show that this reduces to the function

f sx, yd − S 1 1 x

1 1 yD
1y3

2 1

   Given the context, what is the domain of f ?

APPLIED PROJECT THE SPEEDO LZR RACER

1. L. Foster et al., “Influence of Full Body Swimsuits on Competitive Performance,” Procedia 
Engineering 34 (2012): 712–17. 
2. Adapted from http://plus.maths.org/content/swimming.
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The Chain Rule

Recall that the Chain Rule for functions of a single variable gives the rule for differenti-
ating a composite function: if y − f sxd and x − tstd, where f  and t are differentiable 
functions, then y is indirectly a differentiable function of t and 

dy

dt
−

dy

dx
 
dx

dt

In this section we extend the Chain Rule to functions of more than one variable.

■	 The Chain Rule: Case 1
For functions of more than one variable, the Chain Rule has several versions, each of 
them giving a rule for differentiating a composite function. The first version (Theorem 1) 
deals with the case where z − f sx, yd and each of the variables x and y is, in turn, a func-
tion of a variable t. This means that z is indirectly a function of t, z − f ststd, hstdd, and 
the Chain Rule gives a formula for differentiating z as a function of t. We assume that f
is differentiable (Definition 14.4.7). Recall that this is the case when fx and fy are con-
tinuous (Theorem 14.4.8).

1  The Chain Rule (Case 1) Suppose that z − f sx, yd is a differentiable function 
of x and y, where x − tstd and y − hstd are both differentiable functions of t. Then 
z is a differentiable function of t and

dz

dt
−

−f

−x
 
dx

dt
1

−f

−y
 
dy

dt

PROOF A change of Dt in t produces changes of Dx in x and Dy in y. These, in turn, 
produce a change of Dz in z, and from Definition 14.4.7 we have

Dz −
−f

−x
Dx 1

−f

−y
Dy 1 «1 Dx 1 «2 Dy

where «1 l 0 and «2 l 0 as sDx, Dyd l s0, 0d. [If the functions «1 and «2 are not 
defined at s0, 0d, we can define them to be 0 there.] Dividing both sides of this equation 
by Dt, we have

Dz

Dt
−

−f

−x
 
Dx

Dt
1

−f

−y
 
Dy

Dt
1 «1 

Dx

Dt
1 «2 

Dy

Dt

14.5

 2.  Suppose that the possible changes in power x and drag y are small. Find the linear approxi-
mation to the function f sx, yd. What does this approximation tell you about the effect of a 
small increase in power versus a small decrease in drag?

 3.  Calculate fxxsx, yd and fyysx, yd. Based on the signs of these derivatives, does the linear 
approximation in Problem 2 result in an overestimate or an underestimate for an increase 
in power? What about for a decrease in drag? Use your answer to explain why, for changes 
in power or drag that are not very small, a decrease in drag is more effective.

 4.  Graph the level curves of f sx, yd. Explain how the shapes of these curves relate to your 
answers to Problems 2 and 3.
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986 CHAPTER 14  Partial Derivatives

If we now let Dt l 0, then Dx − tst 1 Dtd 2 tstd l 0 because t is differentiable and 
therefore continuous. Similarly, Dy l 0. This, in turn, means that «1 l 0 and «2 l 0, so

 
dz

dt
− lim

Dt l 0

Dz

Dt

 −
−f

−x
 lim
Dt l 0

 
Dx

Dt
1

−f

−y
 lim
Dt l 0

 
Dy

Dt
1 a lim

Dt l 0
«1b  lim

Dt l 0
 
Dx

Dt
1 a lim

Dt l 0
 «2b  lim

Dt l 0
 
Dy

Dt

 −
−f

−x
 
dx

dt
1

−f

−y
 
dy

dt
1 0 �

dx

dt
1 0 �

dy

dt

  −
−f

−x
 
dx

dt
1

−f

−y
 
dy

dt
 ■

Since we often write −zy−x in place of −fy−x, we can rewrite the Chain Rule in the 
form

 
dz

dt
−

−z

−x
 
dx

dt
1

−z

−y
 
dy

dt

EXAMPLE 1 If z − x 2 y 1 3xy4, where x − sin 2t and y − cos t, find dzydt when 
t − 0.

SOLUTION The Chain Rule gives

 
dz

dt
−

−z

−x
 
dx

dt
1

−z

−y
 
dy

dt

 − s2xy 1 3y 4 ds2 cos 2td 1 sx 2 1 12xy 3 ds2sin td

It’s not necessary to substitute the expressions for x and y in terms of t. We simply 
observe that when t − 0, we have x − sin 0 − 0 and y − cos 0 − 1. Therefore

 
dz

dt Z
t−0

− s0 1 3ds2 cos 0d 1 s0 1 0ds2sin 0d − 6 ■

The derivative in Example 1 can be interpreted as the rate of change of z with respect  
to t as the point sx, yd moves along the curve C with parametric equations x − sin 2t, 
y − cos t. (See Figure 1.) In particular, when t − 0, the point sx, yd is s0, 1d and dzydt − 6 
is the rate of increase as we move along the curve C through s0, 1d. If, for instance, 
z − Tsx, yd − x 2 y 1 3xy 4 represents the temperature at the point sx, yd, then the com-
posite function z − T ssin 2t, cos td represents the temperature at points on C and the 
derivative dzydt represents the rate at which the temper ature changes along C.

EXAMPLE 2 The pressure P (in kilopascals), volume V  (in liters), and temperature T  
(in kelvins) of a mole of an ideal gas are related by the equation PV − 8.31T . Find the 
rate at which the pressure is changing when the temperature is 300 K and increas ing at 
a rate of 0.1 Kys and the volume is 100 L and increasing at a rate of 0.2 Lys.

SOLUTION If t represents the time elapsed in seconds, then at the given instant we have 
T − 300, dTydt − 0.1, V − 100, dVydt − 0.2. Since

P − 8.31 
T

V

Notice the similarity to the definition 
of the differential:

dz −
−z

−x
 dx 1

−z

−y
 dy

x

(0, 1)
y

C

FIGURE 1  
The curve x − sin 2t, y − cos t
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the Chain Rule gives

 
dP

dt
−

−P

−T
 
dT

dt
1

−P

−V
 
dV

dt
−

8.31

V
 
dT

dt
2

8.31T

V 2  
dV

dt

 −
8.31

100
 s0.1d 2

8.31s300d
1002  s0.2d − 20.04155

The pressure is decreasing at a rate of about 0.042 kPays. ■

■	 The Chain Rule: Case 2
We now consider the situation where z − f sx, yd but each of x and y is a function of two 
variables s and t: x − tss, td, y − hss, td. Then z is indirectly a function of s and t and we 
wish to find −zy−s and −zy−t. Recall that in computing −zy−t we hold s fixed and compute 
the ordinary derivative of z with respect to t. Therefore we can apply Theorem 1 to obtain

−z

−t
−

−z

−x
 
−x

−t
1

−z

−y
 
−y

−t

A similar argument holds for −zy−s and so we have proved the following version of the 
Chain Rule.

2  The Chain Rule (Case 2) Suppose that z − f sx, yd is a differentiable function 
of x and y, where x − tss, td and y − hss, td are differentiable functions of s and t. 
Then

 
−z

−s
−

−z

−x
 
−x

−s
1

−z

−y
 
−y

−s
       

−z

−t
−

−z

−x
 
−x

−t
1

−z

−y
 
−y

−t

EXAMPLE 3 If z − ex sin y, where x − st 2 and y − s 2t, find −zy−s and −zy−t.

SOLUTION Applying Case 2 of the Chain Rule, we get

 
−z

−s
−

−z

−x
 
−x

−s
1

−z

−y
 
−y

−s
− sex sin ydst 2 d 1 sex cos yds2std

 
−z

−t
−

−z

−x
 
−x

−t
1

−z

−y
 
−y

−t
− sex sin yds2std 1 sex cos ydss 2 d

If we wish, we can now express −zy−s and −zy−t solely in terms of s and t by substitut-
ing x − st 2, y − s 2t, to get

 
−z

−s
− t 2est 2

sin ss 2td 1 2ste st 2

cosss 2td

  
−z

−t
− 2ste st 2

sin ss 2td 1 s 2est 2

cosss 2td ■

Case 2 of the Chain Rule contains three types of variables: s and t are independent 
variables, x and y are called intermediate variables, and z is the dependent variable. 
Notice that Theorem 2 has one term for each intermediate variable and each of these 
terms resembles the one-dimensional Chain Rule (see Equation 3.4.2).

To remember the Chain Rule, it’s helpful to draw the tree diagram in Figure 2. We 
draw branches from the dependent variable z to the intermediate variables x and y to 

z

yx

s t s t

�x
�s

�x
�t

�y
�t

�y
�s

�z
�x

�z
�y

FIGURE 2
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988 CHAPTER 14  Partial Derivatives

indicate that z is a function of x and y. Then we draw branches from x and y to the inde-
pendent variables s and t. On each branch we write the corresponding partial derivative. 
To find −zy−s, we find the product of the partial derivatives along each path from z to s 
and then add these products:

−z

−s
−

−z

−x
 
−x

−s
1

−z

−y
 
−y

−s

Similarly, we find −zy−t by using the paths from z to t.

■	 The Chain Rule: General Version
Now we consider the general situation in which a dependent variable u is a function of 
n intermediate variables x1, . . . , xn, each of which is, in turn, a function of m indepen-
dent variables t1, . . . , tm. Notice that there are n terms, one for each intermediate variable. 
The proof is similar to that of Case 1.

3  The Chain Rule (General Version) Suppose that u is a differentiable func-
tion of the n variables x1, x2, . . . , xn and each xj is a differentiable function of the 
m variables t1, t2, . . . , tm. Then u is a function of t1, t2, . . . , tm and

−u

−ti
−

−u

−x1
 
−x1

−ti
1

−u

−x2
 
−x2

−ti
1 ∙ ∙ ∙ 1

−u

−xn
 
−xn

−ti

for each i − 1, 2, . . . , m.

EXAMPLE 4 Write out the Chain Rule for the case where w − f sx, y, z, td and 
x − xsu, vd, y − ysu, vd, z − zsu, vd, and t − tsu, vd.

SOLUTION We apply Theorem 3 with n − 4 and m − 2. Figure 3 shows the tree 
diagram. Although we haven’t written the derivatives on the branches, it’s understood 
that if a branch leads from y to u, then the partial derivative for that branch is −yy−u. 
With the aid of the tree diagram, we can now write the required expressions:

 
−w

−u
−

−w

−x
 
−x

−u
1

−w

−y
 
−y

−u
1

−w

−z
 
−z

−u
1

−w

−t
 

−t

−u

  
−w

−v
−

−w

−x
 
−x

−v
1

−w

−y
 
−y

−v
1

−w

−z
 
−z

−v
1

−w

−t
 
−t

−v
 ■

EXAMPLE 5 If u − x 4y 1 y 2z3, where x − rse t, y − rs 2e2t, and z − r 2s sin t, find the 
value of −uy−s when r − 2, s − 1, t − 0.

SOLUTION With the help of the tree diagram in Figure 4, we have

 
−u

−s
−

−u

−x
 
−x

−s
1

−u

−y
 
−y

−s
1

−u

−z
 
−z

−s

 − s4x 3ydsre td 1 sx 4 1 2yz3 ds2rse2td 1 s3y 2z2 dsr 2 sin td

When r − 2, s − 1, and t − 0, we have x − 2, y − 2, and z − 0, so

 
−u

−s
− s64ds2d 1 s16ds4d 1 s0ds0d − 192 ■

w

y tx

u v u v u v

z

u v

FIGURE 3

u

y zx

sr t sr t sr t

FIGURE 4
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EXAMPLE 6 If tss, td − f ss 2 2 t 2, t 2 2 s 2 d and f  is differentiable, show that t 
satisfies the equation

t 
−t
−s

1 s 
−t
−t

− 0

SOLUTION Let x − s 2 2 t 2 and y − t 2 2 s 2. Then tss, td − f sx, yd and the Chain Rule 
gives

 
−t
−s

−
−f

−x
 
−x

−s
1

−f

−y
 
−y

−s
−

−f

−x
 s2sd 1

−f

−y
 s22sd

 
−t
−t

−
−f

−x
 
−x

−t
1

−f

−y
 
−y

−t
−

−f

−x
 s22td 1

−f

−y
 s2td

Therefore

 t 
−t
−s

1 s 
−t
−t

− S2st 
−f

−x
2 2st 

−f

−yD 1 S22st 
−f

−x
1 2st 

−f

−yD − 0 ■

EXAMPLE 7 If z − f sx, yd has continuous second-order partial derivatives and 
x − r 2 1 s 2 and y − 2rs, find expressions for (a) −zy−r and (b) −2zy−r 2.

SOLUTION
(a) The Chain Rule gives

−z

−r
−

−z

−x
 
−x

−r
1

−z

−y
 
−y

−r
−

−z

−x
 s2rd 1

−z

−y
 s2sd

(b) Applying the Product Rule to the expression in part (a), we get

4

  
−2z

−r 2 −
−

−r
 S2r 

−z

−x
1 2s 

−z

−yD  

 − 2 
−z

−x
1 2r 

−

−r
 S −z

−xD 1 2s 
−

−r
 S −z

−yD
But, using the Chain Rule again (see Figure 5), we have

 
−

−r
 S −z

−xD −
−

−x
 S −z

−xD 
−x

−r
1

−

−y
 S −z

−xD 
−y

−r
−

−2z

−x 2  s2rd 1
−2z

−y −x
 s2sd

 
−

−r
 S −z

−yD −
−

−x
 S −z

−yD 
−x

−r
1

−

−y
 S −z

−yD 
−y

−r
−

−2z

−x −y
 s2rd 1

−2z

−y 2  s2sd

Putting these expressions into Equation 4 and using the equality of the mixed second-
order derivatives, we obtain

 
−2z

−r 2 − 2 
−z

−x
1 2rS2r 

−2z

−x 2 1 2s 
−2z

−y −xD 1 2sS2r 
−2z

−x −y
1 2s 

−2z

−y 2D
  − 2 

−z

−x
1 4r 2 

−2z

−x 2 1 8rs 
−2z

−x −y
1 4s 2 

−2z

−y 2  ■

�z
�x

yx

r s r s

FIGURE 5
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990 CHAPTER 14  Partial Derivatives

■	 Implicit Differentiation
The Chain Rule can be used to give a more complete description of the process of implicit 
differentiation that was introduced in Sections 3.5 and 14.3. We suppose that an equa- 
tion of the form Fsx, yd − 0 defines y implicitly as a differentiable function of x, that is, 
y − f sxd, where Fsx, f sxdd − 0 for all x in the domain of f . If F is differentiable, we can 
apply Case 1 of the Chain Rule to differentiate both sides of the equation Fsx, yd − 0 
with respect to x. Since both x and y are functions of x, we obtain

−F

−x
 
dx

dx
1

−F

−y
 
dy

dx
− 0

But dxydx − 1, so if −Fy−y ± 0 we solve for dyydx and obtain

5

 

dy

dx
− 2 

−F

−x

−F

−y

− 2 
Fx

Fy

To derive this equation we assumed that Fsx, yd − 0 defines y implicitly as a function 
of x. The Implicit Function Theorem, proved in advanced calculus, gives conditions 
under which this assumption is valid: it states that if F is defined on a disk containing 
sa, bd, where Fsa, bd − 0, Fysa, bd ± 0, and Fx and Fy are continuous on the disk, then 
the equation Fsx, yd − 0 defines y as a function of x near the point sa, bd and the deriva-
tive of this function is given by Equation 5.

EXAMPLE 8 Find y9 if x 3 1 y 3 − 6xy.

SOLUTION The given equation can be written as

Fsx, yd − x 3 1 y 3 2 6xy − 0

so Equation 5 gives

 
dy

dx
− 2 

Fx

Fy
− 2 

3x 2 2 6y

3y 2 2 6x
− 2 

x 2 2 2y

y 2 2 2x
 ■

Now we suppose that z is given implicitly as a function z − f sx, yd by an equation of 
the form Fsx, y, zd − 0. This means that Fsx, y, f sx, ydd − 0 for all sx, yd in the domain  
of f . If F and f  are differentiable, then we can use the Chain Rule to differentiate the 
equation Fsx, y, zd − 0 as follows:

−F

−x
 
−x

−x
1

−F

−y
 
−y

−x
1

−F

−z
 
−z

−x
− 0

But 
−

−x
 sxd − 1    and    

−

−x
 syd − 0 

so this equation becomes

−F

−x
1

−F

−z
 
−z

−x
− 0

The solution to Example 8 should be  
compared to the one in Example 3.5.2.
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14.5 Exercises

1–2 Find dzydt in two ways: by using the Chain Rule, and by first 
substituting the expressions for x and y to write z as a function  
of t. Do your answers agree?

 1. z − x 2 y 1 xy 2, x − 3t, y − t 2

 2. z − xye y, x − t 2, y − 5t

3–8 Use the Chain Rule to find dzydt or dwydt.

 3. z − xy 3 2 x 2y,  x − t 2 1 1,  y − t 2 2 1

 4. z −
x 2 y

x 1 2y
,  x − e� t,  y − e2� t

 5. z − sin x cos y,  x − st  ,  y − 1yt

 6. z − s1 1 xy ,  x − tan t,  y − arctan t

 7. w − xe yyz,  x − t 2,  y − 1 2 t,  z − 1 1 2t

 8. w − lnsx 2 1 y 2 1 z2 ,  x − sin t,  y − cos t,  z − tan t

9–10 Find −zy−s and −zy−t in two ways: by using the Chain Rule, 
and by first substituting the expressions for x and y to write z as a 
function of s and t. Do your answers agree?

 9. z − x 2 1 y 2, x − 2s 1 3t, y − s 1 t

 10. z − x 2 sin y, x − s2t, y − st

11–16 Use the Chain Rule to find −zy−s and −zy−t.

 11. z − sx 2 yd5,  x − s 2t,  y − s t 2

 12. z − tan21sx 2 1 y 2d,  x − s ln t,  y − tes

 13. z − lns3x 1 2yd,  x − s sin t,  y − t cos s

 14. z − sx e xy,  x − 1 1 st,  y − s 2 2 t 2

 15. z − ssin �dyr,  r − st,  � − s 2 1 t 2

 16. z − tansuyvd,  u − 2s 1 3t,  v − 3s 2 2t

 17.  Suppose f  is a differentiable function of x and y, and 
pstd − ststd, h stdd, ts2d − 4, t9s2d − 23, hs2d − 5, 
h9s2d − 6, fx s4, 5d − 2, fy s4, 5d − 8. Find p9s2d.

If −Fy−z ± 0, we solve for −zy−x and obtain the first formula in Equations 6. The for-
mula for −zy−y is obtained in a similar manner.

6

 

−z

−x
− 2 

−F

−x

−F

−z

− 2 

Fx

Fz
      

−z

−y
− 2 

−F

−y

−F

−z

− 2 

Fy

Fz

Again, a version of the Implicit Function Theorem stipulates conditions under which  
our assumption is valid: if F is defined within a sphere containing sa, b, cd, where 
Fsa, b, cd − 0, Fzsa, b, cd ± 0, and Fx, Fy, and Fz are continuous inside the sphere, then 
the equation Fsx, y, zd − 0 defines z as a function of x and y near the point sa, b, cd and 
this function is differentiable, with partial derivatives given by (6).

EXAMPLE 9 Find 
−z

−x
 and 

−z

−y
 if x 3 1 y 3 1 z3 1 6xyz 1 4 − 0.

SOLUTION Let Fsx, y, zd − x 3 1 y 3 1 z3 1 6xyz 1 4. Then, from Equations 6, we 
have

 
−z

−x
− 2

Fx

Fz
− 2

3x 2 1 6yz

3z2 1 6xy
− 2

x 2 1 2yz

z2 1 2xy

  
−z

−y
− 2

Fy

Fz
− 2

3y 2 1 6xz

3z2 1 6xy
− 2

y 2 1 2xz

z2 1 2xy
 ■

The solution to Example 9 should  
be compared to the one in 
Example 14.3.5.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



992 CHAPTER 14  Partial Derivatives

 18.  Let Rss, td − Gsuss, td, vss, tdd, where G, u, and v are dif-
ferentiable, us1, 2d − 5, uss1, 2d − 4, uts1, 2d − 23, 
vs1, 2d − 7, vss1, 2d − 2, v ts1, 2d − 6, Gus5, 7d − 9, 
Gvs5, 7d − 22. Find Rss1, 2d and Rts1, 2d.

 19.  Suppose f  is a differentiable function of x and y, and 
tsu, vd − f se u 1 sin v, e u 1 cos vd. Use the table of values  
to calculate tus0, 0d and tvs0, 0d.

f t fx fy

s0, 0d 3 6 4 8

s1, 2d 6 3 2 5

 20.  Suppose f  is a differentiable function of x and y, and 
tsr, sd − f s2r 2 s, s 2 2 4rd. Use the table of values in  
Exercise 19 to calculate trs1, 2d and tss1, 2d.

21–24 Use a tree diagram to write out the Chain Rule for the 
given case. Assume all functions are differentiable.

 21. u − f sx, yd,  where x − xsr, s, td, y − ysr, s, td

 22.  w − f sx, y, zd,  where x − xsu, vd, y − ysu, vd, z − zsu, vd

 23.  T − Fs p, q, rd,  where p − psx, y, zd, q − qsx, y, zd, 
r − r sx, y, zd

 24.  R − Fst, ud  where t − t sw, x, y, zd, u − usw, x, y, zd

 25–30 Use the Chain Rule to find the indicated partial 
derivatives.

 25.  z − x 4 1 x 2y,  x − s 1 2t 2 u,  y − stu2;

  
−z

−s
, 

−z

−t
, 

−z

−u
  when s − 4, t − 2, u − 1

 26.  T −
v

2u 1 v
,  u − pqsr  ,  v − psq  r;

  
−T

−p
, 

−T

−q
, 

−T

−r
  when p − 2, q − 1, r − 4

 27.  w − xy 1 yz 1 zx,  x − r cos �,  y − r sin �,  z − r�;

  
−w

−r
, 

−w

−�
  when r − 2, � − �y2

 28.  P − su 2 1 v2 1 w 2 ,  u − xe y,  v − ye x,  w − e xy;

  
−P

−x
, 

−P

−y
  when x − 0, y − 2

 29.  N −
p 1 q

p 1 r
,  p − u 1 vw,  q − v 1 uw,  r − w 1 uv;

  
−N

−u
, 

−N

−v
, 

−N

−w
  when u − 2, v − 3, w − 4

 30.  u − xe t y,  x − � 2�,  y − � 2�,  t − � 2�;

  
−u

−�
, 

−u

−�
, 

−u

−�
  when � − 21, � − 2, � − 1

31–34 Use Equation 5 to find dyydx.

 31. y cos x − x 2 1 y 2 32. cossxyd − 1 1 sin y

 33. tan21sx 2yd − x 1 xy 2 34. e y sin x − x 1 xy

35–38 Use Equations 6 to find −zy−x and −zy−y.

 35. x 2 1 2y 2 1 3z2 − 1 36. x 2 2 y 2 1 z2 2 2z − 4

 37. e z − xyz 38. yz 1 x ln y − z2

 39.  The temperature at a point sx, yd is Tsx, yd, measured in 
degrees Celsius. A bug crawls so that its position after t sec-
onds is given by x − s1 1 t  , y − 2 1 1

3 t, where x and y are 
measured in centimeters. The temperature func tion satisfies 
Txs2, 3d − 4 and Tys2, 3d − 3. How fast is the temperature 
rising on the bug’s path after 3 seconds?

 40.  Wheat production W in a given year depends on the average 
temperature T and the annual rainfall R. Scientists estimate 
that the average temperature is rising at a rate of 0.15°Cyyear 
and rainfall is decreasing at a rate of 0.1 cmyyear. They also 
estimate that at current production levels, −Wy−T − 22  
and −Wy−R − 8.

 (a)  What is the significance of the signs of these partial  
derivatives?

 (b)  Estimate the current rate of change of wheat production, 
dWydt.

 41.  The speed of sound traveling through ocean water with salin-
ity 35 parts per thousand has been modeled by the equation

C − 1449.2 1 4.6T 2 0.055T 2 1 0.00029T 3 1 0.016D

where C is the speed of sound (in meters per second), T 
is the temperature (in degrees Celsius), and D is the depth 
below the ocean surface (in meters). A scuba diver began a 
leisurely dive into the ocean water; the diver’s depth and the 
surrounding water temperature over time are recorded in the 
following graphs. Estimate the rate of change (with respect 
to time) of the speed of sound through the ocean water expe-
rienced by the diver 20 minutes into the dive. What are the 
units?

t
(min)

D

5
10

10 20 30 40

15
20

t
(min)

T

10
12

10 20 30 40

14
16

8

Depth Water temperature
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 SECTION 14.5  The Chain Rule 993

A train is approaching you from the opposite direction on the 
other track at 40 mys, accelerating at 1.4 mys2, and sounds its 
whistle, which has a frequency of 460 Hz. At that instant, 
what is the perceived frequency that you hear and how fast is 
it changing?

49–50 Assume that all the given functions are differentiable.

 49.  If z − f sx, yd, where x − r cos � and y − r sin �, (a) find 
−zy−r and −zy−� and (b) show that

S −z

−xD2

1 S −z

−yD2

− S −z

−rD2

1
1

r 2  S −z

−�
D2

 50.  If u − f sx, yd, where x − e s cos t and y − e s sin t, show that

S −u

−xD2

1 S −u

−yD2

− e22sFS −u

−sD2

1 S −u

−t D2G
51–55 Assume that all the given functions have continuous  
second-order partial derivatives.

 51.  Show that any function of the form

z − f sx 1 atd 1 tsx 2 atd

is a solution of the wave equation

−2z

−t 2 − a 2 
−2z

−x 2

[Hint: Let u − x 1 at, v − x 2 at.]

 52.  If u − f sx, yd, where x − e s cos t and y − e s sin t, show that

−2u

−x 2 1
−2u

−y 2 − e22sF −2u

−s 2 1
−2u

−t 2G
 53.  If z − f sx, yd, where x − r 2 1 s 2 and y − 2rs, find −2zy−r −s. 

(Compare with Example 7.)

 54.  If z − f sx, yd, where x − r cos � and y − r sin �, find  
(a) −zy−r, (b) −zy−�, and (c) −2zy−r −�.

 55. If z − f sx, yd, where x − r cos � and y − r sin �, show that 

−2z

−x 2 1
−2z

−y 2 −
−2z

−r 2 1
1

r 2  
−2z

−� 2 1
1

r
 
−z

−r

56–58 Homogeneous Functions A function f  is called homoge-
neous of degree n if it satisfies the equation 

f st x, t yd − t nf sx, yd 

for all t, where n is a positive integer and f  has continuous 
second-order partial derivatives.

 56. Verify that f sx, yd − x 2y 1 2xy 2 1 5y 3 is homogeneous  
of degree 3.

 42.  The radius of a right circular cone is increasing at a rate of  
4.6 cmys while its height is decreasing at a rate of 6.5 cmys. 
At what rate is the volume of the cone changing when the 
radius is 300 cm and the height is 350 cm?

 43.  The length ,, width w, and height h of a box change with  
time. At a certain instant the dimensions are , − 1 m and  
w − h − 2 m, and , and w are increasing at a rate of 2 mys 
while h is decreasing at a rate of 3 mys. At that instant find 
the rates at which the following quantities are changing.

  (a) The volume
  (b) The surface area
  (c) The length of a diagonal

 44.  The voltage V in a simple electrical circuit is slowly decreas-
ing as the battery wears out. The resistance R is slowly 
increasing as the resistor heats up. Use Ohm’s Law, V − IR, 
to find how the current I is changing at the moment when 
R − 400 V, I − 0.08 A, dVydt − 20.01 Vys, and 
dRydt − 0.03 Vys.

 45.  The pressure of 1 mole of an ideal gas is increasing at a rate  
of 0.05 kPays and the temperature is increasing at a rate of  
0.15 Kys. Use the equation PV − 8.31T in Example 2 to find 
the rate of change of the volume when the pressure is 20 kPa 
and the temperature is 320 K.

 46.   A manufacturer has modeled its yearly production function P 
(the value of its entire production, in millions of dollars) as a 
Cobb-Douglas function

PsL, Kd − 1.47L0.65K 0.35

where L is the number of labor hours (in thousands) and K is 
the invested capital (in millions of dollars). Suppose that when 
L − 30 and K − 8, the labor force is decreasing at a rate of 
2000 labor hours per year and capital is increasing at a rate of 
$500,000 per year. Find the rate of change of production.

 47.  One side of a triangle is increasing at a rate of 3 cmys and a 
second side is decreasing at a rate of 2 cmys. If the area of the 
triangle remains constant, at what rate does the angle between 
the sides change when the first side is 20 cm long, the second 
side is 30 cm, and the angle is �y6?

 48.  Doppler Effect A sound with frequency fs is produced by a 
source traveling along a line with speed vs. If an observer is 
traveling with speed vo along the same line from the opposite 
direction toward the source, then the frequency of the sound 
heard by the observer is

fo − S c 1 vo

c 2 vs
D fs

where c is the speed of sound, about 332 mys. (This is the  
Doppler effect.) Suppose that, at a particular moment, you  
are in a train traveling at 34 mys and accelerating at 1.2 mys2.  
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994 CHAPTER 14  Partial Derivatives

 57. Show that if f  is homogeneous of degree n, then

 (a) x 
−f

−x
1 y 

−f

−y
− n f sx, yd

  [Hint: Use the Chain Rule to differentiate f stx, t yd  
with respect to t.]

 (b) x2 
−2f

−x 2 1 2xy 
−2f

−x −y
1 y 2 

−2f

−y 2 − nsn 2 1d f sx, yd

 58.  If f  is homogeneous of degree n, show that 

fxst x, t yd − t n21fxsx, yd

 59.  Suppose that the equation Fsx, y, zd − 0 implicitly defines 
each of the three variables x, y, and z as functions of the other 

two: z − f sx, yd, y − tsx, zd, x − hsy, zd. If F is differentiable 
and Fx, Fy, and Fz are all nonzero, show that

−z

−x
 
−x

−y
 
−y

−z
− 21

 60.  Equation 5 is a formula for the derivative dyydx of a function 
defined implicitly by an equation F sx, yd − 0, provided that 
F is differentiable and Fy ± 0. Prove that if F has continuous 
second derivatives, then a formula for the second derivative  
of y is

d 2 y

dx 2 − 2
FxxFy

2 2 2FxyFxFy 1 FyyFx
2

Fy
3  

Directional Derivatives and the Gradient Vector

The weather map in Figure 1 shows a contour map of the temperature function Tsx, yd 
for the states of California and Nevada at 3:00 pm on a day in October. The level curves, 
or isothermals, join locations with the same temperature. The partial derivative Tx at a 
location such as Reno is the rate of change of temperature with respect to distance if we 
travel east from Reno; Ty is the rate of change of temperature if we travel north. But what 
if we want to know the rate of change of temperature when we travel southeast (toward 
Las Vegas), or in some other direction? In this section we introduce a type of derivative, 
called a directional derivative, that enables us to find the rate of change of a function of 
two or more variables in any direction.
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Los Angeles
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Vegas 

Reno

15

21

21

26

San 
Francisco

0
Distance in kilometers

80 160 240 320

■	 Directional Derivatives
Recall that if z − f sx, yd, then the partial derivatives fx and fy are defined as

1

  fxsx0, y0 d − lim
h l 0

 
 f sx0 1 h, y0 d 2 f sx0, y0 d

h
 

 fysx0, y0 d − lim
h l 0

 
 f sx0, y0 1 hd 2 f sx0, y0 d

h

and represent the rates of change of z in the x- and y-directions, that is, in the directions 
of the unit vectors i and j.

14.6

FIGURE 1
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 SECTION 14.6  Directional Derivatives and the Gradient Vector 995

Suppose that we now wish to find the rate of change of z at sx0, y0 d in the direction of 
an arbitrary unit vector u − ka, bl. (See Figure 2.) To do this we consider the surface S 
with the equation z − f sx, yd (the graph of f ) and we let z0 − f sx0, y0 d. Then the point 
Psx0, y0, z0 d lies on S. The vertical plane that passes through P in the direction of u inter-
sects S in a curve C. (See Figure 3.) The slope of the tangent line T  to C at the point P is 
the rate of change of z in the direction of u.

Q(x, y, z)

P(x¸, y¸, z¸)

Pª(x¸, y¸, 0)

Qª(x, y, 0)

hb

ha
h

u

C

T

S

y

x

z

If Qsx, y, zd is another point on C and P9, Q9 are the projections of P, Q onto the 

xy-plane, then the vector P9Q9B is parallel to u and so

P9Q9B − hu − kha, hb l

for some scalar h. Therefore x 2 x0 − ha, y 2 y0 − hb, so x − x0 1 ha, y − y0 1 hb, 
and

Dz

h
−

z 2 z0

h
−

 f sx0 1 ha, y0 1 hbd 2 f sx0, y0 d
h

If we take the limit as h l 0, we obtain the rate of change of z (with respect to distance) 
in the direction of u, which is called the directional derivative of f  in the direction of u.

2  Definitio  The directional derivative of f  at sx0, y0 d in the direction of a 
unit vector u − ka, bl is

Du f sx0, y0 d − lim
h l 0

 
 f sx0 1 ha, y0 1 hbd 2 f sx0, y0 d

h

if this limit exists.

By comparing Definition 2 with Equations 1, we see that if u − i − k1, 0 l, then 
Di f − fx and if u − j − k0, 1 l, then Dj f − fy. In other words, the partial derivatives of f  
with respect to x and y are just special cases of the directional derivative.

y

0 x

(x¸, y¸) a

1 bu

FIGURE 2
A unit vector u − ka, bl

FIGURE 3 
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EXAMPLE 1 Use the weather map in Figure 1 to estimate the value of the directional 
derivative of the temperature function at Reno in the southeasterly direction.

SOLUTION We start by drawing a line through Reno toward the southeast [in the 
direction of u − si 2 jdys2 ; see Figure 4g.

1015

Los Angeles

Las 
Vegas 

Reno

15

21

21

26

San 
Francisco

0 80 160 240 320
Distance in kilometers

We approximate the directional derivative Du T  by the average rate of change of the 
temperature between the points where this line intersects the isothermals T − 10 and 
T − 15. The temperature at the point southeast of Reno is T − 15°C and the tempera-
ture at the point northwest of Reno is T − 10°C. The distance between these points 
looks to be about 120 kilometers. So the rate of change of the temperature in the 
southeasterly direction is

 Du T <
15 2 10

120
−

1

24
< 0.04°Cykm ■

When we compute the directional derivative of a function defined by a formula, we 
generally use the following theorem.

3  Theorem If f  is a differentiable function of x and y, then f  has a directional 
derivative in the direction of any unit vector u − ka, bl and

Du f sx, yd − fxsx, yd a 1 fysx, yd b

PROOF If we define a function t of the single variable h by

tshd − f sx0 1 ha, y0 1 hbd

then, by the definition of a derivative, we have

4   t9s0d − lim
h l 0

 
tshd 2 ts0d

h
− lim

h l 0
 
 f sx0 1 ha, y0 1 hbd 2 f sx0, y0 d

h

  − Du f sx0, y0 d

FIGURE 4
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On the other hand, we can write tshd − f sx, yd, where x − x0 1 ha, y − y0 1 hb, so 
Case 1 of the Chain Rule (Theorem 14.5.1) gives

 t9shd −
−f

−x
 
dx

dh
1

−f

−y
 
dy

dh
− fxsx, yd a 1 fysx, yd b

If we now put h − 0, then x − x0, y − y0, and

5  t9s0d − fxsx0, y0 d a 1 fysx0, y0 d b

Comparing Equations 4 and 5, we see that

 Du f sx0, y0 d − fxsx0, y0 d a 1 fysx0, y0 d b ■

If the unit vector u makes an angle � with the positive x-axis (as in Figure 5), then we 
can write u − kcos �, sin � l  and the formula in Theorem 3 becomes

6  Du f sx, yd − fxsx, yd cos � 1 fysx, yd sin �

EXAMPLE 2 Find the directional derivative Du f sx, yd if

f sx, yd − x 3 2 3xy 1 4y 2

and u is the unit vector in the direction given by angle � − �y6, measured from the 
positive x-axis. What is Du f s1, 2d?

SOLUTION Formula 6 gives

 Du f sx, yd − fxsx, yd cos 
�

6
1 fysx, yd sin 

�

6

 − s3x 2 2 3yd 
s3

2
1 s23x 1 8yd

1

2

 − 1
2 f3 s3x 2 2 3x 1 (8 2 3s3)yg

Therefore

 Du f s1, 2d − 1
2 f3s3s1d2 2 3s1d 1 (8 2 3s3 )s2dg −

13 2 3s3

2
 ■

■	 The Gradient Vector
Notice from Theorem 3 that the directional derivative of a differentiable function can be 
written as the dot product of two vectors:

7   Du f sx, yd − fxsx, yd a 1 fysx, yd b

 − k fxsx, yd, fysx, yd l � ka, b l

 − k fxsx, yd, fysx, yd l � u

The first vector in this dot product occurs not only in computing directional deriv atives 
but in many other contexts as well. So we give it a special name (the gradient of f  ) and 
a special notation (grad f  or = f , which is read “del f  ”).

y

0 x

(x¸, y¸)
cos ¨

sin ¨

¨

u

FIGURE 5 A unit vector 
u − kcos �, sin �l

(1, 2, 0)
π
6

z

x

y0

u

FIGURE 6

The directional derivative Du f s1, 2d  
in Example 2 represents the rate of 
change of z in the direction of u. This 
is the slope of the tangent line to the 
curve of intersection of the surface 
z − x 3 2 3xy 1 4y2 and the vertical 
plane through s1, 2, 0d in the direction 
of u shown in Figure 6.
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998 CHAPTER 14  Partial Derivatives

8  Definitio  If f  is a function of two variables x and y, then the gradient of f   
is the vector function = f  defined by

= f sx, yd − k fxsx, yd, fysx, yd l −
−f

−x
 i 1

−f

−y
 j

EXAMPLE 3 If f sx, yd − sin x 1 ex y, then

 = f sx, yd − k fx , fy l − kcos x 1 yex y, xex y l

and  = f s0, 1d − k2, 0 l  ■

With this notation for the gradient vector, we can rewrite Equation 7 for the direc-
tional derivative of a differentiable function as

9  Du f sx, yd − = f sx, yd � u

This expresses the directional derivative in the direction of a unit vector u as the scalar  
projection of the gradient vector onto u.

EXAMPLE 4 Find the directional derivative of the function f sx, yd − x 2 y 3 2 4y at the 
point s2, 21d in the direction of the vector v − 2 i 1 5j.

SOLUTION We first compute the gradient vector at s2, 21d:

 = f sx, yd − 2xy 3 i 1 s3x 2y 2 2 4d j

 = f s2, 21d − 24 i 1 8 j

Note that v is not a unit vector, but since | v | − s29 , the unit vector in the direction  
of v is

u −
v

| v | −
2

s29 
 i 1

5

s29 
 j

Therefore, by Equation 9, we have

 Du f s2, 21d − = f s2, 21d � u − s24 i 1 8 jd � S 2

s29 
 i 1

5

s29 
 jD

  −
24 � 2 1 8 � 5

s29 
−

32

s29 
 ■

■	 Functions of Three Variables
For functions of three variables we can define directional derivatives in a similar manner. 
Again Du f sx, y, zd can be interpreted as the rate of change of the function in the direction 
of a unit vector u.

v

(2, _1)

±f(2, _1)

x

y

FIGURE 7

The gradient vector =f s2, 21d in 
Example 4 is shown in Figure 7 with 
initial point s2, 21d. Also shown is the 
vector v that gives the direction of 
the directional derivative. Both of 
these vectors are superimposed on a 
contour plot of the graph of f .
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10  Definitio  The directional derivative of f  at sx0, y0, z0 d in the direction of 
a unit vector u − ka, b, c l is

Du f sx0, y0, z0 d − lim
h l 0

 
 f sx0 1 ha, y0 1 hb, z0 1 hcd 2 f sx0, y0, z0 d

h

if this limit exists.

If we use vector notation, then we can write both definitions (2 and 10) of the direc-
tional derivative in the compact form

11  Du f sx0 d − lim
h l 0

 
 f sx0 1 hud 2 f sx0 d

h

where x0 − kx0, y0 l if n − 2 and x0 − kx0, y0, z0 l if n − 3. This is reasonable because  
the vector equation of the line through x0 in the direction of the vector u is given by 
x − x0 1 tu (Equation 12.5.1) and so f sx0 1 hud represents the value of f  at a point on 
this line.

If f sx, y, zd is differentiable and u − ka, b, c l, then the same method that was used to 
prove Theorem 3 can be used to show that

12  Du f sx, y, zd − fxsx, y, zd a 1 fysx, y, zd b 1 fzsx, y, zd c 

For a function f  of three variables, the gradient vector, denoted by = f  or grad f , is

= f sx, y, zd − k fxsx, y, zd, fysx, y, zd, fzsx, y, zd l

or, for short,

13  = f − k fx, fy, fz l −
−f

−x
 i 1

−f

−y
 j 1

−f

−z
 k

Then, just as with functions of two variables, Formula 12 for the directional derivative 
can be rewritten as

14  Du f sx, y, zd − = f sx, y, zd � u

EXAMPLE 5 If f sx, y, zd − x sin yz, (a) find the gradient of f  and (b) find the direc- 
tional derivative of f  at s1, 3, 0d in the direction of v − i 1 2 j 2 k.

SOLUTION
(a) The gradient of f  is 

 = f sx, y, zd − k fxsx, y, zd, fysx, y, zd, fzsx, y, zd l

 − ksin yz, xz cos yz, xy cos yz l
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1000 CHAPTER 14  Partial Derivatives

(b) At s1, 3, 0d we have = f s1, 3, 0d − k0, 0, 3 l . The unit vector in the direction of 
v − i 1 2 j 2 k is

u −
1

s6 
 i 1

2

s6 
 j 2

1

s6 
 k

Therefore Equation 14 gives

 Du f s1, 3, 0d − = f s1, 3, 0d � u

 − 3k � S 1

s6 
 i 1

2

s6 
 j 2

1

s6 
 kD

 − 3S2 
1

s6
D − 2Î3

2
 ■

■	 Maximizing the Directional Derivative
Suppose we have a function f  of two or three variables and we consider all possible 
directional derivatives of f  at a given point. These give the rates of change of f  in all 
possible directions. We can then ask the questions: in which of these directions does f  
change fastest and what is the maximum rate of change? The answers are provided by the 
following theorem.

15  Theorem Suppose f  is a differentiable function of two or three variables. 
The maximum value of the directional derivative Du f sxd is | = f sxd | and it occurs 
when u has the same direction as the gradient vector = f sxd.

PROOF From Equation 9 or 14 and using Theorem 12.3.3, we have

Du f − = f � u − | = f || u | cos � − | = f | cos �

where � is the angle between = f  and u. The maximum value of cos � is 1 and this 
occurs when � − 0. Therefore the maximum value of Du f  is | = f | and it occurs when 
� − 0, that is, when u has the same direction as = f . ■

EXAMPLE 6 
(a) If f sx, yd − xey, find the rate of change of f  at the point Ps2, 0d in the direction 
from P to Q(1

2, 2).
(b) In what direction does f  have the maximum rate of change? What is this maximum 
rate of change?

SOLUTION
(a) We first compute the gradient vector:

 = f sx, yd − k fx, fy l − key, xey l

 = f s2, 0d − k1, 2 l
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The unit vector in the direction of PQ
l

− k23
2, 2l  is u − k23

5 , 45 l , so the rate of change 
of f  in the direction from P to Q is

 Du f s2, 0d − = f s2, 0d � u − k1, 2l � k23
5 , 45 l − 1

(b) According to Theorem 15, f  increases fastest in the direction of the gradient vector 
= f s2, 0d − k1, 2 l. The maximum rate of change is

 | = f s2, 0d | − | k1, 2l | − s5  ■

20

5

0 1 3
x

y

z 10

1

15

0

0

2

2 ±f(2, 0)

FIGURE 9

Q

±f(2, 0)

0

1

1 P 3

2

x

y

FIGURE 8

EXAMPLE 7 Suppose that the temperature at a point sx, y, zd in space is given by 
Tsx, y, zd − 80ys1 1 x 2 1 2y 2 1 3z2 d, where T  is measured in degrees Celsius and  
x, y, z in meters. In which direction does the temperature increase fastest at the point 
s1, 1, 22d? What is the maximum rate of increase?

SOLUTION The gradient of T  is

 =T −
−T

−x
 i 1

−T

−y
 j 1

−T

−z
 k

 − 2
160x

s1 1 x 2 1 2y 2 1 3z2 d2  i 2
320y

s1 1 x 2 1 2y 2 1 3z2 d2  j 2
480z

s1 1 x 2 1 2y 2 1 3z2 d2  k

 − 
160

s1 1 x 2 1 2y 2 1 3z2 d2  s2x i 2 2y j 2 3z kd

At the point s1, 1, 22d the gradient vector is

=Ts1, 1, 22d − 160
256 s2i 2 2 j 1 6 kd − 5

8 s2i 2 2 j 1 6 kd

By Theorem 15 the temperature increases fastest in the direction of the gradient vector 

=T s1, 1, 22d − 5
8 s2i 2 2 j 1 6 kd or, equivalently, in the direction of 2i 2 2 j 1 6 k 

or the unit vector s2i 2 2 j 1 6 kdys41. The maximum rate of increase is the length of 
the gradient vector:

 | =T s1, 1, 22d | − 5
8 | 2i 2 2 j 1 6 k | − 5

8 s41

Therefore the maximum rate of increase of temperature is 58 s41 < 4°Cym. ■

At s2, 0d the function in Example 6 
increases fastest in the direction of 
the gradient vector = f s2, 0d − k1, 2 l.  
Notice from Figure 8 that this vector 
appears to be perpendicular to the 
level curve through s2, 0d. Figure 9 
shows the graph of f  and the gradient 
vector.
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1002 CHAPTER 14  Partial Derivatives

■	 Tangent Planes to Level Surfaces
Suppose S is a surface with equation Fsx, y, zd − k, that is, it is a level surface of a func-
tion F of three variables, and let Psx0, y0, z0 d be a point on S. Let C be any curve that lies 
on the surface S and passes through the point P. Recall from Section 13.1 that the  
curve C is described by a continuous vector function rstd − kxstd, ystd, zstd l. Let t0 be the 
parameter value corresponding to P; that is, rst0d − kx0, y0, z0 l. Since C lies on S, any 
point sxstd, ystd, zstdd must satisfy the equation of S, that is,

16  Fsxstd, ystd, zstdd − k 

If x, y, and z are differentiable functions of t and F is also differentiable, then we can use 
the Chain Rule to differentiate both sides of Equation 16 as follows:

17  
−F

−x
 
dx

dt
1

−F

−y
 
dy

dt
1

−F

−z
 
dz

dt
− 0 

But, since =F − kFx , Fy , Fz l and r9std − kx9std, y9std, z9std l, Equation 17 can be written in 
terms of a dot product as

=F � r9std − 0

In particular, when t − t0 we have rst0d − kx0, y0, z0 l, so

18  =Fsx0, y0, z0 d � r9st0 d − 0 

Equation 18 says that the gradient vector at P, =Fsx0, y0, z0 d, is perpendicular to the  
tangent vector r9st0 d to any curve C on S that passes through P. (See Figure 10.) If 
=Fsx0, y0, z0 d ± 0, it is therefore natural to define the tangent plane to the level surface 
Fsx, y, zd − k at Psx0, y0, z0 d as the plane that passes through P and has normal vector 
=Fsx0, y0, z0 d. Using the standard equation of a plane (Equation 12.5.7), we can write the 
equation of this tangent plane as

19  Fxsx0, y0, z0 dsx 2 x0 d 1 Fysx0, y0, z0 dsy 2 y0 d 1 Fzsx0, y0, z0 dsz 2 z0 d − 0

The normal line to S at P is the line passing through P and perpendicular to the tan- 
gent plane. The direction of the normal line is therefore given by the gradient vector 
=Fsx0, y0, z0 d and so, by Equation 12.5.3, its symmetric equations are

20  
x 2 x0

Fxsx0, y0, z0 d
−

y 2 y0

Fysx0, y0, z0 d
−

z 2 z0

Fzsx0, y0, z0 d
 

EXAMPLE 8 Find the equations of the tangent plane and normal line to the ellipsoid

x 2

4
1 y 2 1

z2

9
− 3

at the point s22, 1, 23d.

SOLUTION The ellipsoid is the level surface (with k − 3) of the function

Fsx, y, zd −
x 2

4
1 y 2 1

z2

9

0

S C

±F(x¸, y¸, z¸)

tangent plane

P rª(t¸)

x

z

y

FIGURE 10
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Therefore we have

 Fxsx, y, zd −
x

2
       Fysx, y, zd − 2y       Fzsx, y, zd −

2z

9

 Fxs22, 1, 23d − 21       Fys22, 1, 23d − 2        Fzs22, 1, 23d − 22
3

Then Equation 19 gives the equation of the tangent plane at s22, 1, 23d as

21sx 1 2d 1 2sy 2 1d 2 2
3 sz 1 3d − 0

which simplifies to 3x 2 6y 1 2z 1 18 − 0.
By Equation 20, symmetric equations of the normal line are

 
x 1 2

21
−

y 2 1

2
−

z 1 3

22
3

 ■

In the special case in which the equation of a surface S is of the form z − f sx, yd 
(that is, S is the graph of a function f  of two variables), we can rewrite the equation as

Fsx, y, zd − f sx, yd 2 z − 0

and regard S as a level surface (with k − 0) of F. Then

 Fxsx0, y0, z0 d − fxsx0, y0 d

 Fysx0, y0, z0 d − fysx0, y0 d

 Fzsx0, y0, z0 d − 21 

so Equation 19 becomes

fxsx0, y0 dsx 2 x0 d 1 fysx0, y0 dsy 2 y0 d 2 sz 2 z0 d − 0

which is equivalent to Equation 14.4.2. Thus our new, more general, definition of a tan-
gent plane is consistent with the definition that was given for the special case of 
Section 14.4.

EXAMPLE 9 Find the tangent plane to the surface z − 2x 2 1 y 2 at the point s1, 1, 3d.

SOLUTION The surface z − 2x 2 1 y 2 or, equivalently, 2x 2 1 y 2 2 z − 0 is a level 
surface (with k − 0) of the function

Fsx, y, zd − 2x 2 1 y 2 2 z

Then 

 Fxsx, y, zd − 4x     Fysx, y, zd − 2y     Fzsx, y, zd − 21

 Fxs1, 1, 3d − 4     Fys1, 1, 3d − 2     Fzs1, 1, 3d − 21

By Equation 19 the equation of the tangent plane at s1, 1, 3d is

4sx 2 1d 1 2sy 2 1d 2 sz 2 3d − 0

which simplifies to z − 4x 1 2y 2 3. ■

4

2

0

�2

�4

�6

20 2 0 �2
y x

z

FIGURE 11

Figure 11 shows the ellipsoid, tangent 
plane, and normal line in Example 8.

Compare the solution to Example 9 to 
the one in Example 14.4.1.
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1004 CHAPTER 14  Partial Derivatives

■	 Significance of the Gradient Vector
We first consider a function f  of three variables and a point Psx0, y0, z0 d in its domain. 
We know from Theorem 15 that the gradient vector = f sx0, y0, z0 d gives the direction of 
fastest increase of f . We also know that = f sx0, y0, z0 d is orthogonal to the level surface S 
of f  through P. (Refer to Figure 10.) These two properties are quite compatible intui-
tively because as we move away from P on the level surface S, the value of f  does not 
change at all. So it seems reasonable that if we move in the perpendicular direction, we 
get the maximum increase.

In like manner we consider a function f  of two variables and a point Psx0, y0 d in its 
domain. Again the gradient vector = f sx0, y0 d gives the direction of fastest increase of f . 
Also, by considerations similar to our discussion of tangent planes, it can be shown that 
= f sx0, y0 d is perpendicular to the level curve f sx, yd − k that passes through P. Again 
this is intuitively plausible because the values of f  remain constant as we move along the 
curve (see Figure 12).

We now summarize the ways in which the gradient vector is significant. 

Properties of the Gradient Vector Let f  be a differentiable function of two or 
three variables and suppose that =f sxd ± 0. 

●	 The directional derivative of f  at x in the direction of a unit vector u is given  
by Du f sxd − =f sxd � u.

●	 =f sxd points in the direction of maximum rate of increase of f  at x , and  
that maximum rate of change is | =f sxd |.

●	 =f sxd is perpendicular to the level curve or level surface of f  through x.

If we consider a topographical map of a hill and let f sx, yd represent the height above 
sea level at a point with coordinates sx, yd, then a curve of steepest ascent can be drawn 
as in Figure 13 by making it perpendicular to all of the contour lines. This phenomenon 
can also be noticed in Figure 14.1.12, where Lonesome Creek follows a curve of steep est 
descent.

Mathematical software can plot sample gradient vectors, where each gradient vector 
= f sa, bd is plotted starting at the point sa, bd. Figure 14 shows such a plot (called a gradi-
ent vector field) for the function f sx, yd − x 2 2 y 2 superimposed on a contour map of f. 
As expected, the gradient vectors point “uphill” and are perpendicular to the level curves.

x

y

0 3 6 9

_3
_6
_9

y

0 x

P(x¸, y¸)

level curve
f(x, y)=k

±f(x¸, y¸)
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300
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100

curve of
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FIGURE 14
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14.6 Exercises
 1.  Level curves for barometric pressure (in millibars) are  

shown for 6:00 am on a day in November. A deep low with  
pressure 972 mb is moving over northeast Iowa. The dis- 
tance along the red line from K (Kearney, Nebraska) to S 
(Sioux City, Iowa) is 300 km. Estimate the value of the direc-
tional derivative of the pressure function at Kearney in the 
direction of Sioux City. What are the units of the directional 
derivative?

1012

1012
1008

1008

1004
1000

996
992
988

980
976

984

1016 1020
1024

972

K

S

 2.  The contour map shows the average maximum temperature 
for November 2004 (in °C ). Estimate the value of the direc-
tional derivative of this temperature function at Dubbo,  
New South Wales, in the direction of Sydney. What are  
the units?

Sydney

Dubbo
30

27 24

24

21
18

0 100 200 300
(Distance in kilometers)

 3.  The wind-chill index W is the perceived temperature 
when the actual temperature is T and the wind speed is v,  
so we can write W − f sT, vd. The following table of  
values is an excerpt from Table 1 in Section 14.1. Use  

the table to estimate the value of Du f s220, 30d, where 
u − si 1 jdys2 .

�18

�24

�30

�37

�20

�26

�33

�39

�21

�27

�34

�41

�22

�29

�35

�42

�23

�30

�36

�43

T
v 20 30 40 50 60

�10

�15

�20

�25A
ct

ua
l t

em
pe

ra
tu

re
 (

°C
) 70

�23

�30

�37

�44

Wind speed (km /h)

 4–7 Find the directional derivative of f  at the given point in the 
direction indicated by the angle �.

 4. f sx, yd − xy 3 2 x 2,  s1, 2d,  � − �y3

 5. f sx, yd − y cossxyd,  s0, 1d,  � − �y4

 6. f sx, yd − s2x 1 3y ,  s3, 1d,  � − 2�y6

 7. f sx, yd − arctansxyd ,  s2, 23d,  � − 3�y4 

8–12
(a) Find the gradient of f .
(b) Evaluate the gradient at the point P.
(c)  Find the rate of change of f  at P in the direction of the  

vector u.

 8. f sx, yd − x 2e y,  Ps3, 0d,  u − 1
5 s3 i 2 4 jd 

 9. f sx, yd − xyy,  Ps2, 1d,  u − 3
5 i 1 4

5 j

 10. f sx, yd − x 2 ln y,  Ps3, 1d,  u − 2 5
13 i 1 12

13 j

 11. f sx, y, zd − x 2yz 2 xyz 3,  Ps2, 21, 1d,  u − k0, 4
5 , 23

5 l
 12. f sx, y, zd − y 2e xyz,  Ps0, 1, 21d,  u − k 3

13, 4
13, 12

13 l

 13–19 Find the directional derivative of the function at the given 
point in the direction of the vector v.

 13. f sx, yd − e x sin y,  s0, �y3d,  v − k26, 8 l

 14. f sx, yd −
x

x 2 1 y 2 ,  s1, 2d,  v − k3, 5 l

 15. tss, td − s st  ,  s2, 4d,  v − 2 i 2 j

 16. tsu, vd − u 2e2v,  s3, 0d,  v − 3 i 1 4 j

 17. f sx, y, zd − x 2y 1 y 2z,  s1, 2, 3d,  v − k2, 21, 2 l

 18. f sx, y, zd − xy 2 tan21 z,  s2, 1, 1d,  v − k1, 1, 1 l

 19.  hsr, s, td − lns3r 1 6s 1 9td,  s1, 1, 1d,  
v − 4 i 1 12 j 1 6k
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1006 CHAPTER 14  Partial Derivatives

 20.  Use the figure to estimate Du f s2, 2d.

y

x0

(2, 2)

±f(2, 2)

u

21–25 Find the directional derivative of the function at the  
point P in the direction of the point Q.

 21. f sx, yd − x 2y 2 2 y 3, Ps1, 2d, Qs23, 5d  

 22. f sx, yd −
x

y 2 , Ps3, 21d, Qs22, 11d  

 23. f sx, yd − sxy , Ps2, 8d, Qs5, 4d

 24. f sx, y, zd − xy 2z 3, Ps2, 1, 1d, Qs0, 23, 5d  

 25. f sx, y, zd − xy 2 xy 2z 2, Ps2, 21, 1d, Qs5, 1, 7d

 26.  The contour map of a function f  is shown. At points P, Q, 
and R, draw an arrow to indicate the direction of the gradient 
vector.

x

y

10

8

6
4 2 4

6
6

8

10 8

10

P

R

Q

 27–32 Find the maximum rate of change of f  at the given point 
and the direction in which it occurs.

 27. f sx, yd − 5xy 2, s3, 22d

 28. f ss, td −
s

s 2 1 t 2 , s21, 1d

 29. f sx, yd − sinsxyd,  s1, 0d

 30. f sx, y, zd − x lnsyzd,  (1, 2, 12)
 31. f sx, y, zd − xysy 1 zd,  s8, 1, 3d

 32. f sp, q, rd − arctanspqrd,  s1, 2, 1d

 33. Direction of Most Rapid Decrease
 (a)  Show that a differentiable function f  decreases most 

rapidly at x in the direction opposite the gradient vector, 
that is, in the direction of 2= f sxd, and that the maximum 
rate of decrease is 2|= f sxd |.

 (b)  Use the result of part (a) to find the direction in which the 
function f sx, yd − x 4y 2 x 2 y 3 decreases fastest at the 
point s2, 23d. What is the rate of decrease?

 34.  Find the directions in which the directional derivative of 
f sx, yd − x 2 1 xy 3 at the point s2, 1d has the value 2.

 35.  Find all points at which the direction of greatest rate of change 
of the function f sx, yd − x 2 1 y 2 2 2x 2 4y is i 1 j.

 36.� Near a buoy, the depth of a lake at the point with coordi nates 
sx, yd is z − 200 1 0.02x 2 2 0.001y 3, where x, y, and z are 
measured in meters. A fisherman in a small boat starts at the 
point s80, 60d and moves toward the buoy, which is located at 
s0, 0d. Is the water under the boat getting deeper or shallower 
when he departs? Explain.

 37.  The temperature T in a metal ball is inversely proportional to 
the distance from the center of the ball, which we take to be 
the origin. The temperature at the point s1, 2, 2d is 120°.

 (a)  Find the rate of change of T at s1, 2, 2d in the direction 
toward the point s2, 1, 3d.

 (b)  Show that at any point in the ball the direction of greatest 
increase in temperature is given by a vector that points 
toward the origin.

 38. The temperature at a point sx, y, zd is given by 

Tsx, y, zd − 200e2x223y229z2

where T is measured in °C and x, y, z in meters.
 (a)  Find the rate of change of temperature at the point 

Ps2, 21, 2d in the direction toward the point s3, 23, 3d.
 (b)  In which direction does the temperature increase fastest  

at P?
 (c) Find the maximum rate of increase at P.

 39.  Suppose that over a certain region of space the electrical 
potential V is given by Vsx, y, zd − 5x 2 2 3xy 1 xyz.

 (a)  Find the rate of change of the potential at Ps3, 4, 5d in the 
direction of the vector v − i 1 j 2 k.

 (b) In which direction does V change most rapidly at P?
 (c) What is the maximum rate of change at P?

 40.  Suppose you are climbing a hill whose shape is given by the 
equation z − 1000 2 0.005x 2 2 0.01y 2, where x, y, and z  
are measured in meters, and you are standing at a point with 
coordinates s60, 40, 966d. The positive x-axis points east and 
the positive y-axis points north.

 (a)  If you walk due south, will you start to ascend or 
descend? At what rate?

 (b)  If you walk northwest, will you start to ascend or 
descend? At what rate?

 (c)  In which direction is the slope largest? What is the rate of 
ascent in that direction? At what angle above the horizon-
tal does the path in that direction begin?

 41.  Let f  be a function of two variables that has continuous par-
tial derivatives and consider the points As1, 3d, Bs3, 3d, 
Cs1, 7d, and Ds6, 15d. The directional derivative of f  at A in 
the direction of the vector AB

l
 is 3, and the directional deriva-

tive at A in the direction of AC
l

 is 26. Find the directional 
derivative of f  at A in the direction of the vector AD

l
.
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 47–52 Find equations of (a) the tangent plane and (b) the normal 
line to the given surface at the specified point.

 47. 2sx 2 2d2 1 sy 2 1d2 1 sz 2 3d2 − 10,  s3, 3, 5d

 48. x − y 2 1 z 2 1 1,  s3, 1, 21d

 49. xy 2z 3 − 8,  s2, 2, 1d

 50. xy 1 yz 1 zx − 5,  s1, 2, 1d

 51. x 1 y 1 z − e xyz,  s0, 0, 1d

 52.  x 4 1 y 4 1 z 4 − 3x 2y 2z 2,  s1, 1, 1d

53–54 Graph the surface, the tangent plane, and the normal line 
at the given point on the same screen. Choose a viewpoint so that 
you get a good view of all three objects.

 53. xy 1 yz 1 zx − 3,  s1, 1, 1d 54. xyz − 6,  s1, 2, 3d

 55.  If f sx, yd − xy, find the gradient vector = f s3, 2d and use it  
to find the tangent line to the level curve f sx, yd − 6 at the 
point s3, 2d. Sketch the level curve, the tangent line, and the 
gradient vector.

 56.  If tsx, yd − x 2 1 y 2 2 4x, find the gradient vector =ts1, 2d  
and use it to find the tangent line to the level curve 
tsx, yd − 1 at the point s1, 2d. Sketch the level curve, the  
tangent line, and the gradient vector.

 57.  Show that the equation of the tangent plane to the ellipsoid 
x 2ya 2 1 y 2yb 2 1 z2yc 2 − 1 at the point sx0, y0, z0 d can be 
written as

xx0

a 2 1
 yy0

b 2 1
zz0

c 2 − 1

 58.  Find the equation of the tangent plane to the hyperboloid 
x 2ya 2 1 y 2yb 2 2 z2yc 2 − 1 at sx0, y0, z0 d and express it in a 
form similar to the one in Exercise 57.

 59.  Show that the equation of the tangent plane to the elliptic 
paraboloid zyc − x 2ya 2 1 y 2yb 2 at the point sx0, y0, z0 d can 
be written as

2xx0

a 2 1
2yy0

b 2 −
z 1 z0

c

 60.  At what point on the ellipsoid x 2 1 y 2 1 2z2 − 1 is the  
tangent plane parallel to the plane x 1 2y 1 z − 1?

 61.  Are there any points on the hyperboloid x 2 2 y 2 2 z2 − 1 
where the tangent plane is parallel to the plane z − x 1 y?

 62.  Show that the ellipsoid 3x 2 1 2y 2 1 z2 − 9 and the sphere 
x 2 1 y 2 1 z2 2 8x 2 6y 2 8z 1 24 − 0 are tangent to each 
other at the point s1, 1, 2d. (This means that they have a com-
mon tangent plane at the point.)

 63.  Show that every plane that is tangent to the cone 
x 2 1 y 2 − z2 passes through the origin.

 64.  Show that every normal line to the sphere x 2 1 y 2 1 z2 − r 2 
passes through the center of the sphere.

;

 42.  Shown is a topographic map of Blue River Pine Provincial 
Park in British Columbia. Draw curves of steepest descent 
from point A (descending to Mud Lake) and from point B.

2000 m
2200 m

2200 m

2200 m

Blue RiverBlue River

Smoke CreekSmoke Creek

North Thompson RiverNorth Thompson River

Mud LakeMud Lake

Mud CreekMud Creek

BLUE 
RIVER

A

B
1000 m

 43.  Show that the operation of taking the gradient of a function 
has the given property. Assume that u and v are differen tiable 
functions of x and y and that a, b are constants.

 (a) =sau 1 bvd − a =u 1 b =v 

 (b) =suvd − u =v 1 v =u

 (c) =S u

vD −
v =u 2 u =v

v 2  (d) =un − nu n21 =u

 44.  Sketch the gradient vector = f s4, 6d for the function f  whose 
level curves are shown. Explain how you chose the direction 
and length of this vector.

20

2

4

6

4 6 x

y

_1
0

1 3 5

_3

_5
(4, 6)

45 – 46 Second Directional Derivatives The second directional 
derivative of f sx, yd is

Du
2 f sx, yd − DufDu f sx, ydg

 45. If f sx, yd − x 3 1 5x 2y 1 y 3 and u − k3
5, 45 l , calculate 

Du
2 f s2, 1d.

 46. (a)  If u − ka, bl is a unit vector and f  has continuous  
second partial derivatives, show that

Du
2 f − fxx a 2 1 2 fxy ab 1 fyy b2

 (b)  Find the second directional derivative of f sx, yd − xe 2y in 
the direction of v − k4, 6 l.
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1008 CHAPTER 14  Partial Derivatives

 65.  Where does the normal line to the paraboloid z − x 2 1 y 2 
at the point s1, 1, 2d intersect the paraboloid a second time?

 66.  At what points does the normal line through the point 
s1, 2, 1d on the ellipsoid 4x 2 1 y 2 1 4z 2 − 12 intersect the 
sphere x 2 1 y 2 1 z 2 − 102?

 67.  Show that the sum of the x-, y-, and z-intercepts of any  
tangent plane to the surface sx 1 sy 1 sz − sc  is a 
constant.

 68.  Show that the pyramids cut off from the first octant by any 
tangent planes to the surface xyz − 1 at points in the first 
octant must all have the same volume.

 69.  Find parametric equations for the tangent line to the curve 
of intersection of the paraboloid z − x 2 1 y 2 and the ellip-
soid 4x 2 1 y 2 1 z2 − 9 at the point s21, 1, 2d.

 70. (a)  The plane y 1 z − 3 intersects the cylinder 
x 2 1 y 2 − 5 in an ellipse. Find parametric equations 
for the tangent line to this ellipse at the point s1, 2, 1d.

   (b)  Graph the cylinder, the plane, and the tangent line on 
the same screen.

 71.  Where does the helix rstd − kcos �t, sin �t, tl intersect the 
paraboloid z − x 2 1 y 2 ? What is the angle of intersection 
between the helix and the paraboloid? (This is the angle 
between the tangent vector to the curve and the tangent 
plane to the paraboloid.)

 72.  The helix rstd − kcoss�ty2d, sins�ty2d, t l intersects the 
sphere x 2 1 y 2 1 z 2 − 2 in two points. Find the angle of 
intersection at each point.

;

73–74 Orthogonal Surfaces Two surfaces are called orthogo-
nal at a point of intersection if their normal lines are perpen-
dicular at that point.

 73. Show that surfaces with equations Fsx, y, zd − 0 and 
Gsx, y, zd − 0 are orthogonal at a point P where =F ± 0 
and =G ± 0 if and only if

Fx Gx 1 FyGy 1 Fz Gz − 0  at P

 74.  Use Exercise 73 to show that the surfaces z2 − x 2 1 y 2 and 
x 2 1 y 2 1 z2 − r 2 are orthogonal at every point of intersec-
tion. Can you see why this is true without using calculus?

 75.  Suppose that the directional derivatives of f sx, yd are known 
at a given point in two nonparallel directions given by unit 
vectors u and v. Is it possible to find = f  at this point? If so, 
how would you do it?

 76. (a)  Show that the function f sx, yd − s3 xy  is continuous 
and the partial derivatives fx and fy exist at the origin, 
but the directional derivatives in all other directions do 
not exist.

 (b)  Graph f  near the origin and comment on how the graph 
confirms part (a).

 77.  Show that if z − f sx, yd is differentiable at x0 − kx0, y0 l, 
then

lim 
x l x0

 
 f sxd 2 f f sx0 d 1 = f sx0 d � sx 2 x0 dg

| x 2 x0 | − 0

[Hint: Use Definition 14.4.7 directly.]

;

Maximum and Minimum Values

■	 Local Maximum and Minimum Values
As we saw in Chapter 4, one of the main uses of ordinary derivatives is in finding maxi-
mum and minimum values (extreme values). In this section we see how to use partial 
derivatives to locate maxima and minima of functions of two variables. In particular, in 
Example 6 we will see how to maximize the volume of a box without a lid if we have a 
fixed amount of cardboard to work with.

Look at the hills and valleys in the graph of f  shown in Figure 1. There are two points 
sa, bd where f  has a local maximum, that is, where f sa, bd is larger than nearby values of 
f sx, yd. Likewise, f  has two local minima, where f sa, bd is smaller than nearby values. 
The largest value of f sx, yd on the domain of f  is the absolute maximum, and the smallest 
value is the absolute minimum.

1  Definitio  A function of two variables has a local maximum at sa, bd if 
f sx, yd < f sa, bd when sx, yd is near sa, bd. [This means that f sx, yd < f sa, bd for 
all points sx, yd in some disk with center sa, bd.] The number f sa, bd is called a 
local maximum value. If f sx, yd > f sa, bd when sx, yd is near sa, bd, then f  has a 
local minimum at sa, bd and f sa, bd is a local minimum value.

14.7

x

z

y

absolute
maximum

absolute
minimum

local
minimum

local
maximum

FIGURE 1 
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 SECTION 14.7  Maximum and Minimum Values 1009

Fermat’s Theorem (Section 4.1) states that, for single-variable functions, if f  has a 
local maximum or minimum at c, and if f 9scd exists, then f 9scd − 0. The following theo-
rem states a similar result for functions of two variables. 

2  Theorem If f  has a local maximum or minimum at sa, bd and the first-order 
partial derivatives of f  exist there, then fxsa, bd − 0 and fysa, bd − 0.

Notice that the conclusion of 
Theorem 2 can be stated in the 
notation of gradient vectors as 
=f sa, bd − 0.

PROOF Let tsxd − f sx, bd. If f  has a local maximum (or minimum) at sa, bd, then t 
has a local maximum (or minimum) at a, so t9sad − 0 by Fermat’s Theorem (see 
Theorem 4.1.4). But t9sad − fxsa, bd (see Equation 14.3.1) and so fxsa, bd − 0. Simi-
larly, by applying Fermat’s Theorem to the function Gsyd − f sa, yd, we obtain 
fysa, bd − 0. ■

If we put fxsa, bd − 0 and fysa, bd − 0 in the equation of a tangent plane (Equa-
tion 14.4.2), we get z − z0. Thus the geometric interpretation of Theorem 2 is that if the 
graph of f  has a tangent plane at a local maximum or minimum, then the tangent plane 
must be horizontal.

A point sa, bd is called a critical point (or stationary point) of f  if fxsa, bd − 0 and 
fysa, bd − 0, or if one of these partial derivatives does not exist. Theorem 2 says that if f  
has a local maximum or minimum at sa, bd, then sa, bd is a critical point of f . However, 
as in single-variable calculus, not all critical points give rise to maxima or minima. 

EXAMPLE 1 Let f sx, yd − x 2 1 y 2 2 2x 2 6y 1 14. Then

fxsx, yd − 2x 2 2      fysx, yd − 2y 2 6

These partial derivatives are equal to 0 when x − 1 and y − 3, so the only critical point 
is s1, 3d. By completing the square, we find that

f sx, yd − 4 1 sx 2 1d2 1 sy 2 3d2

Since sx 2 1d2 > 0 and sy 2 3d2 > 0, we have f sx, yd > 4 for all values of x and y. 
Therefore f s1, 3d − 4 is a local minimum, and in fact it is the absolute minimum of f . 
This can be confirmed geometrically from the graph of f, which is the elliptic parabo-
loid with vertex s1, 3, 4d shown in Figure 2.� ■

EXAMPLE 2 Find the extreme values of f sx, yd − y 2 2 x 2.

SOLUTION Since fx − 22x and fy − 2y, the only critical point is s0, 0d. Notice that  
for points on the x-axis we have y − 0, so f sx, yd − 2x 2 , 0 (if x ± 0). However, for 
points on the y-axis we have x − 0, so f sx, yd − y 2 . 0 (if y ± 0). Thus every disk 
with center s0, 0d contains points where f  takes on positive values as well as points 
where f  takes on negative values. Therefore f s0, 0d − 0 can’t be an extreme value  
for f , so f  has no extreme value.� ■

Example 2 illustrates the fact that a function need not have a maximum or minimum 
value at a critical point. Figure 3 shows one way in which this can happen. The graph of 
f  is the hyperbolic paraboloid z − y 2 2 x 2, which has a horizontal tangent plane (z − 0) 
at the origin. You can see that f s0, 0d − 0 is a maximum in the direction of the x-axis but 
a minimum in the direction of the y-axis.

y
x

z

0

(1, 3, 4)

FIGURE 2  
z − x 2 1 y 2 2 2x 2 6y 1 14

z

y
x

FIGURE 3  
z − y 2 2 x 2
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1010 CHAPTER 14  Partial Derivatives

Recall that for functions of a single variable, a critical number c where f 9scd − 0 may 
correspond to a local maximum, a local minimum, or neither. An analogous situation 
occurs for functions of two variables. If sa, bd is a critical point of a function f, where 
fxsa, bd − 0 and fysa, bd − 0, then f sa, bd may be a local maximum, a local minimum, 
or neither. In the last case, we say that sa, bd is a saddle point of f . The name is sug-
gested by the shape of the surface in Figure 3 near the origin. In general, the graph of a 
function at a saddle point need not resemble an actual saddle, but the graph crosses the 
tangent plane at that point.

We need to be able to determine whether or not a function has an extreme value at a 
crit ical point. The following test, which is proved at the end of this section, is analogous 
to the Second Derivative Test for functions of one variable.

3  Second Derivatives Test Suppose the second partial derivatives of f  are 
con tinuous on a disk with center sa, bd, and suppose that fxsa, bd − 0 and 
fysa, bd − 0 [so sa, bd is a critical point of f ]. Let

D − Dsa, bd − fxxsa, bd fyy sa, bd 2 f fx y sa, bdg2

(a) If D . 0 and fxxsa, bd . 0, then f sa, bd is a local minimum.
(b) If D . 0 and fxxsa, bd , 0, then f sa, bd is a local maximum.
(c) If D , 0, then sa, bd is a saddle point of f.

NOTE 1 If D − 0, the test gives no information: f  could have a local maximum or local 
minimum at sa, bd, or sa, bd could be a saddle point of f .

NOTE 2 To remember the formula for D, it’s helpful to write it as a determinant:

D − Z fxx

fyx

fx y

fyy
Z − fxx fyy 2 s fx y d2

EXAMPLE 3 Find the local maximum and minimum values and saddle points  
of f sx, yd − x 4 1 y 4 2 4xy 1 1.

SOLUTION We first find the partial derivatives:

fx − 4x 3 2 4y      fy − 4y 3 2 4x

Since these partial derivatives exist everywhere, the critical points occur where both 
partial derivatives are zero:

x 3 2 y − 0    and    y 3 2 x − 0

To solve these equations we substitute y − x 3 from the first equation into the second 
one. This gives

0 − x 9 2 x − xsx 8 2 1d − xsx 4 2 1dsx 4 1 1d − xsx 2 2 1dsx 2 1 1dsx 4 1 1d

so there are three real solutions: x − 0, 1, 21. The three critical points are s0, 0d, s1, 1d,  
and s21, 21d.

A mountain pass also has the shape of 
a saddle; for people hiking in one 
direction the saddle point is the lowest 
point on their route, whereas for those 
traveling in a different direction the 
saddle point is the highest point.
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 SECTION 14.7  Maximum and Minimum Values 1011

Next we calculate the second partial derivatives and Dsx, yd:

fxx − 12x 2      fx y − 24      fyy − 12y 2

Dsx, yd − fxx fyy 2 s fx yd2 − 144x 2 y 2 2 16

Since Ds0, 0d − 216 , 0, it follows from case (c) of the Second Derivatives Test  
that the origin is a saddle point. Since Ds1, 1d − 128 . 0 and fxx s1, 1d − 12 . 0,  
we see from case (a) of the test that f s1, 1d − 21 is a local minimum. This means  
that 21 is a local minimum value, and it occurs at the point s1, 1d. Similarly, we have 
Ds21, 21d − 128 . 0 and fxx s21, 21d − 12 . 0, so f s21, 21d − 21 is also a 
local minimum.

The graph of f  is shown in Figure 4.� ■

y

x
1
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0.5
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_0.5

1.1
1.5
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EXAMPLE 4 Find and classify the critical points of the function

f sx, yd − 10x 2 y 2 5x 2 2 4y 2 2 x 4 2 2y 4

Also find the highest point on the graph of f .

SOLUTION The first-order partial derivatives are

fx − 20xy 2 10x 2 4x 3      fy − 10x 2 2 8y 2 8y 3

So to find the critical points we need to solve the equations

4   2xs10y 2 5 2 2x 2 d − 0

5   5x 2 2 4y 2 4y 3 − 0

From Equation 4 we see that either

x − 0    or    10y 2 5 2 2x 2 − 0

In the first case (x − 0), Equation 5 becomes 24ys1 1 y 2 d − 0, so y − 0 and we 
have the critical point s0, 0d.

In the second case s10y 2 5 2 2x 2 − 0d, we get

6  x 2 − 5y 2 2.5

x
y

z

FIGURE 4 
z − x 4 1 y 4 2 4xy 1 1

A contour map of the function f  in 
Example 3 is shown in Figure 5. The 
level curves near s1, 1d and s21, 21d 
are oval in shape and indicate that as 
we move away from s1, 1d or s21, 21d 
in any direction the values of f  are 
increasing. The level curves near s0, 0d, 
on the other hand, resemble hyper-
bolas. They reveal that as we move 
away from the origin (where the value 
of f  is 1), the values of f  decrease in 
some directions but increase in other 
directions. Thus the contour map 
suggests the presence of the minima 
and saddle point that we found in 
Example 3.

FIGURE 5
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1012 CHAPTER 14  Partial Derivatives

and, putting this in Equation 5, we have 25y 2 12.5 2 4y 2 4y 3 − 0 or, equivalently,

4y 3 2 21y 1 12.5 − 0

Using a graphing calculator or computer to solve this equation numerically, we obtain

 y < 22.5452       y < 0.6468       y < 1.8984

(Alternatively, we could graph the function tsyd − 4y 3 2 21y 1 12.5, as in Figure 6, 
and find the intercepts.) From Equation 6, the corresponding x-values are given by

x − 6s5y 2 2.5 

If y < 22.5452, then x has no corresponding real values. If y < 0.6468, then 
x < 60.8567. If y < 1.8984, then x < 62.6442. So we have a total of five critical 
points, which are analyzed in the following chart. All quantities are rounded to two  
decimal places.

Critical point Value of f fxx D Conclusion

s0, 0d 0.00 210.00 80.00 local maximum

s62.64, 1.90d 8.50 255.93 2488.72 local maximum

s60.86, 0.65d 21.48 25.87 2187.64 saddle point

Figures 7 and 8 give two views of the graph of f  and we see that the surface opens 
downward. [This can also be seen from the expression for f sx, yd: the dominant terms 
are 2x 4 2 2y 4 when | x | and | y | are large.] Comparing the values of f  at its local maxi- 
mum points, we see that the absolute maximum value of f  is f s62.64, 1.90d < 8.50. In 
other words, the highest points on the graph of f  are s62.64, 1.90, 8.50d.

y
x

z

y

z

x

FIGURE 8FIGURE 7 � ■
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1
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3
7
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FIGURE 6

The five critical points of the function 
f  in Example 4 are shown in red in the 
contour map of f  in Figure 9.

FIGURE 9
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EXAMPLE 5 Find the shortest distance from the point s1, 0, 22d to the plane 
x 1 2y 1 z − 4.

SOLUTION The distance from any point sx, y, zd to the point s1, 0, 22d is

d − ssx 2 1d2 1 y 2 1 sz 1 2d2 

but if sx, y, zd lies on the plane x 1 2y 1 z − 4, then z − 4 2 x 2 2y and so we have 

d − ssx 2 1d2 1 y 2 1 s6 2 x 2 2yd2 . We can minimize d by minimizing the simpler 
expression

d 2 − f sx, yd − sx 2 1d2 1 y 2 1 s6 2 x 2 2yd2

By solving the equations

  fx − 2sx 2 1d 2 2s6 2 x 2 2yd − 4x 1 4y 2 14 − 0

  fy − 2y 2 4s6 2 x 2 2yd − 4x 1 10y 2 24 − 0

we find that the only critical point is (11
6 ,  53 ). Since fxx − 4, fx y − 4, and fyy − 10, we 

have Dsx, yd − fxx fy y 2 s fx yd2 − 24 . 0 and fxx . 0, so by the Second Derivatives Test

f  has a local minimum at (11
6 ,  53 ). Intuitively, we can see that this local minimum is 

actually an absolute minimum because there must be a point on the given plane that is 
closest to s1, 0, 22d. If x − 11

6  and y − 5
3, then

d − ssx 2 1d2 1 y 2 1 s6 2 x 2 2yd2 − s(5
6)2 1 (5

3)2 1 (5
6)2  

− 5
6 s6 

The shortest distance from s1, 0, 22d to the plane x 1 2y 1 z − 4 is 56 s6 . ■

EXAMPLE 6 A rectangular box without a lid is to be made from 12 m2 of cardboard. 
Find the maximum volume of such a box.

SOLUTION Let the length, width, and height of the box (in meters) be x, y, and z, as 
shown in Figure 10. Then the volume of the box is

V − xyz

We can express V  as a function of just two variables x and y by using the fact that the 
area of the four sides and the bottom of the box is

2xz 1 2yz 1 xy − 12

Solving this equation for z, we get z − s12 2 xydyf2sx 1 ydg, so the expression for V  
becomes

V − xy 
12 2 xy

2sx 1 yd
−

12xy 2 x 2 y 2

2sx 1 yd

We compute the partial derivatives:

−V

−x
−

y 2s12 2 2xy 2 x 2 d
2sx 1 yd2       

−V

−y
−

x 2s12 2 2xy 2 y 2 d
2sx 1 yd2

If V  is a maximum, then −Vy−x − −Vy−y − 0, but x − 0 or y − 0 gives V − 0. It 
remains to solve the equations

12 2 2xy 2 x 2 − 0      12 2 2xy 2 y 2 − 0

Example 5 could also be solved using  
vectors. Compare with the methods of  
Section 12.5.

y

x

z

FIGURE 10
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1014 CHAPTER 14  Partial Derivatives

These imply that x 2 − y 2 and so x − y. (Note that x and y must both be nonnegative in 
this problem.) If we put x − y in either equation we get 12 2 3x 2 − 0, which gives 
x − 2, y − 2, and z − s12 2 2 � 2dyf2s2 1 2dg − 1.

We could use the Second Derivatives Test to show that this gives a local maximum  
of V, or we could simply argue from the physical nature of this problem that there must 
be an absolute maximum volume, which has to occur at a critical point of V, so it must 
occur when x − 2, y − 2, z − 1. Then V − 2 � 2 � 1 − 4, so the maximum volume of 
the box is 4 m3.� ■

■	 Absolute Maximum and Minimum Values
Just as for single-variable functions, the absolute maximum and minimum values of a 
function f  of two variables are the largest and smallest values that f  achieves on its 
domain. 

7  Definitio  Let sa, bd be a point in the domain D of a function f  of two vari-
ables. Then f sa, bd is the 

●	 absolute maximum value of f  on D if f sa, bd > f sx, yd for all sx, yd in D.

●	 absolute minimum value of f  on D if f sa, bd < f sx, yd for all sx, yd in D.

For a function f  of one variable, the Extreme Value Theorem says that if f  is continu-
ous on a closed interval fa, bg, then f  has an absolute minimum value and an absolute 
maximum value. According to the Closed Interval Method in Section 4.1, we found these 
by evaluating f  not only at the critical numbers but also at the endpoints a and b.

There is a similar situation for functions of two variables. Just as a closed interval 
contains its endpoints, a closed set in R 2 is one that contains all its boundary points. [A 
boundary point of D is a point sa, bd such that every disk with center sa, bd contains 
points in D and also points not in D.] For instance, the disk

D − hsx, yd | x 2 1 y 2 < 1j

which consists of all points on or inside the circle x 2 1 y 2 − 1, is a closed set because  
it contains all of its boundary points (which are the points on the circle x 2 1 y 2 − 1). 
But if even one point on the boundary curve were omitted, the set would not be closed. 
(See Figure 11.)

A bounded set in R 2 is one that is contained within some disk. In other words, it is 
finite in extent. Then, in terms of closed and bounded sets, we can state the following 
counterpart of the Extreme Value Theorem in two dimensions.

8  Extreme Value Theorem for Functions of  Two Variables If f  is continu-
ous on a closed, bounded set D in R 2, then f  attains an absolute maximum value 
f sx1, y1d and an absolute minimum value f sx2, y2 d at some points sx1, y1d and 
sx2, y2d in D.

To find the extreme values guaranteed by Theorem 8, we note that, by Theorem 2, if 
f  has an extreme value at sx1, y1d, then sx1, y1d is either a critical point of f  or a boundary 
point of D. Thus we have the following extension of the Closed Interval Method.

(a) Closed sets

(b) Sets that are not closed

FIGURE 11
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 SECTION 14.7  Maximum and Minimum Values 1015

9  To find the absolute maximum and minimum values of a continuous func- 
tion f  on a closed, bounded set D:

1. Find the values of f  at the critical points of f  in D.

2. Find the extreme values of f  on the boundary of D.

3. The largest of the values from steps 1 and 2 is the absolute maximum value;  
the smallest of these values is the absolute minimum value.

EXAMPLE 7 Find the absolute maximum and minimum values of the function 
f sx, yd − x 2 2 2xy 1 2y on the rectangle D − hsx, yd | 0 < x < 3, 0 < y < 2j.

SOLUTION Since f  is a polynomial, it is continuous on the closed, bounded rectangle 
D, so Theorem 8 tells us there is both an absolute maximum and an absolute minimum. 
According to step 1 in (9), we first find the critical points. These occur when

fx −   2x 2 2y − 0

fy −  22x 1 2 − 0

so the only critical point is s1, 1d. This point is in D and the value of f  there is 
f s1, 1d − 1.

In step 2 we look at the values of f  on the boundary of D, which consists of the four 
line segments L1, L 2, L3, L 4 shown in Figure 12. On L1 we have y − 0 and

f sx, 0d − x 2    0 < x < 3

This is an increasing function of x, so its minimum value is f s0, 0d − 0 and its maxi-
mum value is f s3, 0d − 9. On L 2 we have x − 3 and

f s3, yd − 9 2 4y      0 < y < 2

This is a decreasing function of y, so its maximum value is f s3, 0d − 9 and its mini-
mum value is f s3, 2d − 1. On L3 we have y − 2 and

f sx, 2d − x 2 2 4x 1 4      0 < x < 3

By the methods of Chapter 4, or simply by observing that f sx, 2d − sx 2 2d2, we see 
that the minimum value of this function is f s2, 2d − 0 and the maximum value is 
f s0, 2d − 4. Finally, on L4 we have x − 0 and

f s0, yd − 2y      0 < y < 2

with maximum value f s0, 2d − 4 and minimum value f s0, 0d − 0. Thus, on the 
boundary, the minimum value of f  is 0 and the maximum is 9.

In step 3 we compare these values with the value f s1, 1d − 1 at the critical point and 
conclude that the absolute maximum value of f  on D is f s3, 0d − 9 and the absolute 
minimum value is f s0, 0d − f s2, 2d − 0. Figure 13 shows the graph of f .� ■

■	 Proof of the Second Derivatives Test
We close this section by giving a proof of the first part of the Second Derivatives Test.  
Part (b) has a similar proof.

y

x(0, 0)

(0, 2)
(2, 2)

(3, 2)

(3, 0)L¡

L¢ L™D
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FIGURE 12
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FIGURE 13 
f sx, yd − x 2 2 2xy 1 2y
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1016 CHAPTER 14  Partial Derivatives

PROOF OF THEOREM 3, PART (a) We compute the second-order directional derivative 
of f  in the direction of u − kh, kl. The first-order derivative is given by Theorem 14.6.3:

Du f − fx h 1 fy k

Applying this theorem a second time, we have

 D 2
u  f − DusDu f d −

−

−x
 sDu f dh 1

−

−y
 sDu f dk

 − s fxx h 1 fyx kdh 1 s fxy h 1 fyy kdk

 − fxx h2 1 2 fxy hk 1 fyy k 2     (by Clairaut’s Theorem)

If we complete the square in this expression, we obtain

10  D 2
u  f − fxxSh 1

 fxy

fxx
 kD2

1
k 2

fxx
 s fxx fyy 2 f 2

xyd

We are given that fxxsa, bd . 0 and Dsa, bd . 0. But fxx and D − fxx fyy 2 fxy
2  are con- 

tinuous functions, so there is a disk B with center sa, bd and radius � . 0 such that 
fxxsx, yd . 0 and Dsx, yd . 0 whenever sx, yd is in B. Therefore, by looking at Equa-
tion 10, we see that Du

2 fsx, yd . 0 whenever sx, yd is in B. This means that if C is  
the curve obtained by intersecting the graph of f  with the vertical plane through 
Psa, b, f sa, bdd in the direction of u, then C is concave upward on an interval of length 
2�. This is true in the direction of every vector u, so if we restrict sx, yd to lie in B, the 
graph of f  lies above its horizontal tangent plane at P. Thus f sx, yd > f sa, bd whenever 
sx, yd is in B. This shows that f sa, bd is a local minimum.� ■

14.7 Exercises

 1.  Suppose s1, 1d is a critical point of a function f  with contin-
uous second derivatives. In each case, what can you say  
about f ?

 (a) fxxs1, 1d − 4,  fx ys1, 1d − 1,  fyys1, 1d − 2

 (b) fxxs1, 1d − 4,  fx ys1, 1d − 3,  fyys1, 1d − 2

 2.  Suppose (0, 2) is a critical point of a function t with contin-
uous second derivatives. In each case, what can you say  
about t?

 (a) txxs0, 2d − 21,  tx ys0, 2d − 6,  tyys0, 2d − 1

 (b) txxs0, 2d − 21,  tx ys0, 2d − 2,  tyys0, 2d − 28

 (c) txxs0, 2d − 4,   tx ys0, 2d − 6,  tyys0, 2d − 9

 3–4 Use the level curves in the figure to predict the location of  
the critical points of f  and whether f  has a saddle point or a local 
maximum or minimum at each critical point. Explain your 

reasoning. Then use the Second Derivatives Test to confirm your 
predictions.

 3. f sx, yd − 4 1 x 3 1 y 3 2 3xy

x

y

4
4.2

5
6

1

1

3.7

3.7

3.2

3.2
2

1
0

_1

_1
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 SECTION 14.7  Maximum and Minimum Values 1017

at each of them. Which of them give rise to maximum values? 
Minimum values? Saddle points?

25–28 Use a graph or level curves or both to estimate the local  
maximum and minimum values and saddle point(s) of the 
function. Then use calculus to find these values precisely.

 25. f sx, yd − x 2 1 y 2 1 x22y22

 26. f sx, yd − sx 2 yde2x 22y 2

 27.  f sx, yd − sin x 1 sin y 1 sinsx 1 yd, 
0 < x < 2�, 0 < y < 2�

 28.  f sx, yd − sin x 1 sin y 1 cossx 1 yd, 
0 < x < �y4, 0 < y < �y4

29–32 Find the critical points of f  correct to three decimal places 
(as in Example 4). Then classify the critical points and find the 
highest or lowest points on the graph, if any.

 29. f sx, yd − x 4 1 y 4 2 4x 2y 1 2y

 30. f sx, yd − y 6 2 2y 4 1 x 2 2 y 2 1 y

 31. f sx, yd − x 4 1 y 3 2 3x 2 1 y 2 1 x 2 2y 1 1

 32. f sx, yd − 20e2x22y2
 sin 3x cos 3y,  | x | < 1,  | y | < 1

33– 40 Find the absolute maximum and minimum values of f  on 
the set D.

 33.  f sx, yd − x 2 1 y 2 2 2x,  D is the closed triangular region  
with vertices s2, 0d, s0, 2d, and s0, 22d

 34.  f sx, yd − x 1 y 2 xy,  D is the closed triangular region  
with vertices s0, 0d, s0, 2d, and s4, 0d

 35.  f sx, yd − x 2 1 y 2 1 x 2 y 1 4, 
D − hsx, yd | | x | < 1, | y | < 1j

 36.  f sx, yd − x 2 1 xy 1 y 2 2 6y, 
D − hsx, yd | 23 < x < 3, 0 < y < 5j

 37.  f sx, yd − x 2 1 2y 2 2 2x 2 4y 1 1, 
D − hsx, yd | 0 < x < 2, 0 < y < 3j

 38.  f sx, yd − xy 2,  D − hsx, yd | x > 0, y > 0, x 2 1 y 2 < 3j

 39. f sx, yd − 2x 3 1 y 4,  D − hsx, yd | x 2 1 y 2 < 1j

 40.  f sx, yd − x 3 2 3x 2 y 3 1 12y,  D is the quadrilateral  
whose vertices are s22, 3d, s2, 3d, s2, 2d, and s22, 22d

 41.  For functions of one variable it is impossible for a con tinuous 
function to have two local maxima and no local minimum. 
But for functions of two variables such functions exist. Show 
that the function

f sx, yd − 2sx 2 2 1d2 2 sx 2 y 2 x 2 1d2

has only two critical points, but has local maxima at both of 
them. Then produce a graph with a carefully chosen domain 
and viewpoint to see how this is possible.

;

;

 4. f sx, yd − 3x 2 x 3 2 2y 2 1 y 4

y

x

_2.5

_2.9
_2.7

_1_1
.5

1.9
1.7
1.5

1.5

10.50

_2
1

1

_1

_1

 5–22 Find the local maximum and minimum values and saddle 
point(s) of the function. You are encouraged to use a calculator or 
computer to graph the function with a domain and viewpoint that 
reveals all the important aspects of the function.

 5. f sx, yd − x 2 1 xy 1 y 2 1 y

 6. f sx, yd − xy 2 2x 2 2y 2 x 2 2 y 2

 7. f sx, yd − 2x2 2 8xy 1 y4 2 4y3

 8. f sx, yd − x 3 1 y 3 1 3xy

 9. f sx, yd − sx 2 yds1 2 xyd

 10. f sx, yd − yse x 2 1d

 11. f sx, yd − ysx 2 y 2 2 2x 1 7y

 12. f sx, yd − 2 2 x 4 1 2x 2 2 y 2

 13. f sx, yd − x 3 2 3x 1 3xy 2

 14. f sx, yd − x 3 1 y 3 2 3x 2 2 3y 2 2 9x

 15. f sx, yd − x 4 2 2x 2 1 y 3 2 3y

 16. f sx, yd − x 2 1 y 4 1 2xy

 17. f sx, yd − xy 2 x 2 y 2 xy 2

 18. f sx, yd − s6x 2 x 2ds4y 2 y 2d

 19. f sx, yd − e x cos y

 20. f sx, yd − sx 2 1 y 2de2x

21.  f sx, yd − y 2 2 2y cos x,  21 < x < 7

 22. f sx, yd − sin x sin y,  2� , x , �,  2� , y , �

 23.  Show that f sx, yd − x 2 1 4y 2 2 4xy 1 2 has an infinite 
number of critical points and that D − 0 at each one. Then 
show that f  has a local (and absolute) minimum at each criti-
cal point.

 24.  Show that f sx, yd − x 2ye2x 22y 2
 has maximum values at 

   (61, 1ys2 ) and minimum values at (61, 21ys2 ). Show 
also that f  has infinitely many other critical points and D − 0 
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1018 CHAPTER 14  Partial Derivatives

 42.  If a function of one variable is continuous on an interval and 
has only one critical number, then a local maximum has to 
be an absolute maximum. But this is not true for functions 
of two variables. Show that the function

f sx, yd − 3xe y 2 x 3 2 e 3y

has exactly one critical point and that f  has a local maxi-
mum there that is not an absolute maximum. Produce a 
graph with a carefully chosen domain and viewpoint to see 
how this is possible.

 43.  Find the shortest distance from the point s2, 0, 23d to the 
plane x 1 y 1 z − 1.

 44.  Find the point on the plane x 2 2y 1 3z − 6 that is closest 
to the point s0, 1, 1d.

 45.  Find the points on the cone z 2 − x 2 1 y 2 that are closest to 
the point s4, 2, 0d.

 46.  Find the points on the surface y 2 − 9 1 xz that are closest 
to the origin.

 47.  Find three positive numbers whose sum is 100 and whose  
product is a maximum.

 48.  Find three positive numbers whose sum is 12 and the sum 
of whose squares is as small as possible.

 49.  Find the maximum volume of a rectangular box that is 
inscribed in a sphere of radius r.

 50.  Find the dimensions of the box with volume 1000 cm3 that 
has minimal surface area.

 51.  Find the volume of the largest rectangular box in the first 
octant with three faces in the coordinate planes and one  
vertex in the plane x 1 2y 1 3z − 6.

 52.  Find the dimensions of the rectangular box with largest  
volume if the total surface area is given as 64 cm2.

 53.  Find the dimensions of a rectangular box of maximum  
volume such that the sum of the lengths of its 12 edges  
is a constant c.

 54.  The base of an aquarium with given volume V is made of 
slate and the sides are made of glass. If slate costs five times 
as much (per unit area) as glass, find the dimensions of the 
aquarium that minimize the cost of the materials.

 55.  A cardboard box without a lid is to have a volume of 
32,000 cm3. Find the dimensions that minimize the amount  
of cardboard used.

 56.  A rectangular building is being designed to minimize  
heat loss. The east and west walls lose heat at a rate of 
10 unitsym2 per day, the north and south walls at a rate of 
8 unitsym2 per day, the floor at a rate of 1 unitym2 per day, 
and the roof at a rate of 5 unitsym2 per day. Each wall must 
be at least 30 m long, the height must be at least 4 m, and 
the volume must be exactly 4000 m3.

 (a)  Find and sketch the domain of the heat loss as a 
function of the lengths of the sides.

;  (b)  Find the dimensions that minimize heat loss. (Check 
both the critical points and the points on the boundary of 
the domain.)

 (c)  Could you design a building with even less heat loss if 
the restrictions on the lengths of the walls were removed?

 57.  If the length of the diagonal of a rectangular box must be L, 
what is the largest possible volume?

 58.  A model for the yield Y of an agricultural crop as a function 
of the nitrogen level N and phosphorus level P in the soil 
(measured in appropriate units) is

YsN, Pd − kNPe2N2P

where k is a positive constant. What levels of nitrogen and 
phosphorus result in the best yield?

 59.  The Shannon index (sometimes called the Shannon-Wiener 
index or Shannon-Weaver index) is a measure of diversity in 
an ecosystem. For the case of three species, it is defined as

H − 2p1 ln p1 2 p2 ln p2 2 p3 ln p3

where pi is the proportion of species i in the ecosystem.
 (a)  Express H as a function of two variables using the fact 

that p1 1 p2 1 p3 − 1.
 (b) What is the domain of H ?
 (c)  Find the maximum value of H. For what values of  

p1, p2, p3 does it occur?

 60.  Three alleles (alternative versions of a gene) A, B, and O  
determine the four blood types A (AA or AO), B (BB or 
BO), O (OO), and AB. The Hardy-Weinberg Law states that 
the proportion of individuals in a population who carry two 
different alleles is

P − 2pq 1 2pr 1 2rq

where p, q, and r are the proportions of A, B, and O in the  
population. Use the fact that p 1 q 1 r − 1 to show that P 
is at most 23.

 61.  Method of Least Squares Suppose that a scientist has rea-
son to believe that two quan ti ties x and y are related linearly, 
that is, y − mx 1 b, at least approximately, for some values 
of m and b. The scientist performs an experiment and col-
lects data in the form of points sx1, y1d, sx2, y2 d, . . . , sxn, yn d, 
and then plots these points. The points don’t lie exactly on a 
straight line, so the scientist wants to find constants m and b 
so that the line y − mx 1 b “fits” the points as well as pos-
sible (see the figure).

(⁄, ›)

(xi, yi)

mxi+b

di

y

x0
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and  m o
n

i−1
 xi

2 1 b o
n

i−1
 xi − o

n

i−1
 xi yi

Thus the line is found by solving these two equations in the 
two unknowns m and b. (See Section 1.2 for a further discus-
sion and applications of the method of least squares.)

 62.  Find an equation of the plane that passes through the point 
s1, 2, 3d and cuts off the smallest volume in the first octant.

  Let di − yi 2 smxi 1 bd be the vertical deviation of the 
point sxi, yid from the line. The method of least squares deter-
mines m and b so as to minimize �n

i−1 d 2
i , the sum of the 

squares of these deviations. Show that, according to this 
method, the line of best fit is obtained when

m o
n

i−1
 xi 1 bn − o

n

i−1
 yi

DISCOVERY PROJECT QUADRATIC APPROXIMATIONS AND CRITICAL POINTS

The Taylor polynomial approximation to functions of one variable that we discussed in Chap-
ter 11 can be extended to functions of two or more variables. Here we investigate qua dratic 
approximations to functions of two variables and use them to give insight into the Second 
Derivatives Test for classifying critical points.

In Section 14.4 we discussed the linearization of a function f  of two variables at a  
point sa, bd:

Lsx, yd − f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd

Recall that the graph of L is the tangent plane to the surface z − f sx, yd at sa, b, f sa, bdd and 
the corresponding linear approximation is f sx, yd < Lsx, yd. The linearization L is also called 
the first-degree Taylor polynomial of f  at sa, bd.

 1.  If f  has continuous second-order partial derivatives at sa, bd, then the second-degree  
Taylor polynomial of f  at sa, bd is

 Qsx, yd − f sa, bd 1 fxsa, bdsx 2 ad 1 fysa, bdsy 2 bd
 1 12 fxxsa, bdsx 2 ad2 1 fx ysa, bdsx 2 adsy 2 bd 1 1

2 fyysa, bdsy 2 bd2

   and the approximation f sx, yd < Qsx, yd is called the quadratic approximation to f   
at sa, bd. Verify that Q has the same first- and second-order partial derivatives as f   
at sa, bd.

 2. (a)  Find the first- and second-degree Taylor polynomials L and Q of f sx, yd − e2x 22y 2
  

at (0, 0).
  (b) Graph f , L, and Q. Comment on how well L and Q approximate f .

 3. (a)  Find the first- and second-degree Taylor polynomials L and Q for f sx, yd − xe y  
at (1, 0).

  (b) Compare the values of L, Q, and f  at (0.9, 0.1).
  (c) Graph f , L, and Q. Comment on how well L and Q approximate f .

 4.  In this problem we analyze the behavior of the polynomial f sx, yd − ax 2 1 bxy 1 cy 2  
(without using the Second Derivatives Test) by identifying the graph as a paraboloid.

  (a) By completing the square, show that if a ± 0, then

f sx, yd − ax 2 1 bxy 1 cy 2 − aFSx 1
b

2a
 yD2

1 S 4ac 2 b 2

4a 2 Dy 2G
  (b)  Let D − 4ac 2 b 2. Show that if D . 0 and a . 0, then f  has a local minimum  

at (0, 0).
  (c) Show that if D . 0 and a , 0, then f  has a local maximum at (0, 0).
  (d) Show that if D , 0, then (0, 0) is a saddle point.

;

;

(continued )
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1020 CHAPTER 14  Partial Derivatives

Lagrange Multipliers

In Example 14.7.6 we maximized a volume function V − xyz subject to the constraint 
2xz 1 2yz 1 xy − 12, which expressed the side condition that the surface area was 
12 m2. In this section we present Lagrange’s method for maximizing or minimizing a 
general function f sx, y, zd subject to a constraint (or side condition) of the form 
tsx, y, zd − k.

■	 Lagrange Multipliers: One Constraint
First we explain the geometric basis of Lagrange’s method for functions of two variables. 
We start by trying to find the extreme values of f sx, yd subject to a constraint of the form 
tsx, yd − k. In other words, we seek the extreme values of f sx, yd when the point sx, yd 
is restricted to lie on the level curve tsx, yd − k. Figure 1 shows this curve together with 
several level curves of f . These have the equations f sx, yd − c, where c − 7, 8, 9, 10, 11. 
To maximize f sx, yd subject to tsx, yd − k is to find the largest value of c such that the 
level curve f sx, yd − c intersects tsx, yd − k. It appears from Figure 1 that this happens 
when these curves just touch each other, that is, when they have a common tangent line. 
(Otherwise, the value of c could be increased further.) This means that the normal lines 
at the point sx0, y0 d where they touch are identical. So the gradient vectors are parallel; 
that is, = f sx0, y0 d − � =tsx0, y0 d for some scalar �.

This kind of argument also applies to the problem of finding the extreme values of 
f sx, y, zd subject to the constraint tsx, y, zd − k. Thus the point sx, y, zd is restricted to lie 
on the level surface S with equation tsx, y, zd − k. Instead of the level curves in Figure 1, 
we consider the level surfaces f sx, y, zd − c and argue that if the maximum value of f   
is f sx0, y0, z0 d − c, then the level surface f sx, y, zd − c is tangent to the level surface 
tsx, y, zd − k and so the corresponding gradient vectors are parallel.

This intuitive argument can be made precise as follows. Suppose that a function f  has 
an extreme value at a point Psx0, y0, z0 d on the surface S and let C be a curve with vector 
equation rstd − kxstd, ystd, zstdl that lies on S and passes through P. If t0 is the parameter 
value corresponding to the point P, then rst0d − kx0, y0, z0 l. The composite function 
hstd − f sxstd, ystd, zstdd represents the values that f  takes on the curve C. Since f  has an 
extreme value at sx0, y0, z0 d, it follows that h has an extreme value at t0, so h9st0d − 0. But 
if f  is differentiable, we can use the Chain Rule to write

 0 − h9st0d

 − fxsx0, y0, z0 dx9st0 d 1 fysx0, y0, z0 dy9st0 d 1 fzsx0, y0, z0 dz9st0 d

 − = f sx0, y0, z0 d � r9st0 d

This shows that the gradient vector = f sx0, y0, z0 d is orthogonal to the tangent vector r9st0 d 
to every such curve C. But we already know from Section 14.6 that the gradient vector  

14.8

f(x,　y)=11

f(x,　y)=10

f(x,　y)=9

f(x,　y)=8

f(x,　y)=7

x

y

0

g(x,　y)=k

FIGURE 1

 5. (a)  Suppose f  is any function with continuous second-order partial derivatives such that 
f s0, 0d − 0 and (0, 0) is a critical point of f . Write an expression for the second-
degree Taylor polynomial, Q, of f  at (0, 0).

  (b) What can you conclude about Q from Problem 4?
  (c)  In view of the quadratic approximation f sx, yd < Qsx, yd, what does part (b) suggest 

about f ?
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of t, =tsx0, y0, z0 d, is also orthogonal to r9st0 d for every such curve (see Equation 14.6.18). 
This means that the gradient vectors = f sx0, y0, z0 d and =tsx0, y0, z0 d must be parallel. 
There  fore, if =tsx0, y0, z0 d ± 0, there is a number � such that

1  = f sx0, y0, z0 d − � =tsx0, y0, z0 d

The number � in Equation 1 is called a Lagrange multiplier. The procedure based on 
Equation 1 is as follows.

Method of Lagrange Multipliers To find the maximum and minimum values  
of f sx, y, zd subject to the constraint tsx, y, zd − k [assuming that these extreme 
values exist and =t ± 0 on the surface tsx, y, zd − k]:

1. Find all values of x, y, z, and � such that

 = f sx, y, zd − � =tsx, y, zd

and  tsx, y, zd − k

2. Evaluate f  at all the points sx, y, zd that result from step 1. The largest of these 
values is the maximum value of f ; the smallest is the minimum value of f .

In deriving Lagrange’s method we 
assumed that =t ± 0. In each of our 
examples you can check that =t ± 0 
at all points where tsx, y, zd − k. See 
Exercise 35 for what can go wrong if 
=t − 0. Exercise 34 shows what can 
happen if =t is undefined.

If we write the vector equation = f − � =t in terms of components, then the equations 
in step 1 become

fx − �tx      fy − �ty      fz − �tz      tsx, y, zd − k

This is a system of four equations in the four unknowns x, y, z, and �, and we must find 
all possible solutions (although the explicit values of � are not needed for the conclusion 
of the method). If x − x0 , y − y0 , z − z0 is a solution to this system of equations and the 
corresponding value of � is not 0, then =f sx0, y0, z0d and =tsx0, y0, z0d are parallel (as we 
argued geometrically at the beginning of the section). If the value of �  is 0, then 
=f sx0, y0, z0d − 0 and so sx0, y0, z0d is a critical point of f. It follows that f sx0, y0, z0d is a 
possible local extreme value of f  on its domain, and hence also a possible extreme value 
of f  subject to the given constraint (see Exercise 61).

For functions of two variables the method of Lagrange multipliers is similar to the 
method just described. To find the extreme values of f sx, yd subject to the constraint 
tsx, yd − k, we look for values of x, y, and � such that

= f sx, yd − � =tsx, yd    and    tsx, yd − k

This amounts to solving three equations in three unknowns:

fx − �tx      fy − �ty      tsx, yd − k

EXAMPLE 1 Find the extreme values of the function f sx, yd − x 2 1 2y 2 on the  
circle x 2 1 y 2 − 1.

SOLUTION We are asked for the extreme values of f  subject to the constraint 
tsx, yd − x 2 1 y 2 − 1. Using Lagrange multipliers, we solve the equations = f − � =t 

Lagrange multipliers are named after 
the French-Italian mathematician 
Joseph-Louis Lagrange (1736–1813). 
See Section 4.2 for a biographical 
sketch of Lagrange.
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1022 CHAPTER 14  Partial Derivatives

and tsx, yd − 1, which can be written as

fx − � tx      fy − � ty      tsx, yd − 1

or as

2   2x − 2x� 

3   4y − 2y� 

4  x 2 1 y 2 − 1 

From (2) we have 2xs1 2 �d − 0, so x − 0 or � − 1. If x − 0, then (4)  gives y − 61. 
If � − 1, then y − 0 from (3), so then (4) gives x − 61. Therefore f  has possible 
extreme values at the points s0, 1d, s0, 21d, s1, 0d, and s21, 0d. Evaluating f  at these 
four points, we find that

f s0, 1d − 2      f s0, 21d − 2      f s1, 0d − 1      f s21, 0d − 1

Therefore the maximum value of f  on the circle x 2 1 y 2 − 1 is f s0, 61d − 2 and the 
minimum value is f s61, 0d − 1. In geometric terms, these correspond to the highest 
and lowest points on the curve C in Figure 2, where C consists of those points on the 
paraboloid z − x2 1 2y2 that are directly above the constraint circle x2 1 y2 − 1.

Figure 3 shows a contour map of f. The extreme values of f sx, yd − x 2 1 2y 2 
correspond to the level curves of f  that just touch the circle x 2 1 y 2 − 1.

z

x
y

C

 ≈+¥=1

z=≈+2¥

FIGURE 2

x

y

0

≈+¥=1

f(x, y)=2
f(x, y)=1

FIGURE 3 � ■

Our next illustration of Lagrange’s method is to reconsider the problem given in 
Example 14.7.6.

EXAMPLE 2 A rectangular box without a lid is to be made from 12 m2 of cardboard. 
Find the maximum volume of such a box.

SOLUTION As in Example 14.7.6, we let x, y, and z be the length, width, and height, 
respectively, of the box in meters. Then we wish to maximize

V − xyz

subject to the constraint

tsx, y, zd − 2xz 1 2yz 1 xy − 12

Many of the optimization problems 
that we encountered in Section 4.7 
can be viewed as optimizing a 
function of two variables subject to a 
constraint. In Exercises 17–22 you are 
asked to revisit several problems from 
Section 4.7 and solve them using the 
method of Lagrange multipliers.
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Using the method of Lagrange multipliers, we look for values of x, y, z, and � such that 
=V − � =t and tsx, y, zd − 12. This gives the equations

Vx − �tx

Vy − �ty

Vz − �tz

2xz 1 2yz 1 xy − 12

which become

5   yz − �s2z 1 yd

6   xz − �s2z 1 xd

7   xy − �s2x 1 2yd

8  2xz 1 2yz 1 xy − 12

There are no general rules for solving systems of equations. Sometimes some ingenuity 
is required. In the present example you might notice that if we multiply (5) by x, (6)  
by y, and (7) by z, then the left sides of these equations will be identical. Doing this,  
we have

9   xyz − �s2xz 1 xyd 

10   xyz − �s2yz 1 xyd 

11   xyz − �s2xz 1 2yzd 

In general � can be 0, but here we observe that � ± 0 because � − 0 would imply 
yz − xz − xy − 0 from (5), (6), and (7) and this would contradict (8). Therefore, from 
(9) and (10), we have

2xz 1 xy − 2yz 1 xy

which gives xz − yz. But z ± 0 (since z − 0 would give V − 0), so x − y. From (10) 
and (11) we have

2yz 1 xy − 2xz 1 2yz

which gives 2xz − xy and so (since x ± 0) y − 2z. If we now put x − y − 2z in (8), 
we get

4z2 1 4z2 1 4z2 − 12

Since x, y, and z are all positive, we therefore have z − 1 and so x − 2 and y − 2. 
Thus we have only one point where f  may have an extreme value; how do we know if 
this point corresponds to a maximum or minimum? As in Example 14.7.6, we argue 
that there must be a maximum volume, which must occur at the point we found.� ■

EXAMPLE 3 Find the points on the sphere x 2 1 y 2 1 z2 − 4 that are closest to and  
farthest from the point s3, 1, 21d.

SOLUTION The distance from a point sx, y, zd to the point s3, 1, 21d is

d − ssx 2 3d2 1 sy 2 1d2 1 sz 1 1d2 

but the algebra is simpler if we instead maximize and minimize the square of the  
distance:

d 2 − f sx, y, zd − sx 2 3d2 1 sy 2 1d2 1 sz 1 1d2

Another method for solving the 
system of equations (5 –8) is to solve 
each of Equations 5, 6, and 7 for � 
and then to equate the resulting 
expressions.
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1024 CHAPTER 14  Partial Derivatives

The constraint is that the point sx, y, zd lies on the sphere, that is,

tsx, y, zd − x 2 1 y 2 1 z2 − 4

According to the method of Lagrange multipliers, we solve = f − � =t, t − 4. This 
gives

12   2sx 2 3d − 2x� 

13   2sy 2 1d − 2y� 

14   2sz 1 1d − 2z� 

15  x 2 1 y 2 1 z2 − 4 

The simplest way to solve these equations is to solve for x, y, and z in terms of � from 
(12), (13), and (14), and then substitute these values into (15). From (12) we have

x 2 3 − x�    ›?     xs1 2 �d − 3    ›?     x −
3

1 2 �

[Note that 1 2 � ± 0 because � − 1 is impossible from (12).] Similarly, (13) and (14) 
give

y −
1

1 2 �
      z − 2

1

1 2 �

Therefore, from (15), we have

32

s1 2 �d2 1
12

s1 2 �d2 1
s21d2

s1 2 �d2 − 4

which gives s1 2 �d2 − 11
4 , 1 2 � − 6s11y2, so

� − 1 6
s11

2

These values of � then give the corresponding points sx, y, zd:

S 6

s11
 
, 

2

s11
 
, 2

2

s11
 D    and    S2

6

s11
 
, 2

2

s11
 
, 

2

s11
 D

It’s easy to see that f  has a smaller value at the first of these points, so the closest point 

is (6ys11, 2ys11, 22ys11) and the farthest is (26ys11, 22ys11, 2ys11).� ■

EXAMPLE 4 Find the extreme values of f sx, yd − x 2 1 2y 2 on the disk 
D − hsx, yd | x 2 1 y 2 < 1j.

SOLUTION According to the procedure in (14.7.9), we compare the values of f  at the 
critical points in D with the extreme values of f  on the boundary of D. Since fx − 2x 
and fy − 4y, the only critical point is s0, 0d. We compare the value of f  at that point 
with the extreme values on the boundary that we found in Example 1 using Lagrange 
multipliers:

f s0, 0d − 0   f s61, 0d − 1   f s0, 61d − 2

FIGURE 4

Figure 4 shows the sphere and the 
nearest point P in Example 3. Can  
you see how to find the coordinates 
of P without using calculus?

z

y

x

(3, 1, _1)

P
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 SECTION 14.8  Lagrange Multipliers 1025

Therefore the maximum value of f  on D is f s0, 61d − 2  and the minimum value is 
f s0, 0d − 0. Figure 5 shows the portion of the graph of f  above the disk D. You can see 
that the highest point on the surface occurs at s0, 61d and the lowest point is at the 
origin. Figure 6 shows a contour map of f  superimposed on the disk D.

≈+¥¯1

z

x y

z=f(x, y)

D

FIGURE 5

x

y

0

f(x, y)=2
f(x, y)=1

D

FIGURE 6 � ■

■	 Lagrange Multipliers: Two Constraints
Suppose now that we want to find the maximum and minimum values of a function 
f sx, y, zd subject to two constraints (side conditions) of the form tsx, y, zd − k and 
hsx, y, zd − c. Geometrically, this means that we are looking for the extreme values of f  
when sx, y, zd  is restricted to lie on the curve of intersection C of the level surfaces 
tsx, y, zd − k and hsx, y, zd − c. (See Figure 7.) Suppose f  has such an extreme value at 
a point Psx0, y0, z0d. We know from the beginning of this section that = f  is orthogonal to 
C at P. But we also know that =t is orthogonal to tsx, y, zd − k and =h is orthogonal  
to hsx, y, zd − c, so =t and =h are both orthogonal to C. This means that the gradient 
vector = f sx0, y0, z0 d is in the plane determined by =tsx0, y0, z0 d and =hsx0, y0, z0 d. (We 
assume that these gradient vectors are not zero and not parallel.) So there are numbers � 
and � (both called Lagrange multi pliers) such that

16  = f sx0, y0, z0 d − � =tsx0, y0, z0 d 1 � =hsx0, y0, z0 d

In this case Lagrange’s method is to look for extreme values by solving five equations in 
the five unknowns x, y, z, �, and �. These equations are obtained by writing Equa tion 16 
in terms of its components and using the constraint equations:

 fx − �tx 1 �hx

 fy − �ty 1 �hy

 fz − �tz 1 �hz

 tsx, y, zd − k

 hsx, y, zd − c

h=c

g=k

C

±g

P
±h

g

P
±h

±f

FIGURE 7
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1026 CHAPTER 14  Partial Derivatives

EXAMPLE 5 Find the maximum value of the function f sx, y, zd − x 1 2y 1 3z on the 
curve of intersection of the plane x 2 y 1 z − 1 and the cylinder x 2 1 y 2 − 1.

SOLUTION We maximize the function f sx, y, zd − x 1 2y 1 3z subject to the con-
straints tsx, y, zd − x 2 y 1 z − 1 and hsx, y, zd − x 2 1 y 2 − 1. The Lagrange 
condition is = f − � =t 1 � =h, so we solve the equations

17   1 − � 1 2x�

18   2 − 2� 1 2y�

19   3 − �

20   x 2 y 1 z − 1

21   x 2 1 y 2 − 1

Putting � − 3 [from (19) ] in (17), we get 2x� − 22, so x − 21y�. Similarly, (18) 
gives y − 5ys2�d. Substitution in (21) then gives

1

�2 1
25

4�2 − 1

and so �2 − 29
4 , � − 6s29 y2. Then x − 72ys29 , y − 65ys29 , and, from (20), 

z − 1 2 x 1 y − 1 6 7ys29 . The corresponding values of f  are

7
2

s29 
1 2S6

5

s29 D 1 3S1 6
7

s29 D − 3 6 s29 

Therefore the maximum value of f  on the given curve is 3 1 s29 . ■

y

x

z

FIGURE 8

The cylinder x 2 1 y 2 − 1 intersects 
the plane x 2 y 1 z − 1 in an ellipse 
(Figure 8). Example 5 asks for the 
maximum value of f  when sx, y, zd is 
restricted to lie on the ellipse.

14.8 Exercises

 1.  Pictured are a contour map of f  and a curve with equation 
tsx, yd − 8. Estimate the maximum and minimum values  
of f  subject to the constraint that tsx, yd − 8. Explain your 
reasoning.

y

x0

70
60

50
40

30

20
10

g(x, y)=8

 2. (a)  Use a graphing calculator or computer to graph the  
circle x 2 1 y 2 − 1. On the same screen, graph several 
curves of the form x 2 1 y − c until you find two that 

;

just touch the circle. What is the significance of the  
values of c for these two curves?

 (b)  Use Lagrange multipliers to find the extreme values of 
f sx, yd − x 2 1 y subject to the constraint x 2 1 y 2 − 1. 
Compare your answers with those in part (a).

 3–16 Each of these extreme value problems has a solution with 
both a maximum value and a minimum value. Use Lagrange 
multipliers to find the extreme values of the function subject to 
the given constraint.

 3. f sx, yd − x 2 2 y 2,  x 2 1 y 2 − 1

 4. f sx, yd − x 2y, x 2 1 y 4 − 5

 5. f sx, yd − xy,  4x 2 1 y 2 − 8

 6. f sx, yd − xe y,  x 2 1 y 2 − 2

 7. f sx, yd − 2x 2 1 6y 2, x 4 1 3y 4 − 1

 8. f sx, yd − xye2x 22y 2
, 2x 2 y − 0

 9. f sx, y, zd − 2x 1 2y 1 z,  x 2 1 y 2 1 z 2 − 9

 10. f sx, y, zd − exyz,  2x 2 1 y 2 1 z 2 − 24
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 34.  Consider the problem of maximizing the function 
f sx, yd − 2x 1 3y subject to the constraint sx 1 sy − 5.

 (a)  Try using Lagrange multipliers to solve the problem.
 (b)  Does f s25, 0d give a larger value than the one in part (a)?
 (c)  Solve the problem by graphing the constraint equation 

and several level curves of f .
 (d)  Explain why the method of Lagrange multipliers fails to 

solve the problem.
 (e)  What is the significance of f s9, 4d?

 35.  Consider the problem of minimizing the function f sx, yd − x 
on the curve y 2 1 x 4 2 x 3 − 0 (a piriform).

 (a)  Try using Lagrange multipliers to solve the problem.
 (b)  Show that the minimum value is f s0, 0d − 0 but the 

Lagrange condition = f s0, 0d − �=ts0, 0d is not satisfied 
for any value of �.

 (c)  Explain why Lagrange multipliers fail to find the mini-
mum value in this case.

 36. (a)  Use software that plots implicitly defined curves to  
estimate the minimum and maximum values of 
f sx, yd − x 3 1 y 3 1 3xy subject to the con straint 
sx 2 3d2 1 sy 2 3d2 − 9 by graphical methods.

  (b)  Solve the problem in part (a) with the aid of Lagrange  
multipliers. You will need to solve the equations numeri-
cally. Compare your answers with those in part (a).

 37.  The total production P of a certain product depends on the 
amount L of labor used and the amount K of capital invest-
ment. In Section 14.1 and the project following Section 14.3 
we discussed how the Cobb-Douglas model P − bL�K 12� 
follows from certain economic assumptions, where b and � 
are positive constants and � , 1. If the cost of a unit of labor 
is m and the cost of a unit of capital is n, and the company 
can spend only p dollars as its total budget, then maximizing 
the production P is subject to the constraint mL 1 nK − p. 
Show that the maximum production occurs when

L −
�p

m
    and    K −

s1 2 �dp
n

 38.  Referring to Exercise 37, we now suppose that the pro- 
duction is fixed at bL�K 12� − Q, where Q is a constant.  
What values of L and K minimize the cost function 
CsL, K d − mL 1 nK ?

 39.  Use Lagrange multipliers to prove that the rectangle with 
maximum area that has a given perimeter p is a square.

 40.  Use Lagrange multipliers to prove that the triangle with  
maximum area that has a given perimeter p is equilateral. 
  Hint: Use Heron’s formula for the area:

A − ssss 2 xdss 2 ydss 2 zd

where s − py2 and x, y, z are the lengths of the sides.

;

 11. f sx, y, zd − xy 2z,  x 2 1 y 2 1 z2 − 4

 12. f sx, y, zd − x 2 1 y 2 1 z 2, x 2 1 y 2 1 z 2 1 xy − 12

 13. f sx, y, zd − x 2 1 y 2 1 z2,  x 4 1 y 4 1 z4 − 1

 14. f sx, y, zd − x 4 1 y 4 1 z4,  x 2 1 y 2 1 z2 − 1

 15. f sx, y, z, td − x 1 y 1 z 1 t,  x 2 1 y 2 1 z2 1 t 2 − 1

 16. f sx1, x2, . . . , xnd − x1 1 x2 1 ∙ ∙ ∙ 1 xn, 

  x 2
1 1 x 2

2 1 ∙ ∙ ∙ 1 x 2
n − 1

17–22 Use Lagrange multipliers to give an alternate solution to 
the indicated exercise in Section 4.7.

 17. Exercise 3

 18. Exercise 8

 19. Exercise 7

 20. Exercise 18

 21. Exercise 25

 22. Exercise 24

23–24 The method of Lagrange multipliers assumes that the 
extreme values exist, but that is not always the case. Show that the 
problem of finding the minimum value of f  subject to the given 
constraint can be solved using Lagrange multipliers, but f  does 
not have a maximum value with that constraint.

 23. f sx, yd − x 2 1 y 2, xy − 1

 24. f sx, y, zd − x 2 1 2y 2 1 3z 2, x 1 2y 1 3z − 10

25–26 Use Lagrange multipliers to find the maximum value of f  
subject to the given constraint. Then show that f  has no minimum 
value with that constraint.

 25. f sx, yd − e xy, x 3 1 y 3 − 16

 26. f sx, y, zd − 4x 1 2y 1 z, x 2 1 y 1 z 2 − 1

27–29 Find the extreme values of f  on the region described by 
the inequality.

 27. f sx, yd − x 2 1 y 2 1 4x 2 4y,  x 2 1 y 2 < 9

 28. f sx, yd − 2x 2 1 3y 2 2 4x 2 5,  x 2 1 y 2 < 16

 29. f sx, yd − e 2xy,  x 2 1 4y 2 < 1

30–33 Find the extreme values of f  subject to both constraints.

 30. f sx, y, zd − z;  x 2 1 y 2 − z 2,  x 1 y 1 z − 24

 31. f sx, y, zd − x 1 y 1 z;  x 2 1 z 2 − 2,  x 1 y − 1

 32. f sx, y, zd − x 2 1 y 2 1 z 2;  x 2 y − 1,  y 2 2 z 2 − 1

 33. f sx, y, zd − yz 1 xy;  xy − 1,  y 2 1 z2 − 1
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1028 CHAPTER 14  Partial Derivatives

41–53 Use Lagrange multipliers to give an alternate solution to 
the indicated exercise in Section 14.7.

 41. Exercise 43 42. Exercise 44

 43. Exercise 45 44. Exercise 46

 45. Exercise 47 46. Exercise 48

 47. Exercise 49 48. Exercise 50

 49. Exercise 51 50. Exercise 52

 51. Exercise 53 52. Exercise 54

 53. Exercise 57

 54. A package in the shape of a rectangular box can be mailed 
by the US Postal Service if the sum of its length and girth 
(the perimeter of a cross-section perpendicular to the length; 
see Exercise 4.7.23) is at most 108 inches. Use Lagrange 
multipliers to find the dimensions of the package with larg-
est volume that can be mailed.

 55. A grain silo is to be built by attaching a hemispherical roof 
and a flat floor onto a circular cylinder. Use Lagrange multi-
pliers to show that for a total surface area S, the volume of 
the silo is maximized when the radius and height of the cyl-
inder are equal.

 56.  Find the maximum and minimum volumes of a rectangular 
box whose surface area is 1500 cm2 and whose total edge 
length is 200 cm.

 57.  The plane x 1 y 1 2z − 2 intersects the paraboloid 
z − x 2 1 y 2 in an ellipse. Find the points on this ellipse  
that are nearest to and farthest from the origin.

 58.   The plane 4x 2 3y 1 8z − 5 intersects the cone 
z2 − x 2 1 y 2 in an ellipse.

 (a)  Graph the cone and the plane, and observe the elliptical 
intersection.

 (b)  Use Lagrange multipliers to find the highest and lowest 
points on the ellipse.

59– 60 Find the maximum and minimum values of f  subject to 
the given constraints. Use a computer algebra system to solve  

;

the system of equations that arises in using Lagrange multipliers. 
(If your CAS finds only one solution, you may need to use 
additional commands.)

 59. f sx, y, zd − ye x2z;  9x 2 1 4y 2 1 36z2 − 36, xy 1 yz − 1

 60. f sx, y, zd − x 1 y 1 z;  x 2 2 y 2 − z, x 2 1 z2 − 4

 61. Use Lagrange multipliers to find the extreme values of 
f sx, yd − 3x 2 1 y 2 subject to the constraint x 2 1 y 2 − 4y. 
Show that the minimum value corresponds to � − 0.

 62. (a)   Maximize �n
i−1 xi yi subject to the constraints 

�n
i−1 x 2

i − 1 and �n
i−1 yi

2 − 1.
 (b) Put

xi −
ai

s� a 2
j

    and    yi −
bi

s� b 2
j

 
  to show that

o  aibi < s� a 2
j  s� b 2

j

   for any numbers a1, . . . , an, b1, . . . , bn. This inequality 
is known as the Cauchy-Schwarz Inequality.

 63. (a)  Find the maximum value of 

f sx1, x2, . . . , xn d − sn x1 x2 ∙ ∙ ∙ xn
   

   given that x1, x2, . . . , xn are positive numbers and 
x1 1 x2 1 ∙ ∙ ∙ 1 xn − c, where c is a constant.

 (b)  Deduce from part (a) that if x1, x2, . . . , xn are positive 
numbers, then

sn x1 x2 ∙ ∙ ∙ xn
 <

x1 1 x2 1 ∙ ∙ ∙ 1 xn

n

   This inequality says that the geometric mean of  
n numbers is no larger than the arithmetic mean of  
the numbers. Under what circumstances are these  
two means equal?

Many rockets — such as the Saturn V that first put men on the moon — are designed to use 
three stages in their ascent into space. A large first stage initially propels the rocket until its 
fuel is consumed, at which point the stage is jettisoned to reduce the mass of the rocket. The 
smaller second and third stages function similarly in order to place the rocket’s payload into 
orbit about the earth. (With this design, at least two stages are required in order to reach the 
necessary velocities, and using three stages has proven to be a good compromise between cost 
and performance.) Our goal here is to determine the individual masses of the three stages, 
which are to be designed to minimize the total mass of the rocket while enabling it to reach a 
desired velocity.
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For a single-stage rocket consuming fuel at a constant rate, the change in velocity resulting 
from the acceleration of the rocket vehicle has been modeled by

DV − 2c lnS1 2
s1 2 SdMr

P 1 Mr
D

where Mr is the mass of the rocket engine including initial fuel, P is the mass of the payload,  
S is a structural factor determined by the design of the rocket (specifically, it is the ratio of the 
mass of the rocket vehicle without fuel to the total mass of the rocket with fuel), and c is the 
(constant) speed of exhaust relative to the rocket.

Now consider a rocket with three stages and a payload of mass A. Assume that outside 
forces are negligible and that c and S remain constant for each stage. If Mi is the mass of the 
ith stage, we can initially consider the rocket engine to have mass M1 and its payload to have 
mass M2 1 M3 1 A; the second and third stages can be handled similarly.

 1. Show that the velocity attained by the rocket after all three stages have been jettisoned is 
given by

vf − cFlnS M1 1 M2 1 M3 1 A

SM1 1 M2 1 M3 1 AD 1 lnS M2 1 M3 1 A

SM2 1 M3 1 AD 1 lnS M3 1 A

SM3 1 ADG
 2.  We wish to minimize the total mass M − M1 1 M2 1 M3 of the rocket engine subject  

to the constraint that the desired velocity vf  from Problem 1 is attained. The method of 
Lagrange multipliers is appropriate here, but difficult to implement using the current 
expressions. To simplify, we define variables Ni so that the constraint equation may be 
expressed as vf − csln N1 1 ln N2 1 ln N3 d. Since M is now difficult to express in terms of 
the Ni’s, we wish to use a simpler function that will be minimized at the same place as M. 
Show that

 
M1 1 M2 1 M3 1 A

M2 1 M3 1 A
−

s1 2 S dN1

1 2 SN1

 
M2 1 M3 1 A

M3 1 A
−

s1 2 S dN2

1 2 SN2

 
M3 1 A

A
−

s1 2 S dN3

1 2 SN3

  and conclude that

M 1 A

A
−

s1 2 S d3N1N2N3

s1 2 SN1ds1 2 SN2 ds1 2 SN3 d

 3.  Verify that lnssM 1 AdyAd is minimized at the same location as M; use Lagrange multipli-
ers and the results of Problem 2 to find expressions for the values of Ni where the minimum 
occurs subject to the constraint vf − csln N1 1 ln N2 1 ln N3 d. [Hint: Use properties of  
logarithms to help simplify the expressions.]

 4. Find an expression for the minimum value of M as a function of vf .

 5.  If we want to put a three-stage rocket into orbit 160 km above the earth’s surface, a final 
velocity of approximately 28,000 kmyh is required. Suppose that each stage is built with a 
structural factor S − 0.2 and an exhaust speed of c − 9600 kmyh.

  (a) Find the minimum total mass M of the rocket engines as a function of A.
  (b)  Find the mass of each individual stage as a function of A. (They are not equally sized.)

 6.  The same rocket would require a final velocity of approximately 39,700 kmyh in order to 
escape earth’s gravity. Find the mass of each individual stage that would minimize the total 
mass of the rocket engines and allow the rocket to propel a 200-kg probe into deep space.
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1030 CHAPTER 14  Partial Derivatives

At a hydroelectric generating station, water is piped from a dam to the power station. The rate 
at which the water flows through the pipe varies, depending on external conditions.

The power station has three different hydroelectric turbines, each with a known (and 
unique) power function that gives the amount of electric power generated as a function of the 
water flow arriving at the turbine. The incoming water can be apportioned in different volumes 
to each turbine, so the goal of this project is to determine how to distribute water among the 
turbines to give the maximum total energy production for any rate of flow.

Using experimental evidence and Bernoulli’s equation, the following quadratic models 
were determined for the power output of each turbine, along with the allowable flows of 
operation:

 KW1 − s218.89 1 0.1277Q1 2 4.08 � 1025Q 2
1 ds170 2 1.6 � 1026Q 2

T d

 KW2 − s224.51 1 0.1358Q2 2 4.69 � 1025Q 2
2 ds170 2 1.6 � 1026Q 2

T d

 KW3 − s227.02 1 0.1380Q3 2 3.84 � 1025Q 2
3 ds170 2 1.6 � 1026Q 2

T d

250 < Q1 < 1110,  250 < Q2 < 1110,  250 < Q3 < 1225

where

 Qi − flow through turbine i in cubic meters per second

 KWi − power generated by turbine i in kilowatts

 QT − total flow through the station in cubic meters per second

 1.  If all three turbines are being used, we wish to determine the flow Qi to each turbine that 
will give the maximum total energy production. Our limitations are that the flows must 
sum to the total incoming flow and the given domain restrictions must be observed. Conse-
quently, use Lagrange multipliers to find the values for the individual flows (as functions  
of QT) that maximize the total energy production 

KW1 1 KW2 1 KW3

  subject to the constraints 

Q1 1 Q2 1 Q3 − QT 

  and the domain restrictions on each Qi.

 2. For which values of QT is your result valid?

 3.  For an incoming flow of 70 m3ys, determine the distribution to the turbines and verify  
(by trying some nearby distributions) that your result is indeed a maximum.

 4.  Until now we have assumed that all three turbines are operating; is it possible in some 
situa tions that more power could be produced by using only one turbine? Make a graph of 
the three power functions and use it to help decide if an incoming flow of 30 m3ys should 
be distributed to all three turbines or routed to just one. (If you determine that only one tur-
bine should be used, which one would it be?) What if the flow is only 17 m3ys?

 5.  Perhaps for some flow levels it would be advantageous to use two turbines. If the incoming 
flow is 40 m3ys, which two turbines would you recommend using? Use Lagrange multi-pli-
ers to determine how the flow should be distributed between the two turbines to maximize 
the energy produced. For this flow, is using two turbines more efficient than using all 
three?

 6. If the incoming flow is 96 m3ys, what distribution would you recommend to the station 
management?
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 14 REVIEW

CONCEPT CHECK

 1. (a) What is a function of two variables?
 (b)  Describe three methods for visualizing a function of two 

variables.

 2.  What is a function of three variables? How can you visualize 
such a function?

 3. What does
lim

sx, yd l sa, bd
 
 f sx, yd − L

mean? How can you show that such a limit does not exist?

 4. (a) What does it mean to say that f  is continuous at sa, bd?
 (b)  If f  is continuous on R2, what can you say about its  

graph?

 5. (a)  Write expressions for the partial derivatives fxsa, bd and 
fysa, bd as limits.

 (b)  How do you interpret fxsa, bd and fysa, bd geometrically? 
How do you interpret them as rates of change?

 (c)  If f sx, yd is given by a formula, how do you calculate fx 
and fy ?

 6. What does Clairaut’s Theorem say?

 7.  How do you find a tangent plane to each of the following 
types of surfaces?

 (a) A graph of a function of two variables, z − f sx, yd
 (b)  A level surface of a function of three variables, 

Fsx, y, zd − k

 8.  Define the linearization of f  at sa, bd. What is the corre spond-
ing linear approximation? What is the geometric interpreta-
tion of the linear approximation?

 9. (a)  What does it mean to say that f  is differentiable at sa, bd?
 (b) How do you usually verify that f  is differentiable?

 10. If z − f sx, yd, what are the differentials dx, dy, and dz ?

 11.  State the Chain Rule for the case where z − f sx, yd and x and 
y are functions of one variable. What if x and y are functions 
of two variables?

 12.  If z is defined implicitly as a function of x and y by an equa-
tion of the form Fsx, y, zd − 0, how do you find −zy−x and 
−zy−y?

 13. (a)  Write an expression as a limit for the directional deriva-
tive of f  at sx0, y0 d in the direction of a unit vector 
u − k a, b l. How do you interpret it as a rate? How do 
you interpret it geometrically?

 (b)  If f  is differentiable, write an expression for Du f sx0, y0 d 
in terms of fx and fy.

 14. (a)  Define the gradient vector = f  for a function f  of two or 
three variables.

 (b) Express Du f  in terms of = f .
 (c) Explain the geometric significance of the gradient.

 15. What do the following statements mean?
 (a) f  has a local maximum at sa, bd.
 (b) f  has an absolute maximum at sa, bd.
 (c) f  has a local minimum at sa, bd.
 (d) f  has an absolute minimum at sa, bd.
 (e) f  has a saddle point at sa, bd.

 16. (a)  If f  has a local maximum at sa, bd, what can you say 
about its partial derivatives at sa, bd?

 (b) What is a critical point of f ?

 17. State the Second Derivatives Test.

 18. (a) What is a closed set in R 2? What is a bounded set?
 (b)  State the Extreme Value Theorem for functions of two  

variables.
 (c)  How do you find the values that the Extreme Value  

Theorem guarantees?

 19.  Explain how the method of Lagrange multipliers works  
in finding the extreme values of f sx, y, zd subject to the con-
straint tsx, y, zd − k. What if there is a second constraint 
hsx, y, zd − c?

Answers to the Concept Check are available at StewartCalculus.com.

 Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

 1. fysa, bd − lim
y l b

 
 f sa, yd 2 f sa, bd

y 2 b

 2.  There exists a function f  with continuous second-order  
partial derivatives such that fxsx, yd − x 1 y 2 and 
fysx, yd − x 2 y 2.

 3. fxy −
−2f

−x −y

 4. Dk f sx, y, zd − fzsx, y, zd

 5.  If f sx, yd l L as sx, yd l sa, bd along every straight line 
through sa, bd, then limsx, yd l sa, bd f sx, yd − L .

 6.  If fxsa, bd and fysa, bd both exist, then f  is differentiable  
at sa, bd.

TRUE-FALSE QUIZ
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1032 CHAPTER 14  Partial Derivatives

 7.  If f  has a local minimum at sa, bd and f  is differentiable at 
sa, bd, then = f sa, bd − 0.

 8. If f  is a function, then

lim 
sx, yd l s2, 5d

  f sx, yd − f s2, 5d 

 9. If f sx, yd − ln y, then = f sx, yd − 1yy.

 10.  If s2, 1d is a critical point of f  and 

fxxs2, 1d fyys2, 1d , f fx ys2, 1dg 2

then f  has a saddle point at s2, 1d.

 11. If f sx, yd − sin x 1 sin y, then 2s2 < Du f sx, yd < s2 .

 12.  If f sx, yd has two local maxima, then f  must have a local  
minimum.

1–2 Find and sketch the domain of the function.

 1. f sx, yd − lnsx 1 y 1 1d

 2. f sx, yd − s4 2 x 2 2 y 2 1 s1 2 x 2
 

3–4 Sketch the graph of the function.

 3. f sx, yd − 1 2 y 2 4. f sx, yd − x 2 1 sy 2 2d2

5–6 Sketch several level curves of the function.

 5. f sx, yd − s4x 2 1 y 2   6. f sx, yd − e x 1 y

 7.  Make a rough sketch of a contour map for the function whose 
graph is shown.

2
x

z

2
y

 8.  The contour map of a function f  is shown.
 (a) Estimate the value of f s3, 2d.
 (b) Is fx s3, 2d positive or negative? Explain.
 (c) Which is greater, fy s2, 1d or fy s2, 2d? Explain.

0 
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x

80
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20
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1

1 2 3 4
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4

9–10 Evaluate the limit or show that it does not exist.

 9. lim
sx, yd l s1, 1d

 
 

2xy

x 2 1 2y 2  10. lim
sx, yd l s0, 0d

 
 

2xy

x 2 1 2y 2

 11.  A metal plate is situated in the xy-plane and occupies the  
rectangle 0 < x < 10, 0 < y < 8, where x and y are mea-
sured in meters. The temperature at the point sx, yd in the 
plate is T sx, yd, where T is measured in degrees Celsius.  
Temperatures at equally spaced points were measured and 
recorded in the table.

 (a)  Estimate the values of the partial derivatives Txs6, 4d  
and Tys6, 4d. What are the units?

 (b)  Estimate the value of Du T s6, 4d, where u − si 1 jdys2 . 
Interpret your result.

 (c) Estimate the value of Txys6, 4d.
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56
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92

45
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55
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66
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78

x
y

0

2

4

6

8

10

0 2 4 6 8

 12.  Find a linear approximation to the temperature function 
T sx, yd in Exercise 11 near the point (6, 4). Then use it to  
estimate the temperature at the point (5, 3.8).

13–17 Find the first partial derivatives.

 13. f sx, yd − s5y 3 1 2x 2yd8 14. tsu, vd −
u 1 2v

u 2 1 v 2

 15. F s�, �d − � 2 lns� 2 1 � 2d

 16. Gsx, y, zd − e xz sinsyyzd

 17. Ssu, v, wd − u arctan(vsw )

EXERCISES
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 34.  The two legs of a right triangle are measured as 5 m and 
12 m with a possible error in measurement of at most 
0.2 cm in each. Use differentials to estimate the maximum 
error in the calculated value of (a) the area of the triangle 
and (b) the length of the hypotenuse.

 35.  If u − x 2y3 1 z4, where x − p 1 3p2, y − pe p, and 
z − p sin p, use the Chain Rule to find duydp.

 36.  If v − x 2 sin y 1 ye xy, where x − s 1 2t and y − st,  
use the Chain Rule to find −vy−s and −vy−t when s − 0  
and t − 1.

 37.  Suppose z − f sx, yd, where x − tss, td, y − hss, td,  
ts1, 2d − 3, tss1, 2d − 21, tts1, 2d − 4, hs1, 2d − 6, 
hss1, 2d − 25, hts1, 2d − 10, fxs3, 6d − 7, and fys3, 6d − 8. 
Find −zy−s and −zy−t when s − 1 and t − 2.

 38.  Use a tree diagram to write out the Chain Rule for the case 
where w − f st, u, vd, t − ts p, q, r, sd, u − us p, q, r, sd, and 
v − vs p, q, r, sd are all differentiable functions.

 39. If z − y 1 f sx 2 2 y 2 d, where f  is differentiable, show that

y 
−z

−x
1 x 

−z

−y
− x

 40.  The length x of a side of a triangle is increasing at a rate of 
3 inys, the length y of another side is decreasing at a rate of 
2 inys, and the contained angle � is increasing at a rate of  
0.05 radianys. How fast is the area of the triangle changing 
when x − 40 inches, y − 50 inches, and � − �y6?

 41.  If z − f su, vd, where u − xy, v − yyx, and f  has continuous 
second partial derivatives, show that

x 2 
−2z

−x 2 2 y 2 
−2z

−y 2 − 24uv 
−2z

−u −v
1 2v 

−z

−v

 42. If cossxyzd − 1 1 x 2y 2 1 z 2, find 
−z

−x
 and 

−z

−y
.

 43. Find the gradient of the function f sx, y, zd − x 2e yz2
.

 44. (a) When is the directional derivative of f  a maximum?
 (b) When is it a minimum?
 (c) When is it 0?
 (d) When is it half of its maximum value?

 45–46 Find the directional derivative of f  at the given point in 
the indicated direction.

 45.  f sx, yd − x 2e2y,  s22, 0d,  
in the direction toward the point s2, 23d

 46.  f sx, y, zd − x 2 y 1 xs1 1 z ,  s1, 2, 3d,  
in the direction of v − 2 i 1 j 2 2k

 47.  Find the maximum rate of change of f sx, yd − x 2 y 1 sy   
at the point s2, 1d. In which direction does it occur?

 18.  The speed of sound traveling through ocean water is a func-
tion of temperature, salinity, and pressure. It has been mod-
eled by the function

 C − 1449.2 1 4.6T 2 0.055T 2 1 0.00029T 3

     1 s1.34 2 0.01T dsS 2 35d 1 0.016D

where C is the speed of sound (in meters per second), T is 
the temperature (in degrees Celsius), S is the salinity (the 
concentration of salts in parts per thousand, which means 
the number of grams of dissolved solids per 1000 g of  
water), and D is the depth below the ocean surface (in 
meters). Compute −Cy−T, −Cy−S, and −Cy−D when 
T − 10°C, S − 35 parts per thousand, and D − 100 m.  
Explain the physical significance of these partial  
derivatives.

19–22 Find all second partial derivatives of f .

 19. f sx, yd − 4x 3 2 xy 2 20. z − xe22y

 21. f sx, y, zd − x k y lz m 22. v − r cosss 1 2td

 23. If z − xy 1 xe yyx, show that x 
−z

−x
1 y 

−z

−y
− xy 1 z.

 24. If z − sinsx 1 sin td, show that

−z

−x
 

−2z

−x −t
−

−z

−t
 
−2z

−x 2

 25–29 Find equations of (a) the tangent plane and (b) the 
normal line to the given surface at the specified point.

 25. z − 3x 2 2 y 2 1 2x,  s1, 22, 1d

 26. z − e x cos y,  s0, 0, 1d

 27. x 2 1 2y 2 2 3z 2 − 3,  s2, 21, 1d

 28. xy 1 yz 1 zx − 3,  s1, 1, 1d

 29. sinsxyzd − x 1 2y 1 3z,  s2, 21, 0d

 30.  Use a computer to graph the surface z − x 2 1 y 4 and its  
tangent plane and normal line at s1, 1, 2d on the same 
screen. Choose the domain and viewpoint so that you get a 
good view of all three objects.

 31.  Find the points on the hyperboloid 

x 2 1 4y 2 2 z2 − 4 

  where the tangent plane is parallel to the plane 

2x 1 2y 1 z − 5

 32. Find du if u − lns1 1 se 2 t d.

 33.  Find the linear approximation of the function 

f sx, y, zd − x 3sy 2 1 z 2  at the point (2, 3, 4) and use it  

to estimate the number s1.98d3ss3.01d 2 1 s3.97d 2 .

;
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1034 CHAPTER 14  Partial Derivatives

 48.  Find the direction in which f sx, y, zd − ze x y increases most 
rapidly at the point s0, 1, 2d. What is the maximum rate of 
increase?

 49.  The contour map shows wind speed in km/h during Hurri-
cane Andrew on August 24, 1992. Use it to estimate the 
value of the directional derivative of the wind speed at 
Homestead, Florida, in the direction of the eye of the 
hurricane.

Key West 50

60
70

80

100
110

110 120120

130

140

130 150

90
100

0
Distance in kilometers

16 32 48 64

Homestead

 50.  Find parametric equations of the tangent line at the point 
s22, 2, 4d to the curve of intersection of the surface 
z − 2x 2 2 y 2 and the plane z − 4.

 51–54 Find the local maximum and minimum values and saddle 
points of the function. You are encouraged to graph the function 
with a domain and viewpoint that reveals all the important 
aspects of the function.

 51. f sx, yd − x 2 2 xy 1 y 2 1 9x 2 6y 1 10

 52. f sx, yd − x 3 2 6xy 1 8y 3

 53. f sx, yd − 3xy 2 x 2 y 2 xy 2

 54. f sx, yd − sx 2 1 yde yy2

55–56 Find the absolute maximum and minimum values of f  on 
the set D.

 55.  f sx, yd − 4xy 2 2 x 2 y 2 2 xy 3;  D is the closed triangular 
region in the xy-plane with vertices s0, 0d, s0, 6d, and s6, 0d

 56.  f sx, yd − e2x 22y 2sx 2 1 2y 2 d;  D is the disk x 2 1 y 2 < 4

 57.  Use a graph or level curves or both to estimate the local  
maximum and minimum values and saddle points of 
f sx, yd − x 3 2 3x 1 y 4 2 2y 2. Then use calculus to find  
these values precisely.

;

 58.  Use a graphing calculator or computer (or Newton’s 
method) to find the critical points of 

f sx, yd − 12 1 10y 2 2x 2 2 8xy 2 y 4 

  correct to three decimal places. Then classify the critical 
points and find the highest point on the graph.

 59–62 Use Lagrange multipliers to find the maximum and 
minimum values of f  subject to the given constraint(s).

 59. f sx, yd − x 2 y,  x 2 1 y 2 − 1

 60. f sx, yd −
1

x
1

1

y
,  

1

x 2 1
1

y 2 − 1

 61. f sx, y, zd − xyz,  x 2 1 y 2 1 z 2 − 3

 62. f sx, y, zd − x 2 1 2y 2 1 3z2;

  x 1 y 1 z − 1,  x 2 y 1 2z − 2

 63.  Find the points on the surface xy 2z3 − 2 that are closest to  
the origin.

 64. In this problem we identify a point sa, bd on the line 
16x 1 15y − 100 such that the sum of the distances from 
s23, 0d to sa, bd and from sa, bd to s3, 0d is a minimum. 

 (a)  Write a function f  that gives the sum of the distances 
from s23, 0d to a point sx, yd and from sx, yd to s3, 0d. 
Let tsx, yd − 16x 1 15y. Following the method of 
Lagrange multipliers, we wish to find the minimum 
value of f  subject to the constraint tsx, yd − 100.  
Graph the constraint curve along with several level 
curves of f, and then use the graph to estimate the 
minimum value of f. What point sa, bd on the line 
minimizes f  ?

 (b)  Verify that the gradient vectors =f sa, bd and =tsa, bd 
are parallel.

 65.  A pentagon is formed by placing an isosceles triangle on a 
rectangle, as shown in the figure. If the pentagon has fixed 
perimeter P, find the lengths of the sides of the pentagon 
that maximize the area of the pentagon.

=

=

¨

;

;
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 1.  A rectangle with length L and width W is cut into four smaller rectangles by two lines paral-
lel to the sides. Find the maximum and minimum values of the sum of the squares of the 
areas of the smaller rectangles.

 2.  Marine biologists have determined that when a shark detects the presence of blood in the 
water, it will swim in the direction in which the concentration of the blood increases most 
rapidly. Based on certain tests, the concentration of blood (in parts per million) at a point 
Psx, yd on the surface of seawater is approximated by

Csx, yd − e2sx212y2dy104

   where x and y are measured in meters in a rectangular coordinate system with the blood 
source at the origin.

  (a)  Identify the level curves of the concentration function and sketch several members of 
this family together with a path that a shark will follow to the source.

  (b)  Suppose a shark is at the point sx0, y0d when it first detects the presence of blood in  
the water. Find an equation of the shark’s path by setting up and solving a differential 
equation.

 3.  A long piece of galvanized sheet metal with width w is to be bent into a symmetric form 
with three straight sides to make a rain gutter. A cross-section is shown in the figure.

  (a)  Determine the dimensions that allow the maximum possible flow; that is, find the 
dimensions that give the maximum possible cross-sectional area.

  (b)  Would it be better to bend the metal into a gutter with a semicircular cross-section?

¨¨
x x

w-2x

 4. For what values of the number r is the function

f sx, y, zd − H sx 1 y 1 zdr

x 2 1 y 2 1 z 2 if sx, y, zd ± s0, 0, 0d

0 if sx, y, zd − s0, 0, 0d

  continuous on R 3 ?

 5.  Suppose f  is a differentiable function of one variable. Show that all tangent planes to the 
surface z − x f syyxd intersect in a common point.

 6. (a)� Newton’s method for approximating a solution of an equation f sxd − 0 (see Section 4.8) 
can be adapted to approximating a solution of a system of equations f sx, yd − 0 and 
tsx, yd − 0. The surfaces z − f sx, yd and z − tsx, yd intersect in a curve that intersects 
the xy-plane at the point sr, sd, which is the solution of the system. If an initial approxi-
mation sx1, y1d is close to this point, then the tangent planes to the surfaces at sx1, y1d 
intersect in a straight line that intersects the xy-plane in a point sx2, y2 d, which should be 
closer to sr, sd. (Compare with Figure 4.8.2.) Show that

x2 − x1 2
 fty 2 fy t
fx ty 2 fy tx

    and    y2 − y1 2
 fx t 2 ftx

fx ty 2 fy tx

    where f , t, and their partial derivatives are evaluated at sx1, y1d. If we continue this pro-
cedure, we obtain successive approximations sxn, yn d.

  (b)  It was Thomas Simpson (1710  –1761) who formulated Newton’s method as we know  
it today and who extended it to functions of two variables as in part (a). (See the  

1035
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biography of Simpson in Section 7.7.) The example that he gave to illustrate the method 
was to solve the system of equations

x x 1 y y − 1000      x y 1 y x − 100

    In other words, he found the points of intersection of the curves in the figure. Use the 
method of part (a) to find the coordinates of the points of intersection correct to six deci-
mal places.

y

4

2

0 2 4 x

xx+yy=1000

xy+yx=100

 7.  If the ellipse x 2ya 2 1 y 2yb 2 − 1 is to enclose the circle x 2 1 y 2 − 2y, what values of a and b 
minimize the area of the ellipse?

 8.  Show that the maximum value of the function 

f sx, yd −
sax 1 by 1 cd2

x 2 1 y 2 1 1

  is a 2 1 b 2 1 c 2.

   Hint: One method for attacking this problem is to use the Cauchy-Schwarz Inequality: 

| a � b | < | a | | b |
  (See Exercise 12.3.61.)

1036
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Tumors, such as the one illustrated here, have been modeled as “bumpy spheres.” In Exercise 15.8.49 you are asked to compute the 
volume enclosed by such a surface.
peterschreiber.media/Shutterstock.com

15 Multiple Integrals
IN THIS CHAPTER WE EXTEND the idea of a definite integral to double and triple integrals of 
functions of two or three variables. These ideas are then used to compute volumes, masses, and 
centroids of more general regions than we were able to consider in Chapters 6 and 8. We also use 
double integrals to calculate probabilities when two random variables are involved.

We will see that polar coordinates are useful in computing double integrals over some types 
of regions. In a similar way, we will introduce two new coordinate systems in three-dimensional 
space––cylindrical coordinates and spherical coordinates––that greatly simplify the computation 
of triple integrals over certain commonly occurring solid regions.
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1038 CHAPTER 15  Multiple Integrals

Double Integrals over Rectangles

In much the same way that our attempt to solve the area problem led to the definition of 
a definite integral, we now seek to find the volume of a solid and in the process we arrive 
at the definition of a double integral.

■	 Review of the Definite Integral
First let’s recall the basic facts concerning definite integrals of functions of a single vari-
able. If f sxd is defined for a < x < b, we start by dividing the interval fa, bg into n sub-
intervals fxi21, xig of equal width Dx − sb 2 adyn and we choose sample points xi* in 
these subintervals. Then we form the Riemann sum

1  o
n

i−1
 f sxi*d Dx 

and take the limit of such sums as n l ` to obtain the definite integral of f  from a to b:

2  yb

a
 f sxd dx − lim 

n l `
 o

n

i−1
 f sxi*d Dx 

In the special case where f sxd > 0, the Riemann sum can be interpreted as the sum of 
the areas of the approximating rectangles in Figure 1, and yb

a
 f sxd dx represents the area 

under the curve y − f sxd from a to b.

xixi-10

y

xa bx™⁄ ‹ xn-1

x¡* x™* x£* xn*xi*

Îx

f(xi*)

■	 Volumes and Double Integrals
In a similar manner we consider a function f  of two variables defined on a closed 
rectangle

R − fa, bg 3 fc, dg − hsx, yd [ R2  |  a < x < b, c < y < dj
and we first suppose that f sx, yd > 0. The graph of f  is a surface with equation z − f sx, yd. 
Let S be the solid that lies above R and under the graph of f , that is,

S − hsx, y, zd [ R3 | 0 < z < f sx, yd, sx, yd [ Rj
(See Figure 2.) Our goal is to find the volume of S.

The first step is to divide the rectangle R into subrectangles. We accomplish this by 
dividing the interval fa, bg into m subintervals fxi21, xig of equal width Dx − sb 2 adym 
and dividing fc, dg into n subintervals fyj21, yjg of equal width Dy − sd 2 cdyn. By 

15.1

FIGURE 1

0

R

z=f(x, y)

c
da

b
x

z

y

FIGURE 2
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 SECTION 15.1  Double Integrals over Rectangles 1039

drawing lines parallel to the coordinate axes through the endpoints of these subintervals, 
as in Figure 3, we form the subrectangles

Rij − fxi21, xig 3 fyj21, yjg − hsx, yd | xi21 < x < xi, yj21 < y < yjj
each with area DA − Dx Dy.

yj-1

(x*£™, y*£™)

y
yj

y

x

d

c
›

0 ⁄

Rij

a b

(x*ij , y*ij)

(xi, yj)

Îx

Îy

xi-1 xi

If we choose a sample point sxij*, yij*d in each Rij, then we can approximate the part of 
S that lies above each Rij by a thin rectangular box (or “column”) with base Rij and height 
f sxij*, yij*d as shown in Figure 4. (Compare with Figure 1.) The volume of this box is the 
height of the box times the area of the base rectangle:

f sxij*, yij*d DA

If we follow this procedure for all the rectangles and add the volumes of the correspond-
ing boxes, we get an approximation to the total volume of S:

3  V < o
m

i−1
 o

n

j−1
 f sxij*, yij*d DA 

(See Figure 5.) This double sum means that for each subrectangle we evaluate f  at the 
chosen point and multiply by the area of the subrectangle, and then we add the results.

FIGURE 4 FIGURE 5

0

z

y

c

d
a

b
x

f(x*
ij y*

ij ) 

x

y

0

z

,

Rij

FIGURE 3  
Dividing R into subrectangles
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1040 CHAPTER 15  Multiple Integrals

Our intuition tells us that the approximation given in (3) becomes better as m and n 
become larger and so we would expect that

4  V − lim 
m, n l `

 o
m

i−1
o

n

j−1
 f sxij*, yij*d DA 

We use the expression in Equation 4 to define the volume of the solid S that lies under 
the graph of f  and above the rectangle R. (It can be shown that this definition is consis-
tent with our formula for volume in Section 6.2.)

Limits of the type that appear in Equation 4 occur frequently, not just in finding vol-
umes but in a variety of other situations as well—as we will see in Section 15.4—even 
when f  is not a positive function. So we make the following definition.

5  Definitio  The double integral of f  over the rectangle R is

y
R

y f sx, yd dA − lim 
m, n l `

 o
m

i−1
o

n

j−1
 f sxij*, yij*d DA

if this limit exists.

Notice the similarity between 
Definition 5 and the definition of a 
single integral in Equation 2.

The precise meaning of the limit in Definition 5 is that for every number « . 0 there 
is an integer N such that

Z y
R

y f sx, yd dA 2 o
m

i−1
 o

n

j−1
 f sxij*, yij*d DA Z , «

for all integers m and n greater than N and for any choice of sample points sxij*, yij*d in Rij.
A function f  is called integrable if the limit in Definition 5 exists. It is shown in 

courses on advanced calculus that all continuous functions are integrable. In fact, the 
double integral of f  exists provided that f  is “not too discontinuous.” In particular, if f  
is bounded on R [that is, there is a constant M such that | f sx, yd | < M for all sx, yd in R], 
and f  is con tinuous there, except possibly on a finite number of smooth curves, then f  is 
integrable over R.

The sample point sxij*, yij*d can be chosen to be any point in the subrectangle Rij, but if 
we choose it to be the upper right-hand corner of Rij [namely sxi, yjd, see Fig  ure 3], then 
the expression for the double integral looks simpler:

6  y
R

y f sx, yd dA − lim 
m, n l `

 o
m

i−1
 o

n

j−1
 f sxi, yjd DA 

By comparing Definitions 4 and 5, we see that a volume can be written as a double  
integral:

If f sx, yd > 0, then the volume V  of the solid that lies above the rectangle R and 
below the surface z − f sx, yd is

V − y
R

y  f sx, yd dA

The meaning of the double limit in 
Equation 4 is that we can make the 
double sum as close as we like to the 
number V [for any choice of sxij*, yij*d 
in Rij ] by taking m and n sufficiently 
large.

Although we have defined the double 
integral by dividing R into equal-sized 
subrectangles, we could have used 
subrectangles Rij  of unequal size. But 
then we would have to ensure that all 
of their dimensions approach 0 in the 
limiting process.
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 SECTION 15.1  Double Integrals over Rectangles 1041

The sum in Definition 5,

o
m

i−1
 o

n

j−1
 f sxij*, yij*d DA

is called a double Riemann sum and is used as an approximation to the value of the  
double integral. [Notice how similar it is to the Riemann sum in (1) for a function of a  
single variable.] If f  happens to be a positive function, then the double Riemann sum  
represents the sum of volumes of columns, as in Figure 5, and is an approximation to the 
volume under the graph of f .

EXAMPLE 1 Estimate the volume of the solid that lies above the square 
R − f0, 2g 3 f0, 2g and below the elliptic paraboloid z − 16 2 x 2 2 2y 2. Divide R into 
four equal squares and choose the sample point to be the upper right corner of each 
square Rij. Sketch the solid and the approximating rectangular boxes.

SOLUTION The squares are shown in Figure 6. The paraboloid is the graph of 
f sx, yd − 16 2 x 2 2 2y 2 and the area of each square is DA − 1. Approximating the 
volume by the Riemann sum with m − n − 2, we have

 V < o
2

i−1
 o

2

j−1
 f sxi, yjd DA

 − f s1, 1d DA 1 f s1, 2d DA 1 f s2, 1d DA 1 f s2, 2d DA

 − 13s1d 1 7s1d 1 10s1d 1 4s1d − 34

This is the volume of the approximating rectangular boxes shown in Figure 7. ■

We get better approximations to the volume in Example 1 if we increase the num-
ber of squares. Figure 8 shows how the columns start to look more like the actual solid 
and the corresponding approximations become more accurate when we use 16, 64, and 
256 squares. In Example 7 we will be able to show that the exact volume is 48.

(c) m=n=16, VÅ46.46875(b) m=n=8, VÅ44.875(a) m=n=4, VÅ41.5

EXAMPLE 2 If R − hsx, yd  |  21 < x < 1, 22 < y < 2j, evaluate the integral

y
R

y  s1 2 x 2  dA

0

y

1

2

x1 2

(2, 2)

R¡™ R™™

R¡¡ R™¡

(2, 1)
(1, 1)

(1, 2)

FIGURE 6

16

2

2

z=16-≈-2¥

x

y

z

FIGURE 7

FIGURE 8  
The Riemann sum approximations to 

the volume under z − 16 2 x 2 2 2y 2 
become more accurate as  

m and n increase.
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1042 CHAPTER 15  Multiple Integrals

SOLUTION It would be very difficult to evaluate this integral directly from Defini- 

tion 5 but, because s1 2 x 2 > 0, we can compute the integral by interpreting it as a 

volume. If z − s1 2 x 2 , then x 2 1 z2 − 1 and z > 0, so the given double integral 
represents the volume of the solid S that lies below the circular cylinder x 2 1 z2 − 1 
and above the rectangle R. (See Figure 9.) The volume of S is the area of a semicircle 
with radius 1 times the length of the cylinder. Thus

 y
R

y s1 2 x 2  dA − 1
2 �s1d2 3 4 − 2�  ■

■	 The Midpoint Rule
The methods that we used for approximating single integrals (the Midpoint Rule, the 
Trapezoidal Rule, Simpson’s Rule) all have counterparts for double integrals. Here we 
consider only the Midpoint Rule for double integrals. This means that we use a double 
Rie mann sum to approximate the double integral, where the sample point sxij*, yij*d in Rij 
is chosen to be the center sxi, yjd of Rij. In other words, xi is the midpoint of fxi21, xig and 
yj is the midpoint of fyj21, yjg.

Midpoint Rule for Double Integrals 

y
R

y  f sx, yd dA < o
m

i−1

 o
n

j−1
 f sxi, yjd DA

where xi is the midpoint of fxi21, xig and yj is the midpoint of fyj21, yjg.

EXAMPLE 3 Use the Midpoint Rule with m − n − 2 to estimate the value of the  
integral yyR sx 2 3y 2 d dA, where R − hsx, yd  |  0 < x < 2, 1 < y < 2j.

SOLUTION In using the Midpoint Rule with m − n − 2, we evaluate 
f sx, yd − x 2 3y 2 at the centers of the four subrectangles shown in Figure 10. So 
x1 − 1

2, x2 − 3
2, y1 − 5

4, and y2 − 7
4. The area of each subrectangle is DA − 1

2. Thus

 y
R

ysx 2 3y 2 d dA < o
2

i−1
 o

2

j−1
 f sxi, yjd DA

 − f sx1, y1d DA 1 f sx1, y2 d DA 1 f sx2, y1 d DA 1 f sx2, y2 d DA

 − f (1
2 , 54 ) DA 1 f (1

2 , 74 ) DA 1 f (3
2 , 54 ) DA 1 f (3

2 , 74 ) DA

 − (267
16 )1

2 1 (2139
16 )1

2 1 (251
16)1

2 1 (2123
16 )1

2

 − 295
8 − 211.875

Thus we have y
R

y  sx 2 3y 2 d dA < 211.875 ■

NOTE In Example 5 we will see that the exact value of the double integral given in 
Example 3 is 212. (Remember that the interpretation of a double integral as a volume is 
valid only when the integrand f  is a positive function. The integrand in Example 3 is not 
a positive function, so its integral is not a volume. In Examples 5 and 6 we will discuss 
how to interpret integrals of functions that are not always positive in terms of volumes.) 
If we keep dividing each subrectangle in Figure 10 into four smaller ones with similar 

S

x y

z

(1, 0, 0) (0, 2, 0)

(0, 0, 1)

FIGURE 9

0

y

1

2

x1 2

3
2

(2, 2)
R¡™ R™™

R¡¡ R™¡

FIGURE 10
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 SECTION 15.1  Double Integrals over Rectangles 1043

shape, we get the Midpoint Rule approximations displayed in the table in the margin. 
Notice how these approximations approach the exact value of the double integral, 212.

■	 Iterated Integrals
Recall that it is usually difficult to evaluate single integrals directly from the definition of 
an integral, but the Fundamental Theorem of Calculus provides a much easier method. 
The evaluation of double integrals from first principles is even more difficult, but here we 
see how to express a double integral as an iterated integral, which can then be eval uated 
by calculating two single integrals.

Suppose that f  is a function of two variables that is integrable on the rectangle 
R − fa, bg 3 fc, dg. We use the notation yd

c  f sx, yd dy to mean that x is held fixed and 
f sx, yd is integrated with respect to y from y − c to y − d. This procedure is called par-
tial integration with respect to y. (Notice its similarity to partial differentiation.) Now 
yd
c  f sx, yd dy is a number that depends on the value of x, so it defines a function of x:

Asxd − yd

c
 f sx, yd dy

If we now integrate the function A with respect to x from x − a to x − b, we get

7  yb

a
 Asxd dx − yb

a
 Fyd

c
 f sx, yd dyG dx 

The integral on the right side of Equation 7 is called an iterated integral. Usually the 
brackets are omitted. Thus

8  yb

a
 yd

c
 f sx, yd dy dx − yb

a
 Fyd

c
 f sx, yd dyG dx 

means that we first integrate with respect to y (holding x fixed) from y − c to y − d, and 
then we integrate the resulting function of x with respect to x from x − a to x − b.

Similarly, the iterated integral

9  yd

c
 yb

a
 f sx, yd dx dy − yd

c
 Fyb

a
 f sx, yd dxG dy 

means that we first integrate with respect to x (holding y fixed) from x − a to x − b and 
then we integrate the resulting function of y with respect to y from y − c to y − d. 
Notice that in both Equations 8 and 9 we work from the inside out.

EXAMPLE 4 Evaluate the iterated integrals.

(a) y3

0
 y2

1
 x 2y dy dx (b) y2

1
 y3

0
 x 2 y dx dy

SOLUTION
(a) Regarding x as a constant, we obtain

y2

1
 x 2 y dy − Fx 2 

y 2

2 Gy−1

y−2

− x 2S 22

2 D 2 x 2S 12

2 D − 3
2 x 2

Thus the function A in the preceding discussion is given by Asxd − 3
2 x 2 in this  

example. We now integrate this function of x from 0 to 3:

 y3

0
 y2

1
 x 2 y dy dx − y3

0
 Fy2

1
 x 2 y dyG dx − y3

0
 32 x 2 dx −

x 3

2 G0

3

−
27

2

Number of 
subrectangles

Midpoint Rule 
approximation

1 211.5000
4 211.8750

16 211.9687
64 211.9922

256 211.9980
1024 211.9995
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1044 CHAPTER 15  Multiple Integrals

(b) Here we first integrate with respect to x, regarding y as a constant:

 y2

1
 y3

0
 x 2 y dx dy − y2

1
 Fy3

0
 x 2 y dxG dy − y2

1
 F x 3

3
 yG

x−0

x−3
 

     dy

  − y2

1
 9y dy − 9 

y 2

2 G1

2

−
27

2
 ■

Notice that in Example 4 we obtained the same answer whether we integrated with 
respect to y or x first. In general, it turns out (see Theorem 10) that the two iterated  
integrals in Equations 8 and 9 are always equal; that is, the order of integration does  
not matter. (This is similar to Clairaut’s Theorem on the equality of the mixed partial 
derivatives.)

The following theorem gives a practical method for evaluating a double integral by 
expressing it as an iterated integral (in either order).

10  Fubini’s Theorem If f  is continuous on the rectangle 

R − hsx, yd  |  a < x < b, c < y < d j
then

y
R

y f sx, yd dA − yb

a
 yd

c
 f sx, yd dy dx − yd

c
 yb

a
 f sx, yd dx dy

More generally, this is true if we assume that f  is bounded on R, f  is discontin-
uous only on a finite number of smooth curves, and the iterated integrals exist.

Theorem 10 is named after the  
Italian mathematician Guido Fubini 
(1879–1943), who proved a very 
general version of this theorem in 
1907. But the version for continuous 
functions was known to the French 
mathematician Augustin-Louis 
Cauchy almost a century earlier.

The proof of Fubini’s Theorem is too difficult to include in this book, but we can at 
least give an intuitive indication of why it is true for the case where f sx, yd > 0. Recall 
that if f  is positive, then we can interpret the double integral yy

R
 f sx, yd dA as the volume 

V  of the solid S that lies above R and under the surface z − f sx, yd. But we have another 
formula that we used for volume in Section 6.2, namely,

V − yb

a
 Asxd dx

where Asxd is the area of a cross-section of S in the plane through x perpendicular to the  
x-axis. From Figure 11 you can see that Asxd is the area under the curve C whose equa-
tion is z − f sx, yd, where x is held constant and c < y < d. Therefore

Asxd − yd

c
 f sx, yd dy

and we have

y
R

y f sx, yd dA − V − yb

a
 Asxd dx − yb

a
 yd

c
 f sx, yd dy dx

A similar argument, using cross-sections perpendicular to the y-axis as in Figure 12, 
shows that

y
R

y f sx, yd dA − yd

c
 yb

a
 f sx, yd dx dy

a

x

0

z

x

b

y

A(x)

C

FIGURE 11

0

x

z

y

dyc

FIGURE 12
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 SECTION 15.1  Double Integrals over Rectangles 1045

EXAMPLE 5 Evaluate the double integral yy
R
 sx 2 3y 2 d dA, where 

R − hsx, yd  |  0 < x < 2, 1 < y < 2j. (Compare with Example 3.)

SOLUTION 1 Fubini’s Theorem gives

 y
R

y sx 2 3y 2 d dA − y2

0
 y2

1
 sx 2 3y 2 d dy dx − y2

0
 fxy 2 y 3g y−1

y−2
 dx

 − y2

0
 sx 2 7d dx −

x 2

2
2 7xG

0

2

− 212

SOLUTION 2 Again applying Fubini’s Theorem, but this time integrating with respect  
to x first, we have

 y
R

y sx 2 3y 2 d dA − y2

1
 y2

0
 sx 2 3y 2 d dx dy − y2

1
 F x 2

2
2 3xy 2G

x−0

x−2

     dy

 − y2

1
 s2 2 6y 2 d dy − 2y 2 2y 3g1

2
− 212 ■

RR
0

1 2

z=x-3¥

z

2

x

y

EXAMPLE 6 Evaluate yy
R
 y sinsxyd dA, where R − f1, 2g 3 f0, �g.

SOLUTION If we first integrate with respect to x, we get

 y
R

y y sinsxyd dA − y�

0
 y2

1
 y sinsxyd dx dy

 − y�

0
 yF2 1

y
 cossxydG

x−1

x−2

 dy

 − y�

0
 s2cos 2y 1 cos yd dy

  − 21
2 sin 2y 1 sin yg0

� 

− 0  ■

NOTE In Example 6, if we reverse the order of integration and first integrate with respect 
to y, we get

y
R

y y sinsxyd dA − y2

1
 y�

0
 y sinsxyd dy dx

but this order of integration is much more difficult than the method given in the example 
because it involves integration by parts twice. Therefore, when we evaluate double inte-
grals it is wise to choose the order of integration that gives simpler integrals.

Notice the negative answer in 
Example 5; nothing is wrong with 
that. The function f  is not a positive 
function, so its integral doesn't 
represent a volume. From Figure 13 
we see that f  is always negative on R, 
so the value of the integral is the 
negative of the volume that lies above 
the graph of f  and below R.

FIGURE 13

For a function f  that takes on both 
positive and negative values, 
yyR f sx, yd dA is a difference of 
volumes: V1 2 V2, where V1 is the 
volume above R and below the graph 
of f , and V2 is the volume below R 
and above the graph. The fact that the 
integral in Example 6 is 0 means that 
these two volumes V1 and V2 are 
equal. (See Figure 14.)

z=y sin(xy)

1
0

_1

y
10 32 2

1
x

z R

FIGURE 14
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1046 CHAPTER 15  Multiple Integrals

EXAMPLE 7 Find the volume of the solid S that is bounded by the elliptic paraboloid 
x 2 1 2y 2 1 z − 16, the planes x − 2 and y − 2, and the three coordinate planes.

SOLUTION We first observe that S is the solid that lies under the surface 
z − 16 2 x 2 2 2y 2 and above the square R − f0, 2g 3 f0, 2g. (See Figure 15.) This 
solid was considered in Example 1, but we are now in a position to evaluate the double 
integral using Fubini’s Theorem. Therefore

 V − y
R

y s16 2 x 2 2 2y 2 d dA − y2

0
 y2

0
 s16 2 x 2 2 2y 2 d dx dy

 − y2

0
 f16x 2 1

3 x 3 2 2y 2xgx−0

x−2

 dy

  − y2

0
 (88

3 2 4y 2 ) dy − f88
3 y 2 4

3 y3 g0

2
− 48  ■

In the special case where f sx, yd can be factored as the product of a function of x only 
and a function of y only, the double integral of f  can be written in a particularly simple 
form. To be specific, suppose that f sx, yd − tsxdhsyd and R − fa, bg 3 fc, dg. Then 
Fubini’s Theorem gives

y
R

y f sx, yd dA − yd

c
 yb

a
 tsxdhsyd dx dy − yd

c
 Fyb

a
 tsxdhsyd dxG dy

In the inner integral, y is a constant, so hsyd is a constant and we can write

 yd

c
 Fyb

a
 tsxdhsyd dxG dy − yd

c
 FhsydSyb

a
 tsxd dxDG dy − yb

a
 tsxd dx yd

c
 hsyd dy

since yb
a tsxd dx is a constant. Therefore, in this case the double integral of f  can be writ-

ten as the product of two single integrals:

11  y
R

y tsxd hsyd dA − yb

a
 tsxd dx yd

c
 hsyd dy  where R − fa, bg 3 fc, dg

EXAMPLE 8 If R − f0, �y2g 3 f0, �y2g, then, by Equation 11,

 y
R

y sin x cos y dA − y�y2

0
 sin x dx y�y2

0
 cos y dy

  − f2cos xg0

�y2
 fsin yg0

�y2
− 1 � 1 − 1 ■

y
x

z

0

z=sin x cos y

R

≈+2¥+z=16

x

y

z

2
2

R

FIGURE 15

The function f sx, yd − sin x cos y in  
Example 8 is positive on R, so the 
integral represents the volume of 
the solid that lies above R and below 
the graph of f  shown in Figure 16.

FIGURE 16
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■	 Average Value
Recall from Section 6.5 that the average value of a function f  of one variable defined on 
an interval fa, bg is

favg −
1

b 2 a
 yb

a
 f sxd dx

In a similar fashion we define the average value of a function f  of two variables defined 
on a rectangle R to be

favg −
1

AsRd
 y

R

y  f sx, yd dA

where AsRd is the area of R.
If f sx, yd > 0, the equation

AsRd 3 favg − y
R

y  f sx, yd dA

says that the box with base R and height favg has the same volume as the solid that lies 
under the graph of f . [If z − f sx, yd describes a mountainous region and you chop off the 
tops of the mountains at height favg, then you can use them to fill in the valleys so that the 
region becomes completely flat. See Figure 17.]

EXAMPLE 9 The contour map in Figure 18 shows the snowfall, in centimeters, that fell 
on the state of Colorado on December 20 and 21, 2006. (The state is in the shape of a 
rectangle that measures 624 km west to east and 444 km south to north.) Use the contour 
map to estimate the average snowfall for the entire state of Colorado on those days.

30
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0 10 20 30
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30

40

40

50

50
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60

60

70

70

70

80

80

80

90

90

100

100

110

SOLUTION Let’s place the origin at the southwest corner of the state. Then 
0 < x < 624, 0 < y < 444, and f sx, yd is the snowfall, in centimeters, at a location x 
kilometers to the east and y kilometers to the north of the origin. If R is the rectangle that 
represents Colorado, then the average snowfall for the state on December 20–21 was

favg −
1

AsRd
 y

R

y f sx, yd dA  

FIGURE 17

FIGURE 18
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1048 CHAPTER 15  Multiple Integrals

where AsRd − 624 � 444. To estimate the value of this double integral, let’s use the 
Midpoint Rule with m − n − 4. In other words, we divide R into 16 subrectangles of 
equal size, as in Figure 19. The area of each subrectangle is

DA − 1
16s624ds444d − 17,316 km2

30

30

20

0
10 20 30

40
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40

40
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60

60

60

70

70

70

80

80

80

90

90

100

100

110

444

6240

y

x

Using the contour map to estimate the value of f  at the center of each subrect angle, 
we get

 y
R

y  f sx, yd dA < o
4

i−1
 o

4

j−1
 f sxi, yjd DA

 < DAf0 1 38 1 20 1 18 1 5 1 64 1 47 1 28

     1 11 1 70 1 43 1 34 1 30 1 38 1 44 1 33g

 − s17,316ds523d

Therefore favg <
s17,316ds523d

s624ds444d
< 32.7 

On December 20  –21, 2006, Colorado received an average of approximately 32.7 
centimeters of snow. ■

FIGURE 19
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15.1 Exercises
 1. (a)  Estimate the volume of the solid that lies below the sur-

face z − xy and above the rectangle

R − hsx, yd  |  0 < x < 6, 0 < y < 4j
   Use a Riemann sum with m − 3, n − 2, and take the  

sample point to be the upper right corner of each square.
 (b)  Use the Midpoint Rule to estimate the volume of the solid 

in part (a).

 2.  If R − f0, 4g 3 f21, 2g, use a Riemann sum with m − 2, 
n − 3 to estimate the value of yyR s1 2 xy 2d dA. Take the  
sample points to be (a) the lower right corners and (b) the 
upper left corners of the rectangles.

 3. (a)  Use a Riemann sum with m − n − 2 to estimate the 
value of yyR xe2xy dA, where R − f0, 2g 3 f0, 1g. Take the 
sample points to be upper right corners.

 (b)  Use the Midpoint Rule to estimate the integral in part (a).

 4. (a)  Estimate the volume of the solid that lies below the 
surface z − 1 1 x 2 1 3y and above the rectangle 
R − f1, 2g 3 f0, 3g. Use a Riemann sum with m − n − 2 
and choose the sample points to be lower left corners.

 (b)  Use the Midpoint Rule to estimate the volume in part (a).

 5.  Let V be the volume of the solid that lies under the graph  
of f sx, yd − s52 2 x 2 2 y 2 

 and above the rectangle given 
by 2 < x < 4, 2 < y < 6. Use the lines x − 3 and y − 4 to 
divide R into subrectangles. Let L and U be the Riemann sums 
computed using lower left corners and upper right corners, 
respectively. Without calculating the numbers V, L, and U, 
arrange them in increasing order and explain your reasoning.

 6.  A 8-meter by 12-meter swimming pool is filled with water. 
The depth is measured at 2-m intervals, starting at one corner 
of the pool, and the values are recorded in the table. Estimate 
the volume of water in the pool.

1

1

1

1.8

1.5

1

21

21.51

2

1

2.4

2.8

32.7

2.3

1

2.8 3 31.5

3 3.6 3

3.6 4 3.2

2.7

1.5

3

2

2.5

2

0 2 4 6 8 10 12

0

2

4

6

8

 7.  A contour map is shown for a function f  on the square 
R − f0, 4g 3 f0, 4g.

 (a)  Use the Midpoint Rule with m − n − 2 to estimate the 
value of yyR f sx, yd dA.

 (b)  Estimate the average value of f .

0

2

4

2 4

10

10

10 20

20

30

300 0

y

x

 8.  The contour map shows the temperature, in degrees Celsius, 
at 4:00 pm on a day in February in Colorado. (The state mea-
sures 624 km west to east and 444 km south to north.) Use 
the Midpoint Rule with m − n − 4 to estimate the average 
temperature in Colorado at that time.

_8

_8

_6

_2

_6
_4

_4

_2

_4

0

_2

0

0 2
4

6

6

6
4
2
0

8

8
11 13

11
13

6

9–11 Evaluate the double integral by first identifying it as the  
volume of a solid.

 9. yyR s2  dA, R − hsx, yd | 2 < x < 6, 21 < y < 5j

 10. yyR s2x 1 1d dA, R − hsx, yd | 0 < x < 2, 0 < y < 4j

 11. yyR s4 2 2yd dA, R − f0, 1g 3 f0, 1g

 12.  The integral yyR s9 2 y 2  dA, where R − f0, 4g 3 f0, 2g,  
represents the volume of a solid. Sketch the solid.

13–14 Find y2
0  f sx, yd dx and y3

0  f sx, yd dy

 13. f sx, yd − x 1 3x 2y 2 14. f sx, yd − ysx 1 2 
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15–26 Calculate the iterated integral.

 15. y4

1
 y2

0
 s6x 2y 2 2xd  dy dx 16. y1

0
y1

0
 sx 1 yd2 dx dy

 17. y1

0
y2

1
 sx 1 e2yd dx dy

 18. y1

23
y2

1
 sx 2 1 y22d dy dx

 19. y3

23
 y�y2

0
 sy 1 y 2 cos xd dx dy

 20. y3

1
 y5

1
 
ln y

xy
 dy dx

 21. y4

1
 y2

1
 S x

y
1

y

xD dy dx 22. y1

0
y2

0
 ye x2y dx dy

 23. y3

0
y�y2

0
 t 2 sin3 � d� dt 24. y1

0
 y1

0
 xysx 2 1 y 2  dy dx

 25. y1

0
 y1

0
 vsu 1 v2d4 du dv

 26. y1

0
 y1

0
 ss 1 t  ds dt

27–34 Calculate the double integral.

 27. y
R

y x sec2 y dA,  R − hsx, yd  |  0 < x < 2, 0 < y < �y4j

 28. y
R

y sy 1 xy22d dA,  R − hsx, yd  |  0 < x < 2, 1 < y < 2j

 29. y
R

y 
xy 2

x 2 1 1
 dA,  R − hsx, yd  |  0 < x < 1, 23 < y < 3j

 30. y
R

y 
tan �

s1 2 t 2  
 dA,  R − hs�, td  |  0 < � < �y3, 0 < t < 1

2 j

 31. y
R

y x sinsx 1 yd dA,  R − f0, �y6g 3 f0, �y3g

 32. y
R

y 
x

1 1 xy
 dA,  R − f0, 1g 3 f0, 1g

 33. y
R

y ye2xy dA,  R − f0, 2g 3 f0, 3g

 34. y
R

y 
1

1 1 x 1 y
 dA,  R − f1, 3g 3 f1, 2g

35–37 Sketch the solid whose volume is given by the iterated  
integral.

 35. y1

0
 y1

0
 s4 2 x 2 2yd dx dy

 36. y1

0
 y1

0
 s2 2 x 2 2 y 2 d dy dx

 37. y2

22
y3

21
 s4 2 x 2 d dy dx

 38. Consider the solid region S that lies under the surface 
z − x 2sy  and above the rectangle R − f0, 2g 3 f1, 4g.

 (a)  Find a formula for the area of a cross-section of S in the 
plane perpendicular to the x-axis at x for 0 ⩽ x < 2. 
Then use the formula to compute the areas of the 
cross-sections illustrated.

x

0
1

4

1
2

z

y

 (b)  Find a formula for the area of a cross-section of S in the 
plane perpendicular to the y-axis at y for 1 < y ⩽ 4. 
Then use the formula to compute the areas of the 
cross-sections illustrated.

x

0
1

3

2

z

y

 (c) Find the volume of S.

39–42 The figure shows a surface and a rectangle R in the  
xy-plane. 
(a) Set up an iterated integral for the volume of the solid that lies 

under the surface and above R. 
(b) Evaluate the iterated integral to find the volume of the solid.

 39.  40. 

0

x

y

2

z=xy

2

z

R

 
x

z=cos x cos y

y

R

-π/4

π/4
π/4

z
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 51.  Use a computer algebra system to find the exact value of the 
integral  yyR x

5y 3e xy dA, where R − f0, 1g 3 f0, 1g. Then use  
the CAS to draw the solid whose volume is given by the  
integral.

 52.  Graph the solid that lies between the surfaces 
z − e2x2

 cossx 2 1 y 2d and z − 2 2 x 2 2 y 2 for | x | < 1, 

| y | < 1. Use a computer algebra system to approximate the 
volume of this solid correct to four decimal places.

53–54 Find the average value of f  over the given rectangle.

 53.  f sx, yd − x 2 y,   
R has vertices s21, 0d, s21, 5d, s1, 5d, s1, 0d

 54.  f sx, yd − e ysx 1 e y ,  R − f0, 4g 3 f0, 1g

55–56 Use symmetry to evaluate the double integral.

 55.  y
R

y 
xy

1 1 x 4  dA,  R − hsx, yd  |  21 < x < 1, 0 < y < 1j

 56. y
R

y s1 1 x 2 sin y 1 y 2 sin xd dA,  R − f2�, �g 3 f2�, �g

 57. Use a computer algebra system to compute the iterated 
integrals 

y1

0
 y1

0
 

x 2 y

sx 1 yd3  dy dx    and    y1

0
 y1

0
 

x 2 y

sx 1 yd3  dx dy

   Do the answers contradict Fubini’s Theorem? Explain what  
is happening.

 58. (a)  In what way are the theorems of Fubini and Clairaut  
similar?

 (b) If f sx, yd is continuous on fa, bg 3 fc, d g and 

tsx, yd − y x

a
 yy

c
  f ss, td dt ds

  for a , x , b, c , y , d, show that

txy − tyx − f sx, yd

 41.  42. 

R

x

1

2

z=1+ye®†

1

z

y

1

   
R

z=≈+¥

x

z

y

3
11

2

 43.  Find the volume of the solid that lies under the plane 
 4x 1 6y 2 2z 1 15 − 0 and above the rectangle 
R − hsx, yd | 21 < x < 2, 21 < y < 1j.

 44.  Find the volume of the solid that lies under the hyperbolic 
paraboloid z − 3y 2 2 x 2 1 2 and above the rectangle 
R − f21, 1g 3 f1, 2g.

 45.  Find the volume of the solid lying under the elliptic  
paraboloid x 2y4 1 y 2y9 1 z − 1 and above the rectangle 
R − f21, 1g 3 f22, 2g.

 46.  Find the volume of the solid enclosed by the surface 
z − x 2 1 xy 2 and the planes z − 0, x − 0, x − 5,  
and y − 62.

 47.  Find the volume of the solid enclosed by the surface 
z − 1 1 x 2ye y and the planes z − 0, x − 61, y − 0,  
and y − 1.

 48.  Find the volume of the solid in the first octant bounded by  
the cylinder z − 16 2 x 2 and the plane y − 5.

 49.  Find the volume of the solid enclosed by the paraboloid 
z − 2 1 x 2 1 sy 2 2d2 and the planes z − 1, x − 1, 
x − 21, y − 0, and y − 4.

 50.  Graph the solid that lies between the surface 
z − 2xyysx 2 1 1d and the plane z − x 1 2y and is bounded 
by the planes x − 0, x − 2, y − 0, and y − 4. Then find its 
volume.

;

Double Integrals over General Regions

For single integrals, the region over which we integrate is always an interval. But for 
double integrals, we want to be able to integrate a function not just over rectangles but 
also over regions of more general shape.

15.2
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1052 CHAPTER 15  Multiple Integrals

■	 General Regions
Consider a general region D like the one illustrated in Figure 1. We suppose that D is a 
bounded region, which means that D can be enclosed in a rectangular region R as in 
Figure 2. In order to integrate a function f  over D we define a new function F with 
domain R by

1  Fsx, yd − H0

f sx, yd if

if

sx, yd is in D

sx, yd is in R but not in D
 

FIGURE 1 FIGURE 2

0

y

x

D

y

0 x

D
R

If F is integrable over R, then we define the double integral of f  over D by

2  y
D

y f sx, yd dA − y
R

y Fsx, yd dA    where F is given by Equation 1

Definition 2 makes sense because R is a rectangle and so yyR Fsx, yd dA has been previ-
ously defined in Section 15.1. The procedure that we have used is reasonable because the 
values of Fsx, yd are 0 when sx, yd lies outside D and so they contribute nothing to 
the integral. This means that it doesn’t matter what rectangle R we use as long as it con-
tains D.

In the case where f sx, yd > 0, we can still interpret yyD  f sx, yd dA as the volume of the 
solid that lies above D and under the surface z − f sx, yd (the graph of f ). You can see that 
this is reasonable by comparing the graphs of f  and F in Figures 3 and 4 and remember-
ing that yyR Fsx, yd dA is the volume under the graph of F.

y

0

z

x

D

graph of f

y

0

z

x

D

graph of F

FIGURE 3 FIGURE 4

Figure 4 also shows that F is likely to have discontinuities at the boundary points  
of D. Nonetheless, if f  is continuous on D and the boundary curve of D is “well behaved”  
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 SECTION 15.2  Double Integrals over General Regions 1053

(in a sense outside the scope of this book), then it can be shown that yyR Fsx, yd dA exists
and therefore yyD f sx, yd dA exists. In particular, this is the case for the following two 
types of regions.

A plane region D is said to be of type I if it lies between the graphs of two continuous 
functions of x, that is,

D − hsx, yd | a < x < b, t1sxd < y < t2sxdj
where t1 and t2 are continuous on fa, bg. Some examples of type I regions are shown in 
Figure 5.

0

y

xba

D

y=g™(x)

y=g¡(x)

0

y

xba

D

y=g™(x)

y=g¡(x)

0

y

xba

D

y=g™(x)

y=g¡(x)

NOTE For a type I region, the functions t1 and t2 must be continuous but they do not 
need to be defined by a single formula. For instance, in the third region of Figure 5, t2 is 
a continuous piecewise defined function.

In order to evaluate yyD f sx, yd dA when D is a region of type I, we choose a rect- 
angle R − fa, bg 3 fc, dg that contains D, as in Figure 6, and we let F be the function 
given by Equation 1; that is, F agrees with f  on D and F is 0 outside D. Then, by Fubini’s 
Theorem,

y
D

y f sx, yd dA − y
R

y Fsx, yd dA − yb

a
 yd

c
 Fsx, yd dy dx

Observe that Fsx, yd − 0 if y , t1sxd or y . t2sxd because sx, yd then lies outside D. 
Therefore

yd

c
 Fsx, yd dy − yt2sxd

t1sxd
 Fsx, yd dy − yt2sxd

t1sxd
 f sx, yd dy

because Fsx, yd − f sx, yd when t1sxd < y < t2sxd. Thus we have the following formula 
that enables us to evaluate the double integral as an iterated integral.

3  If f  is continuous on a type I region D described by

D − hsx, yd | a < x < b, t1sxd < y < t2sxdj

then y
D

y f sx, yd dA − yb

a
 yt2sxd

t1sxd
  f sx, yd dy dx

The integral on the right side of (3) is an iterated integral that is similar to the ones we 
considered in Section 15.1, except that in the inner integral we regard x as being constant 
not only in f sx, yd but also in the limits of integration, t1sxd and t2sxd.

FIGURE 5  
Some type I regions

FIGURE 6 

d

0 x

y

bxa

c
y=g¡(x)

D

y=g™(x)
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1054 CHAPTER 15  Multiple Integrals

We also consider plane regions of type II, which can be expressed as 

D − hsx, yd | c < y < d, h1syd < x < h2sydj
where h1 and h2 are continuous. Three such regions are illustrated in Figure 7.

d

0 x

y

c

x=h¡(y)x=h¡(y) D x=h™(y)x=h™(y)

d

0 x

y

c

D x=h¡(y) x=h™(y)

d

0 x

y

c

D

Using the same methods that were used in establishing (3), we can show that the fol-
lowing result holds.

4  If f  is continuous on a type II region D described by

D − hsx, yd | c < y < d, h1syd < x < h2sydj

then y
D

y f sx, yd dA − yd

c
 yh2s yd

h1s yd
 f sx, yd dx dy

 

EXAMPLE 1 Evaluate yyD sx 1 2yd dA, where D is the region bounded by the 

parabolas y − 2x 2 and y − 1 1 x 2.

SOLUTION The parabolas intersect when 2x 2 − 1 1 x 2, that is, x 2 − 1, so x − 61. 
We note that the region D, sketched in Figure 8, is a type I region but not a type II 
region and we can write

D − hsx, yd | 21 < x < 1, 2x 2 < y < 1 1 x 2j
Since the lower boundary is y − 2x 2 and the upper boundary is y − 1 1 x 2, Equa- 
tion 3 gives

 y
D

y sx 1 2yd dA − y1

21
 y11x2

2x2
 sx 1 2yd dy dx

 − y1

21
 fxy 1 y 2g y−2x2

y−11x2

 dx

 − y1

21
 fxs1 1 x 2 d 1 s1 1 x 2 d2 2 xs2x 2 d 2 s2x 2 d2 g  dx

 − y1

21
 s23x 4 2 x 3 1 2x 2 1 x 1 1d dx

  − 23 
x 5

5
2

x 4

4
1 2 

x 3

3
1

x 2

2
1 xG

21

1

−
32

15
 ■

NOTE When we set up a double integral as in Example 1, it is essential to draw a dia-
gram. Often it is helpful to draw a vertical arrow as in Figure 8. Then the limits of integra-
tion for the inner integral can be read from the diagram as follows: The arrow starts at the 
lower boundary y − t1sxd, which gives the lower limit in the integral, and the arrow ends 
at the upper boundary y − t2sxd, which gives the upper limit of integration. For a type II 
region the arrow is drawn horizontally from the left boundary to the right boundary.

FIGURE 7  
Some type II regions

x1_1

y

(_1, 2) (1, 2)

D
y=2≈

y=1+≈

FIGURE 8
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EXAMPLE 2 Find the volume of the solid that lies under the paraboloid z − x 2 1 y 2 
and above the region D in the xy-plane bounded by the line y − 2x and the parabola 
y − x 2.

SOLUTION 1 From Figure 9 we see that D is a type I region and

D − hsx, yd |  0 < x < 2, x 2 < y < 2xj
Therefore the volume under z − x 2 1 y 2 and above D is

 V − y
D

y sx 2 1 y 2 d dA − y2

0
 y2x

x2  sx 2 1 y 2 d dy dx

 − y2

0
 Fx 2 y 1

 y 3

3 Gy−x2

y−2x
       

dx

 − y2

0
 Fx 2s2xd 1

s2xd3

3
2 x 2x 2 2

sx 2 d3

3 G dx

 − y2

0
 S2

x 6

3
2 x 4 1

14x 3

3 D dx

 − 2
x 7

21
2

x 5

5
1

7x 4

6 G
0

2

−
216

35

SOLUTION 2 From Figure 10 we see that D can also be written as a type II region:

D − hsx, yd |  0 < y < 4, 12 y < x < sy j
Therefore another expression for V  is

 V − y
D

y sx 2 1 y 2 d dA − y4

0
 ysy

1
2

  

y
sx 2 1 y 2 d dx dy

 − y4

0
 F x 3

3
1 y 2xG

x−  

1
2

 

y

x−sy

    dy − y4

0
 S y 3y2

3
1 y 5y2 2

y 3

24
2

y 3

2 D dy

  − 2
15 y 5y2 1 2

7 y 7y2 2 13
96 y 4g 0

4
− 216

35  ■

 

z=≈+¥

y=≈

y=2x

y

z

x
 

Figure 11 shows the solid whose volume is calculated in Example 2. It lies above the 
xy-plane, below the paraboloid z − x 2 1 y 2, and between the plane y − 2x and the para-
bolic cylinder y − x 2.

FIGURE 9  
D as a type I region

y

0 x1 2

(2, 4)

D

y=≈

y=2x

x=œ„y

1
2x=   y

y
4

0 x

D

(2, 4)

FIGURE 10  
D as a type II region

FIGURE 11
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1056 CHAPTER 15  Multiple Integrals

EXAMPLE 3 Evaluate yyD xy dA, where D is the region bounded by the line y − x 2 1 
and the parabola y 2 − 2x 1 6.

SOLUTION The region D is shown in Figure 12. Again D is both type I and type II, but 
the description of D as a type I region is more complicated because the lower boundary 
consists of two parts. Therefore we prefer to express D as a type II region:

D − hsx, yd | 22 < y < 4, 12 y2 2 3 < x < y 1 1j

(5, 4)

0

y

x_3

y=x-1

(_1, _2)
y=_œ„„„„„2x+6

(a) D as a type I region (b) D as a type II region

(5, 4)

x=y+1

(_1, _2)

0

y

x

_2

y=œ„„„„„2x+6 1
2x=   y@-3

D
D

Then (4) gives

 y
D

y xy dA − y4

22
 yy11

1
2

y223

 
xy dx dy − y4

22
 F x 2

2
 yG

x−1
2

y223

x−y11

dy

 − 1
2 y4

22
 yfsy 1 1d2 2 (1

2 y2 2 3)2 g dy

 − 1
2 y4

22
 S2

y 5

4
1 4y 3 1 2y 2 2 8yD dy

  −
1

2 F2
y 6

24
1 y 4 1 2 

y 3

3
2 4y 2G

22

4

− 36  ■

In Example 3, if we had expressed D as a type I region using Figure 12(a), then the 
lower boundary curve would be 

t1sxd − H2s2x 1 6 if 23 < x < 21

x 2 1 if 21 , x < 5

and we would have obtained

y
D

y xy dA − y21

23
 ys2x16

2s2x16
  xy dy dx 1 y5

21
 ys2x16

x21
 xy dy dx

which would have involved more work than the other method.

EXAMPLE 4 Find the volume of the tetrahedron bounded by the planes 
x 1 2y 1 z − 2, x − 2y, x − 0, and z − 0.

SOLUTION In a question such as this, it’s wise to draw two diagrams: one of the 
three-dimensional solid and another of the plane region D over which it lies. Figure 13 
shows the tetrahedron T  bounded by the coordinate planes x − 0, z − 0, the vertical 
plane x − 2y, and the plane x 1 2y 1 z − 2. Since the plane x 1 2y 1 z − 2 inter-
sects the xy-plane (whose equation is z − 0) in the line x 1 2y − 2, we see that T  lies 

FIGURE 12

(0, 1, 0)

(0, 0, 2)

y

x

0

z

x+2y+z=2x=2y

”1,    , 0’1
2

T

FIGURE 13
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 SECTION 15.2  Double Integrals over General Regions 1057

above the triangular region D in the xy-plane bounded by the lines x − 2y, x 1 2y − 2, 
and x − 0. (See Figure 14.)

The plane x 1 2y 1 z − 2 can be written as z − 2 2 x 2 2y, so the required 
volume lies under the graph of the function z − 2 2 x 2 2y and above

D − hsx, yd | 0 < x < 1, xy2 < y < 1 2 xy2j
Therefore

 V − y
D

y s2 2 x 2 2yd dA

 − y1

0
 y12xy2

xy2
 s2 2 x 2 2yd dy dx

 − y1

0
 f2y 2 xy 2 y 2g y−xy2

y−12xy2

 dx

 − y1

0
 F2 2 x 2 xS1 2

x

2D 2 S1 2
x

2D2

2 x 1
x 2

2
1

x 2

4 G dx

  − y1

0
 sx 2 2 2x 1 1d dx −

x 3

3
2 x 2 1 xG

0

1

−
1

3
 ■

■	 Changing the Order of Integration
Fubini’s Theorem tells us that we can express a double integral as an iterated integral in 
two different orders. Sometimes one order is much more difficult to evaluate than the 
other—or even impossible. The next example shows how we can change the order of 
integration when presented with an iterated integral that is difficult to evaluate.

EXAMPLE 5 Evaluate the iterated integral y1
0 y1

x  sinsy2d dy dx.

SOLUTION If we try to evaluate the integral as it stands, we are faced with the task 
of first evaluating y sinsy 2 d dy. But it’s impossible to do so in finite terms since 
y sinsy 2 d dy is not an elementary function. (See the end of Section 7.5.) So we must 
change the order of integration. This is accomplished by first expressing the given 
iterated integral as a double integral. Using (3) backward, we have

y1

0
 y1

x
 sinsy 2 d dy dx − y

D

y sinsy 2 d dA

where D − hsx, yd | 0 < x < 1, x < y < 1j
We sketch this region D in Figure 15. Then from Figure 16 we see that an alternative 
description of D is

D − hsx, yd | 0 < y < 1, 0 < x < yj
This enables us to use (4) to express the double integral as an iterated integral in the 
reverse order:

y1

0
 y1

x
 sinsy 2 d dy dx − y

D

y sinsy 2 d dA

 − y1

0
 yy

0
 sinsy 2 d dx dy − y1

0
 fx sinsy 2 dgx−0

x−y
  dy

  − y1

0
 y sinsy 2 d dy − 21

2 cossy 2 dg0

1
− 1

2s1 2 cos 1d ■

1 x0

y

D

y=1

y=x

x0

y

1

Dx=0
x=y

FIGURE 16
D as a type II region

FIGURE 15
D as a type I region

 y=x/2

”1,    ’1
2D

y

0

1

x1

(or y=1-x/2)  
x+2y=2

FIGURE 14
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1058 CHAPTER 15  Multiple Integrals

■	 Properties of Double Integrals
We assume that all of the following integrals exist. For rectangular regions D the first 
three properties can be proved in the same manner as in Section 5.2. And then for general 
regions the properties follow from Definition 2.

5  y
D

y f f sx, yd 1 tsx, ydg dA − y
D

y f sx, yd dA 1 y
D

y tsx, yd dA 

6  y
D

y c f sx, yd dA − c y
D

y f sx, yd dA  where c is a constant 

If f sx, yd > tsx, yd for all sx, yd in D, then 

7  y
D

y f sx, yd dA > y
D

y tsx, yd dA 

The next property of double integrals is similar to the property of single integrals 
given by the equation yb

a  f sxd dx − yc
a f sxd dx 1 yb

c  f sxd dx (Property 5 in Section 5.2).
If D − D1 ø D2, where D1 and D2 don’t overlap except perhaps on their boundaries 

(see Figure 17), then

8
 

yy
D

 f sx, yd dA − yy
D1

 f sx, yd dA 1 yy
D2

 f sx, yd dA

Property 8 can be used to evaluate double integrals over regions D that are neither 
type I nor type II but can be expressed as a union of regions of type I or type II. Figure 18 
illustrates this procedure. (See Exercises 67 and 68.)

x0

y

D

(a) D is neither type I nor type II.

x0

y

D¡

D™

(b) D=D¡ � D™, D¡ is type I, D™ is type II.

The next property of integrals says that if we integrate the constant function f sx, yd − 1 
over a region D, we get the area of D:

9
 y

D

y 1 dA − AsDd

Figure 19 illustrates why Equation 9 is true: A solid cylinder whose base is D and whose 
height is 1 has volume AsDd � 1 − AsDd, but we know that we can also write its volume 
as yyD 1 dA.

Finally, we can combine Properties 6, 7, and 9 to prove the following property. (See 
Exercise 73.)

0

y

x

D

D¡ D™

FIGURE 17

FIGURE 18

y 
1 

0 

z 

x D 

z=1 

FIGURE 19  
Cylinder with base D and height 1
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10  If m < f sx, yd < M for all sx, yd in D, then

m � AsDd < y
D

y f sx, yd dA < M � AsDd

Figure 20 illustrates Property 10 for the case m . 0. The volume of the solid below 
the graph of z − f sx, yd and above D is between the volumes of the cylinders with  
base D and heights m and M. (Compare to Figure 5.2.17, which illustrates the analogous 
property for single integrals.)

EXAMPLE 6 Use Property 10 to estimate the integral yyD e sin x cos y dA, where D is the 
disk with center the origin and radius 2.

SOLUTION Since 21 < sin x < 1 and 21 < cos y < 1, we have 
21 < sin x cos y < 1 and, because the natural exponential function is increasing,  
we have

e21 < e sin x cos y < e 1 − e

Thus, using m − e21 − 1ye, M − e, and AsDd − �s2d2 in Property 10, we obtain

 
4�

e
< y

D

y e sin x cos y dA < 4�e  ■

y 

z 

z=M 

z=m 

z=f(x, y) 

x 

D 

FIGURE 20  

15.2 Exercises

1–6 Evaluate the iterated integral.

 1. y5

1
yx

0
 s8x 2 2yd dy dx 2. y2

0
yy2

0
 x 2y dx dy

 3. y1

0
yy

0
 xe y3 

dx dy 4. y�y2

0
yx

0
 x sin y dy dx

 5. y1

0
 ys2

0
 cosss 3d dt ds 6. y1

0
yev

0
  s1 1 ev 

 dw dv

7–10 
(a) Express the double integral yyD  f sx, yd dA as an iterated 

integral for the given function f  and region D.
(b) Evaluate the iterated integral. 

 7. f sx, yd − 2y 8. f sx, yd − x 1 y

  

y=3x-≈

y=x

(2, 2)

y

0 x

D

  

(1, 1)

0

y

x

D

2

 9. f sx, yd − xy 10. f sx, yd − x

  

y

0 x

D

y=œ„x

y=x-2

  0

y

x

D

y=6-x

y=≈

11–14 Evaluate the double integral.

 11. y
D

y 
y

x 2 1 1
 dA, D − hsx, yd  |  0 < x < 4, 0 < y < sx j

 12. y
D

y s2x 1 yd dA, D − hsx, yd  |  1 < y < 2, y 2 1 < x < 1j

 13. y
D

y e2y 2
 dA, D − hsx, yd  |  0 < y < 3, 0 < x < yj

 14. y
D

y ysx 2 2 y 2  dA, D − hsx, yd  |  0 < x < 2, 0 < y < xj

 15. Draw an example of a region that is
 (a)  type I but not type II
 (b) type II but not type I
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1060 CHAPTER 15  Multiple Integrals

 16. Draw an example of a region that is
 (a)  both type I and type II
 (b)	 neither type I nor type II

17–18 Express D as a region of type I and also as a region of  
type II. Then evaluate the double integral in two ways.

 17. y
D

y x dA, D is enclosed by the lines y − x, y − 0, x − 1

 18. y
D

y xy dA,  D is enclosed by the curves y − x 2, y − 3x

19–22 Set up iterated integrals for both orders of integration. 
Then evaluate the double integral using the easier order and 
explain why it’s easier.

 19. y
D

y y dA,  D is bounded by y − x 2 2, x − y 2

 20. y
D

y y 2e xy dA,  D is bounded by y − x, y − 4, x − 0

 21. y
D

y sin2x dA, 

  D is bounded by y − cos x, 0 ⩽ x < �y2, y − 0, x − 0

 22. y
D

y 6x 2 dA, D is bounded by y − x 3, y − 2x 1 4, x − 0 

23–28 Evaluate the double integral.

 23. y
D

y x cos y dA,  D is bounded by y − 0, y − x 2, x − 1

 24. y
D

y sx 2 1 2yd dA,  D is bounded by y − x, y − x 3, x > 0

 25. y
D

y y 2 dA,  

  D is the triangular region with vertices (0, 1), (1, 2), s4, 1d

 26. y
D

y xy dA,  D is enclosed by the quarter-circle 

  y − s1 2 x 2 , x > 0, and the axes

 27. y
D

y s2x 2 yd dA,

  D is bounded by the circle with center the origin and radius 2

 28. y
D

y y dA,  D is the triangular region with vertices s0, 0d, 

  s1, 1d, and s4, 0d

29–30 The figure shows a surface and a region D in the xy-plane.
(a) Set up an iterated double integral for the volume of the solid 

that lies under the surface and above D.
(b) Evaluate the iterated integral to find the volume of the solid.

 29.   30. 

x
1

(1, 1, 0)

1

z

yD

z=1+xy

  
D

x
1

1

z

y

z=≈+¥

y=≈, z=0

31–40 Find the volume of the given solid.

 31.  Under the plane 3x 1 2y 2 z − 0 and above the region 
enclosed by the parabolas y − x 2 and x − y 2

 32.  Under the surface z − 1 1 x 2y2 and above the region 
enclosed by x − y 2 and x − 4

 33.  Under the surface z − xy and above the triangle with  
vertices s1, 1d, s4, 1d, and s1, 2d

 34.  Enclosed by the paraboloid z − x 2 1 y 2 1 1 and the planes 
x − 0, y − 0, z − 0, and x 1 y − 2

 35.  The tetrahedron enclosed by the coordinate planes and the 
plane 2x 1 y 1 z − 4

 36.  Bounded by the planes z − x, y − x, x 1 y − 2, and z − 0

 37.  Enclosed by the cylinders z − x 2, y − x 2 and the planes  
z − 0, y − 4

 38.  Bounded by the cylinder y 2 1 z2 − 4 and the planes x − 2y, 
x − 0, z − 0 in the first octant

 39.  Bounded by the cylinder x 2 1 y 2 − 1 and the planes y − z, 
x − 0, z − 0 in the first octant

 40. Bounded by the cylinders x 2 1 y 2 − r 2 and y 2 1 z2 − r 2

 41.  Use a graph to estimate the x-coordinates of the points of 
intersection of the curves y − x 4 and y − 3x 2 x 2. If D is the 
region bounded by these curves, estimate yyD x dA.

 42.  Find the approximate volume of the solid in the first octant  
that is bounded by the planes y − x, z − 0, and z − x and the 
cylinder y − cos x. (Use a graph to estimate the points of 
intersection.)

43–46 Find the volume of the solid by subtracting two volumes.

 43.  The solid enclosed by the parabolic cylinders y − 1 2 x 2,  
y − x 2 2 1 and the planes x 1 y 1 z − 2, 
2x 1 2y 2 z 1 10 − 0

 44.  The solid enclosed by the parabolic cylinder y − x 2 and the 
planes z − 3y, z − 2 1 y

;

;
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67–68 Express D as a union of regions of type I or type II and 
evaluate the integral.

 67. y
D

y x 2 dA 68. y
D

y y dA

0

1

_1

_1 1

D
(1, 1)

x

y

      

0

_1

1

_1

x=y-Á

y=(x+1)@

y

x

69–70 Use Property 10 to estimate the value of the integral.

 69.  y
S

y s4 2 x 2 y 2  dA,  

  S − hsx, yd | x 2 1 y 2 < 1, x > 0j

 70.  y
T

y sin4sx 1 yd dA,  T is the triangle enclosed by the lines 

  y − 0, y − 2x, and x − 1

71–72 Find the average value of f  over the region D.

 71.  f sx, yd − xy,   
D is the triangle with vertices s0, 0d, s1, 0d, and s1, 3d

 72.  f sx, yd − x sin y,   
D is enclosed by the curves y − 0, y − x 2, and x − 1

 73. Prove Property 10.

 74.  In evaluating a double integral over a region D, a sum of  
iterated integrals was obtained as follows:

y
D

y f sx, yd dA − y1

0
 y2y

0
 f sx, yd dx dy 1 y3

1
 y32y

0
 f sx, yd dx dy

Sketch the region D and express the double integral as an  
iterated integral with reversed order of integration.

75–79 Use geometry or symmetry, or both, to evaluate the  
double integral.

 75.  y
D

y sx 1 2d dA,  

  D − hsx, yd  |  0 < y < s9 2 x 2
 j

 76.  y
D

y sR 2 2 x 2 2 y 2  dA,  

  D is the disk with center the origin and radius R

 45.  The solid under the plane z − 3, above the plane z − y, and 
between the parabolic cylinders y − x 2 and y − 1 2 x 2

 46.  The solid in the first octant under the plane z − x 1 y, 
above the surface z − xy, and enclosed by the surfaces 
x − 0, y − 0, and x 2 1 y 2 − 4

47–50 Sketch the solid whose volume is given by the iterated  
integral.

 47. y1

0
 y12x

0
 s1 2 x 2 yd dy dx 48. y1

0
 y12x2

0
 s1 2 xd dy dx

 49. y3

0
 yy

0
  s 9 2 x 2

  dx dy  50. y2

22
 y32x2

21
 e2y dy dx 

51–54 Use a computer algebra system to find the exact volume 
of the solid.

 51.  Under the surface z − x 3y 4 1 xy 2 and above the region 
bounded by the curves y − x 3 2 x and y − x 2 1 x  
for x > 0

 52.  Between the paraboloids z − 2x 2 1 y 2 and 
z − 8 2 x 2 2 2y 2 and inside the cylinder x 2 1 y 2 − 1

 53. Enclosed by z − 1 2 x 2 2 y 2 and z − 0

 54. Enclosed by z − x 2 1 y 2 and z − 2y

55–60 Sketch the region of integration and change the order of 
integration.

 55. y1

0
 yy

0
 f sx, yd dx dy 56. y2

0
 y4

x2
 f sx, yd dy dx

 57. y�y2

0
 y1

sin x
  f sx, yd dy dx 58. y2

22
 ys42y2

 

0
 f sx, yd dx dy

 59. y2

1
 y ln

 
x

0
 f sx, yd dy dx 60. y1

0
 y�y4

arctan x
 f sx, yd dy dx

61–66 Evaluate the integral by reversing the order of 
integration.

 61. y1

0
 y3

3y
 e x2

 dx dy 62. y1

0
y1

x2
 sy  sin y dy dx

 63. y1

0
y1

sx 
 sy 3 1 1

 

 dy dx

 64. y2

0
y1

yy2
 y cossx 3 2 1d dx dy

 65. y1

0
 y�y2

arcsin y
 cos x s1 1 cos2x  dx dy

 66. y8

0
 y2

s3 y 
 e x 4

 dx dy
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1062 CHAPTER 15  Multiple Integrals

 77.  y
D

y s2x 1 3yd dA,  

  D is the rectangle 0 < x < a, 0 < y < b

 78.  y
D

y s2 1 x 2y 3 2 y 2 sin xd dA,  

  D − hsx, yd | | x | 1 | y | < 1j

 79.  y
D

y (ax 3 1 by 3 1 sa 2 2 x 2 ) dA,  

  D − f2a, ag 3 f2b, bg

80 – 81 Mean Value Theorem for Double Integrals The Mean 
Value Theorem for double integrals says that if f  is a continuous 
function on a plane region D that is of type I or type II, then there 
exists a point sx0, y0d in D such that

y
D

y f sx, yd dA − f sx0, y0 d AsDd

 80. Use the Extreme Value Theorem (14.7.8) and Property 15.2.10 
of integrals to prove the Mean Value Theorem for double  
integrals. (Use the proof of the single-variable version in  
Section 6.5 as a guide.)

 81. Suppose that f  is continuous on a disk that contains the  
point sa, bd. Let Dr be the closed disk with center sa, bd and 
radius r. Use the Mean Value Theorem for double integrals  
to show that

lim
r l 0

 
1

�r 2  y
Dr

y  
f sx, yd dA − f sa, bd

 82.  Graph the solid bounded by the plane x 1 y 1 z − 1 and the 
paraboloid z − 4 2 x 2 2 y 2 and find its exact volume. (Use a 
computer algebra system to find the equations of the bound-
ary curves of the region of integration and to evaluate the 
double integral.)

Double Integrals in Polar Coordinates

Suppose that we want to evaluate a double integral yyR f sx, yd dA, where the region R is 
a circular disk centered at the origin. In this case the description of R in terms of rectan-
gular coordinates is rather complicated, but R is readily described using polar coor-
dinates. In general, if R is a region that is more easily described using polar coordinates, 
it is often advantageous to evaluate the double integral by first converting it to polar 
coordinates. 

■	 Review of Polar Coordinates
Polar coordinates were introduced in Section 10.3. Recall from Figure 1 that the polar 
coordinates sr, �d of a point are related to the rectangular coordinates sx, yd of that point 
by the equations

r 2 − x 2 1 y 2      x − r cos �      y − r sin �

Equations of circles centered at the origin are particularly simple in polar coordinates. 
The unit circle has equation r − 1; the region enclosed by this circle is shown in 
Figure 2(a). Figure 2(b) illustrates another region that is conveniently described in polar 
coordinates.

x0

y

R

≈+¥=1

(a) R=s(r, ¨) | 0¯r¯1, 0¯¨¯2πd

x0

y

R

≈+¥=4

≈+¥=1

(b) R=s(r, ¨)  | 1¯r¯2, 0¯¨¯πd

15.3

O

y

x
¨

x

y
r

P(r, ¨)=P(x, y)

FIGURE 1

FIGURE 2
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 SECTION 15.3  Double Integrals in Polar Coordinates 1063

You may wish to review Table 10.3.1 for other common curves suitably described in 
polar coordinates.

■	 Double Integrals in Polar Coordinates
The regions in Figure 2 are special cases of a polar rectangle

R − hsr, �d | a < r < b, � < � < �j
which is shown in Figure 3. In order to compute the double integral yyR f sx, yd dA, where 
R is a polar rectangle, we divide the interval fa, bg into m subintervals fri21, rig of equal 
width Dr − sb 2 adym and we divide the interval f�, �g into n subintervals f�j21, �jg  
of equal width D� − s� 2 �dyn. Then the circles r − ri and the rays � − �j divide the 
polar rectangle R into the small polar rectangles Rij shown in Figure 4.

r=ri-1

O

∫
å

r=a ¨=å

¨=∫
r=b

R
Î¨

¨=¨j

(ri*, ̈ j*)

r=ri

Rij

O

¨=¨j-1

FIGURE 3 Polar rectangle FIGURE 4 Dividing R into polar subrectangles

The “center” of the polar subrectangle

Rij − hsr, �d | ri21 < r < ri, �j21 < � < �jj
has polar coordinates

ri* − 1
2 sri21 1 rid      �j* − 1

2 s�j21 1 �jd

We compute the area of Rij using the fact that the area of a sector of a circle with radius 
r and central angle � is 1

2 r 2�. Subtracting the areas of two such sectors, each of which 
has central angle D� − �j 2 �j21, we find that the area of Rij is

 DAi − 1
2 ri

2 D� 2 1
2 ri21

2 D� − 1
2 sri

2 2 ri21
2 d D�

 − 1
2 sri 1 ri21 dsri 2 ri21 d D� − ri* Dr D�

Although we have defined the double integral yyR f sx, yd dA in terms of ordinary rect-
angles, it can be shown that, for continuous functions f , we always obtain the same  
answer using polar rectangles. The rectangular coordinates of the center of Rij are 
sri* cos �j*, ri* sin �j*d, so a typical Riemann sum is

1  o
m

i−1
 o

n

j−1
 f sri* cos �j*, ri* sin �j*d DAi − o

m

i−1
 o

n

j−1
 f sri* cos �j*, ri* sin �j*d ri* Dr D�

If we write tsr, �d − r f sr cos �, r sin �d, then the Riemann sum in Equation 1 can be 
written as

o
m

i−1
 o

n

j−1
 tsri*, �j*d Dr D�

Compare Figure 4 with Figure 15.1.3.
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1064 CHAPTER 15  Multiple Integrals

which is a Riemann sum for the double integral

y�

�
 yb

a
 tsr, �d dr d�

Therefore we have

 y
R

y f sx, yd dA − lim
m, nl `

 o
m

i−1
 o

n

j−1
 f sri* cos �j*, ri* sin �j*d DAi

 − lim
m, nl `

 o
m

i−1
 o

n

j−1
 tsri*, �j*d Dr D� − y�

�
yb

a
 tsr, �d dr d�

 − y�

�
 yb

a
 f sr cos �, r sin �d r dr d�

2  Change to Polar Coodinates in a Double Integral If f  is continuous on a 
polar rectangle R given by 0 < a < r < b, � < � < �, where 0 < � 2 � < 2�,  
then

y
R

y f sx, yd dA − y�

�
 yb

a
 f sr cos �, r sin �d r dr d�

The formula in (2) says that we convert from rectangular to polar coordinates in a 
double integral by writing x − r cos � and y − r sin �, using the appropriate limits of 
integration for r and �, and replacing dA by r dr d�. Be careful not to forget the addi-
tional factor r on the right side of Formula 2. A classical method for remembering this is 
shown in Figure 5, where the “infinitesimal” polar rectangle can be thought of as an 
ordinary rectangle with dimensions r d� and dr and therefore has “area” dA − r dr d�.

EXAMPLE 1 Evaluate yyR s3x 1 4y 2 d dA, where R is the region in the upper half-plane 

bounded by the circles x 2 1 y 2 − 1 and x 2 1 y 2 − 4.

SOLUTION The region R can be described as

R − hsx, yd | y > 0, 1 < x 2 1 y 2 < 4j
It is the half-ring shown in Figure 2(b), and in polar coordinates it is given by 
1 < r < 2, 0 < � < �. Therefore, by Formula 2,

 y
R

y s3x 1 4y 2 d dA − y�

0
 y2

1
 f3sr cos �d 1 4sr sin �d2g r dr d�

 − y�

0
 y2

1
 s3r 2 cos � 1 4r 3 sin2�d dr d�

 − y�

0
 fr 3 cos � 1 r 4 sin2�gr−1

r−2
 d� − y�

0
 s7 cos � 1 15 sin2�d d�

 − y�

0
 f7 cos � 1 15

2 s1 2 cos 2�dg d�

  − 7 sin � 1
15�

2
2

15

4
 sin 2�G

0

�

−
15�

2
 ■

O

d¨

r d¨

dr

dA

r

FIGURE 5

Here we use the trigonometric 
identity

sin2� − 1
2s1 2 cos 2�d

See Section 7.2 for advice on 
integrating trigonometric functions.
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EXAMPLE 2 Evaluate the double integral

y1

21
 ys12x2

0
 sx 2 1 y 2d dy dx

SOLUTION This iterated integral is a double integral over the region R shown in 
Figure 6 and described by

R − hsx, yd | 21 < x < 1, 0 < y < s1 2 x2 j
The region is a half-disk, so it is more simply described in polar coordinates:

R − hsr, �d | 0 < � < �, 0 < r < 1j
Therefore we have

 y1

21
 ys12x2

0
 sx 2 1 y 2d dy dx − y�

0
 y1

0
 sr 2d r dr d�

  − y�

0
 F r 4

4 Gr−1

r−0
 d� −

1

4
 y�

0
 d� −

�

4
 ■

EXAMPLE 3 Find the volume of the solid bounded by the plane z − 0 and the 
paraboloid z − 1 2 x 2 2 y 2.

SOLUTION If we put z − 0 in the equation of the paraboloid, we get x 2 1 y 2 − 1. This 
means that the plane intersects the paraboloid in the circle x 2 1 y 2 − 1, so the solid  
lies under the paraboloid and above the circular disk D given by x 2 1 y 2 < 1 [see Fig-
ures 7 and 2(a)]. In polar coordinates D is given by 0 < r < 1, 0 < � < 2�. Since 
1 2 x 2 2 y 2 − 1 2 r 2, the volume is

 V − y
D

y s1 2 x 2 2 y 2 d dA − y2�

0
 y1

0
 s1 2 r 2 d r dr d�

  − y2�

0
 d� y1

0
 sr 2 r 3 d dr − 2�F r 2

2
2

r 4

4 G0

1

−
�

2
 ■

In Example 3, if we had used rectangular coordinates instead of polar coordinates, we 
would have obtained

V − y
D

y s1 2 x 2 2 y 2 d dA − y1

21
 ys12x2

2s12x2
 s1 2 x 2 2 y 2 d dy dx

which is not easy to evaluate because it involves finding y s1 2 x 2 d3y2 dx.

What we have done so far can be extended to the more complicated type of region  
shown in Figure 8. It’s similar to the type II rectangular regions we considered in Sec-
tion 15.2. In fact, by combining Formula 2 in this section with Formula 15.2.4, we obtain 
the following formula.

3  If f  is continuous on a polar region of the form

D − hsr, �d | � < � < �, h1s�d < r < h2s�dj

then y
D

y f sx, yd dA − y�

�
 yh2s�d

h
1
s�d

 f sr cos �, r sin �d r dr d�

x0

y

R

y=œ„„„„„1-≈1

1

FIGURE 6

0

D
y

(0, 0, 1)

x

z

FIGURE 7

O

∫
å

r=h¡(¨)

¨=å

¨=∫ r=h™(¨)

D

FIGURE 8
D=s(r, ¨) | å¯¨¯∫, h¡(¨)¯r¯h™(¨)d
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In particular, taking f sx, yd − 1, h1s�d − 0, and h2s�d − hs�d in this formula, we see 
that the area of the region D bounded by � − �, � − �, and r − hs�d is

 AsDd − y
D

y 1 dA − y�

�
 yhs�d

0
 r dr d�

 − y�

�
 F r 2

2 G0

hs�d

d� − y�

�
 12 fhs�dg2 d�

and this agrees with Formula 10.4.3.

EXAMPLE 4 Use a double integral to find the area enclosed by one loop of the 
four-leaved rose r − cos 2�.

SOLUTION From the sketch of the curve in Figure 9, we see that a loop is given by the 
region

D − hsr, �d |  2�y4 < � < �y4, 0 < r < cos 2�j
So the area is

 AsDd − y
D

y dA − y�y4

2�y4
 ycos

 
2�

0
 r dr d�

 − y�y4

2�y4
 f 12 r 2g0

cos 2�

 d� − 1
2 y�y4

2�y4
 cos2 2� d�

  − 1
4 y�y4

2�y4
 s1 1 cos 4�d d� − 1

4 f� 1 1
4 sin 4�g

2�y4

�y4
−

�

8
 ■

EXAMPLE 5 Find the volume of the solid that lies under the paraboloid z − x 2 1 y 2, 
above the xy-plane, and inside the cylinder x 2 1 y 2 − 2x.

SOLUTION The solid lies above the disk D whose boundary circle has equation 
x 2 1 y 2 − 2x or, after completing the square,

sx 2 1d2 1 y 2 − 1
(See Figures 10 and 11.)

In polar coordinates we have x 2 1 y 2 − r 2 and x − r cos �, so the boundary circle 
x 2 1 y 2 − 2x becomes r 2 − 2r cos �, or r − 2 cos �. Thus the disk D is given by

D − hsr, �d | 2�y2 < � < �y2, 0 < r < 2 cos � j
and, by Formula 3, we have

 V − y
D

y sx 2 1 y 2 d dA − y�y2

2�y2
 y2

 
cos �

0
 r 2 r dr d� − y�y2

2�y2
 F r 4

4 G0

2 cos �

 d�

 − 4 y�y2

2�y2
 cos4� d� − 8 y�y2

0
 cos4� d� − 8 y�y2

0
 S 1 1 cos 2�

2 D2

 d�

 − 2 y�y2

0
 f1 1 2 cos 2� 1 1

2 s1 1 cos 4�dg d�

  − 2f 32 � 1 sin 2� 1 1
8 sin 4�g0

�y2

− 2S 3

2DS�

2 D −
3�

2
 ■

¨=π
4

¨=_π
4

FIGURE 9

0

y

x1 2

D

(x-1)@+¥=1
 (or  r=2 cos ¨)

FIGURE 10

z=≈+¥

(x-1)@+¥=1

2 

z 

y x 

FIGURE 11
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15.3 Exercises
1–6 A region R is shown. Decide whether to use polar coordinates 
or rectangular coordinates and write yy

R
 f sx, yd dA as an iterated 

integral, where  f  is an arbitrary continuous function on R.

 1. 

0 4

_4

y

x

R

 2. 

0_1 1

1

y

x

R

 3. 

0 31_3 _1

y

x

R

 4. 

0 3

y

x

R

_3

 5. 

0_2 2

1

y

x
R

 6. 

0 108

10

8

y

x

R

7–8 Sketch the region whose area is given by the integral and 
evaluate the integral.

 7. y3�y4

�y4
 y2

1
 r dr d� 8. y�

�y2
 y2 sin �

0
 r dr d�

9–16 Evaluate the given integral by changing to polar coordinates.

 9.  yy
D
 x 2y dA, where D is the top half of the disk with center the 

origin and radius 5

 10.  yy
R
 s2x 2 yd dA, where R is the region in the first quadrant 

enclosed by the circle x 2 1 y 2 − 4 and the lines x − 0  
and y − x

 11.  yy
R
 sinsx 2 1 y 2d dA, where R is the region in the first quadrant 

between the circles with center the origin and radii 1 and 3

 12.  y
R

y 
y 2

x 2 1 y 2  dA, where R is the region that lies between the 

  circles x 2 1 y 2 − a2 and x 2 1 y 2 − b2 with 0 , a , b

 13.  yy
D
 e2x22y2

 dA, where D is the region bounded by the 

  semicircle x − s4 2 y 2  and the y-axis

 14.  yy
D
 cos sx 2 1 y 2  dA, where D is the disk with center the  

origin and radius 2

 15.  yy
R
 arctans yyxd dA,

  where R − hsx, yd | 1 < x 2 1 y 2 < 4, 0 < y < xj

 16.  yy
D
 x dA, where D is the region in the first quadrant that lies 

between the circles x 2 1 y 2 − 4 and x 2 1 y 2 − 2x

17–22 Use a double integral to find the area of the region D.

 17. 

D

r=1-cos ¨

r=1+cos ¨

 18. 

D

r=œ„̈„

 19.  

D

r=cos ¨

r=sin ¨
 20. 

D

r@=cos 2¨

r=1/œ„2

 21. D is the loop of the rose r − sin 3� in the first quadrant.

 22. D is the region inside the circle sx 2 1d2 1 y 2 − 1 and 
outside the circle x 2 1 y 2 − 1.

23–24
(a) Set up an iterated integral in polar coordinates for the volume 

of the solid under the surface and above the region D. 
(b) Evaluate the iterated integral to find the volume of the  

solid.

 23. 

x

z

y

z=1+xy

D

≈+¥=4, z=0
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1068 CHAPTER 15  Multiple Integrals

 24. 

≈+¥=1, z=0

≈+¥=4, z=0

z=≈+¥

D
y

x

z

25–28
(a) Set up an iterated integral in polar coordinates for the volume 

of the solid under the graph of the given function and above 
the region D.

(b) Evaluate the iterated integral to find the volume of the solid.

  25. f sx, yd − y 26. f sx, yd − xy 2

  

0

y

x

D

≈+¥=9
  

x

D

0 2 3

y

r=3

r=2

2

3

 27. f sx, yd − x 28. f sx, yd − 1

  

x

D

0

y
r=sin ¨

  

x

D

0

y

r=1+cos ¨

29–37 Use polar coordinates to find the volume of the given 
solid.

 29.  Under the paraboloid z − x 2 1 y 2 and above the disk 
x 2 1 y 2 < 25

 30.  Below the cone z − sx 2 1 y 2
 

 and above the ring 
1 < x 2 1 y 2 < 4

 31.  Below the plane 2x 1 y 1 z − 4 and above the disk 
x 2 1 y 2 < 1

 32.  Inside the sphere x 2 1 y 2 1 z 2 − 16 and outside the  
cylinder x 2 1 y 2 − 4

 33. A sphere of radius a

 34.  Bounded by the paraboloid z − 1 1 2x 2 1 2y 2 and the  
plane z − 7 in the first octant

 35.  Above the cone z − sx 2 1 y 2  and below the sphere 
x 2 1 y 2 1 z2 − 1

 36.  Bounded by the paraboloids z − 6 2 x 2 2 y 2 and 
z − 2x 2 1 2y 2

 37.  Inside both the cylinder x 2 1 y 2 − 4 and the ellipsoid 
4x 2 1 4y 2 1 z2 − 64

 38. (a)  A cylindrical drill with radius r1 is used to bore a hole 
through the center of a sphere of radius r2. Find the vol-
ume of the ring-shaped solid that remains.

 (b)  Express the volume in part (a) in terms of the height h of 
the ring. Notice that the volume depends only on h, not  
on r1 or r2.

39–42 Evaluate the iterated integral by converting to polar  
coordinates.

 39. y2

0
ys42x2 

0
 e2x 22y 2

 dy dx 40. ya

0
ysa22y2

  

2sa22y2
 

 s2x 1 yd dx dy

 41. y1y2

0
ys12y2

 

s3
 

y
xy 2 dx dy

 42. y2

0
 ys2x2x2

 

0  sx 2 1 y 2 

 dy dx

43–44 Express the double integral in terms of a single integral 
with respect to r. Then use a calculator (or computer) to evaluate 
the integral correct to four decimal places.

 43.  yy
D
 e sx21y2d2 dA, where D is the disk with center the origin 

and radius 1

 44.   yy
D
 xys1 1 x 2 1 y 2  dA, where D is the portion of the disk 

   x 2 1 y 2 < 1 that lies in the first quadrant

 45.  A swimming pool is circular with a 10-meter diameter. The 
depth is constant along east-west lines and increases linearly 
from 1 m at the south end to 2 m at the north end. Find the 
volume of water in the pool.

 46.  An agricultural sprinkler distributes water in a circular pattern 
of radius 50 m. It supplies water to a depth of e2r meters per 
hour at a distance of r meters from the sprinkler.

 (a)  If 0 , R < 50, what is the total amount of water sup- 
plied per hour to the region inside the circle of radius R 
centered at the sprinkler?

 (b)  Determine an expression for the average amount of water 
per hour per square meter supplied to the region inside 
the circle of radius R.

 47.  Find the average value of the function f sx, yd − 1ysx 2 1 y2  
on the annular region a 2 < x 2 1 y2 < b2, where 0 , a , b.
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 (b)  An equivalent definition of the improper integral in 
part (a) is

y
R2

y e2sx21y2d dA − lim
al `

y
Sa

y  
  e2sx21y2d dA

   where Sa is the square with vertices s6a, 6ad. Use this to 
show that

y`

2`
 e2x2 dx y`

2`
 e2y2 dy − �

 (c) Deduce that

y`

2`
 e2x2 dx − s�  

 (d)  By making the change of variable t − s2 x, show that

y`

2`
 e2x2y2 dx − s2�  

   (This is a fundamental result for probability and 
statistics.)

 51.  Use the result of Exercise 50(c) to evaluate the following 
integrals.

  (a) y`

0
 x 2e2x2 dx (b) y`

0
 sx e2x dx

 48.  Let D be the disk with center the origin and radius a. What is 
the average distance from points in D to the origin?

 49.  Use polar coordinates to combine the sum

y1

1ys2
 
 yx

s12x2
 

 
 xy dy dx 1 ys2

1
 yx

0
 xy dy dx 1 y2

s2
 ys42x2

 

0  xy dy dx

into one double integral. Then evaluate the double integral.

 50. (a)  We define the improper integral (over the entire plane R2d

 I − y
R2

y 
e2sx2 1 y2d dA

 − y`

2`
 y`

2`
 e2sx21y2d dy dx

 − lim
al`

y
Da

y e2sx21y2d dA

   where Da is the disk with radius a and center the origin.  
Show that

y`

2`
 y`

2`
 e2sx21y2d dA − �

Applications of Double Integrals

We have already seen one application of double integrals: computing volumes. Another 
geometric application is finding areas of surfaces and this will be done in the next sec-
tion. In this section we explore physical applications such as computing mass, electric 
charge, center of mass, and moment of inertia. We will see that these physical ideas are 
also important when applied to probability density functions of two random variables.

■	 Density and Mass
In Section 8.3 we were able to use single integrals to compute moments and the center of 
mass of a thin plate or lamina with constant density. But now, equipped with the double 
integral, we can consider a lamina with variable density. Suppose the lamina occupies a 
region D of the xy-plane and its density (in units of mass per unit area) at a point sx, yd 
in D is given by �sx, yd, where � is a continuous function on D. This means that

�sx, yd − lim 
Dm

DA

where Dm and DA are the mass and area of a small rectangle that contains sx, yd and 
the limit is taken as the dimensions of the rectangle approach 0. (See Figure 1.)

To find the total mass m of the lamina we divide a rectangle R containing D into sub-
rectangles Rij of the same size (as in Figure 2) and consider �sx, yd to be 0 outside D. If 
we choose a point sxij*, yij*d in Rij, then the mass of the part of the lamina that occupies Rij 
is approximately �sxij*, yij*d DA, where DA is the area of Rij. If we add all such masses, we 
get an approximation to the total mass:

m < o
k

i−1
 o

l

j−1
 �sxij*, yij*d DA

15.4

Rij
y

0 x

(xij, yij)* *

FIGURE 2 The mass of each 
subrectangle Rij is approximated by 
�sxij*, yij*d DA.

0 x

y

D

(x, y)

FIGURE 1
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1070 CHAPTER 15  Multiple Integrals

If we now increase the number of subrectangles, we obtain the total mass m of the lamina 
as the limiting value of the approximations:

1
 

m − lim
k, l l `

 o
k

i−1
 o

l

j−1
 �sxij*, yij*d DA − y

D

y �sx, yd dA

Physicists also consider other types of density that can be treated in the same manner. 
For example, if an electric charge is distributed over a region D and the charge density 
(in units of charge per unit area) is given by �sx, yd at a point sx, yd in D, then the total 
electric charge Q is given by

2  Q − y
D

y �sx, yd dA 

EXAMPLE 1 Charge is distributed over the triangular region D in Figure 3 so that the 
charge density at sx, yd is �sx, yd − xy, measured in coulombs per square meter (Cym2). 
Find the total charge.

SOLUTION From Equation 2 and Figure 3 we have

 Q − y
D

y �sx, yd dA − y1

0
 y1

12x
 xy dy dx − y1

0
 Fx 

y 2

2 G
y−12x

y−1
 

dx − y1

0
 
x

2
 f12 2 s1 2 xd2 g dx

 − 1
2 y1

0
 s2x 2 2 x 3 d dx −

1

2
 F 2x 3

3
2

x 4

 4 G0

1

−
5

24

Thus the total charge is 5
24 C. ■

■	 Moments and Centers of Mass
In Section 8.3 we found the center of mass of a lamina with constant density; here we 
consider a lamina with variable density. Suppose the lamina occupies a region D and has 
density function �sx, yd. Recall from Chapter 8 that we defined the moment of a particle 
about an axis as the product of its mass and its directed distance from the axis. We divide 
D into small rectangles as in Figure 2. Then the mass of Rij is approximately �sxij*, yij*d DA, 
so we can approximate the moment of Rij with respect to the x-axis by

f�sxij*, yij*d DAg yij*

If we now add these quantities and take the limit as the number of subrectangles be comes  
large, we obtain the moment of the entire lamina about the x-axis:

3
 

Mx − lim
m, nl `

  o
m

i−1
 o

n

j−1
 yij* �sxij*, yij*d DA − y

D

y y �sx, yd dA

Similarly, the moment about the y-axis is 

4
 

My − lim
m, nl `

  o
m

i−1
 o

n

j−1
 xij* �sxij*, yij*d DA − y

D

y x �sx, yd dA

1

y

0 x

(1, 1)
y=1

y=1-x

D

FIGURE 3
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 SECTION 15.4  Applications of Double Integrals 1071

As before, we define the center of mass sx, yd so that mx − My and my − Mx. The physi-
cal significance is that the lamina behaves as if its entire mass is concentrated at its center 
of mass. Thus the lamina balances horizontally when supported at its center of mass (see 
Figure 4).

5  The coordinates sx, yd of the center of mass of a lamina occupying the  
region D and having density function �sx, yd are

x −
My

m
−

1

m
 y

D

y x �sx, yd dA      y −
Mx

m
−

1

m
 y

D

y  y �sx, yd dA

where the mass m is given by

m − y
D

y �sx, yd dA

EXAMPLE 2 Find the mass and center of mass of a triangular lamina with vertices  
s0, 0d, s1, 0d, and s0, 2d if the density function is �sx, yd − 1 1 3x 1 y.

SOLUTION The triangle is shown in Figure 5. (Note that the equation of the upper 
boundary is y − 2 2 2x.) The mass of the lamina is

 m − y
D

y �sx, yd dA − y1

0
 y222x

0
 s1 1 3x 1 yd dy dx

 − y1

0
 Fy 1 3xy 1

 y 2

2 Gy−0

y−222x

 dx

 − 4 y1

0
 s1 2 x 2 d dx − 4Fx 2

x 3

3 G0

1

−
8

3

Then the formulas in (5) give

 x −
1

m
 y

D

y x�sx, yd dA − 3
8 y1

0
 y222x

0
 sx 1 3x 2 1 xyd dy dx

 −
3

8
 y1

0
 Fxy 1 3x 2 y 1 x 

y 2

2 Gy−0

y−222x
 

dx

 −
3

2
 y1

0
 sx 2 x 3 d dx −

3

2 F x 2

2
2

x 4

4 G0

1

−
3

8

 y −
1

m
 y

D

y y�sx, yd dA − 3
8 y1

0
 y222x

0
 sy 1 3xy 1 y 2 d dy dx

 −
3

8
 y1

0
 F y 2

2
1 3x 

y 2

2
1

y 3

3 Gy−0

y−222x

dx − 1
4 y1

0
 s7 2 9x 2 3x 2 1 5x 3 d dx

 −
1

4
 F7x 2 9 

x 2

2
2 x 3 1 5 

x 4

4 G0

1

−
11

16

The center of mass is at the point (3
8 , 11

16). ■

D
(x, y)

FIGURE 4

0

y

x(1, 0)

(0, 2)

y=2-2x

”    ,     ’3
8

11
16

D

FIGURE 5
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1072 CHAPTER 15  Multiple Integrals

EXAMPLE 3 The density at any point on a semicircular lamina is proportional to the 
distance from the center of the circle. Find the center of mass of the lamina.

SOLUTION Let’s place the lamina as the upper half of the circle x 2 1 y 2 − a 2. (See 
Figure 6.) Then the distance from a point sx, yd to the center of the circle (the origin) is 

sx 2 1 y 2 . Therefore the density function is

�sx, yd − Ksx 2 1 y 2 

where K is some constant. Both the density function and the shape of the lamina 
suggest that we convert to polar coordinates. Then sx 2 1 y 2 − r and the region D is 
given by 0 < r < a, 0 < � < �. Thus the mass of the lamina is

 m − y
D

y �sx, yd dA − y
D

y Ksx 2 1 y 2  dA

 − y�

0
 ya

0
 sKrd r dr d� − K y�

0
 d� ya

0
 r 2 dr − K� 

r 3

3 G0

a

−
K�a3

3

Both the lamina and the density function are symmetric with respect to the y-axis, so 
the center of mass must lie on the y-axis, that is, x − 0. The y-coordinate is given by

 y −
1

m
 y

D

y y�sx, yd dA −
3

K�a3  y�

0
ya

0
 r sin � sKrd r dr d�

 −
3

�a3  y�

0
 sin � d� ya

0
   r 3 dr −

3

�a3  f2cos �g0

�F r 4

4 G0

a

 −
3

�a3  
2a 4

4
−

3a

2�

Therefore the center of mass is located at the point s0, 3ays2�dd. ■

■	 Moment of Inertia
The moment of inertia (also called the second moment) of a particle of mass m about 
an axis is defined to be mr 2, where r is the distance from the particle to the axis. We 
extend this concept to a lamina with density function �sx, yd and occupying a region D 
by proceeding as we did for ordinary moments. We divide D into small rect angles, 
approximate the moment of inertia of each subrectangle about the x-axis, and take the 
limit of the sum as the number of subrectangles becomes large. The result is the moment 
of inertia of the lamina about the x-axis:

6
 

Ix − lim
m, nl `

  o
m

i−1
 o

n

j−1
 syij*d2 �sxij*, yij*d DA − y

D

y y 2 �sx, yd dA

Similarly, the moment of inertia about the y-axis is

7
 

Iy − lim
m, nl `

  o
m

i−1
 o

n

j−1
 sxij*d2 �sxij*, yij*d DA − y

D

y x 2 �sx, yd dA

0

y

xa_a

a

D

≈+¥=a@

”0,       ’3a
2π

FIGURE 6

Compare the location of the center of 
mass in Example 3 with Example 8.3.4, 
where we found that the center of 
mass of a lamina with the same shape 
but uniform density is located at the 
point s0, 4ays3�dd.
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We also consider the moment of inertia about the origin, also called the polar moment 
of inertia:

8  
I0 − lim

m, nl `
  o

m

i−1
 o

n

j−1
 fsxij*d2 1 syij*d2g �sxij*, yij*d DA − y

D

y sx 2 1 y 2 d �sx, yd dA

Note that I0 − Ix 1 Iy.

EXAMPLE 4 Find the moments of inertia Ix, Iy, and I0 of a homogeneous disk D with 
density �sx, yd − �, center the origin, and radius a.

SOLUTION The boundary of D is the circle x 2 1 y 2 − a 2 and in polar coordinates D is 
described by 0 < � < 2�, 0 < r < a. By Formula 6, 

 Ix − y
D

y y 2� dA − � y2�

0
 ya

0
 sr sin �d2 r dr d�

 − � y2�

0
  sin2� d� ya

0
 r 3 dr − � y2�

0
 12 s1 2 cos 2�d d� ya

0
 r 3 dr

 −
�

2
 f� 2 1

2 sin 2�g2�

0  F r 4

4 G
a

0

−
��a4

4

Similarly, Formula 7 gives 

 Iy − y
D

y x 2� dA − � y2�

0
 ya

0
 sr cos �d2 r dr d�

 − � y2�

0
 12 s1 1 cos 2�d d� ya

0
 r 3 dr −

��a 4

4

(From the symmetry of the problem, it is expected that Ix − Iy .) We could use  
Formula 8 to compute I0 directly, or use

 I0 − Ix 1 Iy −
��a4

4
1

��a4

4
−

��a4

2
 ■

In Example 4 notice that the mass of the disk is

m − density 3 area − �s�a 2 d

so the moment of inertia of the disk about the origin (like a wheel about its axle) can be 
written as

I0 −
��a4

2
− 1

2 s��a2da2 − 1
2 ma2

Thus if we increase the mass or the radius of the disk, we thereby increase the moment 
of inertia. In general, the moment of inertia plays much the same role in rotational motion 
that mass plays in linear motion. The moment of inertia of a wheel is what makes it 
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1074 CHAPTER 15  Multiple Integrals

diffi cult to start or stop the rotation of the wheel, just as the mass of a car is what makes 
it difficult to start or stop the motion of the car.

The radius of gyration of a lamina about an axis is the number R such that

9  mR2 − I 

where m is the mass of the lamina and I is the moment of inertia about the given axis. 
Equation 9 says that if the mass of the lamina were concentrated at a distance R from the 
axis, then the moment of inertia of this “point mass” would be the same as the moment 
of inertia of the lamina.

In particular, the radius of gyration y with respect to the x-axis and the radius of gyra-
tion x with respect to the y-axis are given by the equations

10  my 2 − Ix      mx 2 − Iy 

Thus sx, yd is the point at which the mass of the lamina can be concentrated without 
changing the moments of inertia with respect to the coordinate axes. (Note the analogy 
with the center of mass.)

EXAMPLE 5 Find the radius of gyration about the x-axis of the disk in Example 4.

SOLUTION As noted, the mass of the disk is m − ��a 2, so from Equations 10 we have

y 2 −
Ix

m
−

1
4 ��a 4

��a 2 −
a 2

4

Therefore the radius of gyration about the x-axis is y − 1
2 a, which is half the radius of 

the disk. ■

■	 Probability
In Section 8.5 we considered the probability density function f  of a continuous random 
variable X. This means that f sxd > 0 for all x, y`

2`
 f sxd dx − 1, and the probability that 

X lies between a and b is found by integrating f  from a to b:

Psa < X < bd − yb

a
 f sxd dx

Now we consider a pair of continuous random variables X and Y , such as the lifetimes 
of two components of a machine or the height and weight of an adult female chosen 
at random. The joint density function of X and Y  is a function f  of two variables such 
that the probability that sX, Y d lies in a region D is

PssX, Y d [ Dd − y
D

y f sx, yd dA

In particular, if the region is a rectangle, then the probability that X lies between a and b 
and Y  lies between c and d is

Psa < X < b, c < Y < dd − yb

a
 yd

c
 f sx, yd dy dx

(See Figure 7.)
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c

D

d

yx

z

a

b

z=f(x, y)

Because probabilities aren’t negative and are measured on a scale from 0 to 1, the 
joint density function has the following properties:

f sx, yd > 0      y
R2

y f sx, yd dA − 1

As in Exercise 15.3.50, the double integral over R2 is an improper integral defined as the 
limit of double integrals over expanding circles or squares, and we can write

y
R2

y f sx, yd dA − y`

2`
 y`

2`
 f sx, yd dx dy − 1

EXAMPLE 6 If the joint density function for X and Y  is given by

f sx, yd − H0

Csx 1 2yd
otherwise

if 0 < x < 10, 0 < y < 10

find the value of the constant C. Then find PsX < 7, Y > 2d.

SOLUTION We find the value of C by ensuring that the double integral of f  over R2 is 
equal to 1. Because f sx, yd − 0 outside the rectangle f0, 10g 3 f0, 10g, we have

 y`

2`
 y`

2`
 f sx, yd dy dx − y10

0
 y10

0
 Csx 1 2yd dy dx − C y10

0
 fxy 1 y 2g y−0

y−10
 dx

 − C y10

0
 s10x 1100d dx − 1500C

Therefore 1500C − 1 and so C − 1
1500.

Now we can compute the probability that X is at most 7 and Y  is at least 2:

 PsX < 7, Y > 2d − y7

2`
 y`

2
 f sx, yd dy dx − y7

0
 y10

2
 1
1500 sx 1 2yd dy dx

 − 1
1500 y7

0
 fxy 1 y 2g y−2

y−10
 dx − 1

1500 y7

0
 s8x 1 96d dx

  − 868
1500 < 0.5787  ■

FIGURE 7
The probability that X lies between a and b

and Y lies between c and d is the volume that
lies above the rectangle D=[a, b]x[c, d ] and

below the graph of the joint density function.
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Suppose X is a random variable with probability density function f1sxd and Y  is a 
random variable with density function f2syd. Then X and Y  are called independent ran-
dom variables if their joint density function is the product of their individual density 
functions:

f sx, yd − f1sxd f2syd

In Section 8.5 we modeled waiting times by using exponential density functions

f std − H0

�21e2ty�

if t , 0

if t > 0

where � is the mean waiting time. In the next example we consider a situation with two 
independent waiting times.

EXAMPLE 7 The manager of a movie theater determines that the average time 
moviegoers wait in line to buy a ticket for a film is 10 minutes and the average time 
they wait to buy popcorn is 5 minutes. Assuming that the waiting times are indepen-
dent, find the probability that a moviegoer waits a total of less than 20 minutes before 
taking his or her seat.

SOLUTION Assuming that both the waiting time X for the ticket purchase and the 
waiting time Y  in the refreshment line are modeled by exponential probability density 
functions, we can write the individual density functions as

f1sxd − H0
1

10 e2xy10

if x , 0

if x > 0
      f2syd − H0

1
5 e2yy5

if y , 0

if y > 0

Since X and Y  are independent, the joint density function is the product:

f sx, yd − f1sxd f2syd − H 1
50 e2xy10 e2yy5

0

if x > 0, y > 0

otherwise

We are asked for the probability that X 1 Y , 20:

PsX 1 Y , 20d − PssX, Y d [ Dd

where D is the triangular region shown in Figure 8. Thus

 PsX 1 Y , 20d − y
D

y f sx, yd dA − y20

0
 y202x

0
 1
50 e2xy10e2yy5 dy dx

 − 1
50 y20

0
 fe2xy10s25de2yy5g y−0

y−202x
 dx − 1

10 y20

0
 e2xy10s1 2 e sx220dy5 d dx

 − 1
10 y20

0
 se2xy10 2 e24exy10 d dx − 1 1 e24 2 2e22 < 0.7476

This means that about 75% of the moviegoers wait less than 20 minutes before taking 
their seats. ■

■	 Expected Values
Recall from Section 8.5 that if X is a random variable with probability density function 
f, then its mean is

� − y`

2`
 x f sxd dx

20

20

D

0

y

x

x+y=20

FIGURE 8
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 SECTION 15.4  Applications of Double Integrals 1077

Now if X and Y  are random variables with joint density function f , we define the X-mean 
and Y-mean, also called the expected values of X and Y , to be

11  �1 − y
R2

y x f sx, yd dA      �2 − y
R2

y y f sx, yd dA 

Notice how closely the expressions for �1 and �2 in (11) resemble the moments Mx and 
My of a lamina with density function � in Equations 3 and 4. In fact, we can think of 
probability as being like continuously distributed mass. We calculate probability the way 
we calculate mass—by integrating a density function. And because the total “probability 
mass” is 1, the expressions for x and y in (5) show that we can think of the expected 
values of X and Y , �1 and �2, as the coordinates of the “center of mass” of the probability 
distribution.

In the next example we deal with normal distributions. As in Section 8.5, a single 
random variable is normally distributed if its probability density function is of the form

f sxd −
1

�s2� 
 e2sx2�d2ys2�2d

where � is the mean and � is the standard deviation.

EXAMPLE 8 A factory produces (cylindrically shaped) roller bearings that are sold as 
having diameter 4.0 cm and length 6.0 cm. In fact, the diameters X are normally 
distributed with mean 4.0 cm and standard deviation 0.01 cm while the lengths Y  are 
normally distributed with mean 6.0 cm and standard deviation 0.01 cm. Assuming that 
X and Y  are independent, write the joint density function and graph it. Find the proba- 
bility that a bearing randomly chosen from the production line has either length or 
diameter that differs from the mean by more than 0.02 cm.

SOLUTION We are given that X and Y  are normally distributed with �1 − 4.0, 
�2 − 6.0, and �1 − �2 − 0.01. So the individual density functions for X and Y  are

f1sxd −
1

0.01s2� 
 e2sx24d2y0.0002      f2syd −

1

0.01s2� 
 e2s y26d2y0.0002

Since X and Y  are independent, the joint density function is the product:

 f sx, yd − f1sxd f2syd −
1

0.0002�
 e2sx24d2y0.0002e2sy26d2y0.0002

 −
5000

�
 e25000fsx24d21s y26d2g

A graph of this function is shown in Figure 9.
Let’s first calculate the probability that both X and Y  differ from their means by less 

than 0.02 cm. Using a calculator or computer to estimate the integral, we have

 Ps3.98 , X , 4.02, 5.98 , Y , 6.02d − y4.02

3.98
 y6.02

5.98
 f sx, yd dy dx

 −
5000

�
 y4.02

3.98
 y6.02

5.98
 e25000fsx24d21s y26d2g dy dx

 < 0.91

Then the probability that either X or Y  differs from its mean by more than 0.02 cm is 
approximately
 1 2 0.91 − 0.09 ■

1500

1000

500

0

y
6.05

6
5.95

x
4.05

4

3.95

z

FIGURE 9  
Graph of the bivariate normal joint 
density function in Example 8
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15.4 Exercises

 1.  Electric charge is distributed over the rectangle 0 < x < 5,  
2 < y < 5 so that the charge density at sx, yd is 
� sx, yd − 2x 1 4y (measured in coulombs per square meter). 
Find the total charge on the rectangle.

 2.  Electric charge is distributed over the disk x 2 1 y 2 < 1 so 
that the charge density at sx, yd is � sx, yd − sx 2 1 y 2   
(measured in coulombs per square meter). Find the total 
charge on the disk.

3–4 The figure shows a lamina that is shaded according to the 
given density function: darker shading indicates higher density. 
Estimate the location of the center of mass of the lamina, and then 
calculate its exact location. 

 3. �sx, yd − x 2 4. �sx, yd − xy

  

x0

y
1

1

  

x0

y
1

1

5–12 Find the mass and center of mass of the lamina that 
occupies the region D and has the given density function �.

 5. D − hsx, yd | 1 < x < 3, 1 < y < 4j; �sx, yd − ky 2

 6.  D − hsx, yd | 0 < x < a, 0 < y < bj; 
�sx, yd − 1 1 x 2 1 y 2

 7.  D is the triangular region with vertices s0, 0d, s2, 1d, s0, 3d;  
�sx, yd − x 1 y

 8.  D is the triangular region enclosed by the lines y − 0, 
y − 2x, and x 1 2y − 1; �sx, yd − x

 9.  D is bounded by y − 1 2 x 2 and y − 0; �sx, yd − ky

 10.  D is bounded by y − x 1 2 and y − x 2; �sx, yd − kx 2

 11.  D is bounded by the curves y − e2x, y − 0, x − 0, x − 1; 
�sx, yd − xy

 12.  D is enclosed by the curves y − 0 and y − cos x, 
2�y2 < x < �y2; �sx, yd − y

 13.  A lamina occupies the part of the disk x 2 1 y 2 < 1 in the first 
quadrant. Find its center of mass if the density at any point is 
proportional to its distance from the x-axis.

 14.  Find the center of mass of the lamina in Exercise 13 if the  
density at any point is proportional to the square of its  
distance from the origin.

 15.  The boundary of a lamina consists of the semicircles 
y − s1 2 x 2  and y − s4 2 x 2  together with the portions  
of the x-axis that join them. Find the center of mass of 
the lamina if the density at any point is proportional to its 
distance from the origin.

 16.  Find the center of mass of the lamina in Exercise 15 if the 
density at any point is inversely proportional to its distance 
from the origin.

 17.  Find the center of mass of a lamina in the shape of an isos-
celes right triangle with equal sides of length a if the density 
at any point is proportional to the square of the distance from 
the vertex opposite the hypotenuse.

 18.  A lamina occupies the region inside the circle x 2 1 y 2 − 2y 
but outside the circle x 2 1 y 2 − 1. Find the center of mass if 
the density at any point is inversely proportional to its dis-
tance from the origin.

 19.  Find the moments of inertia Ix, Iy, I0 for the lamina of  
Exercise 5.

 20.  Find the moments of inertia Ix, Iy, I0 for the lamina of  
Exercise 8.

 21.  Find the moments of inertia Ix, Iy, I0 for the lamina of  
Exercise 17.

 22.  Consider a square fan blade with sides of length 2 and 
the lower left corner placed at the origin. If the density of the 
blade is �sx, yd − 1 1 0.1x, is it more difficult to rotate 
the blade about the x-axis or the y-axis?

23–26 A lamina with constant density �sx, yd − � occupies the 
given region. Find the moments of inertia Ix and Iy and the radii of 
gyration x and y.

 23.  The rectangle 0 < x < b, 0 < y < h

 24.  The triangle with vertices s0, 0d, sb, 0d, and s0, hd

 25.  The part of the disk x 2 1 y 2 < a2 in the first quadrant

 26.  The region under the curve y − sin x from x − 0 to x − �

27–28 Use a computer algebra system to find the mass, center  
of mass, and moments of inertia of the lamina that occupies the 
region D and has the given density function.

 27.  D is enclosed by the right loop of the four-leaved rose 
r − cos 2�;  �sx, yd − x 2 1 y 2

 28. D − hsx, yd | 0 < y < xe2x, 0 < x < 2 j;  �sx, yd − x 2y 2
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 SECTION 15.5  Surface Area 1079

deviation 0.5 and Y is normally distributed with mean 20 
and standard deviation 0.1. Evaluate a double integral 
numerically to find the given probability correct to three 
decimal places.

 (a) Ps40 < X < 50, 20 < Y < 25d
 (b) Ps4sX 2 45d2 1 100sY 2 20d2 < 2d

 34.  Xavier and Yolanda both have classes that end at noon and 
they agree to meet every day after class. They arrive at the 
coffee shop independently. Xavier’s arrival time is X and 
Yolanda’s arrival time is Y, where X and Y are measured in 
minutes after noon. The individual density functions are

f1sxd − He2x

0

if x > 0

if x , 0
    f2syd − H 1

50 y

0

if 0 < y < 10

otherwise

(Xavier arrives sometime after noon and is more likely  
to arrive promptly than late. Yolanda always arrives by  
12:10 pm and is more likely to arrive late than promptly.) 
After Yolanda arrives, she’ll wait for up to half an hour for 
Xavier, but he won’t wait for her. Find the probability that 
they meet.

 35.  When studying the spread of an epidemic, we assume that 
the probability that an infected individual will spread the 
disease to an uninfected individual is a function of the dis-
tance between them. Consider a circular city of radius 
10 kilometers in which the population is uniformly distrib-
uted. For an uninfected individual at a fixed point Asx0, y0 d, 
assume that the probability function is given by

f sPd − 1
20 f20 2 dsP, Adg

where dsP, Ad denotes the distance between points P and A.
 (a)  Suppose the exposure of a person to the disease is the  

sum of the probabilities of catching the disease from all 
members of the population. Assume that the infected  
people are uniformly distributed throughout the city,  
with k infected individuals per square kilometer. Find a  
double integral that represents the exposure of a person 
residing at A.

 (b)  Evaluate the integral for the case in which A is the 
center of the city and for the case in which A is located 
on the edge of the city. Where would you prefer to live?

 29.  The joint density function for a pair of random variables X 
and Y is

f sx, yd − HCxs1 1 yd
0

if 0 < x < 1, 0 < y < 2

otherwise

 (a) Find the value of the constant C.
 (b) Find PsX < 1, Y < 1d.
 (c) Find PsX 1 Y < 1d.

 30. (a) Verify that

f sx, yd − H4xy

0

if 0 < x < 1, 0 < y < 1

otherwise

  is a joint density function.
 (b)  If X and Y are random variables whose joint density 

function is the function f  in part (a), find

(i) P(X > 1
2 ) (ii) P(X > 1

2, Y < 1
2 )

 (c) Find the expected values of X and Y.

 31.  Suppose X and Y are random variables with joint density  
function

f sx, yd − H0.1e2s0.5x10.2yd

0

if x > 0, y > 0

otherwise

 (a) Verify that f  is indeed a joint density function.
 (b) Find the following probabilities.

(i) PsY > 1d (ii) PsX < 2, Y < 4d
 (c) Find the expected values of X and Y.

 32. (a)  A lamp has two bulbs, each of a type with average life-
time 1000 hours. Assuming that we can model the prob-
ability of failure of a bulb by an exponential density 
function with mean � − 1000, find the probability that 
both of the lamp’s bulbs fail within 1000 hours.

 (b)  Another lamp has just one bulb of the same type as in 
part (a). If one bulb burns out and is replaced by a bulb  
of the same type, find the probability that the two bulbs 
fail within a total of 1000 hours.

 33.  Suppose that X and Y are independent random variables, 
where X is normally distributed with mean 45 and standard 

Surface Area

In this section we apply double integrals to the problem of computing the area of a sur-
face. In Section 8.2 we found the area of a very special type of surface––a surface of 
revolution––by the methods of single-variable calculus. Here we compute the area of a 
surface with equation z − f sx, yd, the graph of a function of two variables.

Let S be a surface with equation z − f sx, yd, where f  has continuous partial deriva-
tives. For simplicity in deriving the surface area formula, we assume that f sx, yd > 0 and 
the domain D of f  is a rectangle. We divide D into small rectangles Rij with area 
DA − Dx Dy. If sxi, yjd is the corner of Rij closest to the origin, let Pijsxi, yj, f sxi, yjdd be 

15.5

In Section 16.6 we will deal with areas 
of more general surfaces, called para-
metric surfaces, and so this section 
may be omitted if that later section 
will be covered.
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1080 CHAPTER 15  Multiple Integrals

the point on S directly above it (see Figure 1). The tangent plane to S at Pij is an approxi-
mation to S near Pij. So the area DTij of the part of this tangent plane (a parallelogram) 
that lies directly above Rij is an approximation to the area DSij of the part of S that lies 
directly above Rij. Thus the sum �� DTij is an approximation to the total area of S, and 
this approximation appears to improve as the number of rectangles increases. Therefore 
we define the surface area of S to be

1  AsSd − lim
m, nl`

 o
m

i−1
 o

n

j−1
 DTij

To find a formula that is more convenient than Equation 1 for computational purposes, 
we let a and b be the vectors that start at Pij and lie along the sides of the parallelogram  
with area DTij. (See Figure 2.) Then DTij − | a 3 b |. Recall from Section 14.3 that 
fxsxi, yjd and fysxi, yjd are the slopes of the tangent lines through Pij in the directions of 
a and b. Therefore

 a − Dx i 1 fxsxi, yjd Dx k

 b − Dy j 1 fysxi, yjd Dy k

and

 a 3 b − Z i
Dx

0

j
0

Dy

k
fxsxi, yjd Dx

fysxi, yjd Dy
Z

 − 2fxsxi, yjd Dx Dy i 2 fysxi, yjd Dx Dy j 1 Dx Dy k

 − f2fxsxi, yjd i 2 fysxi, yjd j 1 kg DA

Thus DTij − | a 3 b | − sf fxsxi, yjdg2 1 f fysxi, yjdg2 1 1 DA

From Definition 1 we then have

 AsSd − lim
m, nl `

 o
m

i−1
 o

n

j−1
 DTij

 − lim
m, nl `

 o
m

i−1
 o

n

j−1
 sf fxsxi, yjdg2 1 f fysxi, yjdg2 1 1 DA

and by the definition of a double integral we get the following formula.

2  The area of the surface with equation z − f sx, yd, sx, yd [ D, where fx  
and fy are continuous, is

AsSd − y
D

y sf fxsx, ydg2 1 f fysx, ydg2 1 1 dA

We will verify in Section 16.6 that this formula is consistent with our previous for-
mula for the area of a surface of revolution. If we use the alternative notation for partial 
derivatives, we can rewrite Formula 2 as follows:

3
 

AsSd − yy
D

Î1 1 S −z

−xD2

1 S −z

−yD2

  dA

y

0

z

x

S

ÎSij

ÎTijPij

Îy

Îx

D
ÎARij

(xi,　yj)

FIGURE 1

y

0

z

x

ÎTij

Pij

Îy

Îx

b
a

FIGURE 2

Notice the similarity between the  
surface area formula in Equation 3 
and the arc length formula from 
Section 8.1:

L − yb

a
Î1 1 S dy

dxD
2

 
dx
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 SECTION 15.5  Surface Area 1081

EXAMPLE 1 Find the surface area of the part of the surface z − x 2 1 2y 1 2 that lies 
above the triangular region T  in the xy-plane with vertices s0, 0d, s1, 0d, and s1, 1d.

SOLUTION The region T  is shown in Figure 3 and is described by

T − hsx, yd | 0 < x < 1, 0 < y < xj

Using Formula 2 with f sx, yd − x 2 1 2y 1 2 , we get

 A − y
T

y ss2xd2 1 s2d2 1 1 dA − y1

0
 y x

0
 s4x 2 1 5 dy dx

 − y1

0
 xs4x 2 1 5 dx − 1

8 � 2
3s4x 2 1 5d3y2g0

1
− 1

12 (27 2 5s5 )

Figure 4 shows the portion of the surface whose area we have just computed. ■

EXAMPLE 2 Find the area of the part of the paraboloid z − x 2 1 y 2 that lies under the 
plane z − 9.

SOLUTION The plane intersects the paraboloid in the circle x 2 1 y 2 − 9, z − 9. 
Therefore the given surface lies above the disk D with center the origin and radius 3. 
(See Figure 5.) Using Formula 3, we have

 A − y
D

y Î1 1 S −z

−xD2

1 S −z

−yD2

  dA − y
D

ys1 1 s2xd2 1 s2yd2  dA

 − y
D

y s1 1 4sx 2 1 y 2 d dA

Converting to polar coordinates, we obtain

 A − y2�

0
 y3

0
 s1 1 4r 2  r dr d� − y2�

0
 d� y3

0
 18 s1 1 4r 2  s8rd dr

  − 2�(1
8) 23s1 1 4r 2 d3y2g0

3
−

�

6
 (37s37 2 1)  ■

x

y=x

T

(1,　0)

(1,　1)

(0,　0)

y

FIGURE 3

x

0

z

T

FIGURE 4

9

x

z

y3

D

FIGURE 5

15.5 Exercises
1–2 Find the area of the indicated part of the surface (above the  
region D).

 1.  2. 
  

y

(2, _2, 0)
x

z
z=10+x+¥

D

2

_2

 

D

z=3+xy 

≈+¥¯1, z=0

y

x

z

3–14 Find the area of the surface.

 3.  The part of the plane 5x 1 3y 2 z 1 6 − 0 that lies above 
the rectangle f1, 4g 3 f2, 6g

 4.  The part of the plane 6x 1 4y 1 2z − 1 that lies inside the 
cylinder x 2 1 y 2 − 25

 5.  The part of the plane 3x 1 2y 1 z − 6 that lies in the  
first octant

 6.  The part of the surface 2y 1 4z 2 x 2 − 5 that lies above the 
triangle with vertices s0, 0d, s2, 0d, and s2, 4d

 7.  The part of the paraboloid z − 1 2 x 2 2 y 2 that lies above 
the plane z − 22
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1082 CHAPTER 15  Multiple Integrals

 8.  The part of the cylinder x 2 1 z 2 − 4 that lies above the 
square with vertices s0, 0d, s1, 0d, s0, 1d, and s1, 1d

 9.  The part of the hyperbolic paraboloid z − y 2 2 x 2 that lies 
between the cylinders x 2 1 y 2 − 1 and x 2 1 y 2 − 4

 10. The surface z − 2
3 sx 3y2 1 y 3y2 d, 0 < x < 1, 0 < y < 1

 11.  The part of the surface z − xy that lies within the cylinder 
x 2 1 y 2 − 1

 12.  The part of the sphere x 2 1 y 2 1 z2 − 4 that lies above the 
plane z − 1

 13.  The part of the sphere x 2 1 y 2 1 z2 − a 2 that lies within 
the cylinder x 2 1 y 2 − ax and above the xy-plane

 14.  The part of the sphere x 2 1 y 2 1 z2 − 4z that lies inside 
the paraboloid z − x 2 1 y 2

15–16 Find the area of the surface correct to four decimal 
places by first simplifying an expression for area to one in terms 
of a single integral, and then evaluating the integral numerically.

 15.  The part of the surface z − 1ys1 1 x 2 1 y 2d that lies above 
the disk x 2 1 y 2 < 1

 16.  The part of the surface z − cossx 2 1 y 2d that lies inside the 
cylinder x 2 1 y 2 − 1

 17. (a)  Use the Midpoint Rule for double integrals (see Sec-
tion 15.1) with four squares to estimate the surface area  
of the portion of the paraboloid z − x 2 1 y 2 that lies 
above the square f0, 1g 3 f0, 1g.

 (b)  Use a computer algebra system to approximate the 
surface area in part (a) to four decimal places. Compare 
with the answer to part (a).

 18. (a)  Use the Midpoint Rule for double integrals with 
m − n − 2 to estimate the area of the surface 
z − xy 1 x 2 1 y 2, 0 < x < 2, 0 < y < 2.

 (b)  Use a computer algebra system to approximate the 
surface area in part (a) to four decimal places. Compare 
with the answer to part (a).

 19. Use a computer algebra system to find the exact area of the 
surface z − 1 1 2x 1 3y 1 4y 2, 1 < x < 4, 0 < y < 1.

 20. Use a computer algebra system to find the exact area of the 
surface

z − 1 1 x 1 y 1 x 2     22 < x < 1  21 < y < 1

  Illustrate by graphing the surface.

 21. Use a computer algebra system to find, correct to four deci-
mal places, the area of the part of the surface z − 1 1 x 2 y 2 
that lies above the disk x 2 1 y 2 < 1.

 22.  Use a computer algebra system to find, correct to four  
decimal places, the area of the part of the surface 
z − s1 1 x 2 dys1 1 y 2 d that lies above the square 

| x | 1 | y | < 1. Illustrate by graphing this part of the 
surface.

 23.  Show that the area of the part of the plane z − ax 1 by 1 c 
that projects onto a region D in the xy-plane with area AsDd 

  is sa 2 1 b 2 1 1 AsDd.

 24.  If you attempt to use Formula 2 to find the area of the top 
half of the sphere x 2 1 y 2 1 z2 − a 2, you have a slight 
problem because the double integral is improper. In fact, the 
integrand has an infinite discontinuity at every point of the 
boundary circle x 2 1 y 2 − a 2. However, the integral can  
be computed as the limit of the integral over the disk 
x 2 1 y 2 < t 2 as t l a 2. Use this method to show that the 
area of a sphere of radius a is 4�a 2.

 25.  Find the area of the finite part of the paraboloid y − x 2 1 z 2 
cut off by the plane y − 25. [Hint: Project the surface onto 
the xz-plane.]

 26.  The figure shows the surface created when the cylinder 
y 2 1 z 2 − 1 intersects the cylinder x 2 1 z 2 − 1. Find the  
area of this surface.

z

y
x

Triple Integrals

Just as we defined single integrals for functions of one variable and double integrals 
for  functions of two variables, so we can define triple integrals for functions of three 
variables.

■	 Triple Integrals over Rectangular Boxes
Let’s first deal with the simplest case where f  is defined on a rectangular box:

1  B − 5 sx, y, zd  |  a < x < b, c < y < d, r < z < s6  

15.6
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 SECTION 15.6  Triple Integrals 1083

The first step is to divide B into sub-boxes. We do this by dividing the interval fa, bg 
into l subintervals fxi21, xig of equal width Dx, dividing fc, dg into m subintervals of 
width Dy, and dividing fr, sg into n subintervals of width Dz. The planes through the 
endpoints of these subintervals parallel to the coordinate planes divide the box B into lmn 
sub-boxes

Bi jk − fxi21, xig 3 fyj21, yjg 3 fzk21, zk g

which are shown in Figure 1. Each sub-box has volume DV − Dx Dy Dz.
Then we form the triple Riemann sum

2  o
l

i−1
 o

m

j−1
 o

n

k−1
 f sxij k* , yij k* , zij k* d DV  

where the sample point sxi jk* , yi jk* , zi jk* d is in Bi jk. By analogy with the definition of a 
double integral (15.1.5), we define the triple integral as the limit of the triple Riemann 
sums in (2).

3  Definitio  The triple integral of f  over the box B is

 y y
B

y f sx, y, zd dV − lim 
l, m, n l `

 o
l

i−1
 o

m

j−1
 o

n

k−1
 f sxi jk* , yi jk* , zi jk* d DV

if this limit exists.

Again, the triple integral always exists if f  is continuous. We can choose the sample 
point to be any point in the sub-box, but if we choose it to be the point sxi, yj, zk d we get 
a simpler-looking expression for the triple integral:

 y y
B

y f sx, y, zd dV − lim 
l, m, n l `

 o
l

i−1
 o

m

j−1
 o

n

k−1
 f sxi, yj, zk d DV

Just as for double integrals, the practical method for evaluating triple integrals is to 
express them as iterated integrals as follows.

4  Fubini’s Theorem for Triple Integrals If f  is continuous on the rectangular 
box B − fa, bg 3 fc, dg 3 fr, sg, then

y y
B

y f sx, y, zd dV − ys

r
 yd

c
 yb

a
 f sx, y, zd dx dy dz

The iterated integral on the right side of Fubini’s Theorem means that we integrate 
first with respect to x (keeping y and z fixed), then we integrate with respect to y (keeping 
z fixed), and finally we integrate with respect to z. There are five other possible orders in 
which we can integrate, all of which give the same value. For instance, if we integrate 
with respect to y, then z, and then x, we have

y y
B

y f sx, y, zd dV − yb

a
 ys

r
 yd

c
 f sx, y, zd dy dz dx

B

Bijk

ÎxÎy

Îz

z

yx

z

yx

FIGURE 1
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EXAMPLE 1 Evaluate the triple integral yyy
B
 xyz2 dV , where B is the rectangular box 

given by
B − 5 sx, y, zd  |  0 < x < 1, 21 < y < 2, 0 < z < 36

SOLUTION We could use any of the six possible orders of integration. If we choose to  
integrate with respect to x, then y, and then z, we obtain

 y y
B

y xyz2 dV − y3

0
 y2

21
 y1

0
 xyz2 dx dy dz − y3

0
 y2

21
 F x 2 yz2

2 G
x−0

x−1

 dy dz

 − y3

0
 y2

21
 
yz2

2
 dy dz − y3

0
 F y 2z2

4 G
y−21

y−2

 dz

  − y3

0
 
3z2

4
 dz −

z3

4 G0

3

−
27

4
 ■

■	 Triple Integrals over General Regions
Now we define the triple integral over a general bounded region E in three- 
dimensional space (a solid) by much the same procedure that we used for double inte-
grals (15.2.2). We enclose E in a box B of the type given by Equation 1. Then we define 
F so that it agrees with f  on E but is 0 for points in B that are outside E. By definition,

 y y
E

y f sx, y, zd dV − y y
B

y Fsx, y, zd dV

This integral exists if f  is continuous and the boundary of E is “reasonably smooth.” The 
triple integral has essentially the same properties as the double integral (Properties 5–8 
in Section 15.2).

We restrict our attention to continuous functions f  and to certain simple types of 
regions. A solid region E is said to be of type 1 if it lies between the graphs of two con-
tinuous functions of x and y, that is,

5  E − 5 sx, y, zd | sx, yd [ D, u1sx, yd < z < u2sx, yd6  

where D is the projection of E onto the xy-plane as shown in Figure 2. Notice that the 
upper boundary of the solid E is the surface with equation z − u2sx, yd, while the lower 
boundary is the surface z − u1sx, yd.

By the same sort of argument that led to (15.2.3), it can be shown that if E is a type 1 
region given by Equation 5, then

6
 

y y
E

y f sx, y, zd dV − y
D

y Fyu2sx, yd

u1sx, yd
 f sx, y, zd dzG dA

The meaning of the inner integral on the right side of Equation 6 is that x and y are held 
fixed, and therefore u1sx, yd and u2sx, yd are regarded as constants, while f sx, y, zd is 
integrated with respect to z.

In particular, if the projection D of E onto the xy-plane is a type I plane region (as in 
Figure 3), then

E − 5 sx, y, zd | a < x < b, t1sxd < y < t2sxd, u1sx, yd < z < u2sx, yd6

FIGURE 2  
A type 1 solid region

z

0

x
yD

z=u™(x, y)

z=u¡(x, y)

E

z=u™(x, y)

0

D
y=g™(x)

y=g¡(x)

z

y
x

a

b

z=u¡(x, y)

E

FIGURE 3  
A type 1 solid region where the 
projection D is a type I plane region
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and Equation 6 becomes

7
 

y y
E

y f sx, y, zd dV − yb

a
 yt2sxd

t1sxd
yu2sx, yd

u1sx, yd
 f sx, y, zd dz dy dx

If, on the other hand, D is a type II plane region (as in Figure 4), then

E − 5 sx, y, zd | c < y < d, h1syd < x < h2syd, u1sx, yd < z < u2sx, yd6
and Equation 6 becomes

8
 

 y y
E

y f sx, y, zd dV − yd

c
 yh2syd

h1syd
yu2sx, yd

u1sx, yd
 f sx, y, zd dz dx dy

EXAMPLE 2 Evaluate yyyE z dV  where E is the solid in the first octant bounded by the 
surface z − 12xy and the planes y − x , x − 1.

SOLUTION When we set up a triple integral it’s wise to draw two diagrams: one of 
the solid region E (Figure 5) and, for a type 1 region, one of its projection D onto the 
xy-plane (Figure 6). The lower boundary of the solid E is the plane z − 0 and the upper 
boundary is the surface z − 12xy, so we use u1sx, yd − 0 and u2sx, yd − 12xy in 
Formula 7. Notice that the projection of E onto the xy-plane is the triangular region 
shown in Figure 6, and we have 

9  E − hsx, y, zd | 0 < x < 1, 0 < y < x, 0 < z < 12xyj

z

x
1

0

z=12xy

E

y

FIGURE 5

0

1

x1

y=x

D

y

FIGURE 6

This description of E as a type 1 region enables us to evaluate the integral as follows:

 y y
E

y z dV − y1

0
 y x

0
 y12xy

0
 z dz dy dx − y1

0
 y x

0
 F z2

2 Gz−0

z−12xy

 dy dx

 − 1
2 y1

0
 y x

0
 s12xyd2 dy dx − 72 y1

0
 y x

0
 x 2y 2 dy dx

 − 72 y1

0
 Fx 2 

y 3

3 Gy−0

y−x

 dx − 24 y1

0
 x 5 dx − 24F x 6

6 G
x−1

x−0

− 4 ■

x

0

z

y

c d

z=u™(x, y)

x=h™(y)

x=h¡(y)

z=u¡(x, y)

D

E

FIGURE 4  
A type 1 solid region with a type II 
projection
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Figure 7 shows how the solid E of Example 2 is swept out by the iterated triple 
integral if we integrate first with respect to z, then y, then x.

z

x

0

y

z

x
11

0

y

z

x
1

0

y

 z varies from 0 to xy
while x and y are constant.

y varies from 0 to x
while x is constant.

x varies from 0 to 1.
     

A solid region E is of type 2 if it is of the form

E − 5 sx, y, zd | sy, zd [ D, u1sy, zd < x < u2sy, zd6
where, this time, D is the projection of E onto the yz-plane (see Figure 8). The back 
surface is x − u1sy, zd, the front surface is x − u2sy, zd, and we have

10  y y
E

y f sx, y, zd dV − y
D

y Fyu2sy, zd

u1sy, zd
 f sx, y, zd dxG dA

Finally, a type 3 region is of the form

E − 5 sx, y, zd | sx, zd [ D, u1sx, zd < y < u2sx, zd6
where D is the projection of E onto the xz-plane, y − u1sx, zd is the left surface, and 
y − u2sx, zd is the right surface (see Figure 9). For this type of region we have

11  y y
E

y f sx, y, zd dV − y
D

y Fyu2sx, zd

u1sx, zd
 f sx, y, zd dyG dA

In each of Equations 10 and 11 there may be two possible expressions for the integral 
depending on whether D is a type I or type II plane region (and corresponding to Equa-
tions 7 and 8).

EXAMPLE 3 Evaluate yyyE sx 2 1 z 2  dV , where E is the region bounded by the 
paraboloid y − x 2 1 z2 and the plane y − 4.

SOLUTION The solid E is shown in Figure 10. If we regard it as a type 1 region, then 
we need to consider its projection D1 onto the xy-plane, which is the parabolic region 

FIGURE 7

0

z

y
x E

D

x=u¡(y, z)

x=u™(y, z)

FIGURE 8  
A type 2 region

z

y=u™(x, z)

y=u¡(x, z)

x

0

y

D
E

FIGURE 9  
A type 3 region
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shown in Figures 10 and 11. (The trace of y − x 2 1 z2 in the plane z − 0 is the 
parabola y − x 2.)

0 x

y

y=4

y=≈

D¡

0

E
4

y=≈+z@

D¡

x

z

y

FIGURE 10  
Region of integration

FIGURE 11  
Projection onto the xy-plane

From y − x 2 1 z2 we obtain z − 6sy 2 x 2 , so the lower boundary surface of E is 
z − 2sy 2 x 2  and the upper surface is z − sy 2 x 2 . Therefore the description of E 
as a type 1 region is

E − 5 sx, y, zd | 22 < x < 2, x 2 < y < 4, 2sy 2 x 2 < z < sy 2 x 2 6
and so we obtain

y y
E

y sx 2 1 z2   dV − y2

22
 y4

x2
 ysy2x2 

2sy2x2 

 sx 2 1 z2
  dz dy dx

Although this expression is correct, it is extremely difficult to evaluate. So let’s 
instead consider E as a region of a different type. If we regard E as a type 3 region, then 
we need to consider its projection D3 onto the xz-plane, which is the disk x 2 1 z 2 < 4 
shown in Figures 12 and 13. (The trace of y − x 2 1 z 2 in the plane y − 4 is the circle 
x 2 1 z 2 − 4.)

x0

z

≈+z@=4

_2 2

D£

4

D£

x

z

y

E

FIGURE 12  
Region of integration

FIGURE 13  
Projection onto the xz-plane

Then the left boundary of E is the paraboloid y − x 2 1 z2 and the right boundary is 
the plane y − 4, so taking u1sx, zd − x 2 1 z2 and u2sx, zd − 4 in Equation 11, we have

 yy
E

y sx 2 1 z2  dV − y
D3

y Fy4

x21z2
 sx 2 1 z2  dyG dA − y

D3

y s4 2 x 2 2 z2 dsx 2 1 z2  dA
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Although this integral could be written as

y2

22
 ys42x2

 

2s42x2 s4 2 x 2 2 z 2d sx 2 1 z 2 

 dz dx

it’s easier to convert to polar coordinates in the xz-plane: x − r cos �, z − r sin �. This 
gives

 y y
E

y sx 2 1 z2  dV − y
D3

y s4 2 x 2 2 z2 dsx 2 1 z2  dA

 − y2�

0
 y2

0
 s4 2 r 2 dr r dr d� − y2�

0
 d� y2

0
 s4r 2 2 r 4 d dr

  − 2�F 4r 3

3
2

r 5

5 G0

2

−
128�

15
 ■

■	 Changing the Order of Integration
Fubini’s Theorem for Triple Integrals allows us to express a triple integral as an iterated 
integral, and there are six different orders of integration in which we can do this. Given 
an iterated integral, it may be advantageous to change the order of integration because 
evaluating an iterated integral in one order may be simpler than in another. In the  
next example we investigate equivalent iterated integrals using different orders of 
integration.

EXAMPLE 4 Express the iterated integral y1
0  y

x2

0  yy
0 f sx, y, zd dz dy dx as a triple integral 

and then rewrite it as an iterated integral in the following orders.
(a) Integrate first with respect to x, then z, and then y.
(b) Integrate first with respect to y, then x, and then z.

SOLUTION We can write

y1

0
 yx2

0 
 yy

0
 f sx, y, zd dz dy dx − y

E

yy f sx, y, zd dV

where E − hsx, y, zd | 0 < x < 1, 0 < y < x 2, 0 < z < yj. From this description of E 
as a type 1 region we see that E lies between the lower surface z − 0 and the upper 
surface z − y, and its projection onto the xy-plane is hsx, yd | 0 < x < 1, 0 < y < x 2j, 
as shown in Figures 14 and 15. So E is the solid enclosed by the planes z − 0, x − 1, 
y − z and the parabolic cylinder y − x 2 (or x − sy ).

Using Figure 14 as a guide, we can write projections onto the three coordinate 
planes as follows (see Figure 15):

onto the xy-plane:  D1 − hsx, yd | 0 < x < 1, 0 < y < x 2j

  − 5sx, yd | 0 < y < 1, sy < x < 16
onto the yz-plane:  D2 − hsy, zd | 0 < y < 1, 0 < z < yj

  − hsy, zd | 0 < z < 1, z < y < 1j

onto the xz-plane:  D3 − hsx, zd | 0 < x < 1, 0 < z < x 2j

  − 5sx, zd | 0 < z < 1, sz < x < 16

 The most difficult step in 
evaluating a triple integral is setting 
up an expression for the region of 
integration (such as Equation 9 in 
Example 2). Remem   ber that the limits 
of integra tion in the inner integral 
contain at most two variables, the 
limits of integration in the middle 
integral contain at most one variable, 
and the limits of integration in the 
outer integral must be constants.

0

1

1

x=1

z=y

y=≈

x

y

z

E

FIGURE 14 The solid E
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0

y

1

x

y=≈

1 0

z

1

x

z=≈

1

D¡ D£

0

z

1

y

z=y

1

D™

 

(a) In order to integrate first with respect to x, then z, and then y, we need to consider E 
as a type 2 region where the back boundary is the surface x − sy  and the front 
boundary is the plane x − 1; the projection onto the yz-plane is D2. We describe E by

E − 5 sx, y, zd | 0 < y < 1, 0 < z < y, sy < x < 16

and then y y
E

y f sx, y, zd dV − y1

0
 yy

0
 y1

sy 
 f sx, y, zd dx dz dy

(b) In order to integrate first with respect to y, then x, and then z, we need to consider E 
as a type 3 region where the left boundary is the plane y − z and the right boundary is 
the surface y − x 2. The projection onto the xz-plane is D3 and

E − 5 sx, y, zd | 0 < z < 1, sz < x < 1, z < y < x 26

Thus y y
E

y f sx, y, zd dV − y1

0
 y1

sz 
 yx2

z
 f sx, y, zd dy dx dz ■

■	 Applications of Triple Integrals
Recall that if f sxd > 0, then the single integral yb

a f sxd dx represents the area under the
curve y − f sxd from a to b, and if f sx, yd > 0, then the double integral yy

D
 f sx, yd dA 

represents the volume under the surface z − f sx, yd and above D. The corresponding 
interpretation of a triple integral yyyE f sx, y, zd dV , where f sx, y, zd > 0, is not very use-
ful because it would be the “hypervolume” of a four-dimensional object and, of course, 
that is very difficult to visualize. (Remember that E is just the domain of the function f ; 
the graph of f  lies in four-dimensional space.) Nonetheless, the triple integral 
yyyE f sx, y, zd dV  can be interpreted in different ways in different physical situations, 
depending on the phys ical interpretations of x, y, z, and f sx, y, zd.

Let’s begin with the special case where f sx, y, zd − 1 for all points in E. Then the 
triple integral does represent the volume of E:

12  VsEd − y y
E

y dV

For example, you can see this in the case of a type 1 region by putting f sx, y, zd − 1 in 
Formula 6:

y y
E

y 1 dV − y
D

y Fyu2sx, yd

u1sx, yd
 dzG dA − y

D

y fu2sx, yd 2 u1sx, ydg dA

and from Section 15.2 we know this represents the volume that lies between the surfaces 
z − u1sx, yd and z − u2sx, yd.

FIGURE 15  
Projections of E
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EXAMPLE 5 Use a triple integral to find the volume of the tetrahedron T  bounded by 
the planes x 1 2y 1 z − 2, x − 2y, x − 0, and z − 0.

SOLUTION The tetrahedron T  and its projection D onto the xy-plane are shown in 
Fig ures 16 and 17. The lower boundary of T  is the plane z − 0 and the upper boundary 
is the plane x 1 2y 1 z − 2, that is, z − 2 2 x 2 2y.

(or y=1- x/2)  

 y=x/2

”1,    ’1
2D

y

0

1

x1

x+2y=2

(0, 1, 0)

(0, 0, 2)

y

x

0

z

x+2y+z=2x=2y

”1,    , 0’1
2

T

FIGURE 16 FIGURE 17 

Therefore we have

 VsT d − y y
T

y dV − y1

0
 y12xy2

xy2
 y22x22y

0
 dz dy dx

 − y1

0
 y12xy2

xy2
 s2 2 x 2 2yd dy dx − 1

3

by the same calculation as in Example 15.2.4.
(Notice that it is not necessary to use triple integrals to compute volumes. They 

simply give an alternative method for setting up the calculation.) ■

All the applications of double integrals in Section 15.4 can be ex tended to triple inte-
grals using analogous reasoning. For example, suppose that a solid object occupying a  
region E has density �sx, y, zd, in units of mass per unit volume, at each point sx, y, zd in 
E. To find the total mass m of E we divide a rectangular box B containing E into sub-
boxes Bi jk of the same size (as in Figure 18), and consider �sx, y, zd to be 0 outside E . If 
we choose a point sxi jk* , yi jk* , zi jk* d in Bi jk, then the mass of the part of E that occupies Bi jk 
is approximately �sxi jk* , yi jk* , zi jk* d DV , where DV  is the volume of Bi jk . We get an approxi-
mation to the total mass by adding the (approximate) masses of all the sub-boxes, and if 
we increase the number of sub-boxes, we obtain the total mass m of E as the limiting 
value of the approximations:

13  m − lim 
l, m, n l `

 o
l

i−1
 o

m

j−1
 o

n

k−1
 �sxi jk* , yi jk* , zi jk* d DV − y y

E

y �sx, y, zd dV  

Similarly, the moments of E about the three coordinate planes are

14 	 Myz − y  y
E

y x �sx, y, zd dV 	 	 	 	 	 	 Mxz − y  y
E

y y �sx, y, zd dV

Mx y − y  y
E

y z �sx, y, zd dV

B

(x*
ijk, y*

ijk, z*
ijk)

z

yx

E

Bijk

FIGURE 18  
The mass of each sub-box Bi jk is 
approximated by �sxi jk* , yi jk* , zi jk* d DV
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The center of mass is located at the point sx, y, z d, where

15 	 x −
Myz

m
	 	 	 	 	 	 y −

Mxz

m
	 	 	 	 	 	 z −

Mxy

m
	

If the density is constant, the center of mass of the solid is called the centroid of E. The 
moments of inertia about the three coordinate axes are

16 	 Ix − y  y
E

y sy 2 1 z2 d �sx, y, zd dV 	 	 	 	 	 	 Iy − y  y
E

y sx 2 1 z2 d �sx, y, zd dV 	

Iz − y  y
E

ysx 2 1 y 2 d �sx, y, zd dV

As in Section 15.4, the total electric charge on a solid object occupying a region E 
and having charge density �sx, y, zd is

Q − y  y
E

y � sx, y, zd dV

If we have three continuous random variables X, Y , and Z, their joint density func-
tion is a function of three variables such that the probability that sX, Y, Z d lies in E is

PssX, Y, Z d [ Ed − y  y
E

y f sx, y, zd dV

In particular,

Psa < X < b, c < Y < d, r < Z < sd − yb

a
 yd

c
 ys

r
 f sx, y, zd dz dy dx

The joint density function satisfies

f sx, y, zd > 0	 	 	 	 	 	 y`

2`
 y`

2`
 y`

2`
 f sx, y, zd dz dy dx − 1

EXAMPLE 6 Find the center of mass of a solid of constant density that is bounded by 
the parabolic cylinder x − y2 and the planes x − z, z − 0, and x − 1.

SOLUTION The solid E and its projection onto the xy-plane are shown in Figure 19. 
The lower and upper surfaces of E are the planes z − 0 and z − x, so we describe E as 
a type 1 region:

E − 5 sx, y, zd | 21 < y < 1, y2 < x < 1, 0 < z < x6
Then, if the density is �sx, y, zd − �, the mass is

 m − y y
E

y � dV − y1

21
 y1

y2
 y x

0
 � dz dx dy

 − � y1

21
 y1

y2 x dx dy − � y1

21
 F x 2

2 G
x−1

x−y2
 dy

 −
�

2
 y1

21
 s1 2 y 4 d dy − � y1

0
 s1 2 y 4 d dy

 − �Fy 2
y 5

5 G0

1

−
4�

5

0

1

E

z=x

x

z

y

0

y

x

x=1

x=¥

D

FIGURE 19
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Because of the symmetry of E and � about the xz-plane, we can immediately say that 
Mxz − 0 and therefore y − 0. The other moments are

 Myz − y y
E

y x� dV − y1

21
 y1

y2
 y x

0
 x� dz dx dy

 − � y1

21
 y1

y2
 x 2 dx dy − � y1

21
 F x 3

3 Gx−y2

x−1
 
dy

 −
2�

3
 y1

0
 s1 2 y 6 d dy −

2�

3
 Fy 2

y 7

7 G0

1

−
4�

7

 Mxy − y y
E

y z� dV − y1

21
 y1

y2
 y x

0
 z� dz dx dy

 − � y1

21
 y1

y2

 F z2

2 Gz−0

z−x

 dx dy −
�

2
 y1

21
 y1

y2

 x 2 dx dy

 −
�

3
 y1

0
 s1 2 y 6 d dy −

2�

7

Therefore the center of mass is

 s x, y, z d − SMyz

m
, 

Mxz

m
, 

Mxy

m D − (5
7 , 0, 5

14 ) ■

15.6 Exercises

 1.  Evaluate the integral in Example 1, integrating first with 
respect to y, then z, and then x.

 2. Evaluate the integral yyy E sxy 1 z 2d dV, where

E − 5sx, y, zd | 0 < x < 2, 0 < y < 1, 0 < z < 36
using three different orders of integration.

3–8 Evaluate the iterated integral.

 3. y2

0
 yz2

0
 yy2z

0
 s2x 2 yd dx dy dz

 4. y1

0
y2y

y
yx1y

0
 6xy dz dx dy

 5. y2

1
 y2z

0
 y ln x

0
 xe2y dy dx dz

 6. y�y2

0
y2x

0
yx1z

0
 cossx 2 2y 1 zd dy dz dx

 7. y3

1
y2

21
yz

2y
 
z

y
 dx dz dy 8. y1

0
 y1

0
 y22x22y2

0
 xye z dz dy dx

9–12 
(a) Express the triple integral yyyE  f sx, y, zd dV as an iterated 

integral for the given function f  and solid region E. 
(b) Evaluate the iterated integral. 

 9. f sx, y, zd − x 10. f sx, y, zd − xy

 z

yx
E

z=1-≈ y+z=2

E0

y=x
z=4-¥

z

y
x
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 25.  The solid enclosed by the cylinder y − x 2 and the planes 
z − 0 and y 1 z − 1

 26.  The solid enclosed by the cylinder x 2 1 z 2 − 4 and the 
planes y − 21 and y 1 z − 4

 27. (a)  Express the volume of the wedge in the first octant that is 
cut from the cylinder y 2 1 z2 − 1 by the planes y − x 
and x − 1 as a triple integral.

 (b)  Use either the Table of Integrals (on Reference Pages 
6  –10) or a computer algebra system to find the exact 
value of the triple integral in part (a).

28–30 Midpoint Rule for Triple Integrals In the Midpoint Rule 
for triple integrals we use a triple Riemann sum to approximate  
a triple integral over a box B, where f sx, y, zd is evaluated at 
the center sxi, yj, zk d of the box Bijk . Use the Midpoint Rule to 
estimate the value of the integral. Divide B into eight sub-boxes  
of equal size. 

 28. yyyB sx 2 1 y 2 1 z 2   dV, where

  B − hsx, y, zd | 0 < x < 4, 0 < y < 4, 0 < z < 4j

 29.  yyyB cossxyzd dV, where 

  B − hsx, y, zd | 0 < x < 1, 0 < y < 1, 0 < z < 1j

 30.  yyyB sx e xyz dV, where 

  B − hsx, y, zd | 0 < x < 4, 0 < y < 1, 0 < z < 2j

31–32 Sketch the solid whose volume is given by the iterated  
integral.

 31. y1

0
 y12x

0
 y222z

0
 dy dz dx

 32. y2

0
 y22y

0
 y42y2

0
 dx dz dy

33–36 Express the integral yyyE f sx, y, zd dV as an iterated integral 
in six different ways, where E is the solid bounded by the given 
surfaces.

 33. y − 4 2 x 2 2 4z2,  y − 0

 34. y 2 1 z2 − 9,  x − 22,  x − 2

 35. y − x 2,  z − 0,  y 1 2z − 4

 36. x − 2,  y − 2,  z − 0,  x 1 y 2 2z − 2

 11. f sx, y, zd − x 1 y 12. f sx, y, zd − 2

 

x=œy

E

0

x+z=2

z

y

x

E
z=4-x

z=4+x

z=4-¥

z

y

x

13–22 Evaluate the triple integral.

 13.  yyyE y dV, where

  E − h sx, y, zd | 0 < x < 3, 0 < y < x, x 2 y < z < x 1 y j

 14. yyy E e zyy dV, where

  E − 5sx, y, zd | 0 < y < 1, y < x < 1, 0 < z < xy6
 15.  yyyE s1yx3d dV, where

  E − 5sx, y, zd |  0 < y < 1, 0 < z < y 2, 1 < x < z 1 16
 16.  yyyE sin y dV, where E lies below the plane z − x and above 

the triangular region with vertices s0, 0, 0d, s�, 0, 0d, and 
s0, �, 0d

 17.  yyyE 6xy dV, where E lies under the plane z − 1 1 x 1 y  
and above the region in the xy-plane bounded by the curves 
y − sx , y − 0, and x − 1

 18.  yyyE sx 2 yd dV, where E is enclosed by the surfaces 
z − x 2 2 1, z − 1 2 x 2, y − 0, and y − 2

 19.  yyy T y
2 dV, where T is the solid tetrahedron with vertices 

s0, 0, 0d, s2, 0, 0d, s0, 2, 0d, and s0, 0, 2d

 20.  yyyT xz dV, where T is the solid tetrahedron with vertices 
s0, 0, 0d, s1, 0, 1d, s0, 1, 1d, and s0, 0, 1d

 21.  yyyE x dV, where E is bounded by the paraboloid  
x − 4y2 1 4z2 and the plane x − 4

 22.  yyyE z dV, where E is bounded by the cylinder y 2 1 z2 − 9  
and the planes x − 0, y − 3x, and z − 0 in the first octant

23–26 Use a triple integral to find the volume of the given solid.

 23.  The tetrahedron enclosed by the coordinate planes and the 
plane 2x 1 y 1 z − 4

 24.  The solid enclosed by the paraboloids y − x 2 1 z 2 and 
y − 8 2 x 2 2 z 2
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1094 CHAPTER 15  Multiple Integrals

 37. The figure shows the region of integration for the integral

y1

0
 y1

sx 
 y12y

0
 f sx, y, zd dz dy dx

   Rewrite this integral as an equivalent iterated integral in the 
five other orders.

0

z

1

x

1 y

z=1-y

y=œ„x

 38. The figure shows the region of integration for the integral

y1

0
 y12x2

0
 y12x

0
 f sx, y, zd dy dz dx

   Rewrite this integral as an equivalent iterated integral in the 
five other orders.

1

1

1

z=1-≈

y=1-x

0

y

x

z

39–40 Write five other iterated integrals that are equal to the 
given iterated integral.

 39. y1

0
 y1

y
 yy

0
 f sx, y, zd dz dx dy 40. y1

0
 y1

y
 yz

0
 f sx, y, zd dx dz dy

41–42 Evaluate the triple integral using only geometric interpre-
tation and symmetry.

 41.  yyyC s4 1 5x 2yz 2d dV, where C is the cylindrical region

  x 2 1 y 2 < 4, 22 < z < 2

 42.  yyyB sz 3 1 sin y 1 3d dV, where B is the unit ball

  x 2 1 y 2 1 z 2 < 1

43–46 Find the mass and center of mass of the solid E with the 
given density function �.

 43.  E lies above the xy-plane and below the paraboloid 
z − 1 2 x 2 2 y 2;  � sx, y, zd − 3

 44.  E is bounded by the parabolic cylinder z − 1 2 y 2 and the 
planes x 1 z − 1, x − 0, and z − 0;  � sx, y, zd − 4

 45.  E is the cube given by 0 < x < a, 0 < y < a, 0 < z < a;  
� sx, y, zd − x 2 1 y 2 1 z2

 46.  E is the tetrahedron bounded by the planes x − 0, y − 0,  
z − 0, x 1 y 1 z − 1;  � sx, y, zd − y

47–50 Assume that the solid has constant density k.

 47.  Find the moments of inertia for a cube with side length L if  
one vertex is located at the origin and three edges lie along 
the coordinate axes.

 48.  Find the moments of inertia for a rectangular brick with 
dimensions a, b, and c and mass M if the center of the brick is 
situated at the origin and the edges are parallel to the coordi-
nate axes.

 49.  Find the moment of inertia about the z-axis of the solid  
cylinder x 2 1 y 2 < a 2, 0 < z < h.

 50.  Find the moment of inertia about the z-axis of the solid  
cone sx 2 1 y 2 < z < h.

51–52 Set up, but do not evaluate, integral expressions for  
(a) the mass, (b) the center of mass, and (c) the moment of  
inertia about the z-axis.

 51. The solid of Exercise 25;  � sx, y, zd − sx 2 1 y 2 

 52.  The hemisphere x 2 1 y 2 1 z2 < 1, z > 0; 

  � sx, y, zd − sx 2 1 y 2 1 z 2 

 53.  Let E be the solid in the first octant bounded by the cylinder 
x 2 1 y 2 − 1 and the planes y − z, x − 0, and z − 0 with the 
density function � sx, y, zd − 1 1 x 1 y 1 z. Use a computer 
algebra system to find the exact values of the following quan-
tities for E.

 (a) The mass
 (b) The center of mass
 (c) The moment of inertia about the z-axis

 54.  If E is the solid of Exercise 22 with density function 
� sx, y, zd − x 2 1 y 2, find the following quantities, correct  
to three decimal places.

 (a) The mass
 (b) The center of mass
 (c) The moment of inertia about the z-axis

 55.  The joint density function for random variables X, Y, and Z is 
f sx, y, zd − Cxyz if 0 < x < 2, 0 < y < 2, 0 < z < 2, and 
f sx, y, zd − 0 otherwise.

 (a) Find the value of the constant C.
 (b) Find PsX < 1, Y < 1, Z < 1d.
 (c) Find PsX 1 Y 1 Z < 1d.
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 57.  Find the average value of the function f sx, y, zd − xyz over 
the cube with side length L that lies in the first octant with one 
vertex at the origin and edges parallel to the coordinate axes.

 58.  Find the average height of the points in the solid hemisphere 
x 2 1 y 2 1 z 2 < 1, z > 0.

 59. (a) Find the region E for which the triple integral 

y y
E

y s1 2 x 2 2 2y 2 2 3z 2d dV

 is a maximum.
 (b)  Use a computer algebra system to calculate the exact  

maximum value of the triple integral in part (a).

 56.  Suppose X, Y, and Z are random variables with joint density 
function f sx, y, zd − Ce2s0.5x10.2y10.1zd if x > 0, y > 0, z > 0, 
and f sx, y, zd − 0 otherwise.

 (a) Find the value of the constant C.
 (b) Find PsX < 1, Y < 1d.
 (c) Find PsX < 1, Y < 1, Z < 1d.

57–58 Average Value The average value of a function f sx, y, zd 
over a solid region E is defined to be 

favg −
1

VsE d
 y y

E

y f sx, y, zd dV

where VsE d is the volume of E. For instance, if � is a density  
function, then �avg is the average density of E.

Triple Integrals in Cylindrical Coordinates

In plane geometry the polar coordinate system is used to give a convenient description of 
certain curves and regions. (See Section 10.3.) Figure 1 enables us to recall the connec-
tion between polar and Cartesian coordinates. If the point P has Cartesian coordinates 
sx, yd and polar coordinates sr, �d, then, from the figure,

x − r cos � y − r sin �

r 2 − x 2 1 y 2        tan � −
y

x

In three dimensions there is a coordinate system, called cylindrical coordinates, that 
is similar to polar coordinates and gives convenient descriptions of some commonly 

15.7

O

y

x
¨

x

y
r

P(r, ̈ )=P(x, y)

FIGURE 1

In this project we find formulas for the volume enclosed by a hypersphere in n-dimensional 
space. The hypersphere in Rn of radius r centered at the origin has equation

x1
2 1 x2

2 1 x3
2 1 ∙ ∙ ∙ 1 xn

2 − r 2

Let Vnsrd denote the volume enclosed by this hypersphere. A hypersphere in R2 is a circle and 
in R3, a sphere.

 1. Use a double integral and trigonometric substitution, together with Formula 64 in the Table 
of Integrals, to find the area enclosed by a circle of radius r in R2.

 2. Use a triple integral and trigonometric substitution to find the volume V3srd enclosed by a 
sphere with radius r in R3.

 3. Use a quadruple integral to find the (4-dimensional) volume V4srd enclosed by the hyper-
sphere of radius r in R4. (Use only trigonometric substitution and the reduction formulas 
for y sinnx dx or y cosnx dx .)

 4. Use an n-tuple integral to find the volume Vnsrd enclosed by a hypersphere of radius r  
in Rn. [Hint: The formulas are different for n even and n odd.]

 5. Show that the volume Vns1d enclosed by the unit hypersphere in Rn approaches zero as n 
increases. 

DISCOVERY PROJECT VOLUMES OF HYPERSPHERES
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1096 CHAPTER 15  Multiple Integrals

occurring surfaces and solids. As we will see, some triple integrals are much easier to 
evaluate in cylindrical coordinates.

■	 Cylindrical Coordinates
In the cylindrical coordinate system, a point P in three-dimensional space is represented 
by the ordered triple sr, �, zd, where r and � are polar coordinates of the projection of P 
onto the xy-plane and z is the directed distance from the xy-plane to P. (See Figure 2.)

To convert from cylindrical to rectangular coordinates, we use the equations

1  x − r cos �    y − r sin �    z − z

whereas to convert from rectangular to cylindrical coordinates, we use

2  r 2 − x 2 1 y 2    tan � −
y

x
    z − z

EXAMPLE 1 
(a) Plot the point with cylindrical coordinates s2, 2�y3, 1d and find its rectangular  
coordinates.
(b) Find cylindrical coordinates of the point with rectangular coordinates s3, 23, 27d.

SOLUTION
(a) The point with cylindrical coordinates s2, 2�y3, 1d is plotted in Figure 3. From 
Equations 1, its rectangular coordinates are

 x − 2 cos 
2�

3
− 2S2 1

2D − 21

 y − 2 sin 
2�

3
− 2Ss3 

2 D − s3 

 z − 1

So the point is (21, s3 , 1) in rectangular coordinates.

(b) From Equations 2 and noting that � is in quadrant IV of the xy-plane, we have

 r − s32 1 s23d2 − 3s2 

 tan � −
23

3
− 21  so  � −

7�

4
1 2n�

 z − 27

Therefore one set of cylindrical coordinates is (3s2 , 7�y4, 27). Another is 
(3s2 , 2�y4, 27). As with polar coordinates, there are infinitely many choices. ■

Cylindrical coordinates are useful in problems that involve symmetry about an axis, 
and the z-axis is chosen to coincide with this axis of symmetry. For instance, the axis of 
the circular cylinder with Cartesian equation x 2 1 y 2 − c 2 is the z-axis. In cylindrical 

O

r

z

¨

(r, ̈ , 0)

P(r, ̈ , z)

x

z

y

FIGURE 2  
The cylindrical coordinates of a point

”2,     , 1’2π
3

0

2π
3

2

1

x

y

z

FIGURE 3

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 SECTION 15.7  Triple Integrals in Cylindrical Coordinates 1097

coordinates this cylinder has the very simple equation r − c. (See Figure 4.) This is the 
reason for the name “cylindrical” coordinates. The graph of the equation � − c is a verti-
cal plane through the origin (see Figure 5), and the graph of the equation z − c is a hori-
zontal plane (see Figure 6).

0

z

y

x

(0, c, 0)

(c, 0, 0)

0

c

z

x

y

0

z

yx

c

FIGURE 4  
r − c, a cylinder

FIGURE 5  
� − c, a vertical plane

FIGURE 6  
z − c, a horizontal plane

EXAMPLE 2 Describe the surface whose equation in cylindrical coordinates is z − r.

SOLUTION The equation says that the z-value, or height, of each point on the surface is 
the same as r, the distance from the point to the z-axis. Because � doesn’t appear, it can 
vary. So any horizontal trace in the plane z − k sk . 0d is a circle of radius k. These 
traces suggest that the surface is a cone. This prediction can be confirmed by converting 
the equation into rectangular coordinates. From the first equation in (2) we have

z2 − r 2 − x 2 1 y 2

We recognize the equation z2 − x 2 1 y 2 (by comparison with Table 1 in Section 12.6) 
as being a circular cone whose axis is the z-axis (see Figure 7). ■

■	 Triple Integrals in Cylindrical Coordinates
Suppose that E is a type 1 region whose projection D onto the xy-plane is conveniently 
described in polar coordinates (see Figure 8). In particular, suppose that f  is continuous 
and

E − 5sx, y, zd | sx, yd [ D, u1sx, yd < z < u2sx, yd6
where D is given in polar coordinates by

D − 5sr, �d | � < � < �, h1s�d < r < h2s�d6
We know from Equation 15.6.6 that

3  y y
E

y f sx, y, zd dV − y
D

y Fyu2sx, yd

u1sx, yd
 f sx, y, zd dzG dA 

But we also know how to evaluate double integrals in polar coordinates. In fact, combin-
ing Equation 3 with Equation 15.3.3, we obtain

4  y y
E

y f sx, y, zd dV − y�

�
 yh2s�d

h1s�d
 yu2sr cos �, r sin �d

u1sr cos �, r sin �d
 f sr cos �, r sin �, zd r dz dr d�

0

z

x

y

FIGURE 7  
z − r, a cone

z

x

y

0

D

r=h™(¨)

¨=∫

¨=å

r=h¡(¨)

z=u™(x, y)

z=u¡(x, y)

FIGURE 8
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1098 CHAPTER 15  Multiple Integrals

Formula 4 is the formula for triple integration in cylindrical coordinates. It says that 
we convert a triple integral from rectangular to cylindrical coordinates by writing 
x − r cos �, y − r sin �, leaving z as it is, using the appropriate limits of integration for 
z, r, and �, and replacing dV  by r dz dr d�. (Figure 9 shows how to remember this.) It is  
worthwhile to use this formula when E is a solid region easily described in cylindrical  
coordinates, and especially when the function f sx, y, zd involves the expression x 2 1 y2.

EXAMPLE 3 Evaluate yyyE x 2 dV , where E is the solid that lies under the paraboloid 
z − 4 2 x 2 2 y 2 and above the xy-plane (see Figure 10).

SOLUTION Because E is symmetric about the z-axis, we use cylindrical coordinates. 
In addition, cylindrical coordinates are appropriate because the paraboloid 
z − 4 2 x 2 2 y 2 − 4 2 sx 2 1 y 2d is easily expressed in cylindrical coordinates as 
z − 4 2 r 2. The paraboloid intersects the xy-plane in the circle r 2 − 4 or, equivalently, 
r − 2, so the projection of E onto the xy-plane is the disk  r < 2. Thus the region E is 
given by

5sr, �, zd | 0 < � < 2�, 0 < r < 2, 0 < z < 4 2 r 26
and from Formula 4 we have

 y y
E

y x 2 dV − y2�

0
 y2

0
 y42r 2

0
 sr cos �d2 r dz dr d�

 − y2�

0
 y2

0
 sr 3 cos2�dgs4 2 r 2 d dr d�

 − y2�

0
 cos2� d� y2

0
 s4r 3 2 r 5 d dr

 − 1
2 f� 1 1

2 sin 2�g0

2� fr 4 2 1
6 

r 6g2

0

  − 1
2 s2�d(16 2 32

3  

) − 16
3   

�  ■

Figure 11 shows how the solid E in Example 3 is swept out by the iterated triple inte-
gral if we integrate first with respect to z, then r, then �.

z

x

y

z

x

y

00

z varies from 0 to 4-r@

while r and ¨ are constant.
r varies from 0 to 2 while 
¨ is constant.

¨ varies from 0 to 2π.

z

x

y

0

FIGURE 9

z

dz

dr

r d¨

d¨

r

Volume element in cylindrical
coordinates: dV=r dz dr d¨

z

z=4-≈-¥

x
y

2
2

FIGURE 10

FIGURE 11
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EXAMPLE 4 A solid E lies within the cylinder x 2 1 y 2 − 1 to the right of the 
xz-plane, below the plane z − 4, and above the paraboloid z − 1 2 x 2 2 y 2.  
(See Figure 12.) The density at any point is proportional to its distance from the axis of 
the cylinder. Find the mass of E.

SOLUTION In cylindrical coordinates the cylinder is r − 1 and the paraboloid is 
z − 1 2 r 2, so we can write

E − 5sr, �, zd | 0 < � < �, 0 < r < 1, 1 2 r 2 < z < 46
Since the density at sx, y, zd is proportional to the distance from the z-axis, the density 
function is

�sx, y, zd − Ksx 2 1 y 2 − Kr

where K is the proportionality constant. Therefore, from Formula 15.6.13, the mass of 
E is

 m − y y
E

y Ksx 2 1 y 2  dV − y�

0
 y1

0
 y4

12r 2
 sKrd r dz dr d�

 − y�

0
 y1

0
 Kr 2 f4 2 s1 2 r 2 dg dr d� − K y�

0
 d� y1

0
 s3r 2 1 r 4 d dr

  − �K Fr 3 1
r 5

5 G
1

0

−
6�K

5
 ■

EXAMPLE 5 Evaluate y2

22
 ys42x2 

2s42x2
 

 y2

sx 21y 2 

 
sx 2 1 y 2d dz dy dx.

SOLUTION This iterated integral is a triple integral over the solid region 

E − 5 sx, y, zd | 22 < x < 2, 2s4 2 x 2 < y < s4 2 x 2 , sx 2 1 y 2 < z < 26
and the projection of E onto the xy-plane is the disk x 2 1 y 2 < 4. The lower sur face of 
E is the cone z − sx 2 1 y 2  and its upper surface is the plane z − 2. (See Fig ure 13.) 
This region has a much simpler description in cylindrical coordinates:

E − 5 sr, �, zd | 0 < � < 2�, 0 < r < 2, r < z < 26
Therefore we have

y2

22
 ys42x2 

2s42x2
 

  y2

sx 21y 2 

 
sx 2 1 y 2d dz dy dx − y y

E

y sx 2 1 y 2d dV

 − y2�

0
 y2

0
 y2

r
 r 2 r dz dr d�

 − y2�

0
 d� y2

0
 r 3s2 2 rd dr

 − 2� f 12 r 4 2 1
5 r 5 g0

2
− 16

5 � ■

0
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1100 CHAPTER 15  Multiple Integrals

15.7 Exercises

1–2 Plot the point whose cylindrical coordinates are given. 
Then find the rectangular coordinates of the point.

 1. (a) s5, �y2, 2d
  (b) s6, 2�y4, 23d

 2. (a) s2, 5�y6, 1d
  (b) s8, 22�y3, 5d

3–4 Change from rectangular to cylindrical coordinates.

 3. (a) s4, 4, 23d
  (b) (5s3 , 25, s3   )

 4. (a) (0, 22, 9)
  (b) (21, s3 , 6)

5–6 Describe in words the surface whose equation is given.

 5. r − 2 6. � − �y6

7–8 Identify the surface whose equation is given.

 7. r 2 1 z 2 − 4 8. r − 2 sin �

9–10 Write the equations in cylindrical coordinates.

 9. (a) x 2 2 x 1 y 2 1 z 2 − 1
  (b) z − x 2 2 y 2

 10. (a) 2x 2 1 2y 2 2 z 2 − 4
  (b) 2x 2 y 1 z − 1

11–12 Sketch the solid described by the given inequalities.

 11. r 2 < z < 8 2 r 2

 12. 0 < � < �y2,  r < z < 2

 13.  A cylindrical shell is 20 cm long, with inner radius 6 cm 
and outer radius 7 cm. Write inequalities that describe the 
shell in an appropriate coordinate system. Explain how you 
have positioned the coordinate system with respect to the 
shell.

 14.  Use graphing software to draw the solid enclosed by the  
paraboloids z − x 2 1 y 2 and z − 5 2 x 2 2 y 2.

15–16 
(a) Express the triple integral yyyE  f sx, y, zd dV as an iterated 

integral in cylindrical coordinates for the given function f  
and solid region E.

(b) Evaluate the iterated integral.

;

 15. f sx, y, zd − x 2 1 y 2 16. f sx, y, zd − xy

E

z=2-≈-¥

≈+¥=1

E

z=6-≈-¥

0

z=œ„„„„„≈+¥

z z

x
y

x y

17–18 Sketch the solid whose volume is given by the integral  
and evaluate the integral.

 17. y3�y2

�y2
 y3

0
 y9

r 2
 r dz dr d� 

18.  y2

0
 y2�

0
 yr

0
 r dz d� dr

19–30 Use cylindrical coordinates.

 19.  Evaluate yyyE sx 2 1 y 2  dV, where E is the region that lies 
inside the cylinder x 2 1 y 2 − 16 and between the planes 
z − 25 and z − 4.

 20.  Evaluate yyyE z dV, where E is enclosed by the paraboloid

  z − x 2 1 y 2 and the plane z − 4.

 21.  Evaluate yyyE sx 1 y 1 zd dV, where E is the solid in the 
first octant that lies under the paraboloid z − 4 2 x 2 2 y 2.

 22.  Evaluate yyyE sx 2 yd dV, where E is the solid that lies 
between the cylinders x 2 1 y 2 − 1 and x 2 1 y 2 − 16, 
above the xy-plane, and below the plane z − y 1 4.

 23.  Evaluate yyyE x 2 dV, where E is the solid that lies within the 
cylinder x 2 1 y 2 − 1, above the plane z − 0, and below the 
cone z2 − 4x 2 1 4y 2.

 24.  Find the volume of the solid that lies within both the cylin-
der x 2 1 y 2 − 1 and the sphere x 2 1 y 2 1 z2 − 4.

 25.  Find the volume of the solid that is enclosed by the cone 
z − sx 2 1 y 2  and the sphere x 2 1 y 2 1 z 2 − 2.

 26.  Find the volume of the solid that lies between the parabo-
loid z − x 2 1 y 2 and the sphere x 2 1 y 2 1 z 2 − 2.

 27. (a)  Find the volume of the region E that lies between the 
paraboloid z − 24 2 x 2 2 y 2 and the cone 
z − 2sx 2 1 y 2 .

 (b)  Find the centroid of E (the center of mass in the case 
where the density is constant).
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 DISCOVERY PROJECT  The Intersection of Three Cylinders 1101

in the shape of a right circular cone. Suppose that the weight 
density of the material in the vicinity of a point P is tsPd and 
the height is hsPd.

 (a)  Find a definite integral that represents the total work done 
in forming the mountain.

 (b)  Assume that Mount Fuji in Japan is in the shape of a right 
circular cone with radius 19,000 m, height 3800 m, and 
density a constant 3200 kgym3. How much work was  
done in forming Mount Fuji if the land was initially at 
sea level?

S.
R.

 L
ee

 P
ho

to
 Tr

av
el

le
r/

Sh
ut

te
rs

to
ck

.o
cm

 28. (a)  Find the volume of the solid that the cylinder r − a cos � 
cuts out of the sphere of radius a centered at the origin.

 (b)  Illustrate the solid of part (a) by graphing the sphere 
and the cylinder on the same screen.

 29.  Find the mass and center of mass of the solid S bounded by 
the paraboloid z − 4x 2 1 4y 2 and the plane z − a sa . 0d 
if S has constant density K.

 30.  Find the mass of a ball B given by x 2 1 y 2 1 z2 < a 2 if 
the density at any point is proportional to its distance from 
the z-axis.

31–32 Evaluate the integral by changing to cylindrical 
coordinates.

 31. y2

22
 ys42y 2

2s42y 2  y
2

sx 21y 2    xz dz dx dy

 32. y3

23
 ys92x 2 

0
 y92x 22y 2

0
 sx 2 1 y 2  dz dy dx

 33.  When studying the formation of mountain ranges, geolo-
gists estimate the amount of work required to lift a moun-
tain from sea level. Consider a mountain that is essentially 

;

The figure shows the solid enclosed by three circular cylinders with the same diameter that 
intersect at right angles. In this project we compute its volume and determine how its shape 
changes if the cylinders have different diameters.

 1.   Sketch carefully the solid enclosed by the three cylinders x 2 1 y 2 − 1, x 2 1 z 2 − 1, and 
y 2 1 z 2 − 1. Indicate the positions of the coordinate axes and label the faces with the 
equations of the corresponding cylinders.

 2. Find the volume of the solid in Problem 1.

 3. Use graphing software to draw the edges of the solid.

 4.  What happens to the solid in Problem 1 if the radius of the first cylinder is different  
from 1? Illustrate with a hand-drawn sketch or a computer graph.

 5.  If the first cylinder is x 2 1 y 2 − a 2, where a , 1, set up, but do not evaluate, a double 
integral for the volume of the solid. What if a . 1?

DISCOVERY PROJECT THE INTERSECTION OF THREE CYLINDERS
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1102 CHAPTER 15  Multiple Integrals

Triple Integrals in Spherical Coordinates

Another useful coordinate system in three dimensions is the spherical coordinate system. 
It simplifies the evaluation of triple integrals over regions bounded by spheres or cones.

■	 Spherical Coordinates
The spherical coordinates s�, �, �d of a point P in space are shown in Figure 1, where 
� − | OP | is the distance from the origin to P, � is the same angle as in cylindrical coor-
di nates, and � is the angle between the positive z-axis and the line segment OP. Note that

� > 0      0 < � < �

The spherical coordinate system is especially useful in problems where there is symmetry 
about a point, and the origin is placed at this point. For example, the sphere with center 
the origin and radius c has the simple equation � − c (see Figure 2): this is the reason for 
the name “spherical” coordinates. The graph of the equation � − c is a vertical half-plane 
(see Figure 3), and the equation � − c represents a half-cone with the z@axis as its axis 
(see Figure 4).

0

c

0
0

c

0<c<π/2

0
c

π/2<c<π

z

x

y

z

x

y

z

y

x

z

y

x

FIGURE 2 � − c, a sphere FIGURE 3 � − c, a half-plane FIGURE 4 � − c, a half-cone

The relationship between rectangular and spherical coordinates can be seen from Fig-
ure 5. From triangles OPQ and OPP9 we have

z − � cos �      r − � sin �

But x − r cos � and y − r sin �, so to convert from spherical to rectangular coordinates, 
we use the equations

1  x − � sin � cos �    y − � sin � sin �    z − � cos �

Also, the distance formula shows that

2  �2 − x 2 1 y 2 1 z2

We use this equation in converting from rectangular to spherical coordinates.

EXAMPLE 1 The point s2, �y4, �y3d is given in spherical coordinates. Plot the point 
and find its rectangular coordinates.

15.8

P(∏, ¨, ̇ )

O

z

∏

¨

˙

x y

FIGURE 1  
The spherical coordinates of a point

P(x, y, z)
P(∏, ̈ , ̇ )

P ª(x, y, 0)

O

¨

y

x

z

˙

r

∏

x

y

z

˙

Q

FIGURE 5
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 SECTION 15.8  Triple Integrals in Spherical Coordinates 1103

SOLUTION We plot the point in Figure 6. From Equations 1 we have

 x − � sin �  cos � − 2 sin 
�

3
 cos 

�

4
− 2Ss3 

2 DS 1

s2 D − Î3

2
 

 y − � sin � sin � − 2 sin 
�

3
 sin 

�

4
− 2Ss3 

2 DS 1

s2 D − Î3

2
 

 z − � cos � − 2 cos 
�

3
− 2(1

2) − 1

Thus the point s2, �y4, �y3d is (s3y2 , s3y2 , 1) in rectangular coordinates. ■

EXAMPLE 2 The point (0, 2s3 , 22) is given in rectangular coordinates. Find 
spherical coordinates for this point.

SOLUTION From Equation 2 we have � − sx 2 1 y 2 1 z 2 − s0 1 12 1 4 − 4 and 
so Equations 1 give

 cos � −
z

�
−

22

4
− 2

1

2
    � −

2�

3

 cos � −
x

� sin �
− 0     � −

�

2

(Note that � ± 3�y2 because y − 2s3 . 0.) Therefore spherical coordinates of the 
given point are s4, �y2, 2�y3d. ■

■	 Triple Integrals in Spherical Coordinates
In the spherical coordinate system the counterpart of a rectangular box is a spherical 
wedge

E − 5 s�, �, �d | a < � < b, � < � < �, c < � < d 6
where a > 0 and � 2 � < 2�, and d 2 c < �. Although we defined triple integrals by 
dividing solids into small boxes, it can be shown that dividing a solid into small spherical 
wedges always gives the same result. So we divide E into smaller spherical wedges 
Eijk  by means of equally spaced spheres � − �i, half-planes � − �j, and half-cones 
� − �k. Figure 7 shows that Eijk is approximately a rectangular box with dimensions D�, 
�i D� (arc of a circle with radius �i, angle D�), and �i sin �k D� (arc of a circle with 
radius �i sin �k, angle D�). So an approximation to the volume of Eijk is given by

DVijk <  sD�ds�i D�ds�i sin �k D�d − �i
2  sin �k D� D� D�

z

0

x

y

ri=∏i sin ˙k

ri Î¨=∏i sin ˙k Î¨

∏i Î˙

∏i sin ˙k Î¨
Î∏

Î˙˙k

Î¨

(a) A spherical wedge

∏i 

(b) Side view (c) Top view

Î¨

x

y

ri =∏i sin ˙k

ri Î¨=∏i sin ˙k Î¨

0z

Î˙˙k

∏i
 

Î∏

∏i Î˙

ri =∏i sin ˙k

FIGURE 7

0
2

π
3

π
4

(2, π/4, π/3)

z
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FIGURE 6

 WARNING There is not univer-
sal agreement on the notation for 
spherical coordinates. Most books on 
physics reverse the meanings of � and 
� and use r in place of �.
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In fact, it can be shown, with the aid of the Mean Value Theorem (Exercise 51), that 
the volume of Eijk is given exactly by

DVijk − �
~

i
2 sin �

~

k D� D� D�

where s�
~

i, �
~

j, �
~

k d is some point in Eijk. Let sx ijk* , y ijk* , z ijk* d be the rectangular coordinates 
of this point. Then

 y y
E

y f sx, y, zd dV − lim
l, m, n l `

 o
l

i−1
 o

m

j−1
 o

n

k−1
 f sxijk* , yijk* , z ijk* d DVijk

 − lim
l, m, n l `

 o
l

i−1
o
m

j−1
o

n

k−1
 f s�

~

i sin �
~

k cos �
~

j 
, �~ i sin �

~

k sin �
~

j , �~ i cos �
~

k d �~ i
2  sin �

~

k D� D� D�

But this sum is a Riemann sum for the function

Fs�, �, �d − f s� sin � cos �, � sin � sin �, � cos �d �2 sin �

Consequently, we have arrived at the following formula for triple integration in spheri-
cal coordinates.

3  y y
E

y f sx, y, zd dV

     − yd

c
 y�

�
 yb

a
 f s� sin � cos �, � sin � sin �, � cos �d �2 sin � d� d� d�

where E is a spherical wedge given by

E − 5 s�, �, �d | a < � < b, � < � < �, c < � < d 6

Formula 3 says that we convert a triple integral from rectangular coordinates to spheri-
cal coordinates by writing

x − � sin � cos �      y − � sin � sin �      z − � cos �

using the appropriate limits of integration and replacing dV  by �2 sin � d� d� d�. This is 
illustrated in Figure 8.

This formula can be extended to include more general spherical regions such as

E − 5 s�, �, �d | � < � < �, c < � < d, t1s�, �d < � < t2s�, �d6
In this case the formula is the same as in (3) except that the limits of integration for � are 
t1s�, �d and t2s�, �d.

Usually, spherical coordinates are used in triple integrals when surfaces such as cones 
and spheres form the boundary of the region of integration.

EXAMPLE 3 Evaluate yyyB e
sx21y21z2d3/2

 dV, where B is the unit ball:

B − 5 sx, y, zd | x 2 1 y 2 1 z2 < 16
SOLUTION Since the boundary of B is a sphere, we use spherical coordinates:

B − 5 s�, �, �d | 0 < � < 1, 0 < � < 2�, 0 < � < �6
In addition, spherical coordinates are appropriate because

x 2 1 y 2 1 z2 − �2

FIGURE 8  
Volume element in spherical 
coordinates: dV − �2 sin � d� d� d�

z

0

x

y

∏ d˙

∏ sin ˙ Î¨ d∏

d˙˙

d¨

∏
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Thus (3) gives

 y y
B

y esx 21y21z2d3/2 dV − y�

0
 y2�

0
 y1

0
 es�

2d3y2
�2 sin � d� d� d�

 − y�

0
 sin � d�  y2�

0
 d�  y1

0
 �2e �3

 d�

 − f2cos �g0

�
 s2�d f1

3  

e 

�3g0

1
− 4

3� se 2 1d ■

NOTE It would have been extremely awkward to evaluate the integral in Example 3 with-
out spherical coordinates. In rectangular coordinates the iterated integral would have been

y1

21 
ys12x 2 

2s12x 2 
 ys12x 22y 2 

2s12x 22y 2 
 esx 21y21z2d3/2 dz dy dx

EXAMPLE 4 Use spherical coordinates to find the volume of the solid that lies above 
the cone z − sx 2 1 y 2  and below the sphere x 2 1 y 2 1 z2 − z. (See Figure 9.)

SOLUTION Notice that the sphere passes through the origin and has center (0, 0, 12 ). We 
write the equation of the sphere in spherical coordinates as

�2 − � cos �    or    � − cos �

The equation of the cone can be written as

� cos � − s�2 sin2 � cos 2 � 1 �2 sin2 � sin2 �
 − � sin �

This gives sin � − cos �, or � − �y4. Therefore the description of the solid E in  
spherical coordinates is

E − 5 s�, �, �d | 0 < � < 2�, 0 < � < �y4, 0 < � < cos �6
Figure 10 shows how E is swept out if we integrate first with respect to �, then �, and 
then �. The volume of E is

 VsEd − y y
E

y dV − y2�

0
 y�y4

0
 ycos

 
�

0
 �2 sin � d� d� d�

 − y2�

0
 d�  y�y4

0
 sin �F �3

3 G�−0

�−cos �

 d�

  −
2�

3
 y�y4

0
 sin � cos3� d� −

2�

3
 F2

cos4�

4 G
0

�y4

−
�

8
 

¨ varies from 0 to 2π.

z

yx

z

yx

∏ varies from 0 to cos ˙

while ˙ and ̈   are constant.

z

yx

˙ varies from 0 to π/4
 while ¨ is constant.FIGURE 10  ■
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15.8 Exercises

1–2 Plot the point whose spherical coordinates are given. Then  
find the rectangular coordinates of the point.

 1. (a) s2, 3�y4, �y2d (b) s4, 2�y3, �y4d

 2. (a) s5, �y2, �y3d (b) s6, 0, 5�y6d

3–4 Change from rectangular to spherical coordinates.

 3. (a) s3, 3, 0d (b) (1, 2s3 , 2 s3   )

 4. (a) s0, 4, 24d (b) (22, 2, 2 s6   )

5–6 Describe in words the surface whose equation is given.

 5. � − 3�y4 6. � 2 2 3� 1 2 − 0

7–8 Identify the surface whose equation is given.

 7. � cos � − 1 8. � − cos �

9–10 Write the equation in spherical coordinates.

 9. (a) x 2 1 y 2 1 z 2 − 9 (b) x 2 2 y 2 2 z 2 − 1

 10. (a) z − x 2 1 y 2 (b) z − x 2 2 y 2

11–14 Sketch the solid described by the given inequalities.

 11. � < 1, 0 < � < �y6, 0 < � < �

 12. 1 < � < 2, �y2 < � < �

 13. 1 < � < 3,  0 < � < �y2,  � < � < 3�y2

 14. � < 2,  � < csc �

 15.  A solid lies inside the sphere x 2 1 y 2 1 z2 − 4z and outside 
the cone z − sx 2 1 y 2 . Write a description of the solid in 
terms of inequalities involving spherical coordinates.

 16. (a)  Find inequalities that describe a hollow ball with diam-
eter 30 cm and thickness 0.5 cm. Explain how you have 
positioned the coordinate system that you have chosen.

 (b)  Suppose the ball is cut in half. Write inequalities that 
describe one of the halves.

17–18 Sketch the solid whose volume is given by the integral  
and evaluate the integral.

 17. y�y6

0
 y�y2

0
 y3

0
 �2 sin � d� d� d�

 18. y�y4

0
y2�

0
ysec �

0
 � 2 sin � d� d� d�

19–20 Set up the triple integral of an arbitrary continuous 
function f sx, y, zd in cylindrical or spherical coordinates over the 
solid shown.

 19.  20. z

x
y

z

x y2
1

3

2

21–22
(a) Express the triple integral yyyE  f sx, y, zd dV as an iterated 

integral in spherical coordinates for the given function f  and 
solid region E.

(b) Evaluate the iterated integral.

 21. f sx, y, zd − sx 2 1 y 2 1 z 2  22. f sx, y, zd − xy

≈+¥+z@=4

≈+¥+z@=9

E

x

z

y
≈+¥z=œ„„„„„„

≈+¥+z@=8

x
0

z

y

E

23–36 Use spherical coordinates.

 23.  Evaluate yyyB sx2 1 y2 1 z2 d2 dV, where B is the ball with  
center the origin and radius 5.

 24.  Evaluate yyyE y2z 2 dV, where E lies above the cone � − �y3 
and below the sphere � − 1.

 25.  Evaluate yyyE sx 2 1 y2d dV, where E lies between the spheres

  x 2 1 y 2 1 z 2 − 4 and x 2 1 y 2 1 z 2 − 9.

 26.  Evaluate yyyE y 2 dV, where E is the solid hemisphere

  x 2 1 y 2 1 z2 < 9, y > 0.

 27.  Evaluate yyyE xe x 21y21z2
 dV, where E is the portion of the

  unit ball x 2 1 y 2 1 z 2 < 1 that lies in the first octant.

 28.  Evaluate yyyE sx 2 1 y 2 1 z 2  dV, where E lies above the cone 

   z − sx 2 1 y 2  and between the spheres x 2 1 y 2 1 z 2 − 1 

and x 2 1 y 2 1 z 2 − 4.

 29.  Find the volume of the part of the ball � < a that lies between 
the cones � − �y6 and � − �y3.
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43–45 Evaluate the integral by changing to spherical coordinates.

 43. y1

0
 ys12x 2 

0
 ys22x 22y 2 

sx 21y 2 
 xy dz dy dx

 44. ya

2a
 ysa 22y 2 

2sa 22y 2 
 ysa 22x 22y 2 

2sa 22x 22y 2 
 sx 2z 1 y 2z 1 z3d dz dx dy

 45. y2

22
 ys42x 2 

2s42x 2 
 y21s42x 22y 2 

22s42x 22y 2 
 sx 2 1 y 2 1 z 2d3y2 dz dy dx

 46.  A model for the density � of the earth’s atmosphere near its 
surface is

� − 619.09 2 0.000097�

   where � (the distance from the center of the earth) is mea- 
sured in meters and � is measured in kilograms per cubic 
meter. If we take the surface of the earth to be a sphere with 
radius 6370 km, then this model is a reasonable one for 
6.370 3 106 < � < 6.375 3 106. Use this model to estimate 
the mass of the atmosphere between the ground and an alti-
tude of 5 km.

 47.  Use graphing software to draw a silo consisting of a cylinder 
with radius 3 and height 10 surmounted by a hemisphere.

 48.  The latitude and longitude of a point P in the Northern Hemi-
sphere are related to spherical coordinates �, �, � as follows. 
We take the origin to be the center of the earth and the posi-
tive z-axis to pass through the North Pole. The positive x-axis 
passes through the point where the prime meridian (the 
meridian through Greenwich, England) intersects the equator. 
Then the latitude of P is � − 90° 2 �° and the longitude is 
� − 360° 2 �°. Find the great-circle distance from Los 
Angeles (lat. 34.06° N, long. 118.25° W) to Montréal (lat. 
45.50° N, long. 73.60° W). Take the radius of the earth to be 
6370 km. (A great circle is the circle of intersection of a 
sphere and a plane through the center of the sphere.)

 49.   The surfaces � − 1 1 1
5 sin m� sin n� have been used as 

models for tumors. The “bumpy sphere” with m − 6 and 
n − 5 is shown. Use a computer algebra system to find the 
volume it encloses.

;

 30.  Find the average distance from a point in a ball of radius a 
to its center.

 31. (a)  Find the volume of the solid that lies above the cone 
� − �y3 and below the sphere � − 4 cos �.

 (b) Find the centroid of the solid in part (a).

 32.  Find the volume of the solid that lies within the sphere 
x 2 1 y 2 1 z 2 − 4, above the xy-plane, and below the  
cone z − sx 2 1 y 2 .

 33. (a)  Find the centroid of the solid in Example 4. (Assume 
constant density K.)

 (b)  Find the moment of inertia about the z-axis for this solid.

 34.  Let H be a solid hemisphere of radius a whose density at any 
point is proportional to its distance from the center of the base.

 (a) Find the mass of H.
 (b) Find the center of mass of H.
 (c) Find the moment of inertia of H about its axis.

 35. (a)  Find the centroid of a solid homogeneous hemisphere 
of radius a.

 (b)  Find the moment of inertia of the solid in part (a) about 
a diameter of its base.

 36.  Find the mass and center of mass of a solid hemisphere of 
radius a if the density at any point is proportional to its  
distance from the base.

37–42 Use cylindrical or spherical coordinates, whichever 
seems more appropriate.

 37.  Find the volume and centroid of the solid E that lies above 
the cone z − sx 2 1 y 2  and below the sphere 
x 2 1 y 2 1 z2 − 1.

 38.  Find the volume of the smaller wedge cut from a sphere of 
radius a by two planes that intersect along a diameter at an 
angle of �y6.

 39.  A solid cylinder with constant density has base radius a and 
height h.

 (a) Find the moment of inertia of the cylinder about its axis.
 (b)  Find the moment of inertia of the cylinder about a 

diameter of its base.

 40.  A solid right circular cone with constant density has base 
radius a and height h.

 (a)  Find the moment of inertia of the cone about its axis.
 (b)  Find the moment of inertia of the cone about a diameter 

of its base.

 41.  Evaluate yyyE z dV, where E lies above the paraboloid 
   z − x 2 1 y 2 and below the plane z − 2y. Use either the 

Table of Integrals (on Reference Pages 6–10) or a computer 
algebra system to evaluate the integral.

 42. (a) Find the volume enclosed by the torus � − sin �.
 (b) Use graphing software to draw the torus.

;
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1108 CHAPTER 15  Multiple Integrals

 50. Show that

y`

2` 
y`

2` 
y`

2`
 sx 2 1 y 2 1 z2 

 
e2sx 21y 21z2d dx dy dz − 2�

   (The improper triple integral is defined as the limit of a  
triple integral over a solid sphere as the radius of the sphere 
increases indefinitely.)

 51. (a)  Use cylindrical coordinates to show that the volume of  
the solid bounded above by the sphere r 2 1 z2 − a 2 and 
below by the cone z − r cot � 0 (or � − � 0), where 
0 , � 0 , �y2, is

V −
2�a 3

3
 s1 2 cos� 0 d

 (b)  Deduce that the volume of the spherical wedge given by 
�1 < � < � 2, �1 < � < � 2, �1 < � < � 2 is

DV −
� 2

3 2 �1
3

3
 scos �1 2 cos � 2 ds� 2 2 �1 d

 (c)  Use the Mean Value Theorem to show that the volume in 
part (b) can be written as

DV − �
~ 2 sin �

~

D� D� D�

   where �~  lies between �1 and � 2, �
~

 lies between �1 and  
� 2, D� − � 2 2 �1, D� − �2 2 �1, and D� − � 2 2 �1.

Suppose that a solid ball (a marble), a hollow ball (a squash ball), a solid cylinder (a steel bar), 
and a hollow cylinder (a lead pipe) roll down a slope. Which of these objects reaches the bot-
tom first? (Make a guess before proceeding.)

To answer this question, we consider a ball or cylinder with mass m, radius r, and moment 
of inertia I (about the axis of rotation). If the vertical drop is h, then the potential energy at the 
top is mth. Suppose the object reaches the bottom with velocity v and angular velocity �, so 
v − �r. The kinetic energy at the bottom consists of two parts: 12 mv2 from translation (moving 
down the slope) and 12 I�2 from rotation. If we assume that energy loss from rolling friction is 
negligible, then conservation of energy gives

mth − 1
2 mv2 1 1

2 I�2

 1. Show that

v2 −
2th

1 1 I*
    where I* −

I

mr 2

 2.  If ystd is the vertical distance traveled at time t, then the same reasoning as used in  
Problem 1 shows that v2 − 2tyys1 1 I*d at any time t. Use this result to show that y  
satisfies the differential equation

dy

dt
− Î 2t

1 1 I*  ssin �dsy 

  where � is the angle of inclination of the plane.

 3. By solving the differential equation in Problem 2, show that the total travel time is

T − Î 2hs1 1 I*d
t sin2�

  This shows that the object with the smallest value of I* wins the race.

 4. Show that I* − 1
2 for a solid cylinder and I* − 1 for a hollow cylinder.

 5.  Calculate I* for a partly hollow ball with inner radius a and outer radius r. Express your 
answer in terms of b − ayr. What happens as a l 0 and as a l r?

 6.  Show that I* − 2
5 for a solid ball and I* − 2

3 for a hollow ball. Thus the objects finish in the 
following order: solid ball, solid cylinder, hollow ball, hollow cylinder.

å

h

APPLIED PROJECT ROLLER DERBY
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 SECTION 15.9  Change of Variables in Multiple Integrals 1109

Change of Variables in Multiple Integrals

In one-dimensional calculus we often use a change of variable (a substitution) to simplify 
an integral. By reversing the roles of x and u, we can write the Substitution Rule (5.5.6) as

1  yb

a
 f sxd dx − yd

c
 f stsudd t9sud du 

where x − tsud and a − tscd, b − tsdd. Another way of writing Formula 1 is as follows:

2  yb

a
 f sxd dx − yd

c
 f sxsudd 

dx

du
 du 

A change of variables can also be useful in evaluating double and triple integrals.

■	 Change of Variables in Double Integrals
We have already seen an example of a change of variables for double integrals: conver-
sion to polar coordinates. The new variables r and � are related to the old variables x  
and y by the equations

x − r cos �    y − r sin �

and the change of variables formula (15.3.2) can be written as

y
R

y f sx, yd dA − y
S

y f sr cos �, r sin �d r dr d�

where S is the region in the r�-plane that corresponds to the region R in the xy-plane.
More generally, we consider a change of variables that is given by a transformation 

T  from the uv-plane to the xy-plane:

Tsu, vd − sx, yd

where x and y are related to u and v by the equations

3  x − tsu, vd    y − hsu, vd 

or, as we sometimes write,
x − xsu, vd    y − ysu, vd

We usually assume that T  is a C 1 transformation, which means that t and h have contin-
uous first-order partial derivatives.

A transformation T  is really just a function whose domain and range are both sub- 
sets of R 2. If Tsu1, v1d − sx1, y1d, then the point sx1, y1d is called the image of the point 
su1, v1d. If no two points have the same image, T  is called one-to-one. Figure 1 shows the 
effect of a transformation T  on a region S in the uv-plane. T  transforms S into a region R 
in the xy-plane called the image of S, consisting of the images of all points in S.

0

√

0

y

u x

(u¡, √¡)
(x¡, y¡)

S R
T –!

T

15.9

FIGURE 1
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1110 CHAPTER 15  Multiple Integrals

If T  is a one-to-one transformation, then it has an inverse transformation T 21 from 
the xy-plane to the uv-plane and it may be possible to solve Equations 3 for u and v in 
terms of x and y:

u − Gsx, yd    v − Hsx, yd

EXAMPLE 1 A transformation is defined by the equations

x − u 2 2 v2     y − 2uv

Find the image of the square S − hsu, vd | 0 < u < 1,  0 < v < 1j.

SOLUTION The transformation maps the boundary of S into the boundary of the image. 
So we begin by finding the images of the sides of S. The first side, S1, is given by v − 0
s0 < u < 1d. (See Figure 2.) From the given equations we have x − u 2, y − 0, and  
so 0 < x < 1. Thus S1 is mapped onto the line segment from s0, 0d to s1, 0d in the  
xy-plane. The second side, S2, is u − 1 s0 < v < 1d and, putting u − 1 in the given 
equations, we get

x − 1 2 v2    y − 2v

Eliminating v, we obtain

4  x − 1 2
y 2

4
    0 < x < 1 

which is part of a parabola. Similarly, S3 is given by v − 1 s0 < u < 1d, whose image 
is the parabolic arc

5  x −
y 2

4
2 1    21 < x < 0 

Finally, S4 is given by u − 0 s0 < v < 1d whose image is x − 2v2, y − 0, that is, 
21 < x < 0. (Notice that as we move around the square in the counterclockwise 
direction, we also move around the parabolic region in the counterclockwise direction.) 
The image of S is the region R (shown in Figure 2) bounded by the x-axis and the 
parabolas given by Equations 4 and 5. ■

Now let’s see how a change of variables affects a double integral. We start with a 
small rectangle S in the uv-plane whose lower left corner is the point su0, v0 d and whose 
dimensions are Du and Dv. (See Figure 3.)

y )̧
T

0

y

x

(x¸, 

r (u, √ ¸)

r (u¸, √)

0

√

u

Îu

Î√

√=√¸

u=u¸

S

(u¸, √¸)
R

The image of S is a region R in the xy-plane, one of whose boundary points is 
sx0, y0 d − Tsu0, v0 d. The vector

rsu, vd − tsu, vd i 1 hsu, vd j

T

0

√

u

(0, 1) (1, 1)

(1, 0)

S

S£

S¡

S™S¢

0

y

x(_1, 0)

(0, 2)

(1, 0)

R

x=1- ¥
4x=    -1¥

4

FIGURE 2

FIGURE 3
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 SECTION 15.9  Change of Variables in Multiple Integrals 1111

is the position vector of the image of the point su, vd. The equation of the lower side of S 
is v − v0, whose image curve is given by the vector function rsu, v0d. The tangent vector 
at sx0, y0 d to this image curve is

ru − tusu0, v0 d
 

i 1 husu0, v0 d
 

j −
−x

−u
 i 1

−y

−u
 j

Similarly, the tangent vector at sx0, y0 d to the image curve of the left side of S (namely, 
u − u0) is

rv − tvsu0, v0 d
 

i 1 hvsu0, v0 d
 

j −
−x

−v
 i 1

−y

−v
 j

We can approximate the image region R − T sSd by a parallelogram determined by the 
secant vectors

a − rsu0 1 Du, v0 d 2 rsu0, v0 d      b − rsu0, v0 1 Dvd 2 rsu0, v0 d

shown in Figure 4. But

ru − lim
Du l 0

 
rsu0 1 Du, v0 d 2 rsu0, v0 d

Du

and so  rsu0 1 Du, v0 d 2 rsu0, v0 d < Du ru 

Similarly  rsu0, v0 1 Dvd 2 rsu0, v0 d < Dv rv  

This means that we can approximate R by a parallelogram determined by the vectors 
Du ru and Dv rv. (See Figure 5.) Therefore we can approximate the area of R by the area 
of this parallelogram, which, from Section 12.4, is

6  | sDu ru d 3 sDv rv d | − | ru 3 rv | Du Dv 

Computing the cross product, we obtain

ru 3 rv − Z i j k
−x

−u

−y

−u
0

−x

−v

−y

−v
0

Z − Z −x

−u

−y

−u

−x

−v

−y

−v

Z k − Z −x

−u

−x

−v

−y

−u

−y

−v

Z k
The determinant that arises in this calculation is called the Jacobian of the transforma-
tion and is given a special notation.

7  Definitio  The Jacobian of the transformation T  given by x − tsu, vd and 
y − hsu, vd is

−sx, yd
−su, vd

− Z −x

−u

−x

−v

−y

−u

−y

−v

Z −
−x

−u
 
−y

−v
2

−x

−v
 
−y

−u

The Jacobian is named after the 
German mathematician Carl Gustav 
Jacob Jacobi (1804 –1851). Although 
the French mathematician Cauchy 
first used these special determinants 
involving partial derivatives, Jacobi 
developed them into a method for 
evaluating multiple integrals.

With this notation we can use Equation 6 to give an approximation to the area DA  
of R:

8  DA < Z −sx, yd
−su, vd Z Du Dv 

where the Jacobian is evaluated at su0, v0 d.

r (u¸, √ ¸)

r (u¸+Îu, √¸)

R

a

b

r (u¸, √¸+Î√)

FIGURE 4

r (u¸, √ ¸) Îu ru

Î√ r√

FIGURE 5

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1112 CHAPTER 15  Multiple Integrals

Next we divide a region S in the uv-plane into rectangles Sij and call their images in 
the xy-plane Rij. (See Figure 6.)

T

0

y

x

R

0

√

u

S Î√
Îu

(u i, √ j)

Sij

(xi, yj)

Rij

Applying the approximation (8) to each Rij, we approximate the double integral of f  
over R as follows:

 y
R

y f sx, yd dA < o
m

i−1
 o

n

j−1
 f sxi, yjd DA

 < o
m

i−1
 o

n

j−1
 f stsui, vjd, hsui, vjdd Z −sx, yd

−su, vd Z Du Dv

where the Jacobian is evaluated at sui, vjd. Notice that this double sum is a Riemann sum 
for the integral

y
S

y f stsu, vd, hsu, vdd Z −sx, yd
−su, vd Z  du dv

The foregoing argument suggests that the following theorem is true. (A full proof is 
given in books on advanced calculus.)

9  Change of Variables in a Double Integral Suppose that T  is a C1 transfor-
mation whose Jacobian is nonzero and that T  maps a region S in the uv-plane onto 
a region R in the xy-plane. Suppose that f  is continuous on R and that R and S are 
type I or type II plane regions. Suppose also that T  is one-to-one, except perhaps 
on the boundary of S. Then

y
R

y f sx, yd dA − y
S

y f sxsu, vd, ysu, vdd Z −sx, yd
−su, vd Z  du dv

Theorem 9 says that we change from an integral in x and y to an integral in u and v by 
expressing x and y in terms of u and v and writing

dA − Z −sx, yd
−su, vd Z  du dv

Notice the similarity between Theorem 9 and the one-dimensional formula in Equa-
tion 2. Instead of the derivative dxydu, we have the absolute value of the Jacobian, that 
is, | −sx, ydy−su, vd |.

FIGURE 6
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 SECTION 15.9  Change of Variables in Multiple Integrals 1113

As a first illustration of Theorem 9, we show that the formula for integration in polar 
coordinates is just a special case. Here the transformation T  from the r�-plane to the  
xy-plane is given by

x − tsr, �d − r cos �    y − hsr, �d − r sin �

and the geometry of the transformation is shown in Figure 7: T  maps an ordinary rect-
angle in the r�-plane to a polar rectangle in the xy-plane. The Jacobian of T  is

−sx, yd
−sr, �d

− Z −x

−r

−x

−�

−y

−r

−y

−�

Z − Z cos �

sin �

2r sin �

r cos � Z − r cos2� 1 r sin2� − r . 0

Thus Theorem 9 gives

 y
R

y f sx, yd dx dy − y
S

y f sr cos �, r sin �d Z −sx, yd
−sr, �d Z  dr d�

 − y�

�
 yb

a
 f sr cos �, r sin �d r dr d�

which is the same as Formula 15.3.2.

EXAMPLE 2 Use the change of variables x − u 2 2 v2, y − 2uv to evaluate the 
integral yyR y dA, where R is the region bounded by the x-axis and the parabolas 
y 2 − 4 2 4x and y 2 − 4 1 4x, y > 0.

SOLUTION The region R is pictured in Figure 8. It is the region from Example 1  
(see Figure 2); in that example we discovered that T sSd − R, where S is the square 
f0, 1g 3 f0, 1g. Indeed, the reason for making the change of variables to evaluate the 
integral is that S is a much simpler region than R. First we need to compute the 
Jacobian:

−sx, yd
−su, vd

− Z −x

−u

−x

−v

−y

−u

−y

−v

Z − Z 2u

2v

22v

2u Z − 4u 2 1 4v 2 . 0

Therefore, by Theorem 9,

 y
R

y y dA − y
S

y 2uv Z −sx, yd
−su, vd Z dA − y1

0
y1

0
 s2uvd4su2 1 v 2 d du dv

 − 8 y1

0
y1

0
 su3v 1 uv3 d du dv − 8 y1

0
 f 

1
4 

u4v 1  

1
2 

u2v3gu−1

u−0    
dv

  − y1

0
 s2v 1 4v3 d dv − fv2 1 v4 g0

1 
− 2  ■

NOTE Example 2 was not a very difficult problem to solve because we were given a 
suitable change of variables. If we are not supplied with a transformation, then the 
first  step is to think of an appropriate change of variables. If f sx, yd is difficult to 

FIGURE 7  
The polar coordinate transformation
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1114 CHAPTER 15  Multiple Integrals

integrate, then the form of f sx, yd may suggest a transformation. If the region of integra-
tion R is awkward, then the transformation should be chosen so that the corresponding 
region S in the uv-plane has a convenient description.

EXAMPLE 3 Evaluate the integral yyR e sx1ydysx2yd dA, where R is the trapezoidal region 
with vertices s1, 0d, s2, 0d, s0, 22d, and s0, 21d.

SOLUTION Since it isn’t easy to integrate e sx1ydysx2yd, we make a change of variables 
suggested by the form of this function:

10  u − x 1 y    v − x 2 y 

These equations define a transformation T 21 from the xy-plane to the uv-plane. Theo-
rem 9 talks about a transformation T  from the uv-plane to the xy-plane. It is obtained  
by solving Equations 10 for x and y:

11  x − 1
2 su 1 vd    y − 1

2 su 2 vd 

The Jacobian of T  is

−sx, yd
−su, vd

− Z −x

−u

−x

−v

−y

−u

−y

−v

Z − Z 1
2
1
2

1
2

21
2

Z − 21
2

To find the region S in the uv-plane corresponding to R, we note that the sides of R 
lie on the lines

y − 0    x 2 y − 2    x − 0    x 2 y − 1

and, from either Equations 10 or Equations 11, the image lines in the uv-plane are

u − v    v − 2    u − 2v    v − 1

Thus the region S is the trapezoidal region with vertices s1, 1d, s2, 2d, s22, 2d, and 
s21, 1d shown in Figure 9. Since

S − 5 su, vd | 1 < v < 2, 2v < u < v6
Theorem 9 gives

 y
R

y e sx1ydysx2yd dA − y
S

y euyv Z −sx, yd
−su, vd Z  du dv

 − y2

1
 yv

2v
 euyv(1

2 ) du dv − 1
2 y2

1
 fveuyv gu−2v

u−v

dv

  − 1
2 y2

1
 se 2 e21 d v dv − 3

4 se 2 e21 d  ■

■	 Change of Variables in Triple Integrals
There is a similar change of variables formula for triple integrals. Let T  be a one-to-one 
transformation that maps a region S in uvw-space onto a region R in xyz-space by means 
of the equations

x − tsu, v, wd    y − hsu, v, wd    z − ksu, v, wd

T T –!

0

√

u

(_2, 2) (2, 2)

(_1, 1) (1, 1)

√=2

√=1

u=√u=_√ S

0

y

_1

_2

x
1 2

x-y=2

x-y=1

R

FIGURE 9
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The Jacobian of T  is the following 3 3 3 determinant:

12  
−sx, y, zd
−su, v, wd

− 7  −x

−u

−x

−v

−x

−w

−y

−u

−y

−v

−y

−w

−z

−u

−z

−v

−z

−w

7
Under hypotheses similar to those in Theorem 9, we have the following formula for triple 
integrals:

13  y y
R

y f sx, y, zd dV −y y
S

y f sxsu, v, wd, ysu, v, wd, zsu, v, wdd Z −sx, y, zd
−su, v, wd

 Z  du dv dw

EXAMPLE 4 Use Formula 13 to derive the formula for triple integration in spherical 
coordinates.

SOLUTION Here the change of variables is given by

x − � sin � cos �    y − � sin � sin �    z − � cos �

We compute the Jacobian as follows:

 
−sx, y, zd
−s�, �, �d

− Z sin � cos �

sin � sin �

cos �

2� sin � sin �

� sin � cos �

0

� cos � cos �

� cos � sin �

2� sin �
Z

 − cos � Z 2� sin � sin �

2 � sin � cos �

� cos � cos �

� cos � sin � Z 2 � sin � Z sin � cos �

sin � sin �

2� sin � sin ��

� sin � cos  � Z
 − cos � s2�2 sin � cos � sin2� 2 �2 sin � cos � cos2�d

 2 � sin � s� sin2� cos2� 1 � sin2� sin2�d

 − 2�2 sin � cos2� 2 �2 sin � sin2� − 2�2 sin �

Since 0 < � < �, we have sin � > 0. Therefore

Z −sx, y, zd
−s�, �, �d Z − | 2�2 sin � | − �2 sin �

and Formula 13 gives

y y
R

y f sx, y, zd dV − y y
S

y f s� sin � cos �, � sin � sin �, � cos �d �2 sin � d� d� d�

which is equivalent to Formula 15.8.3. ■
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15.9 Exercises

 1. Match the given transformation with the image (labeled I–VI) 
of the set S − hsu, vd | 0 < u < 1, 0 ⩽ v < 1j under the 
transformation. Give reasons for your choices.

 (a) x − u 1 v (b) x − u 2 v
  y − u 2 v  y − uv

 (c) x − u cos v (d) x − u 2 v
  y − u sin v  y − u 1 v 2

 (e) x − u 1 v (f ) x − uv
  y − 2v  y − u3 2 v 3

I  II

0 1

_1

y

x

1

0

1

y

x1_1

III  IV

0 1

y

x

2

y

x20

1

1

V  VI

0 1

y

x

1

0

2
y

x1_1 _1

2

2–6 Find the image of the set S under the given transformation.

 2. S − hsu, vd | 0 < u < 1, 0 < v < 2j;  
x − u 1 v, y − 2v

 3.  S − hsu, vd | 0 < u < 3, 0 < v < 2j;  
x − 2u 1 3v, y − u 2 v

 4.  S is the square bounded by the lines u − 0, u − 1, v − 0, 
v − 1;  x − v, y − us1 1 v 2 d

 5.  S is the triangular region with vertices s0, 0d, s1, 1d, s0, 1d;  
x − u2, y − v

 6. S is the disk given by u 2 1 v2 < 1;  x − au, y − bv

7–10 A region R in the xy-plane is given. Find equations for a 
transformation T that maps a rectangular region S in the uv-plane 
onto R, where the sides of S are parallel to the u- and v-axes.

 7.  R is bounded by y − 2x 2 1, y − 2x 1 1, y − 1 2 x, 
y − 3 2 x

 8.  R is the parallelogram with vertices s0, 0d, s4, 3d, s2, 4d, 
s22, 1d

 9.  R lies between the circles x 2 1 y2 − 1 and x 2 1 y2 − 2 in 
the first quadrant

 10.  R is bounded by the hyperbolas y − 1yx, y − 4yx and the  
lines y − x, y − 4x in the first quadrant

11–16 Find the Jacobian of the transformation.

 11. x − 2u 1 v, y − 4u 2 v

 12. x − u 2 1 uv, y − uv 2

 13. x − s cos t, y − s sin t

 14. x − pe q, y − qe p

 15. x − uv, y − vw, z − wu

 16. x − u 1 vw, y − v 1 wu, z − w 1 uv

17–22 Use the given transformation to evaluate the integral.

 17.  yyR sx 2 3yd dA, where R is the triangular region with 
vertices s0, 0d, s2, 1d, and s1, 2d;  x − 2u 1 v, y − u 1 2v

 18.  yyR s4x 1 8yd dA, where R is the parallelogram with  
vertices s21, 3d, s1, 23d, s3, 21d, and s1, 5d; 
x − 1

4su 1 vd, y − 1
4sv 2 3ud

 19.  yyR x
2 dA, where R is the region bounded by the ellipse 

  9x 2 1 4y 2 − 36;  x − 2u, y − 3v

 20.  yyR sx 2 2 xy 1 y 2 d dA, where R is the region bounded  
by the ellipse x 2 2 xy 1 y 2 − 2;  

x − s2 u 2 s2y3 v, y − s2 u 1 s2y3 v

 21.  yyR  xy dA, where R is the region in the first quadrant bounded 
by the lines y − x and y − 3x and the hyperbolas xy − 1, 
xy − 3;  x − uyv, y − v

 22.  yyR y
2 dA, where R is the region bounded by the curves  

xy − 1, xy − 2, xy 2 − 1, xy 2 − 2;  u − xy, v − xy 2.  
Illustrate by using a graphing calculator or computer to  
draw R.

 23. (a)  Evaluate yyy
E
 dV, where E is the solid enclosed by the 

ellipsoid x 2ya 2 1 y 2yb 2 1 z2yc 2 − 1. Use the transfor-
mation x − au, y − bv, z − cw.

 (b)  The earth is not a perfect sphere; rotation has resulted in 
flattening at the poles. So the shape can be approxi mated 

;
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 26.  yyR sx 1 yde x 22y 2

 dA, where R is the rectangle enclosed by the 
lines x 2 y − 0, x 2 y − 2, x 1 y − 0, and x 1 y − 3

 27.  y
R

y cosS y 2 x

y 1 xD dA, where R is the trapezoidal region 

  with vertices s1, 0d, s2, 0d, s0, 2d, and s0, 1d

 28.  yyR sins9x 2 1 4y 2 d dA, where R is the region in the first  
quadrant bounded by the ellipse 9x 2 1 4y 2 − 1

 29.  yyR e x1y dA, where R is given by the inequality | x | 1 | y | < 1

 30. y
R

y 
y

x
 dA, where R is the region enclosed by the lines 

  x 1 y − 1, x 1 y − 3, y − 2x, y − xy2

 31.  Let f  be continuous on f0, 1g and let R be the triangular 
region with vertices s0, 0d, s1, 0d, and s0, 1d. Show that

y
R

y f sx 1 yd dA − y1

0
 uf sud du

by an ellipsoid with a − b − 6378 km and c − 6356 km. 
Use part (a) to estimate the volume of the earth.

 (c)   If the solid of part (a) has constant density k, find its 
moment of inertia about the z-axis.

 24.  An important problem in thermodynamics is to find the work 
done by an ideal Carnot engine. A cycle consists of alter-
nating expansion and compression of gas in a piston. The 
work done by the engine is equal to the area of the region R 
enclosed by two isothermal curves xy − a, xy − b and two 
adiabatic curves xy 1.4 − c, xy 1.4 − d, where 0 , a , b and 
0 , c , d. Compute the work done by determining the area 
of R.

25–30 Evaluate the integral by making an appropriate change of 
variables.

 25.  y
R

y 
x 2 2y

3x 2 y
 dA, where R is the parallelogram enclosed by

   the lines x 2 2y − 0, x 2 2y − 4, 3x 2 y − 1, and 
3x 2 y − 8

 15 REVIEW

CONCEPT CHECK

 1.  Suppose f  is a continuous function defined on a rectangle 
R − fa, bg 3 fc, d g.

 (a)  Write an expression for a double Riemann sum of f .  
If f sx, yd > 0, what does the sum represent?

 (b)  Write the definition of yy
R
 f sx, yd dA as a limit.

 (c)  What is the geometric interpretation of yy
R
 f sx, yd dA if 

f sx, yd > 0? What if f  takes on both positive and 
negative values?

 (d) How do you evaluate yy
R
 f sx, yd dA?

 (e) What does the Midpoint Rule for double integrals say?
 (f ) Write an expression for the average value of f .

 2. (a)  How do you define yy
D
 f sx, yd dA if D is a bounded 

region that is not a rectangle?
 (b)  What is a type I region? How do you evaluate 

yy
D
 f sx, yd dA if D is a type I region?

 (c)  What is a type II region? How do you evaluate 
yy

D
 f sx, yd dA if D is a type II region?

 (d) What properties do double integrals have?

 3.  How do you change from rectangular coordinates to polar  
coordinates in a double integral? Why would you want to 
make the change?

 4.  If a lamina occupies a plane region D and has density func-
tion �sx, yd, write expressions for each of the following in 
terms of double integrals.

 (a) The mass
 (b) The moments about the axes
 (c) The center of mass
 (d) The moments of inertia about the axes and the origin

 5.  Let f  be a joint density function of a pair of continuous  
random variables X and Y.

 (a)  Write a double integral for the probability that X lies  
between a and b and Y lies between c and d.

 (b) What properties does f  possess?
 (c) What are the expected values of X and Y?

 6.  Write an expression for the area of a surface with equation 
z − f sx, yd, sx, yd [ D.

 7. (a)  Write the definition of the triple integral of f  over a  
rectangular box B.

 (b) How do you evaluate yyyB  f sx, y, zd dV?
 (c)  How do you define yyyE  f sx, y, zd dV if E is a bounded 

solid region that is not a box?
 (d)  What is a type 1 solid region? How do you evaluate 

yyyE  f sx, y, zd dV if E is such a region?
 (e)  What is a type 2 solid region? How do you evaluate 

yyyE  f sx, y, zd dV if E is such a region?
 (f )  What is a type 3 solid region? How do you evaluate 

yyyE  f sx, y, zd dV if E is such a region?

 8.  Suppose a solid object occupies the region E and has  
density function �sx, y, zd. Write expressions for each of  
the following.

 (a) The mass
 (b) The moments about the coordinate planes
 (c) The coordinates of the center of mass
 (d) The moments of inertia about the axes

Answers to the Concept Check are available at StewartCalculus.com.
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1118 CHAPTER 15  Multiple Integrals

 9. (a)  How do you change from rectangular coordinates to  
cylindrical coordinates in a triple integral?

 (b)  How do you change from rectangular coordinates to  
spherical coordinates in a triple integral?

 (c)  In what situations would you change to cylindrical or 
spherical coordinates?

 10. (a)  If a transformation T is given by 

x − tsu, vd  y − hsu, vd

  what is the Jacobian of T?
 (b) How do you change variables in a double integral?
 (c) How do you change variables in a triple integral?

Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that 
disproves the statement.

 1. y2

21
 y6

0
 x 2 sinsx 2 yd dx dy − y6

0
 y2

21
 x 2 sinsx 2 yd dy dx

 2. y1

0
 yx

0
 sx 1 y2 dy dx − yx

0
y1

0
 sx 1 y2  dx dy

 3. y2

1
 y4

3
 x 2e y dy dx − y2

1
 x 2 dx y4

3
 e y dy

 4. y1

21
 y1

0
 ex21y2 sin y dx dy − 0

 5. If f  is continuous on f0, 1g, then

y1

0
y1

0
 f sxd f syd dy dx − Fy1

0
 f sxd dxG2

 6. y4

1
 y1

0
 (x 2 1 sy ) sinsx 2 y 2 d dx dy < 9

 7. If D is the disk given by x 2 1 y 2 < 4, then

y
D

y s4 2 x 2 2 y 2  dA − 16
3 �

 8.  The integral yyyE kr 3 dz dr d� represents the moment  
of inertia about the z-axis of a solid E with constant  
density k.

 9. The integral 

y2�

0
 y2

0
 y2

r
 dz dr d�

   represents the volume enclosed by the cone z − sx 2 1 y 2   
and the plane z − 2.

TRUE-FALSE QUIZ

 1.  A contour map is shown for a function f  on the square 
R − f0, 3g 3 f0, 3g. Use a Riemann sum with nine terms to 
estimate the value of yyR f sx, yd dA. Take the sample points to 
be the upper right corners of the squares.

y

1
1

1 2 3

2

3

2
3

4
5

8
9

10

6
7

x0

 2.  Use the Midpoint Rule to estimate the integral in Exercise 1.

3–8 Calculate the iterated integral.

 3. y2

1
 y2

0
 sy 1 2xe y d dx dy 4. y1

0
 y1

0
 ye xy dx dy

 5. y1

0
 yx

0
 cossx 2 d dy dx 6. y1

0
yex

x
 3xy2 dy dx

 7. y�

0
 y1

0
 ys12y2

0
 y sin x dz dy dx 8. y1

0
 yy

0
 y1

x
 6xyz dz dx dy

9–10 Write yyR f sx, yd dA as an iterated integral, where R is the 
region shown and f  is an arbitrary continuous function on R.

 9.  10. 

0 42_2_4

y

x

R
2

4

0

4

y

x

R

4_4

 11.  The cylindrical coordinates of a point are (2s3 , �y3, 2). 
Find the rectangular and spherical coordinates of the point.

 12.  The rectangular coordinates of a point are s2, 2, 21d. Find the 
cylindrical and spherical coordinates of the point.

 13.  The spherical coordinates of a point are s8, �y4, �y6d. Find  
the rectangular and cylindrical coordinates of the point.

EXERCISES
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 32.  yyyE z dV, where E is bounded by the planes y − 0, z − 0, 
x 1 y − 2 and the cylinder y 2 1 z2 − 1 in the first octant

 33.  yyyE yz dV, where E lies above the plane z − 0, below 
the plane z − y, and inside the cylinder x 2 1 y 2 − 4

 34.  yyyH z3sx 2 1 y 2 1 z 2  dV, where H is the solid hemisphere 
that lies above the xy-plane and has center the origin and  
radius 1

35–40 Find the volume of the given solid.

 35.  Under the paraboloid z − x 2 1 4y 2 and above the rectangle 
R − f0, 2g 3 f1, 4g

 36.  Under the surface z − x 2 y and above the triangle in the  
xy-plane with vertices s1, 0d, s2, 1d, and s4, 0d

 37.  The solid tetrahedron with vertices s0, 0, 0d, s0, 0, 1d, 
s0, 2, 0d, and s2, 2, 0d

 38.  Bounded by the cylinder x 2 1 y 2 − 4 and the planes z − 0  
and y 1 z − 3

 39.  One of the wedges cut from the cylinder x 2 1 9y 2 − a 2 by 
the planes z − 0 and z − mx

 40.  Above the paraboloid z − x 2 1 y 2 and below the half-cone
  z − sx 2 1 y 2 

 41.  Consider a lamina that occupies the region D bounded by  
the parabola x − 1 2 y 2 and the coordinate axes in the first 
quadrant with density function �sx, yd − y.

 (a) Find the mass of the lamina.
 (b) Find the center of mass.
 (c)  Find the moments of inertia and radii of gyration about  

the x- and y-axes.

 42.  A lamina occupies the part of the disk x 2 1 y 2 < a 2 that lies 
in the first quadrant.

 (a) Find the centroid of the lamina.
 (b)  Find the center of mass of the lamina if the density 

function is �sx, yd − xy 2.

 43. (a)  Find the centroid of a solid right circular cone with  
height h and base radius a. (Place the cone so that its  
base is in the xy-plane with center the origin and its  
axis along the positive z-axis.)

 (b)  If the cone has density function �sx, y, zd − sx 2 1 y 2 , 
find the moment of inertia of the cone about its axis  
(the z-axis).

 44.  Find the area of the part of the cone z2 − a 2sx 2 1 y 2 d 
between the planes z − 1 and z − 2.

 45.  Find the area of the part of the surface z − x 2 1 y that lies 
above the triangle with vertices (0, 0), (1, 0), and (0, 2).

 46. Use a computer algebra system to graph the surface 
z − x sin y, 23 < x < 3, 2� < y < �, and find its surface 
area correct to four decimal places.

 14.  Identify the surfaces whose equations are given.
  (a) � − �y4 (b) � − �y4

 15.  Write the equation in cylindrical coordinates and in spherical 
coordinates.

  (a) x 2 1 y 2 1 z 2 − 4 (b) x 2 1 y 2 − 4

 16.  Sketch the solid consisting of all points with spherical coor-
dinates s�, �, �d such that 0 < � < �y2, 0 < � < �y6,  
and 0 < � < 2 cos �.

 17. Describe the region whose area is given by the integral 

y�y2

0
 ysin 2�

0
 r dr d�

 18.  Describe the solid whose volume is given by the integral 

y�y2

0
 y�y2

0
 y2

1
 �2 sin � d� d� d�

and evaluate the integral.

19–20 Calculate the iterated integral by first reversing the order 
of integration.

 19. y1

0
 y1

x
 cossy 2d dy dx 20. y1

0
 y1

sy 
  ye x 2

x 3
  dx dy

21–34 Calculate the value of the multiple integral.

 21. yyR ye xy dA, where R − hsx, yd | 0 < x < 2, 0 < y < 3j

 22. yyD xy dA, where D − hsx, yd | 0 < y < 1, y 2 < x < y 1 2j

 23. y
D

y 
y

1 1 x 2  dA, 

  where D is bounded by y − sx , y − 0, x − 1

 24.  y
D

y 
1

1 1 x 2  dA, where D is the triangular region with 

  vertices s0, 0d, s1, 1d, and s0, 1d

 25.  yyD y dA, where D is the region in the first quadrant bounded 

by the parabolas x − y 2 and x − 8 2 y 2

 26.  yyD y dA, where D is the region in the first quadrant that lies 

above the hyperbola xy − 1 and the line y − x and below the 
line y − 2

 27.  yyD sx 2 1 y 2 d3y2 dA, where D is the region in the first 

   quad rant bounded by the lines y − 0 and y − s3 x and the  
circle x 2 1 y 2 − 9

 28.  yyD x dA, where D is the region in the first quadrant that lies 

between the circles x 2 1 y 2 − 1 and x 2 1 y 2 − 2

 29. yyyE xy dV, where

  E − hsx, y, zd | 0 < x < 3, 0 < y < x, 0 < z < x 1 yj

 30.  yyyT xy dV, where T is the solid tetrahedron with vertices

  s0, 0, 0d, (1
3 , 0, 0), s0, 1, 0d, and s0, 0, 1d

 31.  yyyE y 2z2 dV, where E is bounded by the paraboloid 

x − 1 2 y 2 2 z2 and the plane x − 0
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 47. Use polar coordinates to evaluate

y3

0
 ys92x2

2s92x2

 sx 3 1 xy 2d dy dx

 48. Use spherical coordinates to evaluate

y2

22
 ys42y2 

0
 ys42x22y2

 

2s42x22y2
 

 
y 2sx 2 1 y 2 1 z 2  dz dx dy

 49.  If D is the region bounded by the curves y − 1 2 x 2 and 
y − e x, find the approximate value of the integral yyD y 2 dA. 
(Use a graph to estimate the points of intersection of the 
curves.)

 50. Use a computer algebra system to find the center of mass  
of the solid tetrahedron with vertices s0, 0, 0d, s1, 0, 0d, 
s0, 2, 0d, s0, 0, 3d and density function 
�sx, y, zd − x 2 1 y 2 1 z2.

 51. The joint density function for random variables X and Y is

f sx, yd − HCsx 1 yd
0

if 0 < x < 3, 0 < y < 2

otherwise

 (a) Find the value of the constant C.
 (b) Find PsX < 2, Y > 1d.
 (c) Find PsX 1 Y < 1d.

 52.  A lamp has three bulbs, each of a type with average lifetime 
800 hours. If we model the probability of failure of a bulb 
by an exponential density function with mean 800, find  
the probability that all three bulbs fail within a total of  
1000 hours.

 53. Rewrite the integral

y1

21
 y1

x2 y
12y

0
 f sx, y, zd dz dy dx

  as an iterated integral in the order dx dy dz.

;

 54. Give five other iterated integrals that are equal to

y2

0
 yy3

0
 yy2

0
 f sx, y, zd dz dx dy

 55.  Use the transformation u − x 2 y, v − x 1 y to evaluate

yy
R

x 2 y

x 1 y
 dA

   where R is the square with vertices s0, 2d, s1, 1d, s2, 2d,  
and s1, 3d.

 56.  Use the transformation x − u 2, y − v2, z − w2 to  
find the volume of the region bounded by the surface 
sx 1 sy 1 sz − 1 and the coordinate planes.

 57.  Use the change of variables formula and an appropriate 
transformation to evaluate yyR xy dA, where R is the square 
with vertices s0, 0d, s1, 1d, s2, 0d, and s1, 21d.

 58. (a)  Evaluate 

y
D

y 
1

sx 2 1 y 2 dny2  dA

    where n is an integer and D is the region bounded by 
the circles with center the origin and radii r and R, 
0 , r , R.

 (b)  For what values of n does the integral in part (a) have a 
limit as r l 01?

 (c)  Find 

y y
E

y 
1

sx 2 1 y 2 1 z2 dny2  dV

   where E is the region bounded by the spheres with 
center the origin and radii r and R, 0 , r , R.

 (d)  For what values of n does the integral in part (c) have  
a limit as r l 01?
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 1. If v xb  denotes the greatest integer in x, evaluate the integral

y
R

y v x 1 yb  dA

  where R − hsx, yd | 1 < x < 3, 2 < y < 5j.

 2. Evaluate the integral

y1

0
 y1

0
 e max hx2, y2j dy dx

   where maxhx 2, y 2 j means the larger of the numbers x 2 and y 2.

 3.  Find the average value of the function f sxd − y1

x
 cosst 2 d dt on the interval [0, 1].

 4.  Show that

y2

0
 yx

0
 2e x 22y 2

 dy dx − y2

0
 y42y

y
 e xy dx dy

 5.  The double integral y1

0
 y1

0
 

1

1 2 xy
 dx dy is an improper integral and could be defined as

   the limit of double integrals over the rectangle f0, tg 3 f0, tg as t l 12. But if we expand the 
integrand as a geometric series, we can express the integral as the sum of an infinite series. 
Show that

y1

0
 y1

0
 

1

1 2 xy
 dx dy − o

`

n−1
 

1

n2

 6.  Leonhard Euler was able to find the exact sum of the series in Problem 5. In 1736 he proved 
that

o
`

n−1
 

1

n2 −
�2

6

   In this problem we ask you to prove this fact by evaluating the double integral in Prob- 
lem 5. Start by making the change of variables

x −
u 2 v

s2 
      y −

u 1 v

s2 

   This gives a rotation about the origin through the angle �y4. You will need to sketch the  
corresponding region in the uv-plane.

     [Hint: If, in evaluating the integral, you encounter either of the expressions  
s1 2 sin �dycos � or scos �dys1 1 sin �d, you might like to use the identity 
cos � − sinss�y2d 2 �d and the corresponding identity for sin �.]

 7. (a) Show that

y1

0
 y1

0
 y1

0
 

1

1 2 xyz
 dx dy dz − o

`

n−1
 

1

n 3

    (Nobody has ever been able to find the exact value of the sum of this series.)
  (b) Show that

y1

0
 y1

0
 y1

0
 

1

1 1 xyz
 dx dy dz − o

`

n−1
 
s21dn21

n3

    Use this equation to evaluate the triple integral correct to two decimal places.

1121

Problems Plus

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 8. Show that

y`

0
 
arctan �x 2 arctan x

x
 dx −

�

2
 ln �

  by first expressing the integral as an iterated integral.

 9. (a) Show that when Laplace’s equation

−2u

−x 2 1
−2u

−y 2 1
−2u

−z2 − 0 

   is written in cylindrical coordinates, it becomes

−2u

−r 2 1
1

r
 
−u

−r
1

1

r 2  
−2u

−� 2 1
−2u

−z2 − 0

  (b) Show that when Laplace’s equation is written in spherical coordinates, it becomes

−2u

−� 2 1
2

�
 
−u

−�
1

cot �

� 2  
−u

−�
1

1

� 2  
−2u

−� 2 1
1

� 2 sin2�
 
−2u

−� 2 − 0

 10. (a)  A lamina has constant density � and takes the shape of a disk with center the origin and 
radius R. Use Newton’s Law of Gravitation (see Section 13.4) to show that the magni-
tude of the force of attraction that the lamina exerts on a body with mass m located at 
the point s0, 0, d d on the positive z-axis is

F − 2�Gm�dS 1

d
2

1

sR 2 1 d 2 
D

    [Hint: Divide the disk as in Figure 15.3.4 and first compute the vertical component of 
the force exerted by the polar subrectangle Rij.]

  (b)  Show that the magnitude of the force of attraction of a lamina with density � that occu-
pies an entire plane on an object with mass m located at a distance d from the plane is

F − 2�Gm�

   Notice that this expression does not depend on d.

 11. If f  is continuous, show that

yx

0
 yy

0
 yz

0
 f std dt dz dy − 1

2 yx

0
 sx 2 td2 f std dt

 12. Evaluate lim
n l `

 n22 o
n

i−1
 o

n2

j−1
 

1

sn 2 1 ni 1 j 
.

 13. The plane
x

a
1

y

b
1

z

c
− 1    a . 0,  b . 0,  c . 0

  cuts the solid ellipsoid
x 2

a 2 1
y2

b2 1
z 2

c 2 < 1

  into two pieces. Find the volume of the smaller piece.

1122
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Vector fields an be used to model such diverse phenomena as gravity, electricity and magnetism, and fluid flow. For instance, a 
hurricane can be modeled by a function that describes the velocity vectors at each point in space. We can then use vector calculus to 
calculate quantities such as the circulation, the twisting (curl), the fl w (flux), or the xpansions and compressions (divergence) of the 
wind, as well as relationships between these quantities.
3dmotus / Shutterstock.com

16 Vector Calculus
IN THIS CHAPTER WE STUDY the calculus of vector fields. (These are functions that assign vectors 
to points in space.) In particular we define line integrals (which can be used to find the work done 
by a force field in moving an object along a curve). Then we define surface integrals (which can be 
used to find the rate of fluid flow across a surface). The connections between these new types of 
integrals and the single, double, and triple integrals that we have already met are given by the 
higher-dimensional versions of the Fundamental Theorem of Calculus: Green’s Theorem, Stokes’ 
Theorem, and the Divergence Theorem.
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1124 CHAPTER 16  Vector Calculus

Vector Fields

■	 Vector Fields in R2 and R3

The vectors in Figure 1 are air velocity vectors that indicate the wind speed and direction 
at points 10 m above the surface elevation in the San Francisco Bay area. We see at a 
glance from the largest arrows in part (a) that the greatest wind speeds at that time 
occurred as the winds entered the bay across the Golden Gate Bridge. Part (b) shows the 
very different wind pattern 12 hours earlier. Associated with every point in the air we can 
imagine a wind velocity vector. This is an example of a velocity vector field.

(a) 6:00 PM (b) 6:00 AM

FIGURE 1 Velocity vector fields showing San Francisco Bay wind patterns on a particular spring day

Other examples of velocity vector fields are illustrated in Figure 2: ocean currents and 
flow past an airfoil.

Nova Scotia

(a) Ocean currents off the coast of Nova Scotia (b) Airflow past an inclined airfoil
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FIGURE 2  
Velocity vector fields Another type of vector field, called a force field, associates a force vector with each 

point  in a region. An example is the gravitational force field that we will look at in  
Example 4.

16.1
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 SECTION 16.1  Vector Fields 1125

In general, a vector field is a function whose domain is a set of points in R 2 (or R 3) 
and whose range is a set of vectors in V2 (or V3).

1  Definitio  Let D be a set in R 2 (a plane region). A vector field on R 2 is a 
function F that assigns to each point sx, yd in D a two-dimensional vector Fsx, yd.

The best way to picture a vector field is to draw the arrow representing the vector 
Fsx, yd starting at the point sx, yd. Of course, it’s impossible to do this for all points sx, yd, 
but we can form a reasonable impression of F by drawing vectors for a few representative 
points in D as in Figure 3. Since Fsx, yd is a two-dimensional vector, we can write it in 
terms of its component functions P and Q as follows:

Fsx, yd − Psx, yd i 1 Qsx, yd j − kPsx, yd, Qsx, ydl

or, for short, F − P i 1 Q j

Notice that P and Q are scalar functions of two variables and are sometimes called scalar 
fields to distinguish them from vector fields.

2  Definitio  Let E be a subset of R 3. A vector field on R 3 is a function F that 
assigns to each point sx, y, zd in E a three-dimensional vector Fsx, y, zd.

A vector field F on R 3 is pictured in Figure 4. We can express it in terms of its com-
ponent functions P, Q, and R as

Fsx, y, zd − Psx, y, zd i 1 Qsx, y, zd j 1 Rsx, y, zd k

As with the vector functions in Section 13.1, we can define continuity of vector fields  
and show that F is continuous if and only if its component functions P, Q, and R are  
continuous.

We sometimes identify a point sx, y, zd with its position vector x − kx, y, zl and write 
Fsxd instead of Fsx, y, zd. Then F becomes a function that assigns a vector Fsxd to a vec-
tor x.

EXAMPLE 1 A vector field on R 2 is defined by Fsx, yd − 2y i 1 x j. Describe F by 
sketching some of the vectors Fsx, yd as in Figure 3.

SOLUTION Since Fs1, 0d − j, we draw the vector j − k0, 1l starting at the point s1, 0d 
in Figure 5. Since Fs0, 1d − 2i, we draw the vector k21, 0l with starting point s0, 1d. 
Continuing in this way, we calculate several other representative values of Fsx, yd in the 
table and draw the corresponding vectors to represent the vector field in Figure 5.

sx, yd Fsx, yd sx, yd Fsx, yd

s1, 0d k0, 1l s21, 0d k0, 21l
s2, 2d k22, 2l s22, 22d k2, 22l
s3, 0d k0, 3l s23, 0d k0, 23l
s0, 1d k21, 0l s0, 21d k1, 0l

s22, 2d k22, 22l s2, 22d k2, 2l
s0, 3d k23, 0l s0, 23d k3, 0l

FIGURE 3 
Vector field on R@

0

(x, y)

F(x, y)

x

y

FIGURE 4 
Vector field on R#

y

0

z

x

(x, y, z)

F (x, y, z)

FIGURE 5 
F(x, y)=_y i+x j

F (1, 0)

F (0, 3) F (2, 2)

0 x

y

2

_2

_2 2
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1126 CHAPTER 16  Vector Calculus

It appears from Figure 5 that each arrow is tangent to a circle with center the origin. 
To confirm this, we take the dot product of the position vector x − x i 1 y j with the 
vector Fsxd − Fsx, yd:

 x � Fsxd − sx i 1 y jd � s2y i 1 x jd − 2xy 1 yx − 0

This shows that Fsx, yd is perpendicular to the position vector kx, yl and is therefore 
tangent to a circle with center the origin and radius | x | − sx 2 1 y 2 . Notice also that

| Fsx, yd | − ss2yd2 1 x 2 − sx 2 1 y 2 − | x |
so the magnitude of the vector Fsx, yd is equal to the radius of the circle. ■

Some graphing software is capable of plotting vector fields in two or three dimen-
sions. The results give a better impression of the vector field than is possible by hand 
because a computer can plot a large number of representative vectors. Figure 6 shows a 
computer plot of the vector field in Example 1; Figures 7 and 8 show two other vector 
fields. Notice that the software scales the lengths of the vectors so they are not too long 
and yet are proportional to their true lengths.

5

_5

_5 5

6

_6

_6 6

5

_5

_5 5

FIGURE 6
F(x, y)=k_y, xl

FIGURE 7
F(x, y)=ky, sin xl

FIGURE 8
F(x, y)=k ln(1+¥), ln(1+≈)l

EXAMPLE 2 Sketch the vector field on R 3 given by Fsx, y, zd − z k.

SOLUTION A sketch is shown in Figure 9. Notice that all vectors are vertical and point 
upward above the xy-plane or downward below it. The magnitude increases with 
distance from the xy-plane.

 

y

0

z

x

 ■

We were able to draw the vector field in Example 2 by hand because of its particularly 
simple formula. Most three-dimensional vector fields, however, are virtually impossible 

FIGURE 9  
Fsx, y, zd − z k
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 SECTION 16.1  Vector Fields 1127

to sketch by hand and so we need to resort to computer software. Examples are shown in 
Figures 10, 11, and 12. Notice that the vector fields in Figures 10 and 11 have similar 
formulas, but all the vectors in Figure 11 point in the general direction of the negative  
y-axis because their y-components are all 22. If the vector field in Figure 12 represents 
a velocity field, then a particle would be swept upward and would spiral around the z-axis 
in the clockwise direction as viewed from above.

z

1

0

_1

y 10_1
x1

0
_1

FIGURE 10
F(x, y, z)=y i+z j+x k

z

1

0

y 10 x1
0

FIGURE 11
F(x, y, z)=y i-2 j+x k

z

5

3

1

y 1
0

_1 x1
0

_1

FIGURE 12

F(x, y, z)=    i-    j+    k
y
z

x
z

z
4

_1
_1

_1

EXAMPLE 3 Imagine a fluid flowing steadily along a pipe and let Vsx, y, zd be the 
velocity vector at a point sx, y, zd. Then V assigns a vector to each point sx, y, zd in a 
certain domain E (the interior of the pipe) and so V is a vector field on R 3 called a 
velocity field. A possible velocity field is illustrated in Figure 13. The speed at any 
given point is indicated by the length of the arrow.

Velocity fields also occur in other areas of physics. For instance, the vector field in 
Example 1 could be used as the velocity field describing the counterclockwise rotation 
of a wheel. We have seen other examples of velocity fields in Figures 1 and 2. ■

EXAMPLE 4 Newton’s Law of Gravitation states that the magnitude of the gravita-
tional force between two objects with masses m and M is

| F | −
mMG

r 2

where r is the distance between the objects and G is the gravitational constant. (This  
is an example of an inverse square law; see Section 1.2.) Let’s assume that the object 
with mass M is located at the origin in R 3. (For instance, M could be the mass of the 
earth and the origin would be at its center.) Let the position vector of the object with 
mass m be x − kx, y, zl. Then r − | x |, so r 2 − | x |2. The gravitational force exerted  
on this second object acts toward the origin, and the unit vector in this direction is

2
x

| x |
Therefore the gravitational force acting on the object at x − kx, y, zl is

3  Fsxd − 2
mMG

| x |3  x 

[Physicists often use the notation r instead of x for the position vector, so you may see 
Formula 3 written in the form F − 2smMGyr 3 dr.] The function given by Equation 3 is 

z

y
x

0

FIGURE 13  
Velocity field in fluid flow
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1128 CHAPTER 16  Vector Calculus

an example of a vector field, called the gravitational field, because it associates a 
vector [the force Fsxd] with every point x in space.

Formula 3 is a compact way of writing the gravitational field, but we can also write  
it in terms of its component functions by using the facts that x − x i 1 y j 1 z k and 

| x | − sx 2 1 y 2 1 z 2  :

Fsx, y, zd −
2mMGx

sx 2 1 y 2 1 z2 d3y2  i 1
2mMGy

sx 2 1 y 2 1 z2 d3y2  j 1
2mMGz

sx 2 1 y 2 1 z2 d3y2  k

The gravitational field F is pictured in Figure 14.

 

y

z

x

 ■

EXAMPLE 5 Suppose an electric charge Q is located at the origin. According to 
Coulomb’s Law, the electric force Fsxd exerted by this charge on a charge q located at a 
point sx, y, zd with position vector x − kx, y, zl is

4  Fsxd −
« q Q

| x |3  x 

where « is a constant (that depends on the units used). For like charges, we have 
qQ . 0 and the force is repulsive; for unlike charges, we have qQ , 0 and the force is 
attractive. Notice the similarity between Formulas 3 and 4. Both vector fields are 
examples of force fields.

Instead of considering the electric force F, physicists often consider the force per 
unit charge:

Esxd −
1

q
 Fsxd −

«Q

| x |3  x

Then E is a vector field on R 3 called the electric field of Q. ■

■	 Gradient Fields
If f  is a scalar function of two variables, recall from Section 14.6 that its gradient = f  (or 
grad f ) is defined by

= f sx, yd − fxsx, yd i 1 fysx, yd j

Therefore = f  is really a vector field on R 2 and is called a gradient vector field. Like-
wise, if f  is a scalar function of three variables, its gradient is a vector field on R 3  
given by

= f sx, y, zd − fxsx, y, zd i 1 fysx, y, zd j 1 fzsx, y, zd k

FIGURE 14  
Gravitational force field
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 SECTION 16.1  Vector Fields 1129

EXAMPLE 6 Find the gradient vector field of f sx, yd − x 2 y 2 y 3. Plot the gradient 
vector field together with a contour map of f . How are they related?

SOLUTION The gradient vector field is given by

= f sx, yd −
−f

−x
 i 1

−f

−y
 j − 2xy i 1 sx 2 2 3y 2 d j

Figure 15 shows a contour map of f  with the gradient vector field. Notice that the 
gradient vectors are perpendicular to the level curves, as we would expect from 
Section 14.6. Notice also that the gradient vectors are long where the level curves are 
close to each other and short where the curves are farther apart. That’s because the 
length of the gradient vector is the value of the directional derivative of f  and closely 
spaced level curves indicate a steep graph. ■

A vector field F is called a conservative vector field if it is the gradient of some sca-
lar function, that is, if there exists a function f  such that F − = f . In this situation f  is 
called a potential function for F.

Not all vector fields are conservative, but such fields do arise frequently in physics. 
For example, the gravitational field F in Example 4 is conservative because if we define

f sx, y, zd −
mMG

sx 2 1 y 2 1 z 2 

then

 = f sx, y, zd −
−f

−x
 i 1

−f

−y
 j 1

−f

−z
 k

 −
2mMGx

sx 2 1 y 2 1 z 2 d3y2  i 1
2mMGy

sx 2 1 y 2 1 z 2 d3y2  j 1
2mMGz

sx 2 1 y 2 1 z 2 d3y2  k

 − Fsx, y, zd

In Sections 16.3 and 16.5 we will learn how to tell whether or not a given vector field is 
conservative.

4

_4

_4 4

FIGURE 15

16.1 Exercises
1–12 Sketch the vector field F by drawing a diagram like  
Fig ure 5 or Figure 9.

 1. Fsx, yd − i 1 1
2 j

 2. Fsx, yd − 2 i 2 j

 3. Fsx, yd − i 1 1
2 y j

 4. Fsx, yd − x i 1 1
2 y j

 5. Fsx, yd − 21
2 i 1 sy 2 xd j

 6. Fsx, yd − y i 1 sx 1 yd j

 7. Fsx, yd −
y i 1 x j

sx 2 1 y 2 

 8. Fsx, yd −
y i 2 x j

sx 2 1 y 2 

 9. Fsx, y, zd − i

 10. Fsx, y, zd − z i

 11. Fsx, y, zd − 2y i

 12. Fsx, y, zd − i 1 k
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1130 CHAPTER 16  Vector Calculus

13–18 Match the vector fields F with the plots labeled I–VI.  
Give reasons for your choices.

 13. Fsx, yd − kx, 2yl

 14. Fsx, yd − ky, x 2 yl

 15. Fsx, yd − ky, y 1 2l

 16. Fsx, yd − k y, 2xl

 17. Fsx, yd − ksin y, cos xl

 18. Fsx, yd − kcossx 1 yd, xl

3

_3

_3 3

3

_3

_3 3

3

_3

_3 3

I II

III

3

_3

_3 3

3

_3

_3 3

V VI

3

_3

_3 3

IV

19–22 Match the vector fields F on R3 with the plots labeled  
I–IV. Give reasons for your choices.

 19. Fsx, y, zd − i 1 2 j 1 3 k

 20. Fsx, y, zd − i 1 2 j 1 z k

 21. Fsx, y, zd − x i 1 y j 1 3 k

 22. Fsx, y, zd − x i 1 y j 1 z k

z
1

0
_1

y 10_1 x1 0 _1

z
1
0

_1

y 10_1 x1 0 _1

0y 1_1 x1 0 _1

z

1

0

_1

z

1

0

_1

y 10_1 1 0 _1
x

I II

III IV

 23.  Use graphing software to plot the vector field

Fsx, yd − sy 2 2 2xyd i 1 s3xy 2 6x 2 d j

Explain the appearance by finding the set of points sx, yd  
such that Fsx, yd − 0.

 24.  Let Fsxd − sr 2 2 2rdx, where x − kx, yl and r − | x |. Use 
graphing software to plot this vector field in various domains 
until you can see what is happening. Describe the appearance 
of the plot and explain it by finding the points where 
Fsxd − 0.

25–28 Find the gradient vector field = f  of f .

 25. f sx, yd − y sinsxyd

 26. f ss, td − s2s 1 3t 

 27. f sx, y, zd − sx 2 1 y 2 1 z 2 

 28. f sx, y, zd − x 2ye yyz

29–30 Find the gradient vector field = f  of f  and sketch it.

 29. f sx, yd − 1
2sx 2 yd2

 30. f sx, yd − 1
2sx 2 2 y 2d

31–34 Match the functions f  with the plots of their gradient  
vector fields labeled I–IV. Give reasons for your choices.

 31. f sx, yd − x 2 1 y 2

 32. f sx, yd − xsx 1 yd

;

;
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 SECTION 16.2  Line Integrals 1131

 37.  A particle moves in a velocity field Vsx, yd − kx 2, x 1 y 2l.  
If it is at position s2, 1d at time t − 3, estimate its location at 
time t − 3.01.

 38.  At time t − 1, a particle is located at position s1, 3d. If it 
moves in a velocity field 

Fsx, yd − kxy 2 2, y 2 2 10l

find its approximate location at time t − 1.05.

39– 40 Flow Lines The flow lines (or streamlines) of a vector 
field are the paths followed by a particle whose velocity field is 
the given vector field. Thus the vectors in a vector field are 
tangent to the flow lines.

 39. (a)  Use a sketch of the vector field Fsx, yd − x i 2 y j to 
draw some flow lines. From your sketches, can you 
guess the equations of the flow lines?

 (b)  If parametric equations of a flow line are x − xstd, 
y − ystd, explain why these functions satisfy the 
differential equa tions dxydt − x and dyydt − 2y. Then 
solve the differential equations to find an equation of 
the flow line that passes through the point (1, 1).

 40. (a)  Sketch the vector field Fsx, yd − i 1 x j and then 
sketch some flow lines. What shape do these flow lines 
appear to have?

 (b)  If parametric equations of the flow lines are x − xstd, 
y − ystd, what differential equations do these functions  
satisfy? Deduce that dyydx − x.

 (c)  If a particle starts at the origin in the velocity field given 
by F, find an equation of the path it follows.

 33. f sx, yd − sx 1 yd2 34. f sx, yd − sinsx 2 1 y 2 

4

_4

_4 4

4

_4

_4 4

4

_4

_4 4

I II

III IV4

_4

_4 4

35–36 Plot the gradient vector field of f  together with a contour 
map of f . Explain how they are related to each other.

 35. f sx, yd − lns1 1 x 2 1 2y 2d

 36. f sx, yd − cos x 2 2 sin y

;

Line Integrals

In this section we define an integral that is similar to a single integral except that instead 
of integrating over an interval fa, bg, we integrate over a curve C. Such integrals are 
called line integrals, although “curve integrals” would be better terminology. They were 
invented in the early 19th century to solve problems involving fluid flow, forces, electric-
ity, and magnetism.

■	 Line Integrals in the Plane
We start with a plane curve C given by the parametric equations

1  x − xstd    y − ystd    a < t < b 

or, equivalently, by the vector equation rstd − xstd i 1 ystd j, and we assume that C is a 
smooth curve. [This means that r9 is continuous and r9std ± 0. See Section 13.3.] If we 
divide the parameter interval fa, bg into n subintervals fti21, tig of equal width and we let 
xi − xstid and yi − ystid, then the corresponding points Pi sxi, yi d divide C into n subarcs 
with lengths Ds1, Ds2, . . . , Dsn. (See Figure 1.) We choose any point Pi*sxi*, yi*d in the ith 
subarc. (This corresponds to a point ti* in fti21, tig.) Now if f  is any function of two 

16.2

t i-1

P¸

P¡

P™

C

a b

x0

y

t
t i

t*i

Pi-1
Pi

Pn

P*i (x*i , y*i )

FIGURE 1
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1132 CHAPTER 16  Vector Calculus

variables whose domain includes the curve C, we evaluate f  at the point sxi*, yi*d, multi-
ply by the length Dsi of the subarc, and form the sum

o
n

i−1
 f sxi*, yi*d Dsi

which is similar to a Riemann sum. Then we take the limit of these sums and make the 
following definition by analogy with a single integral.

2  Definitio  If f  is defined on a smooth curve C given by Equations 1, then the 
line integral of f  along C is

y
C
 f sx, yd ds − lim

n l `
 o

n

i−1
 f sxi*, yi*d Dsi

if this limit exists.

In Section 10.2 we found that the length of C is

L − yb

a
 ÎS dx

dt D2

1 S dy

dt D2 

 dt

A similar type of argument can be used to show that if f  is a continuous function, then 
the limit in Definition 2 always exists and the following formula can be used to evaluate 
the line integral:

3  y
C

 fsx, yd ds − yb

a
 f sxstd, ystddÎS dx

dt D2

1 S dy

dt D2
  dt

The value of the line integral does not depend on the parametrization of the curve, pro-
vided that the curve is traversed exactly once as t increases from a to b.

If sstd is the length of C between rsad and rstd, then

ds

dt
− | r9std | − ÎS dx

dt D2

1 S dy

dt D2 

(See Equation 13.3.7.) So the way to remember Formula 3 is to express everything in 
terms of the parameter t: use the parametric equations to express x and y in terms of t and 
write ds as

ds − ÎS dx

dt D2

1 S dy

dt D2

 dt

NOTE In the special case where C is the line segment that joins sa, 0d to sb, 0d, using 
x as the parameter, we can write the parametric equations of C as follows: x − x, y − 0, 
a < x < b. Formula 3 then becomes

y
C
 f sx, yd ds − yb

a
 f sx, 0d dx

and so the line integral reduces to an ordinary single integral in this case.

The arc length function s is discussed 
in Section 13.3.
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 SECTION 16.2  Line Integrals 1133

Just as for an ordinary single integral, we can interpret the line integral of a positive 
function as an area. In fact, if f sx, yd > 0, yC f sx, yd ds represents the area of one side of 
the “fence” or “curtain” in Figure 2, whose base is C and whose height above the point 
sx, yd is f sx, yd.

EXAMPLE 1 Evaluate yC s2 1 x 2yd ds, where C is the upper half of the unit circle 
x 2 1 y 2 − 1.

SOLUTION In order to use Formula 3, we first need parametric equations to repre- 
sent C. Recall that the unit circle can be parametrized by means of the equations

x − cos t    y − sin t

and the upper half of the circle is described by the parameter interval 0 < t < �. 
(See Figure 3.) Therefore Formula 3 gives

 y
C
 s2 1 x 2yd ds − y�

0
 s2 1 cos2t sin tdÎS dx

dt D2

1 S dy

dt D2 

 dt

 − y�

0
 s2 1 cos2t sin tdssin2 t 1 cos2 t  dt

 − y�

0
 s2 1 cos2t sin td dt − F2t 2

cos3t

3 G
0

�

  − 2� 1 2
3  ■

Suppose now that C is a piecewise-smooth curve; that is, C is a union of a finite 
number of smooth curves C1, C2, . . . , Cn, where, as illustrated in Figure 4, the initial 
point of Ci11 is the terminal point of Ci . Then we define the integral of f  along C as the 
sum of the integrals of f  along each of the smooth pieces of C:

y
C
 f sx, yd ds − y

C1

 f sx, yd ds 1 y
C2

 f sx, yd ds 1 ∙ ∙ ∙ 1 y
Cn

f sx, yd ds

EXAMPLE 2 Evaluate yC 2x ds, where C consists of the arc C1 of the parabola y − x 2 
from s0, 0d to s1, 1d followed by the vertical line segment C2 from s1, 1d to s1, 2d.

SOLUTION The curve C is shown in Figure 5. C1 is the graph of a function of x, so we 
can choose x as the parameter and the equations for C1 become

x − x    y − x 2    0 < x < 1

Therefore

 y
C1

 2x ds − y1

0
 2xÎS dx

dxD2

1 S dy

dxD2

 dx

 − y1

0
 2xs1 1 4x 2  dx

 − 1
4 � 2

3 s1 1 4x 2 d3y2g0

1 
−

5s5 2 1

6

f(x, y)

(x, y)

C y

z

x

0

FIGURE 2

0

≈+¥=1
(y˘0)

x

y

1_1

FIGURE 3

0

C£
C™

C¡

C¢

C∞

x

y

FIGURE 4  
A piecewise-smooth curve

(0, 0)

(1, 1)

(1, 2)

C¡

C™

x

y

FIGURE 5  
C − C1 ø C2
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1134 CHAPTER 16  Vector Calculus

On C2 we choose y as the parameter, so the equations of C2 are

x − 1    y − y    1 < y < 2

and y
C2

 2x ds − y2

1
 2s1dÎS dx

dyD2

1 S dy

dyD2

 dy − y2

1
 2 dy − 2

Thus y
C
 2x ds − y

C1

 2x ds 1 y
C2

 2x ds −
5s5 2 1

6
1 2 ■

Any physical interpretation of a line integral yC f sx, yd ds depends on the physical 
interpretation of the function f . Suppose that �sx, yd represents the linear density at a 
point sx, yd of a thin wire shaped like a curve C (see Example 3.7.2). Then the mass of 
the part of the wire from Pi21 to Pi in Figure 1 is approximately �sxi*, yi*d Dsi and so 
the total mass of the wire is approximately � �sxi*, yi*d Dsi. By taking more and more 
points on the curve, we obtain the mass m of the wire as the limiting value of these 
approximations:

m − lim
n l `

 o
n

i−1
 �sxi*, yi*d Dsi − y

C
 �sx, yd ds

[For example, if f sx, yd − 2 1 x 2 y represents the density of a semicircular wire, then 
the integral in Example 1 would represent the mass of the wire.] The center of mass of 
the wire with density function � is located at the point sx, yd, where

4  x −
1

m
 y

C
 x �sx, yd ds      y −

1

m
 y

C
 y �sx, yd ds 

Other physical interpretations of line integrals will be discussed later in this chapter.

EXAMPLE 3 A wire takes the shape of the semicircle x 2 1 y 2 − 1, y > 0, and is 
thicker near its base than near the top. Find the center of mass of the wire if the linear 
density at any point is proportional to its distance from the line y − 1.

SOLUTION As in Example 1 we use the parametrization x − cos t, y − sin t, 
0 < t < �, and find that ds − dt. The linear density is

�sx, yd − ks1 2 yd

where k is a constant, and so the mass of the wire is

 m − y
C
 ks1 2 yd ds − y�

0
 ks1 2 sin td dt − kft 1 cos tg 0

�

− ks� 2 2d

From Equations 4 we have

 y −
1

m
 y

C
 y �sx, yd ds −

1

ks� 2 2d
 y

C
 y ks1 2 yd ds

 −
1

� 2 2
 y�

0
 ssin t 2 sin2td dt −

1

� 2 2
 f2cos t 2 1

2 t 1 1
4 sin 2tg0

�

 −
4 2 �

2s� 2 2d
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 SECTION 16.2  Line Integrals 1135

By symmetry we see that x − 0, so the center of mass is

S0,  
4 2 �

2s� 2 2dD < s0, 0.38d

See Figure 6. ■

■	 Line Integrals with Respect to x or y
Two other types of line integrals are obtained by replacing Dsi by either Dxi − xi 2 xi21 
or Dyi − yi 2 yi21 in Definition 2. They are called the line integrals of f  along C with 
respect to x and y:

5   y
C
 f sx, yd dx − lim

n l `
 o

n

i−1
 f sxi*, yi*d Dxi 

6   y
C
 f sx, yd dy − lim

n l `
 o

n

i−1
 f sxi*, yi*d Dyi 

When we want to distinguish the original line integral yC f sx, yd ds from those in Equa -
tions 5 and 6, we call it the line integral with respect to arc length.

The following formulas say that line integrals with respect to x and y can also be  
evaluated by expressing everything in terms of t: x − xstd, y − ystd, dx − x9std dt, 
dy − y9std dt.

7
 

 y
C
 f sx, yd dx − yb

a
 f sxstd, ystdd x9std dt

 y
C
 f sx, yd dy − yb

a
 f sxstd, ystdd y9std dt

We will see throughout this chapter that line integrals with respect to x and y fre-
quently occur together (see, for instance, Equation 14). When this happens, it’s custom-
ary to abbreviate by writing

y
C
 Psx, yd dx 1 y

C
 Qsx, yd dy − y

C
 Psx, yd dx 1 Qsx, yd dy

When we are setting up a line integral, sometimes the most difficult thing is to think 
of a parametric representation for a curve whose geometric description is given. In par-
ticular, we often need to parametrize a line segment, so it’s useful to remember that a  
vector representation of the line segment that starts at r0 and ends at r1 is given by

8  rstd − s1 2 tdr0 1 t r1    0 < t < 1

(See Equation 12.5.4.)

EXAMPLE 4 Evaluate yC y 2 dx 1 x dy for two different paths C.

(a) C − C1 is the line segment from s25, 23d to s0, 2d.
(b) C − C2 is the arc of the parabola x − 4 2 y 2 from s25, 23d to s0, 2d.
(See Figure 7.)

SOLUTION
(a) A parametric representation for the line segment is

x − 5t 2 5    y − 5t 2 3    0 < t < 1

0 1_1

1
center of
mass

x

y

FIGURE 6

0 4

(_5, _3)

(0, 2)

C¡
C™

x=4-¥

x

y

FIGURE 7
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1136 CHAPTER 16  Vector Calculus

(Use Equation 8 with r0 − k25, 23l and r1 − k0, 2l.) Then dx − 5 dt, dy − 5 dt, and 
Formulas 7 give

 y
C1

 y 2 dx 1 x dy − y1

0
 s5t 2 3d2s5 dtd 1 s5t 2 5ds5 dtd

 − 5 y1

0
 s25t 2 2 25t 1 4d dt

 − 5F 25t 3

3
2

25t 2

2
1 4tG

0

1

− 2
5

6

(b) Since the parabola is given as a function of y, let’s take y as the parameter and 
write C2 as

x − 4 2 y 2    y − y    23 < y < 2

Then dx − 22y dy and by Formulas 7 we have

 y  

C2

 y 2 dx 1 x dy − y2

23
 y 2s22yd dy 1 s4 2 y 2 d dy

 − y2

23
 s22y 3 2 y 2 1 4d dy

  − F2
y 4

2
2

y 3

3
1 4yG

23

2

− 40 56  ■

Notice that we got different answers in parts (a) and (b) of Example 4 even though the 
two curves had the same endpoints. Thus, in general, the value of a line integral depends 
not just on the endpoints of the curve but also on the path. (But see Section 16.3 for con-
ditions under which the integral is independent of the path.)

Notice also that the answers in Example 4 depend on the direction, or orientation, of 
the curve. If 2C1 denotes the line segment from s0, 2d to s25, 23d, you can verify, using 
the parametrization

x − 25t    y − 2 2 5t    0 < t < 1

that y  

2C1

 y 2 dx 1 x dy − 5
6

In general, a given parametrization x − xstd, y − ystd, a < t < b, determines an 
orien tation of a curve C, with the positive direction corresponding to increasing values 
of the parameter t. (See Figure 8, where the initial point A corresponds to the parameter 
value a and the terminal point B corresponds to t − b.)

If 2C denotes the curve consisting of the same points as C but with the opposite ori-
entation (from initial point B to terminal point A in Figure 8), then we have

y
2C

 f sx, yd dx − 2y
C
 f sx, yd dx      y

2C
 f sx, yd dy − 2y

C
 f sx, yd dy

But if we integrate with respect to arc length, the value of the line integral does not 
change when we reverse the orientation of the curve:

y
2C

 f sx, yd ds − y
C
 f sx, yd ds

This is because Dsi is always positive, whereas Dxi and Dyi change sign when we reverse 
the orientation of C.

B

A

ta b

C

_C
A

B

FIGURE 8
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 SECTION 16.2  Line Integrals 1137

■	 Line Integrals in Space
We now suppose that C is a smooth space curve given by the parametric equations

x − xstd    y − ystd    z − zstd    a < t < b

or by a vector equation rstd − xstd i 1 ystd j 1 zstd k. If f  is a function of three variables 
that is continuous on some region containing C, then we define the line integral of f  
along C (with respect to arc length) in a manner similar to that for plane curves:

y
C
 f sx, y, zd ds − lim

n l `
 o

n

i−1
 f sxi*, yi*, zi*d Dsi

We evaluate it using a formula similar to Formula 3:

9  y
C
 f sx, y, zd ds − yb

a
 f sxstd, ystd, zstddÎS dx

dt D2

1 S dy

dt D2

1 S dz

dtD2 

 dt 

Observe that the integrals in both Formulas 3 and 9 can be written in the more compact 
vector notation

yb

a
 f srstdd | r9std | dt

For the special case f sx, y, zd − 1, we get

y
C
 ds − yb

a
 | r9std | dt − L

where L is the length of the curve C (see Formula 13.3.3).
Line integrals along C with respect to x, y, and z can also be defined. For example,

 y
C
 f sx, y, zd dz − lim

n l `
 o

n

i−1
 f sxi*, yi*, zi*d Dzi

 − yb

a
 f sxstd, ystd, zstdd z9std dt

Therefore, as with line integrals in the plane, we evaluate integrals of the form

10  y
C
 Psx, y, zd dx 1 Qsx, y, zd dy 1 Rsx, y, zd dz 

by expressing everything sx, y, z, dx, dy, dzd in terms of the parameter t.

EXAMPLE 5 Evaluate yC y sin z ds, where C is the circular helix given by the equa-
tions x − cos t, y − sin t, z − t, 0 < t < 2�. (See Figure 9.)

SOLUTION Formula 9 gives

 y
C
 y sin z ds − y2�

0
 ssin td sin tÎS dx

dt D2

1 S dy

dt D2

1 S dz

dtD2 

 dt

 − y2�

0
 sin2tssin2t 1 cos 2t 1 1 dt − s2  y2�

0
 12s1 2 cos 2td dt

 −
s2 

2
 ft 2 1

2 sin 2tg0

2�

− s2 �  ■
1

x

z

y

C

1

0

_1

0

_1
0

2

4

6

1
x

z

y

C

1

0

_1

0

_1
0

2

4

6

FIGURE 9
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1138 CHAPTER 16  Vector Calculus

EXAMPLE 6 Evaluate yC y dx 1 z dy 1 x dz, where C consists of the line segment C1 
from s2, 0, 0d to s3, 4, 5d, followed by the vertical line segment C2 from s3, 4, 5d to 
s3, 4, 0d.

SOLUTION The curve C is shown in Figure 10. Using Equation 8, we write C1 as

rstd − s1 2 td k2, 0, 0 l 1 t k3, 4, 5 l − k2 1 t, 4t, 5t l

or, in parametric form, as

x − 2 1 t    y − 4t    z − 5t    0 < t < 1
Thus

 y
C1

 y dx 1 z dy 1 x dz − y1

0
 s4td dt 1 s5td4 dt 1 s2 1 td5 dt

 − y1

0
 s10 1 29td dt − 10t 1 29 

t 2

2 G0

1

− 24.5

Likewise, C2 can be written in the form

rstd − s1 2 td k3, 4, 5 l 1 tk3, 4, 0 l − k3, 4, 5 2 5t l

or x − 3    y − 4    z − 5 2 5t    0 < t < 1

Then dx − 0 − dy, so

y
C2

 y dx 1 z dy 1 x dz − y1

0
 3s25d dt − 215

Adding the values of these integrals, we obtain

 y
C
 y dx 1 z dy 1 x dz − 24.5 2 15 − 9.5 ■

■	 Line Integrals of Vector Fields; Work
Recall from Section 6.4 that the work done by a variable force f sxd in moving a particle 
from a to b along the x-axis is W − yb

a f sxd dx. Then in Section 12.3 we found that the 
work done by a constant force F in moving an object from a point P to another point Q 
in space is W − F � D, where D − PQ

l
 is the displacement vector.

Now suppose that F − P i 1 Q j 1 R k is a continuous force field on R 3, such as the 
gravitational field of Example 16.1.4 or the electric force field of Example 16.1.5. (A 
force field on R 2 could be regarded as a special case where R − 0 and P and Q depend 
only on x and y.) We wish to compute the work done by this force in moving a particle 
along a smooth curve C. See Figure 11.

0

F

C

y

z

x

FIGURE 11 FIGURE 12

0

F(x*i , y*i , z*i )
T(t*i )
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P¸
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P*i (x*i , y*i , z*i ) y

z

x

Pn

y

z

x

0

(3, 4, 5)

(3, 4, 0)

(2, 0, 0)

C¡ C™

FIGURE 10
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 SECTION 16.2  Line Integrals 1139

To find the work done by F in moving a particle along C , we divide C into subarcs 
Pi21Pi with lengths Dsi by dividing the parameter interval fa, bg into subintervals of 
equal width. (See Figure 1 for the two-dimensional case or Figure 12 for the three-
dimensional case.) Choose a point Pi*sxi*, yi*, zi*d on the ith subarc corresponding to  
the parameter value ti*. If Dsi is small, then as the particle moves from Pi21 to Pi along 
the curve, it proceeds approximately in the direction of Tsti*d, the unit tangent vector  
at Pi*. Thus the work done by the force F in moving the particle from Pi21 to Pi is 
approximately

Fsxi*, yi*, zi*d � fDsi Tsti*dg − fFsxi*, yi*, zi*d � Tsti*dg Dsi

and the total work done in moving the particle along C is approximately

11  o
n

i−1
 fFsxi*, yi*, zi*d � Tsxi*, yi*, zi*dg Dsi 

where Tsx, y, zd is the unit tangent vector at the point sx, y, zd on C. Intuitively, we see 
that these approximations ought to become better as n becomes larger. Therefore we 
define the work W  done by the force field F as the limit of the Riemann sums in (11), 
namely,

12  W − y
C
 Fsx, y, zd � Tsx, y, zd ds − y

C
 F � T ds 

Equation 12 says that work is the line integral with respect to arc length of the tangen tial 
component of the force.

If the curve C is given by the vector equation rstd − xstd i 1 ystd j 1 zstd k, then 
Tstd − r9stdy| r9std |, so using Equation 9 we can rewrite Equation 12 in the form

 W − yb

a
 FFsrstdd �

r9std

| r9std |G | r9std | dt − yb

a
 Fsrstdd � r9std dt

This integral is often abbreviated as yC F � dr and occurs in other areas of physics as 
well. Therefore we make the following definition for the line integral of any continuous 
vector field.

13  Definitio  Let F be a continuous vector field defined on a smooth curve C 
given by a vector function rstd, a < t < b. Then the line integral of F along C is

y
C
 F � dr − yb

a
 Fsrstdd � r9std dt − y

C
 F � T ds

When using Definition 13, bear in mind that Fsrstdd is just an abbreviation for the 
vector field Fsxstd, ystd, zstdd, so we evaluate Fsrstdd simply by putting x − xstd, 
y − ystd, and z − zstd in the expression for Fsx, y, zd. Notice also that we can formally 
write dr − r9std dt.
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1140 CHAPTER 16  Vector Calculus

EXAMPLE 7 Find the work done by the force field Fsx, yd − x 2 i 2 xy j in moving a 
particle along the quarter-circle rstd − cos t i 1 sin t j, 0 < t < �y2.

SOLUTION Since x − cos t and y − sin t, we have

 Fsrstdd − cos2t i 2 cos t sin t j

and  r9std − 2sin t i 1 cos t j

Therefore the work done is

 y
C
 F � dr − y�y2

0
 Fsrstdd � r9std dt − y�y2

0
 s2cos2 t sin t 2 cos2t sin td dt

  − y�y2

0
 s22 cos2 t sin td dt − 2 

cos3t

3 G
0

�y2

− 2
2

3
 ■

NOTE Even though yC F � dr − yC F � T ds and integrals with respect to arc length are 
unchanged when orientation is reversed, it is still true that

y
2C

 F � dr − 2y
C
 F � dr

because the unit tangent vector T is replaced by its negative when C is replaced by 2C.

EXAMPLE 8 Evaluate yC F � dr, where Fsx, y, zd − xy i 1 yz j 1 zx k and C is the 
twisted cubic given by

x − t    y − t 2    z − t 3    0 < t < 1

SOLUTION We have

 rstd − t i 1 t 2 j 1 t 3 k

 r9std − i 1 2t j 1 3t 2 k

 Fsrstdd − t 3 i 1 t 5 j 1 t 4 k

Thus  y
C
 F � dr − y1

0
 Fsrstdd � r9std dt  

  − y1

0
 st 3 1 5t 6 d dt −

t 4

4
1

5t 7

7 G0

1

−
27

28
 ■

Finally, we note the connection between line integrals of vector fields and line integrals 
of scalar fields. Suppose the vector field F on R 3 is given in component form by the equa-
tion F − P i 1 Q j 1 R k. We use Definition 13 to compute its line integral along C:

 y
C
 F � dr − yb

a
 Fsrstdd � r9std dt

 − yb

a
 sP i 1 Q j 1 R kd � sx9std i 1 y9std j 1 z9std kd dt

 − yb

a
 fPsxstd, ystd, zstdd x9std 1 Qsxstd, ystd, zstdd y9std 1 Rsxstd, ystd, zstdd z9stdg dt

Figure 13 shows the force field and 
the curve in Example 7. The work 
done is negative because the field 
impedes movement along the curve.

0 1

1
y

x

FIGURE 13

Figure 14 shows the twisted cubic C in  
Example 8 and some typical vectors 
acting at three points on C.
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 SECTION 16.2  Line Integrals 1141

But this last integral is precisely the line integral in (10). Therefore we have

y
C
 F � dr − y

C
 P dx 1 Q dy 1 R dz    where F − P i 1 Q j 1 R k

For example, the integral yC y dx 1 z dy 1 x dz in Example 6 could be expressed as 
yC F � dr, where

Fsx, y, zd − y i 1 z j 1 x k

A similar result holds for vector fields F on R2:

14  y
C
 F � dr − y

C
 P dx 1 Q dy

where F − P i 1 Q j.

16.2 Exercises

1–8 Evaluate the line integral, where C is the given plane curve.

 1. yC y ds, C: x − t 2, y − 2t, 0 < t < 3

 2. yC sxyyd ds, C: x − t 3, y − t 4, 1 < t < 2

 3. yC xy 4 ds,  C is the right half of the circle x 2 1 y 2 − 16

 4. yC xe y ds,  C is the line segment from s2, 0d to s5, 4d

 5. yC sx 2y 1 sin xd dy, 
C is the arc of the parabola y − x 2 from s0, 0d to s�, � 2d

 6. yC e x dx,  
 C is the arc of the curve x − y 3 from s21, 21d to s1, 1d 

 7.  yC sx 1 2yd  dx 1 x 2 dy

0

y

x

C

(2, 1)

(3, 0)

 8.  yC x 2 dx 1 y 2 dy

≈+¥=4

0

y

x

C

(2, 0)

(0, 2)

(_1, 1)

9–18 Evaluate the line integral, where C is the given space curve.

 9.  yC x 2y ds,  
C: x − cos t, y − sin t, z − t, 0 < t < �y2

 10.  yC y 2z ds,  
C is the line segment from s3, 1, 2d to s1, 2, 5d

 11.  yC xe yz ds,   
C is the line segment from (0, 0, 0) to (1, 2, 3)

 12.  yC sx 2 1 y 2 1 z2d ds,   
C: x − t, y − cos 2t, z − sin 2t, 0 < t < 2�

 13. yC xye yz dy,  C: x − t, y − t 2, z − t 3, 0 < t < 1

 14.  yC ye z dz 1 x ln x dy 2 y dx,  
C: x − e t, y − 2t, z − ln t, 1 < t < 2

 15.  yC z dx 1 xy dy 1 y 2 dz,  
C: x − sin t, y − cos t, z − tan t, 2�y4 < t < �y4

 16. yC y dx 1 z dy 1 x dz,   
 C: x − st  , y − t, z − t 2, 1 < t < 4

 17.  yC z2 dx 1 x 2 dy 1 y 2 dz,   
C is the line segment from s1, 0, 0d to s4, 1, 2d

 18.  yC sy 1 zd dx 1 sx 1 zd dy 1 sx 1 yd dz,   
C consists of line segments from s0, 0, 0d to s1, 0, 1d and from 
s1, 0, 1d to s0, 1, 2d
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1142 CHAPTER 16  Vector Calculus

 19.  Let F be the vector field shown in the figure.
 (a)  If C1 is the vertical line segment from s23, 23d to 

s23, 3d, determine whether yC1
 F � dr is positive,  

negative, or zero.
 (b)  If C2 is the counterclockwise-oriented circle with  

radius 3 and center the origin, determine whether 
yC2

 F � dr is positive, negative, or zero.

y

x0 1

1

2 3

2

3

_3 _2 _1

_3

_2

_1

 20.  The figure shows a vector field F and two curves C1 and C2. 
Are the line integrals of F over C1 and C2 positive, negative,  
or zero? Explain.

y

x

C¡

C™

21–24 Evaluate the line integral yC F � dr, where C is given by 
the vector function rstd.

 21.  Fsx, yd − xy 2 i 2 x 2 j,   
rstd − t 3 i 1 t 2 j,  0 < t < 1

 22.  Fsx, y, zd − sx 1 y 2d i 1 xz j 1 sy 1 zd k,   
rstd − t 2 i 1 t 3 j 2 2t k,  0 < t < 2

 23.  Fsx, y, zd − sin x i 1 cos y j 1 xz k, 
rstd − t 3 i 2 t 2 j 1 t k,  0 < t < 1

 24.  Fsx, y, zd − xz i 1 z 3 j 1 y k , 
rstd − e t i 1 e 2 t j 1 e2t k,  21 < t < 1

25–28 Use a calculator or computer to evaluate the line integral 
correct to four decimal places.

 25.  yC F � dr, where Fsx, yd − sx 1 y  i 1 syyxd j and  
rstd − sin2 t i 1 sin t cos t j, �y6 < t < �y3

 26.  yC F � dr, where Fsx, y, zd − yze x i 1 zxe y j 1 xye z k and 
rstd − sin t i 1 cos t j 1 tan t k, 0 < t < �y4

 27.  yC xy arctan z ds, where C has parametric equations  
x − t 2, y − t 3, z − st

  

, 1 < t < 2

 28.  yC z lnsx 1 yd ds, where C has parametric equations  
x − 1 1 3t, y − 2 1 t 2, z − t 4, 21 < t < 1

29–30 Use a graph of the vector field F and the curve C to 
guess whether the line integral of F over C is positive, negative, 
or zero. Then evaluate the line integral.

 29.  Fsx, yd − sx 2 yd i 1 xy j, 
C is the arc of the circle x 2 1 y 2 − 4 traversed counter-
clockwise from (2, 0) to s0, 22d

 30.  Fsx, yd −
x

sx 2 1 y 2 
 i 1

y

sx 2 1 y 2 
 j,

  C is the parabola y − 1 1 x 2 from s21, 2d to (1, 2)

 31. (a)  Evaluate the line integral yC F � dr, where 
Fsx, yd − e x21 i 1 xy j and C is given by  
rstd − t 2 i 1 t 3 j, 0 < t < 1.

 (b)  Illustrate part (a) by graphing C and the vectors from 
the vector field corresponding to t − 0, 1ys2 , and 1  
(as in Figure 14).

 32. (a)  Evaluate the line integral yC F � dr, where 
Fsx, y, zd − x i 2 z j 1 y k and C is given by 
rstd − 2t i 1 3t j 2 t 2 k, 21 < t < 1.

 (b)  Illustrate part (a) by graphing C and the vectors from 
the vector field corresponding to t − 61 and 6 

1
2 (as in 

Figure 14).

 33. Use a computer algebra system to find the exact value of 
yC x 3y 2z ds, where C is the curve with parametric equations 
x − e2t cos 4 t, y − e2t sin 4 t, z − e2t, 0 < t < 2�.

 34. (a)  Find the work done by the force field 
Fsx, yd − x 2 i 1 xy j on a particle that moves once 
around the circle x 2 1 y 2 − 4 oriented in the counter-
clockwise direction.

 (b)  Graph the force field and circle on the same screen. Use 
the graph to explain your answer to part (a).

 35.  A thin wire is bent into the shape of a semicircle 
x 2 1 y 2 − 4, x > 0. If the linear density is a constant k, 
find the mass and center of mass of the wire.

 36.  A thin wire has the shape of the first-quadrant portion of the  
circle with center the origin and radius a. If the density  
function is �sx, yd − kxy, find the mass and center of mass  
of the wire.

 37. (a)  Write the formulas similar to Equations 4 for the center 
of mass sx, y, z d of a thin wire in the shape of a space 
curve C if the wire has density function �sx, y, zd.

;

;

;

;
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 SECTION 16.2  Line Integrals 1143

 47.  A 72.5-kg man carries a 11-kg can of paint up a helical stair-
case that encircles a silo with a radius of 6 m. If the silo is 
27 m high and the man makes exactly three complete revolu-
tions climbing to the top, how much work is done by the man 
against gravity?

 48.  Suppose there is a hole in the can of paint in Exercise 47 and  
4 kg of paint leaks steadily out of the can during the man’s 
ascent. How much work is done?

 49. (a)  Show that a constant force field does zero work on a  
particle that moves once uniformly around the circle 
x 2 1 y 2 − 1.

 (b)  Is this also true for a force field Fsxd − kx, where k is a 
constant and x − kx, yl?

 50.  The base of a circular fence with radius 10 m is given by 
x − 10 cos t, y − 10 sin t. The height of the fence at position 
sx, yd is given by the function hsx, yd − 4 1 0.01sx 2 2 y 2d, 
so the height varies from 3 m to 5 m. Suppose that 1 L of 
paint covers 100 m2. Sketch the fence and determine how 
much paint you will need if you paint both sides of the fence.

 51.  If C is a smooth curve given by a vector function rstd, 
a < t < b, and v is a constant vector, show that

y
C
 v � dr − v � frsbd 2 rsadg

 52.  If C is a smooth curve given by a vector function rstd, 
a < t < b, show that

y
C
 r � d r − 1

2f|  

rsbd |2 2 |  rsad |2g
 53.  An object moves along the curve C shown in the figure from 

(1, 2) to (9, 8). The lengths of the vectors in the force field F 
are measured in newtons by the scales on the axes. Estimate 
the work done by F on the object.

0 1

1

y (meters)

x (meters)

C

C

 54.  Experiments show that a steady current I in a long wire pro-
duces a magnetic field B that is tangent to any circle that lies 
in the plane perpendicular to the wire and whose center is the 

 (b)  Find the center of mass of a wire in the shape of the 
helix x − 2 sin t, y − 2 cos t, z − 3t, 0 < t < 2�, if the 
density is a constant k.

 38.  Find the mass and center of mass of a wire in the shape of the 
helix x − t, y − cos t, z − sin t, 0 < t < 2�, if the density at 
any point is equal to the square of the distance from the origin.

 39.  If a wire with linear density �sx, yd lies along a plane curve C, 
its moments of inertia about the x- and y-axes are defined as

Ix − y
C
 y 2�sx, yd ds    Iy − y

C
 x 2�sx, yd ds

Find the moments of inertia for the wire in Example 3.

 40.  If a wire with linear density �sx, y, zd lies along a space curve 
C, its moments of inertia about the x-, y-, and z-axes are 
defined as

 Ix − y
C
 s y 2 1 z2 d�sx, y, zd ds

 Iy − y
C
 sx 2 1 z2 d�sx, y, zd ds

 Iz − y
C
 sx 2 1 y 2 d�sx, y, zd ds

  Find the moments of inertia for the wire in Exercise 37(b).

 41.  Find the work done by the force field

Fsx, yd − x i 1 s y 1 2d j

in moving an object along an arch of the cycloid

rstd − st 2 sin td i 1 s1 2 cos td j  0 < t < 2�

 42.  Find the work done by the force field Fsx, yd − x 2 i 1 ye x j 
on a particle that moves along the parabola x − y 2 1 1 from 
s1, 0d to s2, 1d.

 43.  Find the work done by the force field

Fsx, y, zd − kx 2 y 2, y 2 z2, z 2 x 2 l

on a particle that moves along the line segment from s0, 0, 1d 
to s2, 1, 0d.

 44.  The force exerted by an electric charge at the origin on a 
charged particle at a point sx, y, zd with position vector 
r − kx, y, z l is Fsrd − Kry| r |3 where K is a constant. (See 
Example 16.1.5.) Find the work done as the particle moves 
along a straight line from s2, 0, 0d to s2, 1, 5d.

 45.  The position of an object with mass m at time t is 
rstd − at 2 i 1 bt 3 j, 0 < t < 1.

 (a)  What is the force acting on the object at time t ?
 (b)  What is the work done by the force during the time  

interval 0 < t < 1?

 46.  An object with mass m moves with position function 
rstd − a sin t i 1 b cos t j 1 ct k, 0 < t < �y2. Find the  
work done on the object during this time period.
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1144 CHAPTER 16  Vector Calculus

axis of the wire (as in the figure). Ampère’s Law relates the 
electric current to its magnetic effects and states that

y
C
 B � dr − �0 I

where I is the net current that passes through any surface 
bounded by a closed curve C, and �0 is a constant called the 
permeability of free space. By taking C to be a circle with 
radius r, show that the magnitude B − | B | of the magnetic 
field at a distance r from the center of the wire is

B −
�0 I

2�r

B

I

The Fundamental Theorem for Line Integrals

Recall from Section 5.3 that Part 2 of the Fundamental Theorem of Calculus can be writ-
ten as

1  yb

a
 F9sxd dx − Fsbd 2 Fsad 

where F9 is continuous on fa, bg. Equation 1 says that to evaluate the definite integral of 
F9 on fa, bg, we need only know the values of F at a and b, the endpoints of the interval. 
In this section we formulate a similar result for line integrals.

■	 The Fundamental Theorem for Line Integrals
If we think of the gradient vector = f  of a function f  of two or three variables as a sort of 
derivative of f , then the following theorem can be regarded as a version of the Funda-
mental Theorem for line integrals.

2  Theorem Let C be a smooth curve given by the vector function rstd,  
a < t < b. Let f  be a differentiable function of two or three variables whose gra-
dient vector = f  is continuous on C. Then

y
C
 = f � dr − f srsbdd 2 f srsadd

NOTE 1 Theorem 2 says that we can evaluate the line integral of a conservative vector 
field (the gradient vector field of the potential function f ) simply by knowing the value of 
f  at the endpoints of C. In fact, Theorem 2 says that the line integral of = f  is the net 
change in f . If f  is a function of two variables and C is a plane curve with initial point 
Asx1, y1d and terminal point Bsx2, y2d, as in Figure 1(a), then Theorem 2 becomes

y
C
 = f � dr − f sx2, y2d 2 f sx1, y1d

If f  is a function of three variables and C is a space curve joining the point Asx1, y1, z1 d 
to the point Bsx2, y2, z2 d, as in Figure 1(b), then we have

y
C
 = f � dr − f sx2, y2, z2 d 2 f sx1, y1, z1 d

16.3

0

A(x¡, y¡) B(x™, y™)

C x

y

(a)

0

A(x¡, y¡, z¡)
B(x™, y™, z™)

C

y

z

x

(b)

FIGURE 1
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 SECTION 16.3  The Fundamental Theorem for Line Integrals 1145

NOTE 2 Under the hypotheses of Theorem 2, if C1 and C2 are smooth curves with the 
same initial points and the same terminal points, then we can conclude that

y
C1

 =f � dr − y
C2

 =f � dr

We prove Theorem 2 for the case where f  is a function of three variables.

PROOF OF THEOREM 2 Using Definition 16.2.13, we have

 y
C
 = f � dr − yb

a
 = f srstdd � r9std dt

 − yb

a
S −f

−x
 
dx

dt
1

−f

−y
 
dy

dt
1

−f

−z
 
dz

dtD dt

 − yb

a
 

d

dt
 f srstdd dt    (by the Chain Rule)

 − f srsbdd 2 f srsadd

The last step follows from the Fundamental Theorem of Calculus (Equation 1). ■

NOTE 3 Although we have proved Theorem 2 for smooth curves, it is also true for 
piecewise-smooth curves. This can be seen by subdividing C into a finite number of 
smooth curves and adding the resulting integrals.

EXAMPLE 1 Find the work done by the gravitational field

Fsxd − 2
mMG

| x |3  x

in moving a particle with mass m from the point s3, 4, 12d to the point s2, 2, 0d along a 
piecewise-smooth curve C. (See Example 16.1.4.)

SOLUTION From Section 16.1 we know that F is a conservative vector field and, in 
fact, F − = f , where

f sx, y, zd −
mMG

sx 2 1 y 2 1 z 2 

Therefore, by Theorem 2, the work done is

 W − y
C
 F � dr − y

C
 = f � dr

 − f s2, 2, 0d 2 f s3, 4, 12d

  −
mMG

s22 1 22 
2

mMG

s32 1 42 1 122 
− mMGS 1

2s2 
2

1

13D ■

■	 Independence of Path
Suppose C1 and C2 are two piecewise-smooth curves (which are called paths) that have 
the same initial point A and terminal point B. We know from Example 16.2.4 that, in 
general, yC1

F � dr ± yC2
 F � dr. But in Note 2 we observed that

y  

C1

 = f � dr − y  

C2

 = f � dr
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1146 CHAPTER 16  Vector Calculus

whenever = f  is continuous (see Figure 2). In other words, the line integral of a conserva-
tive vector field depends only on the initial point and terminal point of a curve.

In general, if F is a continuous vector field with domain D, we say that the line inte-
gral yC F � dr is independent of path if yC1

 F � dr − yC2
 F � dr for any two paths C1 and 

C2 in D that have the same initial points and the same terminal points. With this terminol-
ogy we can say that line integrals of conservative vector fields are independent of path.

A curve is called closed if its terminal point coincides with its initial point, that is, 
rsbd − rsad. (See Figure 3.) If yC F � dr is independent of path in D and C is any closed 
path in D, we can choose any two points A and B on C and regard C as being composed 
of the path C1 from A to B followed by the path C2 from B to A. (See Fig ure 4.) Then

y
C
 F � dr − y  

C1

 F � dr 1 y  

C2

 F � dr − y  

C1

 F � dr 2 y  

2C2

 F � dr − 0

since C1 and 2C2 have the same initial and terminal points.
Conversely, if it is true that yC F � dr − 0 whenever C is a closed path in D, then we 

demonstrate independence of path as follows. Take any two paths C1 and C2 from A to B 
in D and define C to be the curve consisting of C1 followed by 2C2. Then

0 − y
C
 F � dr − y  

C1

 F � dr 1 y  

2C2

 F � dr − y  

C1

 F � dr 2 y  

C2

 F � dr

and so yC1
 F � dr − yC2

 F � dr. Thus we have proved the following theorem.

3  Theorem yC F � dr is independent of path in D if and only if yC F � dr − 0 
for every closed path C in D.

Since we know that the line integral of any conservative vector field F is independent 
of path, it follows that yC F � dr − 0 for any closed path. The physical interpretation is 
that the work done by a conservative force field (such as the gravitational or electric field 
in Section 16.1) as it moves an object around a closed path is 0.

The following theorem says that the only vector fields that are independent of path are 
conservative. It is stated and proved for plane curves, but there is a similar version for 
space curves. We assume that D is open, which means that for every point P in D there is 
a disk with center P that lies entirely in D. (So D doesn’t contain any of its boundary 
points.) In addition, we assume that D is connected: this means that any two points in D 
can be joined by a path that lies in D.

4  Theorem Suppose F is a vector field that is continuous on an open connected 
region D. If yC F � dr is independent of path in D, then F is a conservative vector 
field on D; that is, there exists a function f  such that = f − F.

PROOF Let Asa, bd be a fixed point in D. We construct the desired potential function f  
by defining

f sx, yd − ysx, yd

sa, bd
 F � dr

for any point sx, yd in D. Since yC F � dr is independent of path, it does not matter  
which path C from sa, bd to sx, yd is used to evaluate f sx, yd. Since D is open, there 
exists a disk contained in D with center sx, yd. Choose any point sx1, yd in the disk with 
x1 , x and let C consist of any path C1 from sa, bd to sx1, yd followed by the horizontal 

C

FIGURE 3  
A closed curve

C¡

C™
B

A

FIGURE 4

FIGURE 2  

y  

C1

 = f � dr − y  

C2

 = f � dr

0

A

B
C¡

x

y

C™
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 SECTION 16.3  The Fundamental Theorem for Line Integrals 1147

line segment C2 from sx1, yd to sx, yd. (See Figure 5.) Then

f sx, yd − y  

C1

 F � dr 1 y  

C2

 F � dr − ysx1, yd

sa, bd
 F � dr 1 y  

C2

 F � dr

Notice that the first of these integrals does not depend on x, so

−

−x
 f sx, yd − 0 1

−

−x
 y  

C2

 F � dr

If we write F − P i 1 Q j, then

y  

C2

 F � dr − y  

C2

 P dx 1 Q dy

On C2, y is constant, so dy − 0. Using t as the parameter, where x1 < t < x, we have

 
−

−x
 f sx, yd −

−

−x
 y

C
2

 P dx 1 Q dy −
−

−x
 y x

x1

 Pst, yd dt − Psx, yd

by Part 1 of the Fundamental Theorem of Calculus (see Section 5.3). A similar argu-
ment, using a vertical line segment (see Figure 6), shows that

−

−y
 f sx, yd −

−

−y
 y  

C2

 P dx 1 Q dy −
−

−y
 yy

y1

 Qsx, td dt − Qsx, yd

Thus F − P i 1 Q j −
−f

−x
 i 1

−f

−y
 j − = f  

which says that F is conservative. ■

■	 Conservative Vector Fields and Potential Functions
The question remains: how can we determine whether or not a vector field F is con-
servative? And if we know that a field F is conservative, how can we find a potential 
function f ?

Suppose it is known that F − P i 1 Q j is conservative, where P and Q have contin-
uous first-order partial derivatives. Then there is a function f  such that F − = f , that is,

P −
−f

−x
    and    Q −

−f

−y

Therefore, by Clairaut’s Theorem,

−P

−y
−

−2 f

−y −x
−

−2 f

−x −y
−

−Q

−x

5  Theorem If Fsx, yd − Psx, yd i 1 Qsx, yd j is a conservative vector field, 
where P and Q have continuous first-order partial derivatives on a domain D, then 
throughout D we have

−P

−y
−

−Q

−x

The converse of Theorem 5 is true only for a special type of region. To explain this, 
we first need the concept of a simple curve, which is a curve that doesn’t intersect itself 
anywhere between its endpoints. [See Figure 7; rsad − rsbd for a simple closed curve, 
but rst1 d ± rst2 d when a , t1 , t2 , b.]

(a, b)

x0

y

D

(x¡, y)

C¡

C™

(x, y)

FIGURE 5

(a, b)

x0

y

D

(x, y)

C¡

C™
(x, y¡)

FIGURE 6

simple,
not closed

not simple,
not closed

simple,
closed

not simple,
closed

FIGURE 7  
Types of curves
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1148 CHAPTER 16  Vector Calculus

In Theorem 4 we needed an open connected region. For the next theorem we need a 
stronger condition. A simply-connected region in the plane is a connected region D 
such that every simple closed curve in D encloses only points that are in D. Notice from 
Figure 8 that, intuitively speaking, a simply-connected region contains no hole and can’t 
consist of two separate pieces.

simply-connected region regions that are not simply-connectedFIGURE 8

In terms of simply-connected regions, we can now state a partial converse to Theo-
rem 5 that gives a convenient method for verifying that a vector field on R 2 is conserva-
tive. The proof will be sketched in Section 16.4 as a consequence of Green’s Theorem.

6  Theorem Let F − P i 1 Q j be a vector field on an open simply-connected 
region D. Suppose that P and Q have continuous first-order partial derivatives and

−P

−y
−

−Q

−x
     throughout D

Then F is conservative.

EXAMPLE 2 Determine whether or not the given vector field is conservative.

(a) Fsx, yd − sx 2 yd i 1 sx 2 2d j
(b) Fsx, yd − s3 1 2xyd i 1 sx 2 2 3y 2 d j

SOLUTION 
(a) Let Psx, yd − x 2 y and Qsx, yd − x 2 2. Then

−P

−y
− 21      

−Q

−x
− 1

Since −Py−y ± −Qy−x, F is not conservative by Theorem 5.

(b) Let Psx, yd − 3 1 2xy and Qsx, yd − x 2 2 3y 2. Then

−P

−y
− 2x −

−Q

−x

Also, the domain of F is the entire plane sD − R 2 d, which is open and simply- 
connected. Therefore we can apply Theorem 6 and conclude that F is conservative. ■

In Example 2(b), Theorem 6 told us that F is conservative, but it did not tell us how to 
find the (potential) function f  such that F − = f . The proof of Theorem 4 gives us a clue 
as to how to find f . We use “partial integration” as in the following example.

Figures 9 and 10 show the vector 
fields in Examples 2(a) and 2(b), 
respec tively. The vectors in Figure 9 
that start on the closed curve C all 
appear to point in roughly the same 
direction as C. So it looks as if 
yC F � dr . 0 and therefore F is 
not conservative. The calculation 
in Example 2(a) confirms this 
impression. Some of the vectors near 
the curves C1 and C2 in Figure 10 
point in approximately the same 
direction as the curves, whereas 
others point in the opposite direc
tion. So it appears plau sible that line 
integrals around all closed paths  
are 0. Example 2(b) shows that F 
is indeed conservative.

C

10

_10

_10 10

FIGURE 9

C™C¡

2

_2

_2 2

FIGURE 10
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 SECTION 16.3  The Fundamental Theorem for Line Integrals 1149

EXAMPLE 3 If Fsx, yd − s3 1 2xyd i 1 sx 2 2 3y 2 d j, find a function f  such that 
F − = f .

SOLUTION From Example 2(b) we know that F is conservative and so there exists a 
function f  with = f − F, that is,

7   fxsx, yd − 3 1 2xy 

8   fysx, yd − x 2 2 3y 2 

Integrating (7) with respect to x, we obtain

9  f sx, yd − 3x 1 x 2 y 1 tsyd 

Notice that the constant of integration is a constant with respect to x, that is, a function 
of y, which we have called tsyd. Next we differentiate both sides of (9) with respect  
to y :

10  fysx, yd − x 2 1 t9syd 

Comparing (8) and (10), we see that

t9syd − 23y 2

Integrating with respect to y, we have

tsyd − 2y 3 1 K

where K is a constant. Putting this in (9), we have

f sx, yd − 3x 1 x 2 y 2 y 3 1 K

as the desired potential function. ■

EXAMPLE 4 Evaluate the line integral yC F � dr, where

Fsx, yd − s3 1 2xyd i 1 sx 2 2 3y 2 d j

and C is the curve given by

rstd − e t sin t i 1 e t cos t j     0 < t < �

SOLUTION 1 From Example 2(b) we know that F is conservative, so we can  
use Theorem 2. In Example 3 we found that a potential function for F is 
f sx, yd − 3x 1 x 2 y 2 y 3 (choosing K − 0). According to Theorem 2, we need  
to know only the initial and terminal points of C , namely, rs0d − s0, 1d and 
rs�d − s0, 2e�d. Then

 y
C
 F � dr − y

C
 = f � dr − f s0, 2e� d 2 f s0, 1d − e 3� 2 s21d − e 3� 1 1

This method is much shorter than the straightforward method for evaluating line 
integrals that we learned in Section 16.2.

SOLUTION 2 Because F is conservative, we know that yC F � dr is independent of path. 
Let's replace the curve C with another (simpler) curve C1 that has the same initial point 
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1150 CHAPTER 16  Vector Calculus

and the same terminal point as C. Let C1 be the straight line segment from s0, 1d to 
s0, 2e� d as shown in Figure 11. Then C1 is represented by

rstd − 2t j  21 < t < e�

and

 y
C
 F � dr − y

C1

 F � dr − ye�

21
 Fsrstdd � r9std dt

 − ye�

21
 s3 i 2 3t 2 jd � s2jd dt

  − ye�

21
 3t 2 dt − t 3|e�

21 − e 3� 1 1  ■

A criterion for determining whether or not a vector field F on R 3 is conservative is 
given in Section 16.5. Meanwhile, the next example shows that the technique for finding 
the potential function is much the same as for vector fields on R 2.

EXAMPLE 5 If Fsx, y, zd − y 2 i 1 s2xy 1 e 3 zd  j 1 3ye 3 z k, find a function f  such  
that = f − F.

SOLUTION If there is such a function f , then

11   fxsx, y, zd − y 2  

12   fysx, y, zd − 2xy 1 e 3 z 

13   fzsx, y, zd − 3ye 3 z  

Integrating (11) with respect to x, we get

14  f sx, y, zd − xy 2 1 tsy, zd 

where tsy, zd is a constant with respect to x. Then differentiating (14) with respect to y, 
we have

fysx, y, zd − 2xy 1 tysy, zd

and comparison with (12) gives
tysy, zd − e 3 z

Thus tsy, zd − ye 3 z 1 hszd and we rewrite (14) as

f sx, y, zd − xy 2 1 ye 3 z 1 hszd

Finally, differentiating with respect to z and comparing with (13), we obtain h9szd − 0 
and therefore hszd − K, a constant. The desired function is

f sx, y, zd − xy 2 1 ye 3 z 1 K

It is easily verified that = f − F. ■

■	 Conservation of Energy
Let’s apply the ideas of this chapter to a continuous force field F that moves an object 
along a path C given by rstd, a < t < b, where rsad − A is the initial point and rsbd − B 
is  the terminal point of C. According to Newton’s Second Law of Motion (see Sec-
tion 13.4), the force Fsrstdd at a point on C is related to the acceleration astd − r0std by 
the equation

Fsrstdd − mr0std

x0

y

_10

_20

5

(0, _eπ)

(0, 1)

CC¡

FIGURE 11
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 SECTION 16.3  The Fundamental Theorem for Line Integrals 1151

So the work done by the force on the object is

 W − y
C
 F � dr − yb

a
 Fsrstdd � r9std dt − yb

a
 mr0std � r9std dt

 −
m

2
 yb

a
 

d

dt
 fr9std � r9stdg dt (Theorem 13.2.3, Formula 4)

 −
m

2
 yb

a
 

d

dt
 | r9std |2 dt −

m

2
 f| r9std |2ga

b
  (Fundamental Theorem of Calculus)

 −
m

2
 (| r9sbd |2 2 | r9sad |2 )

Therefore

15  W − 1
2 m | vsbd |2 2 1

2 m | vsad |2 

where v − r9 is the velocity.
The quantity 12 m | vstd |2, that is, half the mass times the square of the speed, is called 

the kinetic energy of the object. Therefore we can rewrite Equation 15 as

16  W − KsBd 2 KsAd 

which says that the work done by the force field along C is equal to the change in kinetic 
energy at the endpoints of C.

Now let’s further assume that F is a conservative force field; that is, we can write 
F − = f . In physics, the potential energy of an object at the point sx, y, zd is defined as 
Psx, y, zd − 2f sx, y, zd, so we have F − 2=P. Then by Theorem 2 we have

 W − y
C
 F � dr − 2y

C
 =P � dr − 2fPsrsbdd 2 Psrsaddg − PsAd 2 PsBd

Comparing this equation with Equation 16, we see that

PsAd 1 KsAd − PsBd 1 KsBd

which says that if an object moves from one point A to another point B under the influ-
ence of a conservative force field, then the sum of its potential energy and its kinetic 
energy remains constant. This is called the Law of Conservation of Energy and it is the 
reason the vector field is called conservative.

16.3 Exercises
 1.  The figure shows a curve C and a contour map of a function f  

whose gradient is continuous. Find yC = f � dr.

y

x0

10

20
30

40
50

60

C

 2.  A table of values of a function f  with continuous gradient is 
given. Find yC = f � dr, where C has parametric equations

x − t 2 1 1        y − t 3 1 t        0 < t < 1

1

3

8

6

5

2

4

7

9

x
y

0

1

2

0 1 2
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1152 CHAPTER 16  Vector Calculus

3–10 Determine whether or not F is a conservative vector field.  
If it is, find a function f  such that F − = f .

 3. Fsx, yd − sxy 1 y 2d i 1 sx 2 1 2xyd j

 4. Fsx, yd − sy 2 2 2xd i 1 2xy j

 5. Fsx, yd − y 2e xy i 1 s1 1 xyde xy j

 6. Fsx, yd − ye x i 1 se x 1 e yd j

 7. Fsx, yd − sye x 1 sin yd i 1 se x 1 x cos yd j

 8. Fsx, yd − s2xy 1 y22d i 1 sx 2 2 2xy23d j,  y . 0

 9. Fsx, yd − sy 2 cos x 1 cos yd i 1 s2y sin x 2 x sin yd j

 10. Fsx, yd − sln y 1 yyxd i 1 sln x 1 xyyd j

 11.  The figure shows the vector field Fsx, yd − k2xy, x 2l and 
three curves that start at (1, 2) and end at (3, 2).

 (a)  Explain why yC F � dr has the same value for all three 
curves.

 (b) What is this common value?

y

x0 3

3

2

1

21

 12.  Evaluate yC F � dr for the vector field 
Fsx, yd − 2xy i 1 sx 2 1 sin yd j and the curve C  
shown.

 (a) (b)

x0

y
(2, π/2)

x0

y

1

C C

 13. Let Fsx, yd − s3x 2 1 y 2d i 1 2xy j and let C be the curve 
shown.

0

(2, 0)

C

x

y

(_2, 0)

y=_ œ„„„„„4-≈

 (a) Evaluate yC F � dr directly.
 (b)  Show that F is conservative and find a function f  such 

that F − = f .
 (c) Evaluate yC F � dr using Theorem 2.

 (d)  Evaluate yC F � dr by first replacing C by a simpler curve 
that has the same initial and terminal points.

14 –15 A vector field F and a curve C are given.
(a) Show that F is conservative and find a potential function f.
(b) Evaluate yC F � dr using Theorem 2.
(c) Evaluate yC F � dr by first replacing C with a line segment that 

has the same initial and terminal points.

 14. Fsx, yd − ksin y 1 e x, x cos yl, 
  C: x − t, y − ts3 2 td, 0 < t < 3

 15. Fsx, yd − kye xy, xe xyl, 

  C: x − sin 
�

2
 t, y − e t21s1 2 cos �td, 0 < t < 1

 16.  Evaluate yC =f � dr, where f sx, y, zd − xy 2z 1 x 2 and C is 
the curve x − t 2, y − e t 221, z − t 2 1 t, 21 < t < 1.

17–24 (a) Find a function f  such that F − = f  and (b) use  
part (a) to evaluate yC F � dr along the given curve C.

 17. Fsx, yd − k2x, 4yl, 
  C is the arc of the parabola x − y 2 from s4, 22d to s1, 1d

 18.  Fsx, yd − s3 1 2xy 2d i 1 2x 2y j,
  C is the arc of the hyperbola y − 1yx from s1, 1d to (4, 14)

 19.  Fsx, yd − x 2y 3 i 1 x 3y 2 j,
  C: rstd − kt 3 2 2t, t 3 1 2tl,  0 < t < 1

 20.  Fsx, yd − s1 1 xyde xy i 1 x 2e xy j, 
C: rstd − cos t i 1 2 sin t j,  0 < t < �y2

 21.  Fsx, y, zd − 2xy i 1 sx 2 1 2yzd j 1 y 2 k, 
C is the line segment from s2, 23, 1d to s25, 1, 2d

 22.  Fsx, y, zd − sy2z 1 2xz2d i 1 2xyz j 1 sxy 2 1 2x 2zd k, 
C: x − st , y − t 1 1, z − t 2,  0 < t < 1
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 SECTION 16.3  The Fundamental Theorem for Line Integrals 1153

 35.  Show that if the vector field F − P i 1 Q j 1 R k is con-
servative and P, Q, R have continuous first-order partial 
derivatives, then

−P

−y
−

−Q

−x
      

−P

−z
−

−R

−x
      

−Q

−z
−

−R

−y

 36.  Use Exercise 35 to show that the line integral 
yC y dx 1 x dy 1 xyz dz is not independent of path.

37–40 Determine whether or not the given set is (a) open,  
(b) connected, and (c) simply-connected.

 37. hsx, yd |  0 , y , 3j

 38. hsx, yd |  1 , | x | , 2j

 39. hsx, yd | 1 < x 2 1 y 2 < 4, y > 0j

 40. hsx, yd |  sx, yd ± s2, 3dj

 41. Let Fsx, yd −
2y i 1 x j

x 2 1 y 2 .

 (a) Show that −Py−y − −Qy−x.
 (b)  Show that yC F � dr is not independent of path.  

[Hint: Compute y 
C1

 F � dr and y 
C2

 F � dr, where C1  
and C2 are the upper and lower halves of the circle 
x 2 1 y 2 − 1 from s1, 0d to s21, 0d.] Does this 
contradict Theorem 6?

 42. Inverse Square Fields Suppose that F is an inverse square 
force field, that is,

Fsrd −
cr

| r |3

   for some constant c, where r − x i 1 y j 1 z k. 
 (a)  Find the work done by F in moving an object from a 

point P1 along a path to a point P2 in terms of the 
distances d1 and d2 from these points to the origin.

 (b)  An example of an inverse square field is the gravi- 
tational field F − 2smMG dry| r |3 discussed in  
Example 16.1.4. Use part (a) to find the work done  
by the gravitational field when the earth moves from  
aphelion (at a maximum distance of 1.52 3 108 km  
from the sun) to perihelion (at a minimum  
distance of 1.47 3 108 km). (Use the values  
m − 5.97 3 1024 kg, M − 1.99 3 1030 kg, and  
G − 6.67 3 10211 N ∙m2ykg2.d

 (c)  Another example of an inverse square field is the  
elec tric force field F − «qQry| r |3 discussed in  
Example 16.1.5. Suppose that an electron with a charge 
of 21.6 3 10219 C is located at the origin. A positive  
unit charge is positioned a distance 10212 m from the 
elec tron and moves to a position half that distance from 
the electron. Use part (a) to find the work done by the 
electric force field. (Use the value « − 8.985 3 10 9.)

 23.  Fsx, y, zd − yze xz i 1 e xz j 1 xye xz k, 
C: rstd − st 2 1 1d i 1 st 2 2 1d j 1 st 2 2 2td k,  
0 < t < 2

 24.  Fsx, y, zd − sin y  i 1 sx cos y 1 cos zd j 2 y sin z k, 
C: rstd − sin t i 1 t  j 1 2t  k,  0 < t < �y2

25–26 Show that the line integral is independent of path and 
evaluate the integral.

 25.  yC 2xe2y dx 1 s2y 2 x 2e2yd dy,  
C is any path from s1, 0d to s2, 1d

 26.  yC sin y dx 1 sx cos y 2 sin yd dy,   
C is any path from s2, 0d to s1, �d

 27.  Suppose you’re asked to determine the curve that requires 
the least work for a force field F to move a particle from 
one point to another point. You decide to check first whether 
F is conservative, and indeed it turns out that it is. How 
would you reply to the request?

 28.  Suppose an experiment determines that the amount of work 
required for a force field F to move a particle from the point 
s1, 2d to the point s5, 23d along a curve C1 is 1.2 J and the 
work done by F in moving the particle along another curve  
C2 between the same two points is 1.4 J. What can you say 
about F? Why?

29–30 Find the work done by the force field F in moving an 
object from P to Q.

 29. Fsx, yd − x 3 i 1 y 3 j; Ps1, 0d, Qs2, 2d

 30. Fsx, yd − s2x 1 yd i 1 x j; Ps1, 1d, Qs4, 3d

31–32 Is the vector field shown in the figure conservative? 
Explain.

 31.  32. y

x

y

x

 33.  If Fsx, yd − sin y i 1 s1 1 x cos yd j, use a plot to guess 
whether F is conservative. Then determine whether your 
guess is correct.

 34.  Let F − = f , where f sx, yd − sinsx 2 2yd. Find curves C1 
and C2 that are not closed and satisfy the equation.

 (a) y
C1

 F � dr − 0 (b) y
C2

 F � dr − 1

;
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Green’s Theorem

Green’s Theorem gives the relationship between a line integral around a simple closed 
curve and a double integral over the plane region bounded by the curve.

■	 Green’s Theorem
Let C be a simple closed curve and let D be the region bounded by C, as in Figure 1. (We 
assume that D consists of all points inside C as well as all points on C.) In stating Green’s 
Theorem we use the convention that the positive orientation of a simple closed curve C 
refers to a single counterclockwise traversal of C. Thus if C is given by the vector func-
tion rstd, a < t < b, then the region D is always on the left as the point rstd traverses C. 
(See Figure 2.)

(a) Positive orientation

y

x0

D

C

(b) Negative orientation

y

x0

D

C

Green’s Theorem Let C be a positively oriented, piecewise-smooth, simple 
closed curve in the plane and let D be the region bounded by C. If P and Q have 
continuous partial derivatives on an open region that contains D, then

y
C
 P dx 1 Q dy − y

D

y S −Q

−x
2

−P

−y D dA
Recall that the left side of this 
equation is another way of writing 
yC F � dr, where F − P i 1 Q j.

NOTE The notation

�y
C
 P dx 1 Q dy    or    gC

P dx 1 Q dy

is sometimes used to indicate that the line integral is calculated using the positive orien-
tation of the closed curve C. Another notation for the positively oriented boundary curve 
of D is −D, so the equation in Green’s Theorem can be written as

1  y
D

y S −Q

−x
2

−P

−y D dA − y
−D

 P dx 1 Q dy 

Green’s Theorem should be regarded as the counterpart of the Fundamental Theorem 
of Calculus for double integrals. Compare Equation 1 with the statement of the Funda-
mental Theorem of Calculus, Part 2, in the following equation:

yb

a
 F9sxd dx − Fsbd 2 Fsad

In both cases there is an integral involving derivatives (F9, −Qy−x, and −Py−y) on the left 
side of the equation. And in both cases the right side involves the values of the original 

16.4

y

x0

D

C

FIGURE 1

FIGURE 2
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 SECTION 16.4  Green’s Theorem 1155

functions (F, Q, and P) only on the boundary of the domain. (In the one-dimensional 
case, the domain is an interval fa, bg whose boundary consists of just two points, a and b.)

Green’s Theorem is not easy to prove in general, but we can give a proof for the spe-
cial case where the region is both type I and type II (see Section 15.2). Let’s call such 
regions simple regions.

PROOF OF GREEN’S THEOREM FOR THE CASE IN WHICH D IS A SIMPLE REGION  
Notice that Green’s Theorem will be proved if we can show that

2  y
C
 P dx − 2y

D

y 
−P

−y
 dA 

and

3  y
C
 Q dy − y

D

y 
−Q

−x
 dA 

We prove Equation 2 by expressing D as a type I region:

D − hsx, yd | a < x < b, t1sxd < y < t2sxdj
where t1 and t2 are continuous functions. This enables us to compute the double inte-
gral on the right side of Equation 2 as follows:

4   y
D

y 
−P

−y
 dA − yb

a
 yt2sxd

t1sxd
 
−P

−y
 sx, yd dy dx − yb

a
 fPsx, t2sxdd 2 Psx, t1sxddg dx 

where the last step follows from the Fundamental Theorem of Calculus.
Now we compute the left side of Equation 2 by breaking up C as the union of the 

four curves C1, C2, C3, and C4 shown in Figure 3. On C1 we take x as the parameter and 
write the parametric equations as x − x, y − t1sxd, a < x < b. Thus

y  

C1

 Psx, yd dx − yb

a
 Psx, t1sxdd dx

Observe that C3 goes from right to left but 2C3 goes from left to right, so we can write 
the parametric equations of 2C3 as x − x, y − t2sxd, a < x < b. Therefore

y  

C3

 Psx, yd dx − 2y  

2C3

 Psx, yd dx − 2yb

a
 Psx, t2sxdd dx

On C2 or C4 (either of which might reduce to just a single point), x is constant, so 
dx − 0 and

y  

C2

 Psx, yd dx − 0 − y  

C4

 Psx, yd dx

Hence

 y
C
 Psx, yd dx − y  

C1

 Psx, yd dx 1 y  

C2

 Psx, yd dx 1 y  

C3

 Psx, yd dx 1 y  

C4

 Psx, yd dx

 − yb

a
 Psx, t1sxdd dx 2 yb

a
 Psx, t2sxdd dx

Comparing this expression with the one in Equation 4, we see that

y
C
 Psx, yd dx − 2y

D

y 
−P

−y
 dA

George Green
Green’s Theorem is named after the 
self-taught English scientist George 
Green (1793–1841). He worked full-
time in his father’s bakery from the 
age of nine and taught himself math-
ematics from library books. In 1828 he 
published privately An Essay on the 
Application of Mathematical Analysis 
to the Theories of Electricity and Mag-
netism, but only 100 copies were 
printed and most of those went to his 
friends. This pamphlet contained a 
theorem that is equivalent to what we 
know as Green’s Theorem, but it didn’t 
become widely known at that time. 
Finally, at age 40, Green entered 
Cambridge University as an under-
graduate but died four years after 
graduation. In 1846 William Thomson 
(Lord Kelvin) located a copy of Green’s 
essay, realized its significan e, and 
had it reprinted. Green was the first
person to try to formulate a mathe-
matical theory of electricity and mag-
netism. His work was the basis for the 
subsequent electromagnetic theories 
of Thomson, Stokes, Rayleigh, and 
Maxwell.

y

x0 a b

D

C¡

y=g™(x)

y=g¡(x)

C™

C£

C¢

FIGURE 3
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Equation 3 can be proved in much the same way by expressing D as a type II region 
(see Exercise 34). Then, by adding Equations 2 and 3, we obtain Green’s Theorem. ■

EXAMPLE 1 Evaluate yC x 4 dx 1 xy dy, where C is the triangular curve consisting of 
the line segments from s0, 0d to s1, 0d, from s1, 0d to s0, 1d, and from s0, 1d to s0, 0d.

SOLUTION Although the given line integral could be evaluated as usual by the methods 
of Section 16.2, that would involve setting up three separate integrals along the three 
sides of the triangle, so let’s use Green’s Theorem instead. Notice that the region D 
enclosed by C is simple and C has positive orientation (see Figure 4). If we let 
Psx, yd − x 4 and Qsx, yd − xy, then we have

 y
C
 x 4 dx 1 xy dy − y

D

y S −Q

−x
2

−P

−y D dA − y1

0
 y12x

0
 sy 2 0d dy dx

 − y1

0
 f1

2 y 2 g y−0

y−12x

 dx − 1
2 y1

0
 s1 2 xd2 dx

  − 21
6 s1 2 xd3 g0

1
− 1

6  ■

EXAMPLE 2 Evaluate �y
C
 s3y 2 e sin x d dx 1 (7x 1 sy 4 1 1) dy, where C is the circle 

x 2 1 y 2 − 9.

SOLUTION The region D bounded by C is the disk x 2 1 y 2 < 9, so let’s change to 
polar coordinates after applying Green’s Theorem:

  �y
C
 s3y 2 e sin x d dx 1 (7x 1 sy 4 1 1) dy

 − y
D

y F −

−x
 (7x 1 sy 4 1 1) 2

−

−y
 s3y 2 e sin x dG dA

 − y2�

0
 y3

0
 s7 2 3d r dr d� − 4 y2�

0
 d�  y3

0
 r dr − 36� ■

In Examples 1 and 2 we found that the double integral was easier to evaluate than the 
line integral. (Try setting up the line integral in Example 2 and you’ll soon be con-
vinced!) But sometimes it’s easier to evaluate the line integral, and Green’s Theorem is 
used in the reverse direction. For instance, if it is known that Psx, yd − Qsx, yd − 0 on 
the curve C, then Green’s Theorem gives

y
D

y S −Q

−x
2

−P

−y D dA − y
C
 P dx 1 Q dy − 0

no matter what values P and Q assume in the region D.

■	 Finding Areas with Green's Theorem
Another application of the reverse direction of Green’s Theorem is in computing areas. 
Since the area of D is yyD 1 dA, we wish to choose P and Q so that

−Q

−x
2

−P

−y
− 1

y

x

C

(1, 0)(0, 0)

(0, 1) y=1-x

D

FIGURE 4

Instead of using polar coordinates, we 
could simply use the fact that D is a 
disk of radius 3 and write

y
D

y 4 dA − 4 � �s3d2 − 36�
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 SECTION 16.4  Green’s Theorem 1157

There are several possibilities:

 Psx, yd − 0    Psx, yd − 2y    Psx, yd − 21
2 y

 Qsx, yd − x    Qsx, yd − 0     Qsx, yd − 1
2 x

Then Green’s Theorem gives the following formulas for the area of D:

5  A − �yC
 x dy − 2�yC

 y dx − 1
2 �yC

 x dy 2 y dx

EXAMPLE 3 Find the area enclosed by the ellipse 
x 2

a 2 1
y 2

b 2 − 1.

SOLUTION The ellipse has parametric equations x − a cos t and y − b sin t, where 
0 < t < 2�. Using the third formula in Equation 5, we have

 A − 1
2 y

C
 x dy 2 y dx

 − 1
2 y2�

0
 sa cos tdsb cos td dt 2 sb sin tds2a sin td dt

  −
ab

2
 y2�

0
 dt − �ab  ■

Formula 5 can be used to explain how planimeters work. A planimeter is an inge-
nious mechanical instrument invented in the 19th century for measuring the area of a 
region by tracing its boundary curve. For instance, a biologist could use one of these 
devices to measure the surface area of a leaf or bird wing.

Figure 5 shows the operation of a polar planimeter: the pole is fixed and, as the tracer 
is moved along the boundary curve of the region, the wheel partly slides and partly rolls 
perpendicular to the tracer arm. The planimeter measures the distance that the wheel 
rolls and this is proportional to the area of the enclosed region. The explanation as a 
consequence of Formula 5 can be found in the following articles:

●	 R. W. Gatterman, “The planimeter as an example of Green’s Theorem” Amer. Math. 
Monthly, Vol. 88 (1981), pp. 701–4.

●	  Tanya Leise, “As the planimeter wheel turns” College Math. Journal, Vol. 38 (2007), 
pp. 24–31.

■	 Extended Versions of Green’s Theorem
Although we have proved Green’s Theorem only for the case where D is simple, we can 
now extend it to the case where D is a finite union of simple regions. For example, if D 
is the region shown in Figure 6, then we can write D − D1 ø D2, where D1 and D2 are 
both simple. The boundary of D1 is C1 ø C3 and the boundary of D2 is C2 ø s2C3d so, 
apply ing Green’s Theorem to D1 and D2 separately, we get

 y  

C1øC3

 P dx 1 Q dy − y
D1

y S −Q

−x
2

−P

−y D dA

 y
C2øs2C3d

 P dx 1 Q dy − y
D2

y S −Q

−x
2

−P

−y D dA

2

4

0 10

43 5

9 8

7

7
0

5
6

pivot

wheel
pole arm

tracer arm

tracer

pole

FIGURE 5  
A Keuffel and Esser polar planimeter

C¡

_C£C£

C™D¡ D™

FIGURE 6
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1158 CHAPTER 16  Vector Calculus

If we add these two equations, the line integrals along C3 and 2C3 cancel, so we get

y  

C1øC2

 P dx 1 Q dy − y
D

y S −Q

−x
2

−P

−y D dA

which is Green’s Theorem for D − D1 ø D2, since its boundary is C − C1 ø C2.
The same sort of argument allows us to establish Green’s Theorem for any finite union 

of nonoverlapping simple regions (see Figure 7).

EXAMPLE 4 Evaluate �yC y 2 dx 1 3xy dy, where C is the boundary of the semiannular 
region D in the upper half-plane between the circles x 2 1 y 2 − 1 and x 2 1 y 2 − 4.

SOLUTION Notice that although D is not simple, the y-axis divides it into two simple 
regions (see Figure 8). In polar coordinates we can write

D − hsr, �d | 1 < r < 2, 0 < � < �j
Therefore Green’s Theorem gives

 �y
C

 y 2 dx 1 3xy dy − y
D

y F −

−x
 s3xyd 2

−

−y
 sy 2 dG 

dA

 − y
D

y y dA − y�

0
 y2

1
 sr sin �d r dr d�

  − y�

0
 sin � d�  y2

1
 r 2 dr − f2cos �g0

� f1
3 r 3 g1

2
− 14

3  ■

Green’s Theorem can be extended to apply to regions with holes, that is, regions that 
are not simply-connected. Observe that the boundary C of the region D in Fig ure 9 con-
sists of two simple closed curves C1 and C2. We assume that these boundary curves are  
oriented so that the region D is always on the left as the curve C is traversed. Thus the  
positive direction is counterclockwise for the outer curve C1 but clockwise for the inner 
curve C2. If we divide D into two regions D9 and D 0 by means of the lines shown in  
Figure 10 and then apply Green’s Theorem to each of D9 and D 0, we get

 y
D

y S −Q

−x
2

−P

−y D dA − y
D9

yS −Q

−x
2

−P

−y D dA 1 y
D0

yS −Q

−x
2

−P

−y D dA

 − y
−D9

 P dx 1 Q dy 1 y
−D0

 P dx 1 Q dy

Since the line integrals along the common boundary lines are in opposite directions, they 
cancel and we get

y
D

y S −Q

−x
2

−P

−y D dA − y  

C1

 P dx 1 Q dy 1 y  

C2

 P dx 1 Q dy − y
C
 P dx 1 Q dy

which is Green’s Theorem for the region D.

EXAMPLE 5 If Fsx, yd − s2y i 1 x jdysx 2 1 y 2 d, show that yC F � dr − 2� for every 
positively oriented simple closed path that encloses the origin.

SOLUTION Since C is an arbitrary closed path that encloses the origin, it’s difficult to 
compute the given integral directly. So let’s consider a counterclockwise-oriented circle C9 

C

FIGURE 7

0

y

x

C

≈+¥=4

≈+¥=1

D

FIGURE 8

D

C™

C¡

Dª

Dªª

FIGURE 9

FIGURE 10
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 SECTION 16.4  Green’s Theorem 1159

with center the origin and radius a, where a is chosen to be small enough that C9 lies 
inside C. (See Figure 11.) Let D be the region bounded by C and C9. Then its positively 
oriented boundary is C ø s2C9d and so the general version of Green’s Theorem gives

 y
C
 P dx 1 Q dy 1 y

2C9
 P dx 1 Q dy − y

D

y S −Q

−x
2

−P

−y D dA

 − y
D

y F y 2 2 x 2

sx 2 1 y 2 d2 2
y 2 2 x 2

sx 2 1 y 2 d2G dA − 0

Therefore  y
C
 P dx 1 Q dy − y

C9
 P dx 1 Q dy

that is,  y
C
 F � dr − y

C9
 F � dr

We now easily compute this last integral using the parametrization given by 
rstd − a cos t i 1 a sin t j, 0 < t < 2�. Thus

 y
C
 F � dr − y

C9
 F � dr − y2�

0
 Fsrstdd � r9std dt

  − y2�

0
 
s2a sin tds2a sin td 1 sa cos tdsa cos td

a 2 cos2t 1 a 2 sin2t
 dt − y2�

0
 dt − 2� ■

We end this section by using Green’s Theorem to discuss a result that was stated in the 
preceding section.

SKETCH OF PROOF OF THEOREM 16.3.6 We’re assuming that F − P i 1 Q j is a 
vector field on an open simply-connected region D, that P and Q have continuous first-
order partial derivatives, and that

−P

−y
−

−Q

−x
     throughout D

If C is any simple closed path in D and R is the region that C encloses, then Green’s 
Theorem gives

�y
C
 F � dr − �y

C
 P dx 1 Q dy − yy

R

S −Q

−x
2

−P

−y D dA − yy
R

0 dA − 0

A curve that is not simple crosses itself at one or more points and can be broken up  
into a number of simple curves. We have shown that the line integrals of F around these  
simple curves are all 0 and, adding these integrals, we see that yC F � dr − 0 for any 
closed curve C. Therefore yC F � dr is independent of path in D by Theo rem 16.3.3. It 
follows that F is a conservative vector field. ■

y

x
D

C

Cª

FIGURE 11

16.4 Exercises

1–4 Evaluate the line integral by two methods: (a) directly and  
(b) using Green’s Theorem.

 1. �yC y 2 dx 1 x 2y dy, 
C is the rectangle with vertices s0, 0d, s5, 0d, s5, 4d, and s0, 4d

 2. �yC y dx 2 x dy, 
C is the circle with center the origin and radius 4

 3. �yC xy dx 1 x 2y 3 dy, 
C is the triangle with vertices s0, 0d, (1, 0), and (1, 2)
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1160 CHAPTER 16  Vector Calculus

 4.  �yC x 2y 2 dx 1 xy dy,  C consists of the arc of the parabola 
y − x 2 from s0, 0d to s1, 1d and the line segments from s1, 1d 
to s0, 1d and from s0, 1d to s0, 0d

5–12 Use Green’s Theorem to evaluate the line integral along  
the given positively oriented curve.

 5.  yC ye x dx 1 2e x dy, 
 C is the rectangle with vertices s0, 0d, s3, 0d, s3, 4d,  
and s0, 4d

 6. yC lnsxyd dx 1 syyxd dy, 
 C is the rectangle with vertices s1, 1d, s1, 4d, s2, 4d,  
and s2, 1d

 7. yC x 2y 2 dx 1 y tan21y dy, 
C is the triangle with vertices s0, 0d, s1, 0d, and s1, 3d

 8.  yC sx 2 1 y 2d dx 1 sx 2 2 y 2d dy, 
C is the triangle with vertices s0, 0d, s2, 1d, and s0, 1d

 9.  yC (y 1 esx ) dx 1 s2x 1 cos y 2 d dy, 
C is the boundary of the region enclosed by the parabolas 
y − x 2 and x − y 2

 10.  yC y 4 dx 1 2xy 3 dy,  C is the ellipse x 2 1 2y 2 − 2

 11. yC y 3 dx 2 x 3 dy,  C is the circle x 2 1 y 2 − 4

 12.  yC s1 2 y 3d dx 1 sx 3 1 e y 2d dy,  C is the boundary of the 
region between the circles x 2 1 y 2 − 4 and x 2 1 y 2 − 9

13–18 Use Green’s Theorem to evaluate yC F � dr. (Check the  
orientation of the curve before applying the theorem.)

 13.  yC s3 1 e x 2d dx 1 stan21y 1 3x 2d dy

y

x

C

20

2

≈+¥=1

≈+¥=4

1

1

 14. yC sx 2y3 1 y 2d dx 1 sy 4y3 2 x 2d dy

y

x

C

(4, 0)0

x=¥
(4, 2)

 15.   Fsx, yd − k  y cos x 2 xy sin x, xy 1 x cos x l,   
C is the triangle from s0, 0d to s0, 4d to s2, 0d to s0, 0d

 16.  Fsx, yd − ke2x 1 y 2, e2y 1 x 2 l,   
C consists of the arc of the curve y − cos x from s2�y2, 0d 
to s�y2, 0d and the line segment from s�y2, 0d to s2�y2, 0d

 17.  Fsx, yd − ky 2 cos y, x sin yl,   
C is the circle sx 2 3d2 1 sy 1 4d2 − 4 oriented clockwise

 18.  Fsx, yd − ksx 2 1 1, tan21 xl ,  C is the triangle from s0, 0d 
to s1, 1d to s0, 1d to s0, 0d

19–20 Verify Green’s Theorem by using a computer algebra 
system to evaluate both the line integral and the double integral.

 19.  Psx, yd − x 3y 4,  Qsx, yd − x 5y 4, 
C consists of the line segment from s2�y2, 0d to s�y2, 0d 
followed by the arc of the curve y − cos x from s�y2, 0d  
to s2�y2, 0d

 20.  Psx, yd − 2x 2 x 3y 5,  Qsx, yd − x 3y 8, 
C is the ellipse 4x 2 1 y 2 − 4

 21.  Use Green’s Theorem to find the work done by the force 
Fsx, yd − xsx 1 yd i 1 xy 2 j in moving a particle from the  
origin along the x-axis to s1, 0d, then along the line segment  
to s0, 1d, and then back to the origin along the y-axis.

 22.  A particle starts at the origin, moves along the x-axis to  
s5, 0d, then along the quarter-circle x 2 1 y 2 − 25, x > 0,  
y > 0 to the point s0, 5d, and then down the y-axis  
back to the origin. Use Green’s Theorem to find  
the work done on this particle by the force field 
Fsx, yd − ksin x, siny 1 xy 2 1 1

3x 3l .

 23.  Use one of the formulas in (5) to find the area under one arch 
of the cycloid x − t 2 sin t, y − 1 2 cos t.

 24.  If a circle C with radius 1 rolls along the outside of the  
circle x 2 1 y 2 − 16, a fixed point P on C traces out a  
curve called an epicycloid, with parametric equations 
x − 5 cos t 2 cos 5t, y − 5 sin t 2 sin 5t. Graph the epi-
cycloid and use (5) to find the area it encloses.

 25. (a)  If C is the line segment connecting the point sx1, y1d to 
the point sx2, y2d, show that 

y
C
 x dy 2 y dx − x1 y2 2 x2 y1

 (b)  If the vertices of a polygon, in counterclockwise order, 
are sx1, y1 d, sx2, y2 d, . . . , sxn , yn d, show that the area of 
the polygon is

 A − 1
2 fsx1 y2 2 x2 y1 d 1 sx2 y3 2 x3 y2 d 1 ∙ ∙ ∙

   1 sxn21 yn 2 xn yn21 d 1 sxn y1 2 x1 yn dg

 (c)  Find the area of the pentagon with vertices s0, 0d, s2, 1d, 
s1, 3d, s0, 2d, and s21, 1d.

;
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 SECTION 16.5  Curl and Divergence 1161

and C is any positively oriented simple closed curve that 
encloses the origin.

 32.  Calculate yC F � dr, where Fsx, yd − kx 2 1 y, 3x 2 y 2 l and 
C is the positively oriented boundary curve of a region D that 
has area 6.

 33.  If F is the vector field of Example 5, show that yC F � dr − 0 
for every simple closed path that does not pass through or 
enclose the origin.

 34.  Complete the proof of the special case of Green’s Theorem 
by proving Equation 3.

 35.  Use Green’s Theorem to prove the change of variables  
formula for a double integral (Formula 15.9.9) for the case 
where f sx, yd − 1:

y
R

y dx dy − y
S

y Z −sx, yd
−su, vd Z  du dv

 Here R is the region in the xy-plane that corresponds to the 
region S in the uv-plane under the transformation given by 
x − tsu, vd, y − hsu, vd.
   [Hint: Note that the left side is AsRd and apply the first  
part of Equation 5. Convert the line integral over −R to a  
line integral over −S and apply Green’s Theorem in the  
uv-plane.]

 26.  Let D be a region bounded by a simple closed path C in the  
xy-plane. Use Green’s Theorem to prove that the coordi nates 
of the centroid sx, y d of D are

x −
1

2A
 �yC

 x 2 dy      y − 2
1

2A  �yC y
2 dx

where A is the area of D.

 27.  Use Exercise 26 to find the centroid of a quarter-circular 
region of radius a.

 28.  Use Exercise 26 to find the centroid of the triangle with  
vertices s0, 0d, sa, 0d, and sa, bd, where a . 0 and b . 0.

 29.  A plane lamina with constant density �sx, yd − � occupies a 
region in the xy-plane bounded by a simple closed path C. 
Show that its moments of inertia about the axes are

Ix − 2
�

3
 �yC

 y 3 dx   Iy −
�

3
 �yC

 x 3 dy

(See Section 15.4.)

 30.  Use Exercise 29 to find the moment of inertia of a circular 
disk of radius a with constant density � about a diameter. 
(Compare with Example 15.4.4.)

 31.  Use the method of Example 5 to calculate yC F � dr, where

Fsx, yd −
2xy i 1 sy 2 2 x 2d j

sx 2 1 y 2d2

Curl and Divergence

In this section we define two operations that can be performed on vector fields and that 
play a basic role in the applications of vector calculus to fluid flow and electricity and 
magnetism. Each operation resembles differentiation, but one produces a vector field 
whereas the other produces a scalar field.

■	 Curl
If F − P i 1 Q j 1 R k is a vector field on R 3 and the partial derivatives of P, Q, and R 
all exist, then the curl of F is the vector field on R 3 defined by

1  curl F − S −R

−y
2

−Q

−z D i 1 S −P

−z
2

−R

−x D j 1 S −Q

−x
2

−P

−y D k

As an aid to our memory, let’s rewrite Equation 1 using operator notation. We intro-
duce the vector differential operator = (“del”) as

= − i 
−

−x
1 j 

−

−y
1 k 

−

−z
 

16.5
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1162 CHAPTER 16  Vector Calculus

It has meaning when it operates on a scalar function to produce the gradient of f :

= f − i 
−f

−x
1 j 

−f

−y
1 k 

−f

−z
−

−f

−x
 i 1

−f

−y
 j 1

−f

−z
 k

If we think of = as a vector with components −y−x, −y−y, and −y−z, we can also consider 
the formal cross product of = with the vector field F as follows:

 = 3 F −   

i j k
−

−x

−

−y

−

−z

P Q R

 − S −R

−y
2

−Q

−z D i 1 S −P

−z
2

−R

−x D j 1 S −Q

−x
2

−P

−y D k

 − curl F

So the easiest way to remember Definition 1 is by means of the symbolic expression

2  curl F − = 3 F

EXAMPLE 1 If Fsx, y, zd − xz i 1 xyz j 2 y 2 k, find curl F.

SOLUTION Using Equation 2, we have

  curl F − = 3 F −   

i j k
−

−x

−

−y

−

−z

xz xyz 2y 2

  − F −

−y
 s2y 2 d 2

−

−z
 sxyzdG i 2 F −

−x
 s2y 2 d 2

−

−z
 sxzdG j

 1 F −

−x
 sxyzd 2

−

−y
 sxzdG k

  − s22y 2 xyd i 2 s0 2 xd j 1 syz 2 0d k

  − 2ys2 1 xd i 1 x j 1 yz k  ■

Recall that the gradient of a function f  of three variables is a vector field on R 3 and 
so we can compute its curl. The following theorem says that the curl of a gradient vector 
field is 0.

3  Theorem If f  is a function of three variables that has continuous second-
order partial derivatives, then

curls= f d − 0

 Most computer algebra systems 
have commands that compute the 
curl and divergence of vector fields. If 
you have access to a CAS, use these 
commands to check the answers to 
the examples and exercises in this 
section.
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PROOF We have

 
curls= f d − = 3 s= f d −

  

i j k
−

−x

−

−y

−

−z

−f

−x

−f

−y

−f

−z

 − S −2f

−y −z
2

−2f

−z −yD i 1 S −2f

−z −x
2

−2f

−x −zD j 1 S −2f

−x −y
2

−2f

−y −xD k

 − 0 i 1 0 j 1 0 k − 0

by Clairaut’s Theorem. ■

Since a conservative vector field is one for which F − = f , Theorem 3 can be re phrased 
as follows:

If F is conservative, then curl F − 0.

This gives us a way of verifying that a vector field is not conservative.

EXAMPLE 2 Show that the vector field Fsx, y, zd − xz i 1 xyz j 2 y 2 k is not  
conservative.

SOLUTION In Example 1 we showed that

curl F − 2ys2 1 xd i 1 x j 1 yz k

This shows that curl F ± 0 and so, by the remarks preceding this example, F is not 
conservative. ■

The converse of Theorem 3 is not true in general, but the following theorem says the 
converse is true if F is defined everywhere. (More generally it is true if the domain is  
simply-connected, that is, “has no hole.”) Theorem 4 is the three-dimensional version  
of Theorem 16.3.6. Its proof requires Stokes’ Theorem and is sketched at the end of  
Section 16.8.

4  Theorem If F is a vector field defined on all of R 3 whose component func-
tions have continuous partial derivatives and curl F − 0, then F is a conservative 
vector field.

EXAMPLE 3 
(a) Show that

Fsx, y, zd − y 2z3 i 1 2xyz3 j 1 3xy 2z2 k

is a conservative vector field.
(b) Find a function f  such that F − = f .

Notice the similarity to what we know  
from Section 12.4: a 3 a − 0 for 
every threedimensional vector a.

Compare this with Exercise 16.3.35.
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SOLUTION
(a) We compute the curl of F:

 curl F − = 3 F −   

i j k
−

−x

−

−y

−

−z

y2z3 2xyz3 3xy2z2

 − s6xyz2 2 6xyz2 d i 2 s3y 2z2 2 3y 2z2 d j 1 s2yz3 2 2yz3 d k

 − 0

Since curl F − 0 and the domain of F is R 3, F is a conservative vector field by  
Theorem 4.

(b) The technique for finding f  was given in Section 16.3. We have

5   fxsx, y, zd − y 2z3  

6   fysx, y, zd − 2xyz3  

7   fzsx, y, zd − 3xy 2z2 

Integrating (5) with respect to x, we obtain

8  f sx, y, zd − xy 2z3 1 tsy, zd 

Differentiating (8) with respect to y, we get fysx, y, zd − 2xyz3 1 tysy, zd, so compari-
son with (6) gives tysy, zd − 0. Thus tsy, zd − hszd and

fzsx, y, zd − 3xy 2z2 1 h9szd

Then (7) gives h9szd − 0. Therefore

 f sx, y, zd − xy 2z3 1 K ■

The reason for the name curl is that the curl vector is associated with rotations. One 
connection is explained in Exercise 39. Another occurs when F represents the velocity 
field in fluid flow (see Example 16.1.3). In Section 16.8 we show that particles near 
sx, y, zd in the fluid tend to rotate about the axis that points in the direction of 
curl Fsx, y, zd, following the right-hand rule, and the length of this curl vector is a mea-
sure of how quickly the particles move around the axis (see Figure 1). If curl F − 0 at 
a point P, then the fluid is free from rotations at P and F is called irrota tional at P. In 
this case, a tiny paddle wheel moves with the fluid but doesn’t rotate about its axis. If 
curl F ± 0, the paddle wheel rotates about its axis.

As an illustration, each vector field F in Figure 2 represents the velocity field of a 
fluid. In Figure 2(a), curl F ± 0 at most points, including P1 and P2. A tiny paddle wheel 
placed at P1 would rotate counterclockwise about its axis (the fluid near P1 flows roughly 
in the same direction but with greater velocity on one side of the point than on the other), 
so the curl vector at P1 points in the direction of k. Similarly, a paddle wheel at P2 would 
rotate clockwise and the curl vector there points in the direction of 2k. In Figure 2(b), 
curl F − 0 everywhere. A paddle wheel placed at P moves with the fluid but doesn’t 
rotate about its axis.

(x, y, z)

curl F(x, y, z)

FIGURE 1
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y

P¡
P™

(a) F(x, y, z)=sin y i+cos x j
 curl F(x, y, z)=_(sin x+cos y) k

P

(b) F(x, y, z)=2xy i+(≈+y) j
 curl F(x, y, z)=0

x

y

x

FIGURE 2 Velocity fields in fluid flow. (Only the part of F in the xy-plane is shown; the 
vector field looks the same in all horizontal planes because F is independent of z and the  
z-component is 0.)

■	 Divergence
If F − P i 1 Q j 1 R k is a vector field on R 3 and −Py−x, −Qy−y, and −Ry−z exist, then 
the divergence of F is the function of three variables defined by

9
 

div F −
−P

−x
1

−Q

−y
1

−R

−z

(If F is a vector field on R2, then div F is a function of two variables defined similarly to 
the three-variable case.) Observe that curl F is a vector field but div F is a scalar field. In 
terms of the gradient operator = − s−y−xd i 1 s−y−yd j 1 s−y−zd k, the divergence of F 
can be written symbolically as the dot product of = and F:

10  div F − = � F

EXAMPLE 4 If Fsx, y, zd − xz i 1 xyz j 2 y 2 k, find div F.

SOLUTION By the definition of divergence (Equation 9 or 10), we have

  div F − = � F −
−

−x
 sxzd 1

−

−y
 sxyzd 1

−

−z
 s2y 2 d − z 1 xz ■

If F is a vector field on R 3, then curl F is also a vector field on R 3. As such, we can  
compute its divergence. The next theorem shows that the result is 0.

11  Theorem If F − P i 1 Q j 1 R k is a vector field on R 3 and P, Q, and R 
have continuous second-order partial derivatives, then

div curl F − 0

In Section 16.8 we give a more 
detailed explanation of curl and its 
interpretation (as a consequence of 
Stokes' Theorem).
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1166 CHAPTER 16  Vector Calculus

PROOF Using the definitions of divergence and curl, we have

 div curl F − = � s= 3 Fd

 −
−

−x
 S −R

−y
2

−Q

−z D 1
−

−y
 S −P

−z
2

−R

−x D 1
−

−z
 S −Q

−x
2

−P

−y D
 −

−2R

−x −y
2

−2Q

−x −z
1

−2P

−y −z
2

−2R

−y −x
1

−2Q

−z −x
2

−2P

−z −y

 − 0

because the terms cancel in pairs by Clairaut’s Theorem. ■

EXAMPLE 5 Show that the vector field Fsx, y, zd − xz i 1 xyz j 2 y 2 k can’t be  
written as the curl of another vector field, that is, F ± curl G for any vector field G.

SOLUTION In Example 4 we showed that

div F − z 1 xz

and therefore div F ± 0. If it were true that F − curl G, then Theorem 11 would give

div F − div curl G − 0

which contradicts div F ± 0. Therefore F is not the curl of another vector field. ■

Again, the reason for the name divergence can be understood in the context of fluid 
flow. If Fsx, y, zd is the velocity of a fluid (or gas), then div Fsx, y, zd represents the net 
rate of change (with respect to time) of the mass of fluid (or gas) flowing from the point 
sx, y, zd per unit volume. In other words, div Fsx, y, zd measures the tendency of the fluid 
to diverge from the point sx, y, zd. If div F − 0, then F is said to be incompressible.

As an illustration, each vector field F in Figure 3 represents the velocity field of a 
fluid. In Figure 3(a), div F ± 0 in general. For instance, at the point P1, div F is negative 
(the vectors that start near P1 are shorter than those that end near P1, so the net flow is 
inward there). At the point P2, div F is positive (the vectors that start near P2 are longer 
than those that end near P2, so the net flow is outward there). In Figure 3(b), div F − 0 
everywhere (the vectors that start and end near any point P are about the same length). 

y

x

P¡ P™

(a) F(x, y, z)=(1+≈) i+y j
 div F(x, y, z)=2x+1

y

x

P

(b) F(x, y, z)=_x i+y j
 div F(x, y, z)=0

Note the analogy with the scalar 
triple product: a � sa 3 bd − 0.

The reason for this interpretation of 
div F will be explained at the end of 
Section 16.9 as a consequence of the 
Divergence Theorem.

FIGURE 3  
Velocity fields in fluid flow. (Only the 
part of F in the xy-plane is shown; 
the vector field looks the same in 
all horizontal planes because F is 
independent of z and the z-component 
is 0.)
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 SECTION 16.5  Curl and Divergence 1167

Another differential operator occurs when we compute the divergence of a gradient 
vector field = f . If f  is a function of three variables, we have

divs= f d − = � s= f d −
−2f

−x 2 1
−2f

−y 2 1
−2f

−z2

and this expression occurs so often that we abbreviate it as = 2 f . The operator

= 2 − = � =

is called the Laplace operator because of its relation to Laplace’s equation

= 2 f −
−2f

−x 2 1
−2f

−y 2 1
−2f

−z2 − 0

We can also apply the Laplace operator = 2 to a vector field

F − P i 1 Q j 1 R k

in terms of its components:

= 2 F − = 2P i 1 = 2Q j 1 = 2R k

■	 Vector Forms of Green’s Theorem
The curl and divergence operators allow us to rewrite Green’s Theorem in versions that 
will be useful in our later work. We suppose that the plane region D, its boundary curve  
C, and the functions P and Q satisfy the hypotheses of Green’s Theorem. Then we con-
sider the vector field F − P i 1 Q j. Its line integral is

 �y
C
 F � dr − � y

C
 P dx 1 Q dy

and, regarding F as a vector field on R3 with third component 0, we have

curl F −   

i j k
−

−x

−

−y

−

−z

Psx, yd Qsx, yd 0

 − S −Q

−x
2

−P

−y D k

Therefore

scurl Fd � k − S −Q

−x
2

−P

−y D k � k −
−Q

−x
2

−P

−y

and we can now rewrite the equation in Green’s Theorem in the vector form

12  �y
C
 F � dr − �y

C
 F � T ds − y

D

y scurl Fd � k dA

Equation 12 expresses the line integral of the tangential component of F along C as 
the double integral of the vertical component of curl F over the region D enclosed by C. 
We now derive a similar formula involving the normal component of F.
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1168 CHAPTER 16  Vector Calculus

If C is given by the vector equation

rstd − xstd i 1 ystd j    a < t < b

then the unit tangent vector (see Section 13.2) is

Tstd −
x9std

| r9std |  i 1
 y9std

| r9std |  j

You can verify that the outward unit normal vector to C is given by

nstd −
 y9std

| r9std |  i 2
x9std

| r9std |  j

(See Figure 4.) Then, from Equation 16.2.3, we have

  �  y
C
 F � n ds − yb

a
 sF � ndstd | r9std | dt

 − yb

a
 FPsxstd, ystdd y9std

| r9std | 2
Qsxstd, ystdd x9std

| r9std | G | r9std | dt

 − yb

a
 Psxstd, ystdd y9std dt 2 Qsxstd, ystdd x9std dt

 − y
C
 P dy 2 Q dx − y

D

y S −P

−x
1

−Q

−y D dA

by Green’s Theorem. But the integrand in this double integral is just the divergence  
of F. So we have a second vector form of Green’s Theorem.

13  � y
C
 F � n ds − y

D

y div Fsx, yd dA

This version says that the line integral of the normal component of F along C is equal to 
the double integral of the divergence of F over the region D enclosed by C.

0

y

x

D

C

r(t) n(t)

T(t)

FIGURE 4

16.5 Exercises

1–8 Find (a) the curl and (b) the divergence of the vector field.

 1. Fsx, y, zd − xy 2z 2 i 1 x 2yz 2 j 1 x 2y 2z k

 2. Fsx, y, zd − x 3yz 2 j 1 y 4z 3 k

 3. Fsx, y, zd − xye z i 1 yze x k

 4. Fsx, y, zd − sin yz i 1 sin zx j 1 sin xy k

 5. Fsx, y, zd −
sx 

1 1 z
 i 1

sy 

1 1 x
 j 1

sz 

1 1 y
 k

 6. Fsx, y, zd − lns2y 1 3zd i 1 lnsx 1 3zd j 1 lnsx 1 2yd k

 7. Fsx, y, zd − ke x sin y, e y sin z , e z sin xl

 8. Fsx, y, zd − karctansxyd, arctansyzd, arctanszxdl

9–12 The vector field F is shown in the xy-plane and looks the 
same in all other horizontal planes. (In other words, F is inde pen - 
d ent of z and its z-component is 0.)
(a) Is div F positive, negative, or zero at P? Explain.
(b) Determine whether curl F − 0. If not, in which direction does 

curl F point at P?

 9. y

x0

P

 10. y

x0

P
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 SECTION 16.5  Curl and Divergence 1169

 25. divsF 1 Gd − div F 1 div G

 26. curlsF 1 Gd − curl F 1 curl G

 27. divs f Fd − f  div F 1 F � = f

 28. curls f Fd − f  curl F 1 s= f d 3 F

 29. divsF 3 Gd − G � curl F 2 F � curl G

 30. divs= f 3 =td − 0

 31. curlscurl Fd − gradsdiv Fd 2 = 2 F

32–34 Let r − x i 1 y j 1 z k and r − | r |.
 32. Verify each identity.
  (a) = � r − 3 (b) = � srrd − 4r
  (c) = 2r 3 − 12r

 33. Verify each identity.
  (a) =r − ryr (b) = 3 r − 0
  (c) =s1yrd − 2ryr 3 (d) = ln r − ryr 2

 34.  If F − ryr p, find div F. Is there a value of p for which  
div F − 0?

 35.  Use Green’s Theorem in the form of Equation 13 to prove 
Green’s first identity:

y
D

y f =2t dA − �y
C
 f s=td � n ds 2 y

D

y = f � =t dA

where D and C satisfy the hypotheses of Green’s Theorem  
and the appropriate partial derivatives of f  and t exist and are 
continuous. (The quantity =t � n − Dn t occurs in the line 
integral; it is the directional derivative in the direction of the 
normal vector n and is called the normal derivative of t.)

 36.  Use Green’s first identity (Exercise 35) to prove Green’s  
second identity:

y
D

y s f =2t 2 t=2f d dA − �  y
C
 s f =t 2 t= f d � n ds

   where D and C satisfy the hypotheses of Green’s Theorem  
and the appropriate partial derivatives of f  and t exist and are 
continuous.

 37.  Recall from Section 14.3 that a function t is called harmonic 
on D if it satisfies Laplace’s equation, that is, =2t − 0 on D. 
Use Green’s first identity (with the same hypotheses as in 
Exercise 35) to show that if t is harmonic on D, then 
�  yC Dn t ds − 0. Here Dn t is the normal derivative of t 
defined in Exercise 35.

 38.  Use Green’s first identity to show that if f  is harmonic  
on D, and if f sx, yd − 0 on the boundary curve C, then 
yyD | =f |2

 dA − 0. (Assume the same hypotheses as in  
Exercise 35.)

 11. y

x0

P

 12. y

0

P

x

 13. (a) Verify Formula 3 for f sx, y, zd − sin xyz.
 (b) Verify Formula 11 for Fsx, y, zd − xyz 2 i 1 x 2yz 3 j 1 y 2 k.

 14.  Let f  be a scalar field and F a vector field. State whether  
each expression is meaningful. If not, explain why. If so, 
state whether it is a scalar field or a vector field.

  (a)  curl f  (b) grad f
  (c)  div F (d) curlsgrad f d
  (e)  grad F (f) gradsdiv Fd
  (g)  divsgrad f d (h) gradsdiv f d
  (i)  curlscurl Fd (j) divsdiv Fd
  (k)  sgrad f d 3 sdiv Fd (l) divscurlsgrad f dd

15–20 Determine whether or not the vector field is conservative.  
If it is conservative, find a function f  such that F − = f .

 15. Fsx, y, zd − k2xy 3z 2, 3x 2y 2z 2, 2x 2y 3zl

 16. Fsx, y, zd − kyz, xz 1 y, xy 2 xl

 17. Fsx, y, zd − kln y, sxyyd 1 ln z, yyzl

 18.  Fsx, y, zd − yz sin xy i 1 xz sin xy j 2 cos xy k

 19.  Fsx, y, zd − yz 2e xz i 1 ze xz j 1 xyze xz k

 20.  Fsx, y, zd − e z cos x  i 1 e y cos z  j 1 se z sin x 2 e y sin zd k

 21.  Is there a vector field G on R 3 such that 
curl G − kx sin y, cos y, z 2 xyl? Explain.

 22.  Is there a vector field G on R 3 such that curl G − kx, y, zl? 
Explain.

 23.  Show that any vector field of the form

Fsx, y, zd − f sxd i 1 tsyd j 1 hszd k

where f , t, h are differentiable functions, is irrotational.

 24.  Show that any vector field of the form

Fsx, y, zd − f sy, zd i 1 tsx, zd j 1 hsx, yd k

is incompressible.

25–31 Prove the identity, assuming that the appropriate partial 
derivatives exist and are continuous. If f  is a scalar field and F, 
G are vector fields, then f F, F � G, and F 3 G are defined by

 s f Fdsx, y, zd − f sx, y, zd Fsx, y, zd
 sF � Gdsx, y, zd − Fsx, y, zd � Gsx, y, zd

 sF 3 Gdsx, y, zd − Fsx, y, zd 3 Gsx, y, zd
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1170 CHAPTER 16  Vector Calculus

 39.  This exercise demonstrates a connection between the curl  
vector and rotations. Let B be a rigid body rotating about the  
z-axis. The rotation can be described by the vector w − �k, 
where � is the angular speed of B, that is, the tangential speed 
of any point P in B divided by the distance d from the axis of 
rotation. Let r − kx, y, zl be the position vector of P.

  (a)  By considering the angle � in the figure, show that the 
velocity field of B is given by v − w 3 r.

  (b) Show that v − 2�y i 1 � x j.
  (c) Show that curl v − 2w.

0

¨

P

d

B

w

v

z

y

x

 40.  Maxwell’s equations relating the electric field E and magnetic 
field H as they vary with time in a region containing no 
charge and no current can be stated as follows:

 div E − 0        div H − 0

 curl E − 2
1

c
 
−H
−t

       curl H −
1

c
 
−E
−t

   where c is the speed of light. Use these equations to prove the 
following:

 (a) = 3 s= 3 Ed − 2
1

c 2  
−2 E
−t 2

 (b) = 3 s= 3 Hd − 2
1

c 2  
−2 H
−t 2

 (c) = 2E −
1

c 2  
−2 E
−t 2   [Hint: Use Exercise 31.]

 (d) = 2H −
1

c 2  
−2 H
−t 2

 41.  We have seen that all vector fields of the form F − =t  
satisfy the equation curl F − 0 and that all vector fields of the 
form F − curl G satisfy the equation div F − 0 (assuming  
continuity of the appropriate partial derivatives). This sug-
gests the question: are there any equations that all functions 
of the form f − div G must satisfy? Show that the answer to 
this question is “no” by proving that every continuous func- 
tion f  on R 3 is the divergence of some vector field. 
   [Hint: Let Gsx, y, zd − ktsx, y, zd, 0, 0l, where 
tsx, y, zd − yx

0 f st, y, zd dt.]

Parametric Surfaces and Their Areas

So far we have considered special types of surfaces: cylinders, quadric surfaces, graphs 
of functions of two variables, and level surfaces of functions of three variables. Here we 
use vector functions to describe more general surfaces, called parametric surfaces, and 
compute their areas. Then we take the general surface area formula and see how it applies 
to special surfaces.

■	 Parametric Surfaces
In much the same way that we describe a space curve by a vector function rstd of a single 
parameter t, we can describe a surface by a vector function rsu, vd of two param  eters u  
and v. We suppose that

1  rsu, vd − xsu, vd i 1 ysu, vd j 1 zsu, vd k 

is a vector-valued function defined on a region D in the uv-plane. So x, y, and z, the com-
ponent functions of r, are functions of the two variables u and v with domain D. The set 
of all points sx, y, zd in R 3 such that

2  x − xsu, vd    y − ysu, vd    z − zsu, vd 

and su, vd varies throughout D, is called a parametric surface S and Equations 2 are 
called parametric equations of S. Each choice of u and v gives a point on S; by making 

16.6
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 SECTION 16.6  Parametric Surfaces and Their Areas 1171

all choices, we get all of S. In other words, the surface S is traced out by the tip of the 
position vector rsu, vd as su, vd moves throughout the region D. (See Figure 1.)

0

z

x y

S

r(u, √)
0

√

u

D
(u, √)

r

EXAMPLE 1 Identify and sketch the surface with vector equation

rsu, vd − 2 cos u i 1 v j 1 2 sin u k

SOLUTION The parametric equations for this surface are

x − 2 cos u    y − v    z − 2 sin u

So for any point sx, y, zd on the surface, we have

x 2 1 z2 − 4 cos2u 1 4 sin2u − 4

This means that vertical cross-sections parallel to the xz-plane (that is, with y constant) 
are all circles with radius 2. Since y − v and no restriction is placed on v, the surface  
is a circular cylinder with radius 2 whose axis is the y-axis (see Figure 2). ■

In Example 1 we placed no restrictions on the parameters u and v and so we obtained 
the entire cylinder. If, for instance, we restrict u and v by writing the parameter domain 
as

0 < u < �y2    0 < v < 3

then x > 0, z > 0, 0 < y < 3, and we get the quarter-cylinder with length 3 illustrated 
in Figure 3.

If a parametric surface S is given by a vector function rsu, vd, then there are two useful 
families of curves that lie on S, one family with u constant and the other with v constant. 
These families correspond to vertical and horizontal lines in the uv-plane. If we keep u 
constant by putting u − u0, then rsu0, vd becomes a vector function of the single param-
eter v and defines a curve C1 lying on S. (See Figure 4.)

0

z

y
x

C¡

C™

r

0

D

√=√¸

(u     ¸, √¸)

u=u¸

u

√

FIGURE 1  
A parametric surface

0

(0, 0, 2)

(2, 0, 0)

x

z

y

FIGURE 2

0

(0, 3, 2)

x
y

z

FIGURE 3

FIGURE 4
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1172 CHAPTER 16  Vector Calculus

Similarly, if we keep v constant by putting v − v0, we get a curve C2 given by rsu, v0 d 
that lies on S. We call these curves grid curves. (In Example 1, for instance, the grid 
curves obtained by letting u be constant are horizontal lines, whereas the grid curves with 
v constant are circles.) In fact, when a computer graphs a parametric surface, it some-
times depicts the surface by plotting these grid curves, as we will see in the following 
example.

EXAMPLE 2 Use a computer to graph the surface

rsu, vd − ks2 1 sin vd cos u, s2 1 sin vd sin u, u 1 cos vl

Which grid curves have u constant? Which have v constant?

SOLUTION We graph the portion of the surface with parameter domain 0 < u < 4�,
0 < v < 2� in Figure 5. It has the appearance of a spiral tube. To identify the grid 
curves, we write the corresponding parametric equations:

x − s2 1 sin vd cos u    y − s2 1 sin vd sin u    z − u 1 cos v

If v is constant, then sin v and cos v are constant, so the parametric equations resemble 
those of the helix in Example 13.1.4. Thus the grid curves with v constant are the spiral 
curves in Figure 5. We deduce that the grid curves with u constant must be the curves 
that look like circles in the figure. Further evidence for this assertion is that if u is kept 
constant, u − u0, then the equation z − u0 1 cos v shows that the z-values vary from 
u0 2 1 to u0 1 1. ■

In Examples 1 and 2 we were given a vector equation and asked to graph the corre-
sponding parametric surface. In the following examples, however, we are given the more 
challenging problem of finding a vector function to represent a given surface. In the rest 
of this chapter we will often need to do exactly that.

EXAMPLE 3 Find a vector function that represents the plane that passes through the 
point P0 with position vector r0 and that contains two nonparallel vectors a and b.

SOLUTION If P is any point in the plane, we can get from P0 to P by moving a certain 
distance in the direction of a and another distance in the direction of b. So there are
scalars u and v such that    P0 PA − ua 1 vb. (Figure 6 illustrates how this works, by 
means of the Parallelogram Law, for the case where u and v are positive. See also  
Exercise 12.2.46.) If r is the position vector of P, then

r − OP0A 1 P0 PA − r0 1 ua 1 vb

So the vector equation of the plane can be written as

rsu, vd − r0 1 ua 1 vb

where u and v are real numbers.
If we write r − kx, y,  z l, r0 − kx0, y0, z0 l, a − ka1, a2, a3 l, and b − kb1, b2, b3 l,  

then we can write the parametric equations of the plane through the point sx0, y0, z0 d as 
follows:

 x − x0 1 ua1 1 vb1    y − y0 1 ua2 1 vb2    z − z0 1 ua3 1 vb3 ■

EXAMPLE 4 Find a parametric representation of the sphere

x 2 1 y 2 1 z2 − a 2

z

√ constant

u constant

yx

FIGURE 5

P

ua
P¸

√b

a

b

FIGURE 6
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 SECTION 16.6  Parametric Surfaces and Their Areas 1173

SOLUTION The sphere has a simple representation � − a in spherical coordinates,  
so let’s choose the angles � and � in spherical coordinates as the parameters (see 
Section 15.8). Then, putting � − a in the equations for conversion from spherical to 
rectangular coordinates (Equations 15.8.1), we obtain

x − a sin � cos �    y − a sin � sin �    z − a cos �

as the parametric equations of the sphere. The corresponding vector equation is

rs�, �d − a sin � cos � i 1 a sin � sin � j 1 a cos � k

We have 0 < � < � and 0 < � < 2�, so the parameter domain is the rectangle 
D − f0, �g 3 f0, 2�g. The grid curves with � constant are the circles of constant 
latitude (including the equator). The grid curves with � constant are the meridians 
(semi circles), which connect the north and south poles (see Figure 7).

 
0

2π

¨

˙

k

c π

D

˙=c

¨=k

˙=c

¨=k

0

z

x
y

r

 ■

NOTE We saw in Example 4 that the grid curves for a sphere are curves of constant 
latitude or constant longitude. For a general parametric surface we are really making a 
map and the grid curves are similar to lines of latitude and longitude. Describing a point 
on a parametric surface (like the one in Figure 5) by giving specific values of u and v is 
like giving the latitude and longitude of a point.

FIGURE 8 FIGURE 9

EXAMPLE 5 Find a parametric representation for the cylinder

x 2 1 y 2 − 4    0 < z < 1

SOLUTION The cylinder has a simple representation r − 2 in cylindrical coordinates, 
so we choose as parameters � and z in cylindrical coordinates. Then the parametric 
equations of the cylinder are

x − 2 cos �    y − 2 sin �    z − z

where 0 < � < 2� and 0 < z < 1. In vector notation,

rs�, zd − 2 cos � i 1 2 sin � j 1 z k

FIGURE 7

One of the uses of parametric surfaces is in com
puter graphics. Figure 8 shows the result of trying 
to graph the sphere x 2 1 y 2 1 z2 − 1 by solving 
the equation for z and graphing the top and bottom 
hemispheres separately. Part of the sphere appears 
to be missing because of the rectangular grid sys
tem used by the software. The much better picture 
in Figure 9 was produced by a computer using the 
parametric equations found in Example 4.
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1174 CHAPTER 16  Vector Calculus

and the vector function r maps the parameter domain 

D − hs�, zd | 0 < � < 2�, 0 < z < 1j

to a cylinder, as shown in Figure 10.
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 ■

EXAMPLE 6 Find a vector function that represents the elliptic paraboloid 
z − x 2 1 2y 2.

SOLUTION If we regard x and y as parameters, then the parametric equations are  
simply

x − x    y − y    z − x 2 1 2y 2

and the vector equation is

 rsx, yd − x i 1 y j 1 sx 2 1 2y 2 d k ■

In general, a surface given as the graph of a function of x and y, that is, with an equa-
tion of the form z − f sx, yd, can always be regarded as a parametric surface by taking x 
and y as parameters and writing the parametric equations as

x − x    y − y    z − f sx, yd

Parametric representations (also called parametrizations) of surfaces are not unique. 
The next example shows two ways to parametrize a cone.

EXAMPLE 7 Find a parametric representation for the surface z − 2sx 2 1 y 2 , that is, 
the top half of the cone z2 − 4x 2 1 4y 2.

SOLUTION 1 One possible representation is obtained by choosing x and y as  
parameters:

x − x    y − y    z − 2sx 2 1 y 2 

So the vector equation is

rsx, yd − x i 1 y j 1 2sx 2 1 y 2  k

SOLUTION 2 Another representation results from choosing as parameters the polar  
coordinates r and �. A point sx, y, zd on the cone satisfies x − r cos �, y − r sin �, and 
z − 2sx 2 1 y 2 − 2r. So a vector equation for the cone is

rsr, �d − r cos � i 1 r sin � j 1 2r k

where r > 0 and 0 < � < 2�. ■

FIGURE 10
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 SECTION 16.6  Parametric Surfaces and Their Areas 1175

For some purposes the parametric representations in Solutions 1 and 2 of Example 7 
are equally good, but Solution 2 might be preferable in certain situations. If we are inter-
ested only in the part of the cone that lies below the plane z − 1, for instance, all we have 
to do in Solution 2 is change the parameter domain to 

D − hsr, �d | 0 < r < 1
2 , 0 < � < 2�j

Then the vector function r maps the region D to the half-cone shown in Figure 11.

r

0 ¨

r

k

c 2π

1
2

D

z

y

x

r=k

¨=c

1

■	 Surfaces of Revolution
Surfaces of revolution can be represented parametrically. For instance, let’s consider the 
surface S obtained by rotating the curve y − f sxd, a < x < b, about the x-axis, where 
f sxd > 0. Let � be the angle of rotation as shown in Figure 12. If sx, y, zd is a point on S, 
then

3  x − x    y − f sxd cos �    z − f sxd sin � 

Therefore we take x and � as parameters and regard Equations 3 as parametric equations 
of S. The parameter domain is given by a < x < b, 0 < � < 2�.

EXAMPLE 8 Find parametric equations for the surface generated by rotating the curve 
y − sin x, 0 < x < 2�, about the x-axis. Use these equations to graph the surface of 
revolution.

SOLUTION From Equations 3, the parametric equations are

x − x    y − sin x cos �    z − sin x sin �

and the parameter domain is 0 < x < 2�, 0 < � < 2�. Using a computer to plot these 
equations, we obtain the graph in Figure 13. ■

We can adapt Equations 3 to represent a surface obtained through revolution about the 
y- or z-axis (see Exercise 30).

■	 Tangent Planes
We now find the tangent plane to a parametric surface S traced out by a vector function

rsu, vd − xsu, vd i 1 ysu, vd j 1 zsu, vd k

at a point P0 with position vector rsu0, v0 d. If we keep u constant by putting u − u0, then 
rsu0, vd becomes a vector function of the single parameter v and defines a grid curve C1 

FIGURE 11

0

z

y

x

¨
z

x

(x, y, z)

y=ƒ

ƒ

ƒ

FIGURE 12

z y

x

FIGURE 13
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1176 CHAPTER 16  Vector Calculus

lying on S. (See Figure 14.) The tangent vector to C1 at P0 is obtained by taking the par-
tial derivative of r with respect to v:

4  rv −
−x

−v
 su0, v0 d i 1

−y

−v
 su0, v0 d j 1

−z

−v
 su0, v0 d k 

0

z

yx

C¡

C™

ru
r√

P¸

0 u

D

√=√¸

(u¸, √¸)

u=u¸

√

r

Similarly, if we keep v constant by putting v − v0, we get a grid curve C2 given by 
rsu, v0 d that lies on S, and its tangent vector at P0 is

5  ru −
−x

−u
 su0, v0 d i 1

−y

−u
 su0, v0 d j 1

−z

−u
 su0, v0 d k 

If ru 3 rv is never 0, then the surface S is called smooth (it has no “corners”). For a 
smooth surface, the tangent plane is the plane that contains the tangent vectors ru and rv, 
and the vector ru 3 rv is a normal vector to the tangent plane.

EXAMPLE 9 Find the tangent plane to the surface with parametric equations x − u 2, 
y − v2, z − u 1 2v at the point s1, 1, 3d.

SOLUTION We first compute the tangent vectors:

 ru −
−x

−u
 i 1

−y

−u
 j 1

−z

−u
 k − 2u i 1 k

 rv −
−x

−v
 i 1

−y

−v
 j 1

−z

−v
 k − 2v j 1 2 k

Thus a normal vector to the tangent plane is

ru 3 rv − Z i
2u

0

j
0

2v

k
1

2
Z − 22v i 2 4u j 1 4uv k

Notice that the point s1, 1, 3d corresponds to the parameter values u − 1 and v − 1, so 
the normal vector there is

22 i 2 4 j 1 4 k

Therefore an equation of the tangent plane at s1, 1, 3d is

 22sx 2 1d 2 4sy 2 1d 1 4sz 2 3d − 0

or  x 1 2y 2 2z 1 3 − 0 ■

FIGURE 14

Figure 15 shows the selfintersecting  
surface in Example 9 and its tangent 
plane at s1, 1, 3d.

z

x

y

(1, 1, 3)

FIGURE 15
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 SECTION 16.6  Parametric Surfaces and Their Areas 1177

■	 Surface Area
Now we define the surface area of a general parametric surface given by Equation 1. For 
simplicity we start by considering a surface S whose parameter domain D is a rectangle, 
and we divide it into subrectangles Rij . Let’s choose sui*, vj*d to be the lower left corner 
of Rij . (See Figure 16.)

0

y

z

x

Pij
Sijr

(u*i , √*j )
0 u

√

Îu

Rij

Î√D

S

The part Sij of the surface S that corresponds to Rij is called a patch and has the point 
Pij with position vector rsui*, vj*d as one of its corners. Let

ru* − rusui*, vj*d    and    rv* − rvsui*, vj*d

be the tangent vectors at Pij as given by Equations 5 and 4.
Figure 17(a) shows how the two edges of the patch that meet at Pij can be approxi-

mated by vectors. These vectors, in turn, can be approximated by the vectors Du ru* and 
Dv rv* because partial derivatives can be approximated by difference quotients. So 
we approxi mate Sij by the parallelogram determined by the vectors Du ru* and Dv rv*. 
This parallelogram is shown in Figure 17(b) and lies in the tangent plane to S at Pij. The 
area of this parallelogram is

| sDu ru*d 3 sDv rv*d | − | ru* 3 rv* | Du Dv

and so an approximation to the area of S is

o
m

i−1
 o

n

j−1
 | ru* 3 rv* | Du Dv

Our intuition tells us that this approximation gets better as we increase the number of 
subrectangles, and we recognize the double sum as a Riemann sum for the double inte-
gral yyD | ru 3 rv | du dv. This motivates the following definition.

6  Definitio  If a smooth parametric surface S is given by the equation

rsu, vd − xsu, vd i 1 ysu, vd j 1 zsu, vd k    su, vd [ D

and S is covered just once as su, vd ranges throughout the parameter domain D, 
then the surface area of S is

AsSd − y
D

y | ru 3 rv | dA

where ru −
−x

−u
 i 1

−y

−u
 j 1

−z

−u
 k      rv −

−x

−v
 i 1

−y

−v
 j 1

−z

−v
 k

FIGURE 16  
The image of the  

subrectangle Rij is the patch Sij.

(b)

(a)
Pij

Sij

Î√  r*√

Îu r*u

FIGURE 17  
Approximating a patch by a 
parallelogram
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1178 CHAPTER 16  Vector Calculus

EXAMPLE 10 Find the surface area of a sphere of radius a.

SOLUTION In Example 4 we found the parametric representation

x − a sin � cos �    y − a sin � sin �    z − a cos �

where the parameter domain is

D − hs�, �d | 0 < � < �, 0 < � < 2�j

We first compute the cross product of the tangent vectors:

 
r� 3 r� − Z i j k

−x

−�

−y

−�

−z

−�

−x

−�

−y

−�

−z

−�

Z − Z i
   a cos � cos �

2a sin � sin �

j
a cos � sin �

a sin � cos �

k
2a sin �

0
Z

 − a 2 sin2� cos � i 1 a 2 sin2� sin � j 1 a 2 sin � cos � k

Thus

 | r� 3 r� | − sa 4 sin4� cos 2� 1 a 4 sin4� sin2� 1 a 4 sin2� cos 2� 

 − sa 4 sin4� 1 a 4 sin2� cos 2� − a 2 ssin2� − a 2 sin �

since sin � > 0 for 0 < � < �. Therefore, by Definition 6, the area of the sphere is

 A − y
D

y | r� 3 r� | dA − y2�

0
 y�

0
 a 2 sin � d� d�

  − a 2 y2�

0
 d� y�

0
 sin � d� − a 2s2�d2 − 4�a 2 ■

■	 Surface Area of the Graph of a Function
For the special case of a surface S with equation z − f sx, yd, where sx, yd lies in D and f  
has continuous partial derivatives, we take x and y as parameters. The parametric equa-
tions are

x − x    y − y    z − f sx, yd

so rx − i 1 S −f

−xD k      ry − j 1 S −f

−yD k

and

7  rx 3 ry − Z i j k

1 0
−f

−x

0 1
−f

−y

Z − 2
−f

−x

 
i 2

−f

−y

 
j 1 k 

Thus we have

8  | rx 3 ry | − ÎS −f

−xD2

1 S −f

−yD2

1 1 − Î1 1 S −z

−xD2

1 S −z

−yD2
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and the surface area formula in Definition 6 becomes

9
 

AsSd − y
D

y Î1 1 S −z

−xD2

1 S −z

−yD2 

 dA

EXAMPLE 11 Find the area of the part of the paraboloid z − x 2 1 y 2 that lies under 
the plane z − 9.

SOLUTION The plane intersects the paraboloid in the circle x 2 1 y 2 − 9, z − 9. 
Therefore the given surface lies above the disk D with center the origin and radius 3. 
(See Figure 18.) Using Formula 9, we have

 A − y
D

y Î1 1 S −z

−xD2

1 S −z

−yD2 

 dA

 − y
D

y s1 1 s2xd 2 1 s2yd 2  dA − y
D

y s1 1 4sx 2 1 y 2 d dA

Converting to polar coordinates, we obtain

 A − y2�

0
 y3

0
 s1 1 4r 2  r dr d� − y2�

0
 d� y3

0
 rs1 1 4r 2  dr

  − 2�(1
8)2

3 s1 1 4r 2 d3y2 g0

3 
−

�

6
 (37s37 2 1)  ■

The question remains whether our definition of surface area (6) is consistent with the 
surface area formula from single-variable calculus (8.2.4).

We consider the surface S obtained by rotating the curve y − f sxd, a < x < b, about 
the x-axis, where f sxd > 0 and f 9 is continuous. From Equations 3 we know that para- 
metric equations of S are

x − x    y − f sxd cos �    z − f sxd sin �    a < x < b    0 < � < 2�

To compute the surface area of S we need the tangent vectors

 rx − i 1 f 9sxd cos � j 1 f 9sxd sin � k

 r� − 2f sxd sin � j 1 f sxd cos � k

Thus

 rx 3 r� − Z i j k
1 f9sxd cos � f9sxd sin �

0 2fsxd sin � fsxd cos �
Z

 − f sxd f 9sxd i 2 f sxd cos � j 2 f sxd sin � k

and so

 | rx 3 r� | − sf f sxdg2 f f 9sxdg2 1 f f sxdg2 cos2 � 1 f f sxdg2 sin2 �
 

 − sf f sxdg2f1 1 f f 9sxdg2 g − f sxds1 1 f f 9sxdg2 

Notice the similarity between the 
surface area formula in Equation 9 
and the arc length formula

L − yb

a
 Î1 1 S dy

dxD2  

 dx
 

from Section 8.1.

9

x

z

y3

D

FIGURE 18
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because f sxd > 0. Therefore the area of S is

 A − y
D

y | rx 3 r� | dA

 − y2�

0
 yb

a
 f sxds1 1 f f 9sxdg2  dx d�

 − 2� yb

a
 f sxds1 1 f f 9sxdg2  dx

This is precisely the formula that was used to define the area of a surface of revolution in 
single-variable calculus (8.2.4).

16.6 Exercises

1–2 Determine whether the points P and Q lie on the given 
surface.

 1. rsu, vd − ku 1 v, u 2 2v, 3 1 u 2 v l 
Ps4, 25, 1d,  Qs0, 4, 6d

 2. rsu, vd − k1 1 u 2 v, u 1 v 2, u 2 2 v 2l 
Ps1, 2, 1d,  Qs2, 3, 3d

3–6 Identify the surface with the given vector equation.

 3. rsu, vd − su 1 vd i 1 s3 2 vd j 1 s1 1 4u 1 5vd k

 4. rsu, vd − u 2 i 1 u cos v j 1 u sin v k

 5. rss, td − ks cos t, s sin t, sl

 6. rss, td − k3 cos t, s, sin tl, 21 < s < 1

7–12 Use a computer to graph the parametric surface. Indicate 
on the graph which grid curves have u constant and which have v 
constant.

 7.  rsu, vd − ku 2, v 2, u 1 v l,   
21 < u < 1, 21 < v < 1

 8.  rsu, vd − ku, v 3, 2v l,   
22 < u < 2, 22 < v < 2

 9.  rsu, vd − ku 3, u sin v, u cos v l,   
21 < u < 1, 0 < v < 2�

 10.  rsu, vd − ku, sinsu 1 vd, sin v l, 
2� < u < �, 2� < v < �

 11.  x − sin v,  y − cos u sin 4v,  z − sin 2u sin 4v, 
0 < u < 2�, 2�y2 < v < �y2

 12. x −  cos u,  y − sin u sin v,  z − cos v, 
0 < u < 2�, 0 < v < 2�

13–18 Match the equations with the graphs labeled I–VI and  
give reasons for your answers. Determine which families of grid 
curves have u constant and which have v constant.

 13. rsu, vd − u cos v i 1 u sin v j 1 v k

;

 14. rsu, vd − uv 2 i 1 u 2v j 1 su 2 2 v 2d k

 15. rsu, vd − su 3 2 ud i 1 v 2 j 1 u 2 k

 16.  x − s1 2 uds3 1 cos vd cos 4�u,

  y − s1 2 uds3 1 cos vd sin 4�u,

  z − 3u 1 s1 2 ud sin v

 17.  x − cos3u cos3v,  y − sin3u cos3v,  z − sin3v

 18.  x − sin u,  y − cos u sin v,  z − sin v

x

y

z z

x y

III

V

x y

z

IV

I II

VI

z

x y

z

x

y

z

x y
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33–36 Find an equation of the tangent plane to the given 
parametric surface at the specified point.

 33. x − u 1 v,  y − 3u2,  z − u 2 v;  s2, 3, 0d

 34. x − u2 1 1,  y − v 3 1 1,  z − u 1 v;  s5, 2, 3d

 35. rsu, vd − u cos v i 1 u sin v j 1 v k;  u − 1, v − �y3

 36.  rsu, vd − sin u i 1 cos u sin v j 1 sin v k;   
u − �y6, v − �y6

37–38 Find an equation of the tangent plane to the given 
parametric surface at the specified point. Graph the surface and 
the tangent plane.

 37. rsu, vd − u2 i 1 2u sin v j 1 u cos v k;  u − 1, v − 0

 38. rsu, vd − s1 2 u2 2 v2d i 2 v j 2 u k;  s21, 21, 21d

39–50 Find the area of the surface.

 39.  The part of the plane 3x 1 2y 1 z − 6 that lies in the  
first octant

 40.  The part of the plane with vector equation 
rsu, vd − ku 1 v, 2 2 3u, 1 1 u 2 vl that is given by 
0 < u < 2, 21 < v < 1

 41.  The part of the plane x 1 2y 1 3z − 1 that lies inside the  
cylinder x 2 1 y2 − 3

 42.  The part of the cone z − sx 2 1 y2  that lies between the 
plane y − x and the cylinder y − x 2

 43. The surface z − 2
3 sx 3y2 1 y 3y2 d, 0 < x < 1, 0 < y < 1

 44.  The part of the surface z − 4 2 2x 2 1 y that lies above the 
triangle with vertices s0, 0d, s1, 0d, and s1, 1d

 45.  The part of the surface z − xy that lies within the  
cylinder x 2 1 y 2 − 1

 46.  The part of the surface x − z 2 1 y that lies between the 
planes y − 0, y − 2, z − 0, and z − 2

 47.  The part of the paraboloid y − x 2 1 z 2 that lies within the 
cylinder x 2 1 z 2 − 16

 48.  The helicoid (or spiral ramp) with vector equation  
rsu, vd − u cos v i 1 u sin v j 1 v k, 0 < u < 1, 
0 < v < �

 49.  The surface with parametric equations x − u2, y − uv, 
z − 1

2v 2, 0 < u < 1, 0 < v < 2

 50.  The part of the sphere x 2 1 y2 1 z 2 − b2 that lies inside the 
cylinder x 2 1 y 2 − a 2, where 0 , a , b

 51.  If the equation of a surface S is z − f sx, yd, where 
x 2 1 y 2 < R 2, and you know that | fx | < 1 and | fy | < 1, 
what can you say about AsSd?

;

19–26 Find a parametric representation for the surface.

 19.  The plane through the origin that contains the vectors i 2 j 
and j 2 k

 20.  The plane that passes through the point s0, 21, 5d and  
contains the vectors k2, 1, 4 l and k23, 2, 5 l

 21.  The part of the hyperboloid 4x 2 2 4y2 2 z2 − 4 that lies in 
front of the yz-plane

 22.  The part of the ellipsoid x 2 1 2y 2 1 3z2 − 1 that lies to 
the left of the xz-plane

 23.  The part of the sphere x 2 1 y 2 1 z2 − 4 that lies above 
the cone z − sx 2 1 y 2 

 24.  The part of the cylinder x 2 1 z 2 − 9 that lies above the  
xy-plane and between the planes y − 24 and y − 4

 25.  The part of the sphere x 2 1 y 2 1 z 2 − 36 that lies between  
 the planes z − 0 and z − 3s3 

 26.  The part of the plane z − x 1 3 that lies inside the  
cylinder x 2 1 y 2 − 1

27–28 Use a computer to produce a graph that looks like the 
given one.

 27.  28. 
3

0

_3
_3

0
0 5

z

y
x

0

_1
_1

1
0

1
0

_1

z

y x

 29.  Find parametric equations for the surface obtained by  
rotating the curve y − 1ys1 1 x 2d, 22 < x < 2, about  
the x-axis and use them to graph the surface.

 30.  Find parametric equations for the surface obtained by  
rotating the curve x − 1yy, y > 1, about the y-axis and  
use them to graph the surface.

 31. (a)  What happens to the spiral tube in Example 2 (see Fig-
ure 5) if we replace cos u by sin u and sin u by cos u ?

 (b)  What happens if we replace cos u by cos 2u and sin u  
by sin 2u ?

 32.  The surface with parametric equations

 x − 2 cos � 1 r coss�y2d

 y − 2 sin � 1 r coss�y2d

 z − r sins�y2d

   where 21
2 < r < 1

2 and 0 < � < 2�, is called a Möbius 
strip. Graph this surface with several viewpoints. What is 
unusual about it?

;

;

;

;

;
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52–53 Find the area of the surface correct to four decimal 
places by first simplifying an expression for area to one in terms 
of a single integral and then evaluating the integral numerically.

 52.  The part of the surface z − cossx 2 1 y 2d that lies inside the 
cylinder x 2 1 y 2 − 1

 53.  The part of the surface z − ln sx 2 1 y 2 1 2d that lies above 
the disk x 2 1 y 2 < 1

 54. Use a computer algebra system to find, to four  
decimal places, the area of the part of the surface 
z − s1 1 x 2 dys1 1 y 2 d that lies above the square 

| x | 1 | y | < 1. Illustrate by graphing this part of  
the surface.

 55. (a)  Use the Midpoint Rule for double integrals (see Sec-
tion 15.1) with six squares to estimate the area of the  
surface z − 1ys1 1 x 2 1 y 2d, 0 < x < 6, 0 < y < 4.

 (b)  Use a computer algebra system to approximate the 
surface area in part (a) to four decimal places. Compare 
with the answer to part (a).

 56. Use a computer algebra system to find the area of the sur-
face with vector equation 

rsu, vd − kcos3u cos3v, sin3u cos3v, sin3v l
  0 < u < �, 0 < v < 2�. State your answer correct to four 

decimal places.

 57. Use a computer algebra system to find the exact area of the 
surface z − 1 1 2x 1 3y 1 4y 2, 1 < x < 4, 0 < y < 1.

 58. (a)  Set up, but do not evaluate, a double integral for  
the area of the surface with parametric equations 
x − au cos v, y − bu sin v, z − u 2, 0 < u < 2, 
0 < v < 2�.

 (b)  Eliminate the parameters to show that the surface is an 
elliptic paraboloid and set up another double integral 
for the surface area.

 (c)  Use the parametric equations in part (a) with a − 2 and 
b − 3 to graph the surface.

 (d)  For the case a − 2, b − 3, use a computer algebra 
system to find the surface area correct to four decimal 
places.

 59. (a)  Show that the parametric equations x − a sin u cos v, 
y − b sin u sin v, z − c cos u, 0 < u < �,  
0 < v < 2�, represent an ellipsoid.

 (b)  Use the parametric equations in part (a) to graph the 
ellipsoid for the case a − 1, b − 2, c − 3.

 (c)  Set up, but do not evaluate, a double integral for the 
sur face area of the ellipsoid in part (b).

;

;

 60. (a)  Show that the parametric equations x − a cosh u cos v, 
y − b cosh u sin v, z − c sinh u, represent a hyperbo-
loid of one sheet.

 (b)  Use the parametric equations in part (a) to graph the 
hyperboloid for the case a − 1, b − 2, c − 3.

 (c)  Set up, but do not evaluate, a double integral for the 
sur face area of the part of the hyperboloid in part (b) 
that lies between the planes z − 23 and z − 3.

 61.  Find the area of the part of the sphere x 2 1 y 2 1 z2 − 4z 
that lies inside the paraboloid z − x 2 1 y 2.

 62.  The figure shows the surface created when the cylinder 
y 2 1 z 2 − 1 intersects the cylinder x 2 1 z 2 − 1. Find the  
area of this surface.

z

y
x

 63.  Find the area of the part of the sphere x 2 1 y 2 1 z2 − a 2 
that lies inside the cylinder x 2 1 y 2 − ax.

 64. (a)  Find a parametric representation for the torus obtained  
by rotating about the z-axis the circle in the xz-plane 
with center sb, 0, 0d and radius a , b. [Hint: Take as 
parameters the angles � and � shown in the figure.]

 (b)  Use the parametric equations found in part (a) to graph 
the torus for several values of a and b.

 (c)  Use the parametric representation from part (a) to find 
the surface area of the torus.

å
¨

0

(x, y, z)

(b, 0, 0)

z

x

y

;

;

Surface Integrals

The relationship between surface integrals and surface area is much the same as the rela-
tionship between line integrals and arc length. Suppose f  is a function of three variables 
whose domain includes a surface S. We will define the surface integral of f  over S in such 
a way that, in the case where f sx, y, zd − 1, the value of the surface integral is equal 

16.7
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 SECTION 16.7  Surface Integrals 1183

to the surface area of S. We start with parametric surfaces and then deal with the special 
case where S is the graph of a function of two variables.

■	 Parametric Surfaces
Suppose that a surface S has a vector equation

rsu, vd − xsu, vd i 1 ysu, vd j 1 zsu, vd k    su, vd [ D

We first assume that the parameter domain D is a rectangle and we divide it into subrect-
angles Rij with dimensions Du and Dv. Then the surface S is divided into corresponding 
patches Sij as in Figure 1. 

0

√

u

Rij

Î√

Îu
0

z

y
x

P*
ij

S

Sij

D

r

We evaluate f  at a point Pij* in each patch, multiply by the area DSij of the patch, and 
form the Riemann sum

o
m

i−1
 o

n

j−1
 f sPij*d DSij

Then we take the limit as the number of patches increases and define the surface inte-
gral of f  over the surface S as

1  
y
S

y f sx, y, zd dS − lim 
m, n l `

 o
m

i−1
 o

n

j−1
 f sPij*d DSij

Notice the analogy with the definition of a line integral (16.2.2) and also the analogy with 
the definition of a double integral (15.1.5).

To evaluate the surface integral in Equation 1 we approximate the patch area DSij by 
the area of an approximating parallelogram in the tangent plane. In our discussion of 
surface area in Section 16.6 we made the approximation

DSij < | ru 3 rv | Du Dv

where ru −
−x

−u
 i 1

−y

−u
 j 1

−z

−u
 k      rv −

−x

−v
 i 1

−y

−v
 j 1

−z

−v
 k

are the tangent vectors at a corner of Sij . If the components are continuous and ru and rv 
are nonzero and nonparallel in the interior of D, it can be shown from Definition 1, even 
when D is not a rectangle, that

2  
y
S

y f sx, y, zd dS − y
D

y f srsu, vdd | ru 3 rv | dA

FIGURE 1

We assume that the surface is 
covered only once as su, vd ranges 
throughout D. The value of the sur
face integral does not depend on 
the parametrization that is used.
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1184 CHAPTER 16  Vector Calculus

This should be compared with the formula for a line integral:

y
C
 f sx, y, zd ds − yb

a
 f srstdd | r9std | dt

Observe also that

y
S

y 1 dS − y
D

y | ru 3 rv | dA − AsSd

Formula 2 allows us to compute a surface integral by converting it into a double inte-
gral over the parameter domain D. When using this formula, remember that f srsu, vdd is 
evaluated by writing x − xsu, vd, y − ysu, vd, and z − zsu, vd in the formula for f sx, y, zd.

EXAMPLE 1 Compute the surface integral yyS x
2 dS, where S is the unit sphere 

x 2 1 y 2 1 z2 − 1.

SOLUTION As in Example 16.6.4, we use the parametric representation

x − sin � cos � y − sin � sin � z − cos � 0 < � < � 0 < � < 2�

that is, rs�, �d − sin � cos � i 1 sin � sin � j 1 cos � k

As in Example 16.6.10, we can compute that

| r� 3 r� | − sin �
Therefore, by Formula 2,

 y
S

y x 2 dS − y
D

y ssin � cos �d2 | r� 3 r� | dA

 − y2�

0
 y�

0
 sin2� cos2� sin � d� d� − y2�

0
 cos2� d�  y�

0
 sin3� d�

 − y2�

0
 12 s1 1 cos 2�d d�  y�

0
 ssin � 2 sin � cos2�d d�

  − 1
2 f� 1 1

2 sin 2�g0

2�
 f2cos � 1 1

3 cos3�g0

�

−
4�

3
 ■

Surface integrals have applications similar to those for the integrals we have previ-
ously considered. For example, if a thin sheet (say, of aluminum foil) has the shape of a 
surface S and the density (mass per unit area) at the point sx, y, zd is �sx, y, zd, then the 
total mass of the sheet is

m − y
S

y �sx, y, zd dS

and the center of mass is sx, y, z d, where

x −
1

m
 y
S

y x �sx, y, zd dS    y −
1

m
 y
S

y y �sx, y, zd dS    z −
1

m
 y
S

y z �sx, y, zd dS

Moments of inertia can also be defined as before (see Exercise 41).

■	 Graphs of Functions
Any surface S with equation z − tsx, yd can be regarded as a parametric surface with 
parametric equations

x − x    y − y    z − tsx, yd

Here we use the identities

cos2� − 1
2 s1 1 cos 2�d

sin2� − 1 2 cos2�

Instead, we could use Formulas 64 
and 67 in the Table of Integrals.
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 SECTION 16.7  Surface Integrals 1185

and so we have rx − i 1 S −t
−xD k      ry − j 1 S −t

−yD k

Thus

3  rx 3 ry − 2
−t
−x

 i 2
−t
−y

 j 1 k 

and | rx 3 ry | − ÎS −z

−xD2

1 S −z

−yD2

1 1

Therefore, in this case, Formula 2 becomes

4  y
S

y fsx, y, zd dS − y
D

y f sx, y, tsx, yddÎS −z

−xD2

1 S −z

−yD2

1 1 dA 

Similar formulas apply when it is more convenient to project S onto the yz-plane or  
xz-plane. For instance, if S is a surface with equation y − hsx, zd and D is its projection 
onto the xz-plane, then

y
S

y f sx, y, zd dS − y
D

y f sx, hsx, zd, zdÎS −y

−xD2

1 S −y

−zD2

1 1 dA

EXAMPLE 2 Evaluate yyS y dS, where S is the surface z − x 1 y 2, 0 < x < 1, 
0 < y < 2. (See Figure 2.)

SOLUTION Since
−z

−x
− 1    and    

−z

−y
− 2y

Formula 4 gives

 y
S

y y dS − y
D

y yÎ1 1 S −z

−xD2

1 S −z

−yD2 

 dA

 − y1

0
 y2

0
 ys1 1 1 1 4y 2  dy dx

 − y1

0
 dx s2  y2

0
 ys1 1 2y 2  dy

  − s2 (1
4) 

2
3 s1 1 2y 2 d3y2g0

2
−

13s2 

3
 ■

If S is a piecewise-smooth surface, that is, a finite union of smooth surfaces S1, S2, . . . , 
Sn that intersect only along their boundaries, then the surface integral of f  over S is 
defined by

y
S

y f sx, y, zd dS − y
S1

y f sx, y, zd dS 1 ∙ ∙ ∙ 1 y
Sn

y f sx, y, zd dS

EXAMPLE 3 Evaluate yyS z dS, where S is the surface whose sides S1 are given by the 
cylinder x 2 1 y 2 − 1, whose bottom S2 is the disk x 2 1 y 2 < 1 in the plane z − 0, and 
whose top S3 is the part of the plane z − 1 1 x that lies above S2.

y

x

z

FIGURE 2
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1186 CHAPTER 16  Vector Calculus

SOLUTION The surface S is shown in Figure 3. (We have changed the usual posi- 
tion of the axes to get a better look at S.) For S1 we use � and z as parameters (see  
Example 16.6.5) and write its parametric equations as

x − cos �    y − sin �    z − z
where

0 < � < 2�    and    0 < z < 1 1 x − 1 1 cos �

Therefore

r� 3 rz − Z i j k
2sin � cos � 0

0 0 1
Z − cos � i 1 sin � j

and | r� 3 rz | − scos 2� 1 sin2� − 1

Thus the surface integral over S1 is

 y
S1

y z dS − y
D

y z | r� 3 rz | dA

 − y2�

0
 y11cos

 
�

0
 z dz d� − y2�

0
 12 s1 1 cos �d2 d�

 − 1
2 y2�

0
 f1 1 2 cos � 1 1

2 s1 1 cos 2�dg d�

 − 1
2 f3

2 � 1 2 sin � 1 1
4 sin 2�g0

2�

−
3�

2

Since S2 lies in the plane z − 0, we have

y
S2

y z dS − y
S2

y 0 dS − 0

The top surface S3 lies above the unit disk D and is part of the plane z − 1 1 x. So, 
taking t sx, yd − 1 1 x in Formula 4 and converting to polar coordinates, we have

 y
S3

y z dS − y
D

y s1 1 xdÎ1 1 S −z

−xD2

1 S −z

−yD2  

 dA

 − y2�

0
 y1

0
 s1 1 r cos �ds1 1 1 1 0  r dr d�

 − s2  y2�

0
 y1

0
 sr 1 r 2 cos �d dr d� − s2  y2�

0
 (1

2 1 1
3 cos �d d�

 − s2 F �

2
1

sin �

3 G
0

2�

− s2 �

Therefore

 y
S

y z dS − y
S1

y z dS 1 y
S2

y z dS 1 y
S3

y z dS

  −
3�

2
1 0 1 s2 � − (3

2 1 s2 )� ■

0

S¡ (≈+¥=1)

S™

S£ (z=1+x)

x

z

y

FIGURE 3
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 SECTION 16.7  Surface Integrals 1187

■	 Oriented Surfaces
To define surface integrals of vector fields, we need to rule out nonorientable surfaces such 
as the Möbius strip shown in Figure 4. [It is named after the German geometer August 
Möbius (1790–1868).] You can construct one for yourself by taking a long rectangular 
strip of paper, giving it a half-twist, and taping the short edges together as in Fig ure 5. If 
an ant were to crawl along the Möbius strip starting at a point P, it would end up on the 
“other side” of the strip (that is, with its upper side pointing in the opposite direction). 
Then, if the ant continued to crawl in the same direction, it would end up back at the same 
point P without ever having crossed an edge. (If you have constructed a Möbius strip, try 
drawing a pencil line down the middle.) Therefore a Möbius strip really has only one side. 
You can graph the Möbius strip using the parametric equations in Exercise 16.6.32.

A

B

D

C

A

B

C

D

From now on we consider only orientable (two-sided) surfaces. We start with a sur-
face S that has a tangent plane at every point sx, y, zd on S (except at any boundary point). 
There are two unit normal vectors n1 and n2 − 2n1 at sx, y, zd. (See Figure 6.) 

If it is possible to choose a unit normal vector n at every such point sx, y, zd so that n 
varies con tinuously over S, then S is called an oriented surface and the given choice of 
n provides S with an orientation. For any orientable surface, there are two possible ori-
entations (see Figure 7).

nn

n

n

n n
nnFIGURE 7  

The two orientations  
of an orientable surface

For a surface z − tsx, yd given as the graph of t, we use Equation 3 to associate with 
the surface a natural orientation given by the unit normal vector

5  n −

2
−t
−x

 i 2
−t
−y

 j 1 k

Î1 1 S −t
−xD2

1 S −t
−yD2 

 

Since the k-component is positive, this gives the upward orientation of the surface.
If S is a smooth orientable surface given in parametric form by a vector function  

rsu, vd, then it is automatically supplied with the orientation of the unit normal vector

6  n −
ru 3 rv

| ru 3 rv |  

FIGURE 4
A MÖbius strip

P

FIGURE 5
Constructing a MÖbius strip

n¡

n™

0

y

z

x

FIGURE 6

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1188 CHAPTER 16  Vector Calculus

and the opposite orientation is given by 2n. For instance, in Example 16.6.4 we found
the parametric representation

rs�, �d − a sin � cos � i 1 a sin � sin � j 1 a cos � k

for the sphere x 2 1 y 2 1 z2 − a 2. Then in Example 16.6.10 we found that

r� 3 r� − a 2 sin2� cos � i 1 a 2 sin2� sin � j 1 a 2 sin � cos � k

and | r� 3 r� | − a 2 sin �

So the orientation induced by rs�, �d is defined by the unit normal vector

n −
r� 3 r�

| r� 3 r� | − sin � cos � i 1 sin � sin � j 1 cos � k −
1

a
 rs�, �d

Observe that n points in the same direction as the position vector, that is, outward from 
the sphere (see Figure 8). The opposite (inward) orientation would have been obtained 
(see Figure 9) if we had reversed the order of the parameters because r� 3 r� − 2r� 3 r�.

0

y

z

x

y

z

x

FIGURE 8  
Positive orientation

FIGURE 9  
Negative orientation

For a closed surface, that is, a surface that is the boundary of a solid region E, the  
convention is that the positive orientation is the one for which the normal vectors point  
outward from E, and inward-pointing normals give the negative orientation (see Fig-
ures 8 and 9).

■	 Surface Integrals of Vector Fields; Flux
Suppose that S is an oriented surface with unit normal vector n, and imagine a fluid with 
density �sx, y, zd and velocity field vsx, y, zd flowing through S. (Think of S as an imagi-
nary surface that doesn’t impede the fluid flow, like a fishing net across a stream.) Then 
the rate of flow (mass per unit time) per unit area is given by the vector field �v. (See 
Figure 10.)

0

y

z

x

n
F=∏v

S

Sij

0 

y 

z 

x 

S 

F=∏v

FIGURE 10 FIGURE 11
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 SECTION 16.7  Surface Integrals 1189

If we divide S into small patches Sij, as in Figure 11 (compare with Figure 1), then Sij 
is nearly planar and so we can approximate the mass of fluid per unit time crossing Sij in 
the direction of the normal n by the quantity

s�v � ndAsSijd

where �, v, and n are evaluated at some point on Sij . (Recall that the component of 
the vector �v in the direction of the unit vector n is �v � n.) By summing these quantities 
and taking the limit we get, according to Definition 1, the surface integral of the function 
�v � n over S:

7  y
S

y �v � n dS − y
S

y �sx, y, zdvsx, y, zd � nsx, y, zd dS 

and this is interpreted physically as the rate of flow through S.
If we write F − �v, then F is a vector field on R 3 and the integral given in Equation 7 

becomes

y
S

y F � n dS

A surface integral of this form occurs frequently in physics, even when F is not �v, and 
is called the surface integral (or flux integral) of F over S.

8  Definitio  If F is a continuous vector field defined on an oriented surface S 
with unit normal vector n, then the surface integral of F over S is

y
S

y F � dS − y
S

y F � n dS

This integral is also called the flux of F across S.

In words, Definition 8 says that the surface integral of a vector field over S is equal to 
the surface integral of its normal component over S (as previously defined).

If S is given by a vector function rsu, vd, then n is given by Equation 6, and from Defi-
nition 8 and Equation 2 we have

 y
S

y F � dS − y
S

y F � n dS − y
S

y F �
ru 3 rv

| ru 3 rv |  dS

 − y
D

y FFsrsu, vdd �
ru 3 rv

| ru 3 rv | G| ru 3 rv | dA

where D is the parameter domain. Thus we have

9
 

y
S

y F � dS − y
D

y F � sru 3 rv d dA

Formula 9 assumes the orientation of S induced by ru 3 rv , as in Equation 6. For the 
opposite orientation, we multiply by 21.

Compare Equation 9 to the similar 
expression for evaluating line inte
grals of vector fields in Definition 
16.2.13:

y
C
 F � dr − yb

a
 Fsrstdd � r9std dt
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1190 CHAPTER 16  Vector Calculus

EXAMPLE 4 Find the flux of the vector field Fsx, y, zd − z i 1 y j 1 x k across the 
unit sphere x 2 1 y 2 1 z2 − 1.

SOLUTION As in Example 1, we use the parametric representation

rs�, �d − sin � cos � i 1 sin � sin � j 1 cos � k 0 < � < � 0 < � < 2�

Then Fsrs�, �dd − cos � i 1 sin � sin � j 1 sin � cos � k

and, from Example 16.6.10,

r� 3 r� − sin2� cos � i 1 sin2� sin � j 1 sin � cos � k

(You can check that these vectors correspond to the outward orientation of the sphere.)
Therefore

Fsrs�, �dd � sr� 3 r� d − cos � sin2� cos � 1 sin3� sin2� 1 sin2� cos � cos �

and, by Formula 9, the flux is

 y
S

y F � dS − y
D

y   F � sr� 3 r� d dA

 − y2�

0
 y�

0
 s2 sin2� cos � cos � 1 sin3� sin2�d d� d�

 − 2 y�

0
 sin2� cos � d�  y2�

0
 cos � d� 1 y�

0
 sin3� d�  y2�

0
 sin2� d�

 − 0 1 y�

0
 sin3� d�  y2�

0
 sin2� d�    Ssince y2�

0
 cos � d� − 0D

 −
4�

3

by the same calculation as in Example 1. ■

If, for instance, the vector field in Example 4 is a velocity field describing the flow of a 
fluid with density 1, then the answer, 4�y3, represents the rate of flow through the unit 
sphere in units of mass per unit time.

In the case of a surface S given by a graph z − tsx, yd, we can think of x and y as 
parameters and use Equation 3 to write

F � srx 3 ryd − sP i 1 Q j 1 R kd � S2 −t
−x

 i 2
−t
−y

 j 1 kD
Thus Formula 9 becomes

10
 

y
S

y F � dS − y
D

y S2P 
−t
−x

2 Q 
−t
−y

1 RD dA

This formula assumes the upward orientation of S; for a downward orientation we multi-
ply by 21. Similar formulas can be worked out if S is given by y − hsx, zd or x − ksy, zd.  
(See Exercises 37 and 38.)

Figure 12 shows the vector field F in 
Example 4 at points on the unit 
sphere.

y

x

z

FIGURE 12
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 SECTION 16.7  Surface Integrals 1191

EXAMPLE 5 Evaluate yyS F � dS, where Fsx, y, zd − y i 1 x j 1 z k and S is the 
boundary of the solid region E enclosed by the paraboloid z − 1 2 x 2 2 y 2 and 
the plane z − 0.

SOLUTION S consists of a parabolic top surface S1 and a circular bottom surface S2. 
(See Figure 13.) Since S is a closed surface, we use the convention of positive (outward) 
orientation. This means that S1 is oriented upward and we can use Equation 10 with D 
being the projection of S1 onto the xy-plane, namely, the disk x 2 1 y 2 < 1. Since

Psx, y, zd − y      Qsx, y, zd − x      Rsx, y, zd − z − 1 2 x 2 2 y 2

on S1 and 
−t
−x

− 22x      
−t
−y

− 22y

we have

 y
S1

y F � dS − y
D

y S2P 
−t
−x

2 Q 
−t
−y

1 RD dA

 − y
D

y f2ys22xd 2 xs22yd 1 1 2 x 2 2 y 2 g dA

 − y
D

y s1 1 4xy 2 x 2 2 y 2 d dA

 − y2�

0
 y1

0
 s1 1 4r 2 cos � sin � 2 r 2 d r dr d�

 − y2�

0
 y1

0
 sr 2 r 3 1 4r 3 cos � sin �d dr d�

 − y2�

0
 ( 1

4 1 cos � sin �) d� − 1
4 s2�d 1 0 −

�

2

The disk S2 is oriented downward, so its unit normal vector is n − 2k and we have

y
S2

y F � dS − y
S2

y F � s2kd dS − y
D

y s2zd dA − y
D

y 0 dA − 0

since z − 0 on S2. Finally, we compute, by definition, yyS F � dS as the sum of the 
surface integrals of F over the pieces S1 and S2:

 y
S

y F � dS − y
S1

y F � dS 1 y
S2

y F � dS −
�

2
1 0 −

�

2
 ■

Although we motivated the surface integral of a vector field using the example of fluid 
flow, this concept also arises in other physical situations. For instance, if E is an electric 
field (see Example 16.1.5), then the surface integral

y
S

y E � dS

is called the electric flux of E through the surface S. One of the important laws of electro-
statics is Gauss’s Law, which says that the net charge enclosed by a closed surface S is

11  Q − «0 y
S

y E � dS 

S¡

y

z

x

S™

FIGURE 13
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1192 CHAPTER 16  Vector Calculus

where «0 is a constant (called the permittivity of free space) that depends on the units used. 
(In the SI system, «0 < 8.8542 3 10212 C2yN �m2.) Therefore, if the vector field F in 
Example 4 represents an electric field, we can conclude that the charge enclosed by S is 
Q − 4

3�«0.
Another application of surface integrals occurs in the study of heat flow. Suppose the 

temperature at a point sx, y, zd in a body is usx, y, zd. Then the heat flow is defined as the 
vector field

F − 2K =u

where K is an experimentally determined constant called the conductivity of the sub-
stance. The rate of heat flow across the surface S in the body is then given by the surface 
integral

y
S

y F � dS − 2K y
S

y =u � dS

EXAMPLE 6 The temperature u in a metal ball is proportional to the square of the 
distance from the center of the ball. Find the rate of heat flow across a sphere S of 
radius a with center at the center of the ball.

SOLUTION Taking the center of the ball to be at the origin, we have

usx, y, zd − Csx 2 1 y 2 1 z2 d

where C is the proportionality constant. Then the heat flow is

Fsx, y, zd − 2K =u − 2KCs2x i 1 2y j 1 2z kd

where K is the conductivity of the metal. Instead of using the usual parametrization of 
the sphere as in Example 4, we observe that the outward unit normal to the sphere 
x 2 1 y 2 1 z2 − a 2 at the point sx, y, zd is

 n −
1

a
 sx i 1 y j 1 z kd

and so  F � n − 2
2KC

a
 sx 2 1 y 2 1 z2 d

But on S we have x 2 1 y 2 1 z2 − a 2, so F � n − 22aKC. Therefore the rate of heat 
flow across S is

 y
S

y F � dS − y
S

y F � n dS − 22aKC y
S

y dS

  − 22aKCAsSd − 22aKCs4�a 2 d − 28KC�a 3 ■

16.7 Exercises

 1.  Let S be the surface of the box enclosed by the planes x − 61, 
y − 61, z − 61. Approximate yyS cossx 1 2y 1 3zd dS by 
using a Riemann sum as in Definition 1, taking the patches Sij 
to be the squares that are the faces of the box S and the points 
Pij* to be the centers of the squares.

 2.  A surface S consists of the cylinder x 2 1 y 2 − 1, 
21 < z < 1, together with its top and bottom disks. Suppose 
you know that f  is a continuous function with 

f s61, 0, 0d − 2     f s0, 61, 0d − 3     f s0, 0, 61d − 4
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 SECTION 16.7  Surface Integrals 1193

 15.  yyS  x dS, 
S is the surface y − x 2 1 4z, 0 < x < 1, 0 < z < 1

z 

x 

1 
0 

y 

1 

y=≈+4z

z 

x 

1 
0 

y 

1 

y=≈+4z

 16.  yyS  y 2 dS, 
S is the part of the sphere x 2 1 y 2 1 z 2 − 1 that lies above 

the cone z − sx 2 1 y 2 

 17.  yyS sx 2z 1 y 2zd dS, 
S is the hemisphere x 2 1 y 2 1 z2 − 4, z > 0

 18.  yyS sx 1 y 1 zd dS, 
S is the part of the half-cylinder x 2 1 z 2 − 1, z > 0, that lies 
between the planes y − 0 and y − 2

 19.   yyS xz dS, 
S is the boundary of the region enclosed by the cylinder 
y2 1 z2 − 9 and the planes x − 0 and x 1 y − 5

z 

x 

y 5 

3 

3 ¥+z@=9 

x+y=5 

 20.  yyS sx 2 1 y 2 1 z2 d dS, 
S is the part of the cylinder x 2 1 y2 − 9 between the planes 
z − 0 and z − 2, together with its top and bottom disks

21–32 Evaluate the surface integral yyS F � dS for the given vector 
field F and the oriented surface S. In other words, find the flux of F 
across S. For closed surfaces, use the positive (outward) orientation.

 21.  Fsx, y, zd − ze xy  i 2 3ze xy j 1 xy k,   
S is the parallelogram of Exercise 5 with upward orientation

 22.  Fsx, y, zd − z i 1 y j 1 x k, 
S is the helicoid of Exercise 7 with upward orientation

 23.  Fsx, y, zd − xy i 1 yz j 1 zx k, S is the part of the  
para boloid z − 4 2 x 2 2 y 2 that lies above the square 
0 < x < 1, 0 < y < 1, and has upward orientation

   Estimate the value of yyS f sx, y, zd dS by using a Riemann 
sum, taking the patches Sij to be four quarter-cylinders and 
the top and bottom disks.

 3.  Let H be the hemisphere x 2 1 y 2 1 z2 − 50, z > 0, and  
suppose f  is a continuous function with f s3, 4, 5d − 7,
f s3, 24, 5d − 8, f s23, 4, 5d − 9, and f s23, 24, 5d − 12.  
By dividing H into four patches, estimate the value of 
yyH f sx, y, zd dS.

 4.  Suppose that f sx, y, zd − t(sx 2 1 y 2 1 z 2 ), where t is a  
function of one variable such that ts2d − 25. Evaluate 
yyS f sx, y, zd dS, where S is the sphere x 2 1 y 2 1 z2 − 4.

5–20 Evaluate the surface integral.

 5.  yyS sx 1 y 1 zd dS, 
S is the parallelogram with parametric equations x − u 1 v, 
y − u 2 v, z − 1 1 2u 1 v, 0 < u < 2, 0 < v < 1

y 

z 

x 
0 

1 

 6.  yyS xyz dS, 
S is the cone with parametric equations x − u cos v,  
y − u sin v, z − u, 0 < u < 1, 0 < v < �y2

 7.  yyS y dS, S is the helicoid with vector equation 
rsu, vd − ku cos v, u sin v, v l, 0 < u < 1, 0 < v < �

 8.  yyS sx 2 1 y 2d dS,  
S is the surface with vector equation 
rsu, vd − k2uv, u2 2 v2, u2 1 v2 l, u 2 1 v2 < 1

 9.  yyS x
2yz dS, S is the part of the plane z − 1 1 2x 1 3y that 

lies above the rectangle f0, 3g 3 f0, 2g

 10.  yyS xz dS, S is the part of the plane 2x 1 2y 1 z − 4 that 
lies in the first octant

 11.  yyS  x dS, 
S is the triangular region with vertices s1, 0, 0d, s0, 22, 0d,  
and s0, 0, 4d

 12.  yyS y dS, 
S is the surface z − 2

3 sx 3y2 1 y 3y2 d, 0 < x < 1, 0 < y < 1

 13.  yyS  z 2 dS, 
S is the part of the paraboloid x − y 2 1 z 2 given  
by 0 < x < 1

 14.  yyS  y 2z 2 dS, 
S is the part of the cone y − sx 2 1 z 2  given by 0 < y < 5
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1194 CHAPTER 16  Vector Calculus

 24.  Fsx, y, zd − 2x i 2 y j 1 z 3 k, S is the part of the cone 
z − sx 2 1 y 2  between the planes z − 1 and z − 3 with  
downward orientation

x 

z 

z=3

z=1

y 
0 

z=œ„„„„„„≈+¥ 

 25.  Fsx, y, zd − x i 1 y j 1 z 2 k, S is the sphere with radius 1 
and center the origin

 26.  Fsx, y, zd − y i 2 x j 1 2z k, S is the hemisphere 
x 2 1 y 2 1 z 2 − 4, z > 0, oriented downward

 27.  Fsx, y, zd − y j 2 z k, 
S consists of the paraboloid y − x 2 1 z2, 0 < y < 1,  
and the disk x 2 1 z2 < 1, y − 1

 28.  Fsx, y, zd − yz i 1 zx j 1 xy k, S is the surface 
z − x sin y, 0 < x < 2, 0 < y < �, with upward orientation

 29.  Fsx, y, zd − x i 1 2y j 1 3z k, 
S is the cube with vertices s61, 61, 61d

 30.  Fsx, y, zd − x i 1 y j 1 5 k, S is the boundary of the 
region enclosed by the cylinder x 2 1 z2 − 1 and the planes 
y − 0 and x 1 y − 2

 31.  Fsx, y, zd − x 2 i 1 y 2 j 1 z2 k, S is the boundary of the 
solid half-cylinder 0 < z < s1 2 y 2

  , 0 < x < 2

 32.  Fsx, y, zd − y i 1 sz 2 yd j 1 x k, 
S is the surface of the tetrahedron with vertices s0, 0, 0d, 
s1, 0, 0d, s0, 1, 0d, and s0, 0, 1d

 33.  Use a computer algebra system to evaluate 
yyS sx 2 1 y 2 1 z2d dS correct to four decimal places, where 
S is the surface z − xe y, 0 < x < 1, 0 < y < 1.

 34.  Use a computer algebra system to find the exact value of 
yyS xyz dS, where S is the surface z − x 2y 2, 0 < x < 1, 
0 < y < 2.

 35.  Use a computer algebra system to find the value of 
yyS x

2 y 2z2 dS correct to four decimal places, where S is the 
part of the paraboloid z − 3 2 2x 2 2 y 2 that lies above the 
xy-plane.

 36.  Use a computer algebra system to find the flux of 

Fsx, y, zd − sinsxyzd i 1 x 2 y j 1 z2e xy5 k

across the part of the cylinder 4y 2 1 z2 − 4 that lies above  
the xy-plane and between the planes x − 22 and x − 2 
with upward orientation. Illustrate by graphing the cylinder 
and the vector field on the same screen.

 37.  Find a formula for yyS F � dS similar to Formula 10 for the 
case where S is given by y − hsx, zd and n is the unit nor-
mal that points toward the left (when the axes are drawn in 
the usual way).

 38.  Find a formula for yyS F � dS similar to Formula 10 for the 
case where S is given by x − ksy, zd and n is the unit nor-
mal that points forward (that is, toward the viewer when the 
axes are drawn in the usual way).

 39.  Find the center of mass of the hemisphere 
x 2 1 y 2 1 z2 − a 2, z > 0, if it has constant density.

 40.  Find the mass of a thin funnel in the shape of a cone 
z − sx 2 1 y 2 , 1 < z < 4, if its density function  
is �sx, y, zd − 10 2 z.

 41. (a)  Give an integral expression for the moment of inertia Iz 
about the z-axis of a thin sheet in the shape of a surface 
S if the density function is �.

 (b)  Find the moment of inertia about the z-axis of the 
funnel in Exercise 40.

 42.  Let S be the part of the sphere x 2 1 y2 1 z2 − 25 that lies 
above the plane z − 4. If S has constant density k, find  
(a) the center of mass and (b) the moment of inertia about  
the z-axis.

 43.  A fluid has density 870 kgym3 and flows with velocity 
v − z i 1 y 2 j 1 x 2 k, where x, y, and z are measured in 
meters and the components of v in meters per second. 
Find the rate of flow outward through the cylinder 
x 2 1 y 2 − 4, 0 < z < 1.

 44.  Seawater has density 1025 kgym3 and flows in a velocity field 
v − y i 1 x j, where x, y, and z are measured in meters and 
the components of v in meters per second. Find the rate of flow 
outward through the hemisphere x 2 1 y 2 1 z 2 − 9, z > 0.

 45.  Use Gauss’s Law to find the charge contained in the solid 
hemisphere x 2 1 y 2 1 z2 < a 2, z > 0, if the electric field is 

Esx, y, zd − x i 1 y j 1 2z k

 46.  Use Gauss’s Law to find the charge enclosed by the cube  
with vertices s61, 61, 61d if the electric field is 

Esx, y, zd − x i 1 y j 1 z k

 47.  The temperature at the point sx, y, zd in a substance with 
conductivity K − 6.5 is usx, y, zd − 2y 2 1 2z2. Find the 
rate of heat flow inward across the cylindrical surface 
y 2 1 z2 − 6, 0 < x < 4.

 48.  The temperature at a point in a ball with conductivity K is 
inversely proportional to the distance from the center of the 
ball. Find the rate of heat flow across a sphere S of radius a 
with center at the center of the ball.

 49.  Let F be an inverse square field, that is, Fsrd − cry| r |3 for 
some constant c, where r − x i 1 y j 1 z k. Show that the 
flux of F across a sphere S with center the origin is indepen-
dent of the radius of S.
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 SECTION 16.8  Stokes’  Theorem 1195

Stokes’  Theorem

Stokes’ Theorem can be regarded as a higher-dimensional version of Green’s Theo rem. 
Whereas Green’s Theorem relates a double integral over a plane region D to a line inte-
gral around its plane boundary curve, Stokes’ Theorem relates a surface integral over a 
surface S to a line integral around the boundary curve of S (which is a space curve). 
Figure 1 shows an oriented surface with unit normal vector n. The orientation of S 
induces the positive orientation of the boundary curve C shown in the figure. This 
means that if you walk in the positive direction around C with your head pointing in the 
direction of n, then the surface will always be on your left.

Stokes’ Theorem Let S be an oriented piecewise-smooth surface that is bounded 
by a simple, closed, piecewise-smooth boundary curve C with positive orientation. 
Let F be a vector field whose components have continuous partial derivatives on 
an open region in R 3 that contains S. Then

y
C
 F � dr − y

S

y curl F � dS

Since

y
C
 F � dr − y

C
 F � T ds    and    y

S

y curl F � dS − y
S

y curl F � n dS

Stokes’ Theorem says that the line integral around the boundary curve of S of the tangen-
tial component of F is equal to the surface integral over S of the normal component of the 
curl of F.

The positively oriented boundary curve of the oriented surface S is often written as  
−S, so Stokes’ Theorem can be expressed as

1  y
S

y curl F � dS − y
−S

 F � dr 

There is an analogy among Stokes’ Theorem, Green’s Theorem, and the Fundamental  
Theorem of Calculus. As before, there is an integral involving derivatives on the left side 
of Equation 1 (recall that curl F is a sort of derivative of F) and the right side involves the 
values of F only on the boundary of S.

In fact, in the special case where the surface S is flat and lies in the xy-plane with 
upward orientation, the unit normal is k, the surface integral becomes a double integral, 
and Stokes’ Theorem becomes

y
C
 F � dr − y

S

y curl F � dS − y
S

y scurl Fd � k dA

This is precisely the vector form of Green’s Theorem given in Equation 16.5.12. Thus we 
see that Green’s Theorem is really a special case of Stokes’ Theorem.

Although Stokes’ Theorem is too difficult for us to prove in its full generality, we can 
give a proof when S is a graph and F, S, and C are well behaved.

PROOF OF A SPECIAL CASE OF STOKES’ THEOREM We assume that the equation of 
S is z − tsx, yd, sx, yd [ D, where t has continuous second-order partial derivatives and 
D is a simple plane region whose boundary curve C1 corresponds to C. If the orientation 

16.8

S

y

z

x

C0

n

n
n

FIGURE 1

George Stokes
Stokes’ Theorem is named after the 
Irish mathematical physicist Sir 
George Stokes (1819–1903). Stokes 
was a professor at Cambridge Univer-
sity (in fact he held the same position 
as Newton, Lucasian Professor of 
Mathematics) and was especially 
noted for his studies of fluid flow and 
light. What we call Stokes’ Theorem 
was actually discovered by the Scot-
tish physicist Sir William Thomson 
(1824–1907, known as Lord Kelvin). 
Stokes learned of this theorem in a 
letter from Thomson in 1850 and 
asked students to prove it on an 
examination at Cambridge University 
in 1854. We don’t know if any of those 
students was able to do so.

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1196 CHAPTER 16  Vector Calculus

of S is upward, then the positive orientation of C corresponds to the positive orientation 
of C1. (See Figure 2.) We are also given that F − P i 1 Q j 1 R k, where the partial 
derivatives of P, Q, and R are continuous.

Since S is a graph of a function, we can apply Formula 16.7.10 with F replaced by 
curl F. The result is

2  y
S

y curl F � dS 

− y
D

y F2S −R

−y
2

−Q

−z D 
−z

−x
2 S −P

−z
2

−R

−x D 
−z

−y
1 S −Q

−x
2

−P

−y DG dA

where the partial derivatives of P, Q, and R are evaluated at sx, y, tsx, ydd. If

x − xstd    y − ystd    a < t < b

is a parametric representation of C1, then a parametric representation of C is

x − xstd    y − ystd    z − tsxstd, ystdd    a < t < b

This allows us, with the aid of the Chain Rule, to evaluate the line integral as follows:

 y
C
 F � dr − yb

a
 SP 

dx

dt
1 Q 

dy

dt
1 R 

dz

dtD dt

 − yb

a
 FP 

dx

dt
1 Q 

dy

dt
1 RS −z

−x
 
dx

dt
1

−z

−y
 
dy

dt DG dt

 − yb

a
 FSP 1 R 

−z

−xD 
dx

dt
1 SQ 1 R 

−z

−yD 
dy

dt G dt

 − y
C1

 SP 1 R 
−z

−xD dx 1 SQ 1 R 
−z

−yD dy

 − y
D

y F −

−x
 SQ 1 R 

−z

−yD 2
−

−y
 SP 1 R 

−z

−xDG dA

where we have used Green’s Theorem in the last step. Then, using the Chain Rule again 
and remembering that P, Q, and R are functions of x, y, and z and that z is itself a func-
tion of x and y, we get

y
C
 F � dr − y

D

y FS −Q

−x
1

−Q

−z
 
−z

−x
1

−R

−x
 
−z

−y
1

−R

−z
 
−z

−x
 
−z

−y
1 R 

−2z

−x −yD
2 S −P

−y
1

−P

−z
 
−z

−y
1

−R

−y
 
−z

−x
1

−R

−z
 
−z

−y
 
−z

−x
1 R 

−2z

−y −xDG dA

Four of the terms in this double integral cancel and the remaining six terms can be 
arranged to coincide with the right side of Equation 2. Therefore

 y
C
 F � dr − y

S

y curl F � dS ■

0

D

C

S

z=g(x, y)

C¡

n

y

z

x

FIGURE 2
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 SECTION 16.8  Stokes’  Theorem 1197

EXAMPLE 1 Evaluate yC F � dr, where Fsx, y, zd − 2y 2 i 1 x j 1 z2 k and C is the 
curve of intersection of the plane y 1 z − 2 and the cylinder x 2 1 y 2 − 1. (Orient C to 
be counterclockwise when viewed from above.)

SOLUTION The curve C (an ellipse) is shown in Figure 3. Although yC F � dr could be  
evaluated directly, it’s easier to use Stokes’ Theorem. We first compute

curl F −  

i j k
−

−x

−

−y

−

−z

2y2 x z2

 − s1 1 2yd k

Stokes’ Theorem allows us to choose any (oriented, piecewise-smooth) surface with 
boundary curve C. Among the many possible such surfaces, the most convenient  
choice is the elliptical region S in the plane y 1 z − 2 that is bounded by C. If we 
orient S upward, then C has the induced positive orientation. The projection D of S 
onto the xy-plane is the disk x 2 1 y 2 < 1 and so using Equation 16.7.10 with 
z − tsx, yd − 2 2 y, we have

 y
C
 F � dr − y

S

y curl F � dS − y
D

y s1 1 2yd dA

 − y2�

0
 y1

0
 s1 1 2r sin �d r dr d�

 − y2�

0
 F r 2

2
1 2 

r 3

3
 sin �G

0

1  
d� − y2�

0
 (  

1
2 1 2

3 sin �) d�

 − 1
2 s2�d 1 0 − �  ■

NOTE Stokes’ Theorem allows us to compute a surface integral simply by knowing the 
values of F on the boundary curve C. This means that if we have another oriented surface 
with the same boundary curve C, then we get exactly the same value for the surface 
integral. In general, if S1 and S2 are oriented surfaces with the same oriented boundary 
curve C and both satisfy the hypotheses of Stokes’ Theorem, then

3  y
S1

y curl F � dS − y
C
 F � dr − y

S2

y curl F � dS 

This fact is useful when it is difficult to integrate over one surface but easy to integrate 
over the other.

EXAMPLE 2 Use Stokes’ Theorem to compute the integral yyS curl F � dS, where 
Fsx, y, zd − xz i 1 yz j 1 xy k and S is the part of the sphere x 2 1 y 2 1 z2 − 4 that  
lies inside the cylinder x 2 1 y 2 − 1 and above the xy-plane. (See Figure 4.)

SOLUTION 1 To find the boundary curve C we solve the equations x 2 1 y 2 1 z2 − 4 
and x 2 1 y 2 − 1. Subtracting, we get z2 − 3 and so z − s3  (since z . 0). Thus C is 
the circle given by the equations x 2 1 y 2 − 1, z − s3 . A vector equation of C is

 rstd − cos t i 1 sin t j 1 s3  k    0 < t < 2�

so  r9std − 2sin t i 1 cos t j

CS

y+z=2

D 0

y

z

x

≈+¥=1

FIGURE 3

0

S

≈+¥+z@=4

C

≈+¥=1

y

z

x

FIGURE 4
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1198 CHAPTER 16  Vector Calculus

Also, we have
Fsrstdd − s3  cos t i 1 s3  sin t j 1 cos t sin t k

Therefore, by Stokes’ Theorem,

 y
S

y curl F � dS − y
C
 F � dr − y2�

0
 Fsrstdd � r9std dt

 − y2�

0
 (2s3  cos t sin t 1 s3  sin t cos t) dt − s3  y2�

0
 0 dt − 0

SOLUTION 2 Let S1 be the disk in the plane z − s3  inside the cylinder x 2 1 y 2 − 1, as 
shown in Figure 5. Since S1 and S have the same boundary curve C, it follows by 
Stokes’ Theorem that  

y
S

y curl F � dS − y
S1

y curl F � dS

Because S1 is part of a horizontal plane, its upward normal is k. We calculate that curl 
F − sx 2 yd i 1 sx 2 yd j, so  

y
S

y curl F � dS − y
S1

y curl F � dS − y
S1

y curl F � n dS

− y
S1

y fsx 2 yd i 1 sx 2 yd jg � k dS − y
S1

y 0 dS − 0 ■

We now use Stokes’ Theorem to shed some light on the meaning of the curl vector. 
Suppose that C is an oriented closed curve and v represents the velocity field in fluid 
flow. Consider the line integral

y
C
 v � dr − y

C
 v � T ds

and recall that v � T is the component of v in the direction of the unit tangent vector T. 
This means that the closer the direction of v is to the direction of T, the larger the value 
of v � T. (Recall that if v and T point in generally opposite directions, then v � T is nega-
tive.) Thus yC v � dr is a measure of the tendency of the fluid to move around C in the 
same direction as the orientation of C, and is called the circulation of v around C. (See 
Figure 6.)

0

y

C™

C¡

T

T
v

v
x

0

S¡

≈+¥+z@=4

C

≈+¥=1

y

z

x

FIGURE 5

FIGURE 6 
y

C1

 v � dr . 0, positive circulation

y
C2

 v � dr , 0, negative circulation
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Now let P0sx0, y0, z0 d be a point in the fluid and let Sa be a small disk with radius a and 
center P0. Then (curl FdsPd < scurl FdsP0d for all points P on Sa because curl F is contin-
uous. Thus, by Stokes’ Theorem, we get the following approximation to the circulation 
around the boundary circle Ca:

 y
Ca

 v � dr − y
Sa

y curl v � dS − y
Sa

y curl v � n dS

 < y
Sa

y curl vsP0 d � nsP0 d dS − curl vsP0 d � nsP0 d�a 2

This approximation becomes better as a l 0 and we have

4  curl vsP0 d � nsP0 d − lim 
a l 0

 
1

�a 2  y
Ca

 v � dr 

Equation 4 gives the relationship between the curl and the circulation. It shows that 
curl v � n is a measure of the rotating effect of the fluid about the axis n. The curling 
effect is greatest about the axis parallel to curl v.

Finally, we mention that Stokes’ Theorem can be used to prove Theorem 16.5.4 
(which states that if curl F − 0 on all of R 3, then F is conservative). From our pre vious 
work (Theorems 16.3.3 and 16.3.4), we know that F is conservative if yC F � dr − 0 for 
every closed path C. Given C, suppose we can find an orientable surface S whose bound-
ary is C. (This can be done, but the proof requires advanced techniques.) Then Stokes’ 
Theorem gives

y
C
 F � dr − y

S

y curl F � dS − y
S

y 0 � dS − 0

A curve that is not simple can be broken into a number of simple curves, and the integrals 
around these simple curves are all 0. Adding these integrals, we obtain yC F � dr − 0 for 
any closed curve C.

curl v

FIGURE 7

Imagine a tiny paddle wheel placed in 
the fluid at a point P, as in Figure 7; 
the paddle wheel rotates fastest when 
its axis is parallel to curl v.

16.8 Exercises

 1.  A disk D, a hemisphere H, and a portion P of a paraboloid 
are shown. Suppose F is a vector field on R3 whose compo-
nents have continuous partial derivatives. Explain why this 
statement is true:

y
D

y curl F � dS − y
H

y curl F � dS − y
P

y curl F � dS

z

D

yx 2

4

2

z

H

yx 2

4

2

z

P

yx 2

4

2

2–6 Use Stokes’ Theorem to evaluate yyS curl F � dS.

 2.  Fsx, y, zd − x 2 sin z i 1 y 2 j 1 xy k, 
S is the part of the paraboloid z − 1 2 x 2 2 y 2 that lies 
above the xy-plane, oriented upward

 3.  Fsx, y, zd − ze y i 1 x cos y j 1 xz sin y k, 
S is the hemisphere x 2 1 y 2 1 z 2 − 16, y > 0, oriented in 
the direction of the positive y-axis

 4.  Fsx, y, zd − tan21sx 2 yz2d i 1 x 2y j 1 x 2z2 k,
   S is the cone x − sy 2 1 z2 , 0 < x < 2, oriented in the 

direction of the positive x-axis

 5.  Fsx, y, zd − xyz i 1 xy j 1 x 2 yz k, 
S consists of the top and the four sides (but not the bottom)  
of the cube with vertices s61, 61, 61d, oriented outward
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1200 CHAPTER 16  Vector Calculus

 6.  Fsx, y, zd − e xy i 1 e xz j 1 x 2z k, 
S is the half of the ellipsoid 4x 2 1 y 2 1 4z 2 − 4 that lies 
to the right of the xz-plane, oriented in the direction of the 
positive y-axis

z

y

x

0

S

4≈+¥+4z@=4

7–14 Use Stokes’ Theorem to evaluate yC F � dr. In each case C 
is oriented counterclockwise as viewed from above, unless 
otherwise stated.

 7.  Fsx, y, zd − sx 1 y 2 d i 1 sy 1 z2 d j 1 sz 1 x 2 d k,   
C is the triangle with vertices (1, 0, 0), (0, 1, 0), and  
(0, 0, 1)

 8.  Fsx, y, zd − i 1 sx 1 yzd j 1 (xy 2 sz ) k,   
C is the boundary of the part of the plane 3x 1 2y 1 z − 1  
in the first octant

 9.  Fsx, y, zd − xy i 1 yz j 1 zx k,  
C is the boundary of the part of the paraboloid 
z − 1 2 x 2 2 y 2 in the first octant

z=1-≈-¥C

z

y

x

 10.  Fsx, y, zd − 2y i 1 xz j 1 sx 1 yd k,  
C is the curve of intersection of the plane z − y 1 2 and the 
cylinder x 2 1 y 2 − 1

 11. Fsx, y, zd − k2yx 2, xy 2, e xyl, C is the circle in the xy-plane 
of radius 2 centered at the origin

 12. Fsx, y, zd − ze x i 1 sz 2 y 3d j 1 sx 2 z 3d k,  
C is the circle y 2 1 z 2 − 4, x − 3, oriented clockwise as 
viewed from the origin

 13. Fsx, y, zd − x 2y i 1 x 3 j 1 e z tan21z k,  
C is the curve with parametric equations x − cos t, y − sin t, 
z − sin t, 0 < t < 2�

z

x

y

(_1, 0, 0)

(1, 0, 0)

C

 14. Fsx, y, zd − kx 3 2 z, xy, y 1 z 2l, C is the curve of intersec-
tion of the paraboloid z − x 2 1 y 2 and the plane z − x

z

x y

z=≈+¥

z=x

 15. (a)  Use Stokes’ Theorem to evaluate yC F � dr, where

Fsx, y, zd − x 2z i 1 xy 2 j 1 z2 k

   and C is the curve of intersection of the plane 
x 1 y 1 z − 1 and the cylinder x 2 1 y 2 − 9, oriented 
counterclockwise as viewed from above.

 (b)  Graph both the plane and the cylinder with domains  
chosen so that you can see the curve C and the surface  
that you used in part (a).

 (c)  Find parametric equations for C and use them to  
graph C.

 16. (a)  Use Stokes’ Theorem to evaluate yC F � dr, where 
Fsx, y, zd − x 2 y i 1 1

3 x 3 j 1 xy k and C is the curve of 
intersection of the hyperbolic paraboloid z − y 2 2 x 2 and 
the cylinder x 2 1 y 2 − 1, oriented counterclockwise as 
viewed from above.

 (b)  Graph both the hyperbolic paraboloid and the cylinder 
with domains chosen so that you can see the curve C and 
the surface that you used in part (a).

 (c)  Find parametric equations for C and use them to graph C.

17–19 Verify that Stokes’ Theorem is true for the given vector  
field F and surface S.

 17.  Fsx, y, zd − 2y i 1 x j 2 2 k, 
S is the cone z 2 − x 2 1 y2, 0 < z < 4, oriented downward

;

;

;

;
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under the influence of the force field 

Fsx, y, zd − z 2 i 1 2xy j 1 4y 2 k

  Find the work done.

 22.  Evaluate 

y
C
 sy 1 sin xd dx 1 sz2 1 cos yd dy 1 x 3 dz

   where C is the curve rstd − ksin t, cos t, sin 2tl, 0 < t < 2�. 
[Hint: Observe that C lies on the surface z − 2xy.]

 23.  If S is a sphere and F satisfies the hypotheses of Stokes’  
Theorem, show that yyS curl F � dS − 0.

 24.  Suppose S and C satisfy the hypotheses of Stokes’ Theorem 
and f , t have continuous second-order partial derivatives. Use 
Exercises 26 and 28 in Section 16.5 to show the following.

 (a) yC s f =td � dr − yyS s= f 3 =td � dS

 (b) yC s f = f d � dr − 0

 (c) yC s f =t 1 t= f d � dr − 0

 18.  Fsx, y, zd − 22yz i 1 y j 1 3x k, 
S is the part of the paraboloid z − 5 2 x 2 2 y 2 that lies 
above the plane z − 1, oriented upward

 19.  Fsx, y, zd − y i 1 z j 1 x k, 
S is the hemisphere x 2 1 y 2 1 z 2 − 1, y > 0, oriented in the 
direction of the positive y-axis

 20.  Let C be a simple closed smooth curve that lies in the plane 
x 1 y 1 z − 1. Show that the line integral

y
C
 z dx 2 2x dy 1 3y dz

   depends only on the area of the region enclosed by C and not 
on the shape of C or its location in the plane.

 21.  A particle moves along line segments from the origin to the 
points s1, 0, 0d, s1, 2, 1d, s0, 2, 1d, and back to the origin 

The Divergence Theorem

In Section 16.5 we rewrote Green’s Theorem in a vector version as

y
C
 F � n ds − y

D

y div Fsx, yd dA

where C is the positively oriented boundary curve of the plane region D. If we were seek-
ing to extend this theorem to vector fields on R 3, we might make the guess that

1  y
S

y F � n dS − y y
E

y div Fsx, y, zd dV  

where S is the boundary surface of the solid region E. It turns out that Equation 1 is true, 
under appropriate hypotheses, and is called the Divergence Theorem. Notice its similar-
ity to Green’s Theorem and Stokes’ Theorem in that it relates the integral of a derivative 
of a function (div F in this case) over a region to the integral of the original function F 
over the boundary of the region.

At this stage you may wish to review the various types of regions over which we were 
able to evaluate triple integrals in Section 15.6. We state and prove the Diver gence Theo-
rem for regions E that are simultaneously of types 1, 2, and 3 and we call such regions  
simple solid regions. (For instance, regions bounded by ellipsoids or rectangular boxes 
are simple solid regions.) The boundary of E is a closed surface, and we use the conven-
tion, introduced in Section 16.7, that the positive orientation is outward; that is, the unit 
normal vector n is directed outward from E.

The Divergence Theorem Let E be a simple solid region and let S be the bound-
ary surface of E, given with positive (outward) orientation. Let F be a vector field 
whose component functions have continuous partial derivatives on an open region 
that contains E. Then

y
S

y F � dS − y y
E

y div F dV

The Divergence Theorem is some
times called Gauss’s Theorem after 
the great German mathe matician 
Karl Friedrich Gauss (1777–1855), who 
discovered this theorem during his 
investigation of electrostatics. In 
Eastern Europe the Divergence Theo
rem is known as Ostrogradsky’s 
Theorem after the Russian mathe 
matician Mikhail Ostrogradsky  
(1801–1862), who published this 
result in 1826.

16.9
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Thus the Divergence Theorem states that, under the given conditions, the flux of F 
across the boundary surface of E is equal to the triple integral of the divergence of  
F over E.

PROOF Let F − P i 1 Q j 1 R k. Then

div F −
−P

−x
1

−Q

−y
1

−R

−z

so y  y
E

y div F dV − y y
E

y 
−P

−x
 dV 1 y y

E

y 
−Q

−y
 dV 1 y y

E

y 
−R

−z
 dV

If n is the unit outward normal of S, then the surface integral on the left side of the Diver-
gence Theorem is

 y
S

y F � dS − y
S

y F � n dS − y
S

y sP i 1 Q j 1 R kd � n dS

 − y
S

y P i � n dS 1 y
S

y Q j � n dS 1 y
S

y R k � n dS

Therefore, to prove the Divergence Theorem, it suffices to prove the following three 
equations:

2   y
S

y P i � n dS −  y y
E

y 
−P

−x
 dV  

3   y
S

y Q j � n dS − y y
E

y 
−Q

−y
 dV  

4   y
S

y R k � n dS − y y
E

y 
−R

−z
 dV  

To prove Equation 4 we use the fact that E is a type 1 region:

E − hsx, y, zd | sx, yd [ D, u1sx, yd < z < u2sx, ydj
where D is the projection of E onto the xy-plane. By Equation 15.6.6, we have

y y
E

y 
−R

−z
 dV − y

D

y Fyu2sx, yd

u1sx, yd
 
−R

−z
 sx, y, zd dzG dA

and therefore, by the Fundamental Theorem of Calculus,

5  y y
E

y 
−R

−z
 dV − y

D

y fR(x, y, u2sx, yd) 2 R(x, y, u1sx, yd)g dA 

The boundary surface S consists of three pieces: the bottom surface S1, the top 
surface S2, and possibly a vertical surface S3, which lies above the boundary curve of D. 
(See Figure 1. It might happen that S3 doesn’t appear, as in the case of a sphere.) Notice 
that on S3 we have k � n − 0, because k is vertical and n is horizontal, and so

y
S3

y R k � n dS − y
S3

y 0 dS − 0

0

D

E
S£

S™ {z=u™(x, y)}

S¡ {z=u¡(x, y)}

y

z

x

FIGURE 1
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Thus, regardless of whether there is a vertical surface, we can write

6  y
S

y R k � n dS − y
S1

y R k � n dS 1 y
S2

y R k � n dS 

The equation of S2 is z − u2sx, yd, sx, yd [ D, and the outward normal n points 
upward, so from Equation 16.7.10 (with F replaced by R k) we have

y
S2

y R k � n dS − y
D

y Rsx, y, u2sx, ydd dA

On S1 we have z − u1sx, yd, but here the outward normal n points downward, so we 
multiply by 21:

y
S1

y R k � n dS − 2y
D

y Rsx, y, u1sx, ydd dA

Therefore Equation 6 gives

y
S

y R k � n dS − y
D

y fRsx, y, u2sx, ydd 2 Rsx, y, u1sx, yddg dA

Comparison with Equation 5 shows that

y
S

y R k � n dS − y y
E

y 
−R

−z
 dV

Equations 2 and 3 are proved in a similar manner using the expressions for E as a  
type 2 or type 3 region, respectively. ■

EXAMPLE 1 Find the flux of the vector field Fsx, y, zd − z i 1 y j 1 x k over the unit 
sphere x 2 1 y 2 1 z2 − 1.

SOLUTION First we compute the divergence of F:

div F −
−

−x
 szd 1

−

−y
 syd 1

−

−z
 sxd − 1

The unit sphere S is the boundary of the unit ball B given by x 2 1 y 2 1 z2 < 1. Thus 
the Divergence Theorem gives the flux as

  y
S

y F � dS − y y
B

y  div F dV − y y
B

y 1 dV − VsBd − 4
3 �s1d3 −

4�

3
 ■

EXAMPLE 2 Evaluate yyS F � dS, where

Fsx, y, zd − xy i 1 (y 2 1 exz2) 

j 1 sinsxyd k

and S is the surface of the region E bounded by the parabolic cylinder z − 1 2 x 2 and 
the planes z − 0, y − 0, and y 1 z − 2. (See Figure 2.)

SOLUTION It would be extremely difficult to evaluate the given surface integral  
directly. (We would have to evaluate four surface integrals corresponding to the four 
pieces of S.) Furthermore, the divergence of F is much less complicated than F itself:

 div F −
−

−x
 sxyd 1

−

−y
 (y 2 1 exz2) 1

−

−z
 ssin xyd − y 1 2y − 3y

Notice that the method of proof of 
the Divergence Theorem is very 
similar to that of Green’s Theorem.

The solution in Example 1 should  
be compared with the solution in  
Exam ple 16.7.4.

0

(1, 0, 0) (0, 2, 0)

y=2-z

z=1-≈

y

z

(0, 0, 1)

x

FIGURE 2
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Therefore we use the Divergence Theorem to transform the given surface integral into a 
triple integral. The easiest way to evaluate the triple integral is to express E as a type 3 
region:

E − hsx, y, zd | 21 < x < 1, 0 < z < 1 2 x 2, 0 < y < 2 2 z j
Then we have

 y
S

y F � dS − y y
E

y div F dV − y y
E

y 3y dV

 − 3 y1

21
 y12x 2

0  y22z

0  y dy dz dx − 3 y1

21
 y12x2

0
 
s2 2 zd2

2
 dz dx

 −
3

2
 y1

21
 F2

s2 2 zd3

3 G
0

12x2

dx − 21
2 y1

21
 fsx 2 1 1d3 2 8g dx

 − 2y1

0
 sx 6 1 3x 4 1 3x 2 2 7d dx −

184

35
 ■

Although we have proved the Divergence Theorem only for simple solid regions, it 
can be proved for regions that are finite unions of simple solid regions. (The procedure is 
sim ilar to the one we used in Section 16.4 to extend Green’s Theorem.)

For example, let’s consider the region E that lies between the closed surfaces S1 and 
S2, where S1 lies inside S2. Let n1 and n2 be outward normals of S1 and S2. Then the 
boundary surface of E is S − S1 ø S2 and its normal n is given by n − 2n1 on S1 and 
n − n2 on S2. (See Figure 3.) Applying the Divergence Theorem to S, we get

7   y y
E

y div F dV − y
S

y  F � dS − y
S

y F � n dS  

 − y
S1

y   F � s2n1d dS 1 y
S2

y F � n2  dS

 − 2y
S1

y F � dS 1 y
S2

y F � dS

EXAMPLE 3 In Example 16.1.5 we considered the electric field

Esxd −
«Q

| x |3  x

where the electric charge Q is located at the origin and x − kx, y, zl is a position vector. 
Use the Divergence Theorem to show that the electric flux of E through any closed 
surface S that encloses the origin is

y
S

y E � dS − 4�«Q

SOLUTION The difficulty is that we don’t have an explicit equation for S because it is 
any closed surface enclosing the origin. Let S1 be a sphere centered at the origin with 

n¡

S¡

S™

_n¡

n™

FIGURE 3
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 SECTION 16.9  The Divergence Theorem 1205

radius a, where a is chosen to be small enough so that S1 is contained within S. Let E 
be the region that lies between S1 and S. Then Equation 7 gives

8  y y
E

y div E dV − 2y
S1

y  E � dS 1 y
S

y E � dS 

You can verify that div E − 0. (See Exercise 25.) Therefore from (8) we have

y
S

y  E � dS − y
S1

y E � dS 

The point of this calculation is that we can compute the surface integral over S1 because 
S1 is a sphere. The normal vector at x is xy| x |. Therefore

 E � n −
«Q

| x |3  x � S x

| x | D −
«Q

| x |4  x � x −
«Q

| x |2 −
«Q

a 2

since the equation of S1 is | x | − a. Thus we have

y
S

y E � dS − y
S1

y E � n dS −
«Q

a 2  y
S1

y dS −
«Q

a 2  AsS1d −
«Q

a 2  4�a 2 − 4�«Q

This shows that the electric flux of E is 4�«Q through any closed surface S that 
contains the origin. [This is a special case of Gauss’s Law (Equation 16.7.11) for a 
single charge. The relationship between « and «0 is « − 1ys4�«0 d.] ■

Another application of the Divergence Theorem occurs in fluid flow. Let vsx, y, zd be 
the velocity field of a fluid with constant density �. Then F − �v is the rate of flow per 
unit  area. If P0sx0, y0, z0 d is a point in the fluid and Ba is a ball with center P0 and 
very small radius a, then div FsPd < div FsP0 d for all points P in Ba since div F is con-
tinuous. We approximate the flux over the boundary sphere Sa as follows:

 y
Sa

y F � dS − y y
Ba

y div F dV < y y
Ba

y div FsP0 d dV − div FsP0 dVsBa d

This approximation becomes better as a l 0 and suggests that

9  div FsP0 d − lim 
a l 0

 
1

VsBa d
 y
Sa

y F � dS 

Equation 9 says that div FsP0 d is the net rate of outward flux per unit volume at P0. (This 
is the reason for the name divergence.) If div FsPd . 0, the net flow is outward near P 
and P is called a source. If div FsPd , 0, the net flow is inward near P and P is called a 
sink.

For the vector field in Figure 4, it appears that the vectors that end near P1 are shorter 
than the vectors that start near P1. Thus the net flow is outward near P1, so div FsP1d . 0 
and P1 is a source. Near P2, on the other hand, the incoming arrows are longer than the  
outgoing arrows. Here the net flow is inward, so div FsP2 d , 0 and P2 is a sink. We  
can use the formula for F to confirm this impression. Since F − x 2 i 1 y 2 j, we have 
div F − 2x 1 2y, which is positive when y . 2x. So the points above the line y − 2x 
are sources and those below are sinks.

P¡

P™

y

x

FIGURE 4  
The vector field F − x2 i 1 y2 j

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



1206 CHAPTER 16  Vector Calculus

16.9 Exercises

1–4 Verify that the Divergence Theorem is true for the vector 
field F on the region E.

 1.  Fsx, y, zd − 3x i 1 xy j 1 2xz k, 
E is the cube bounded by the planes x − 0, x − 1, y − 0, 
y − 1, z − 0, and z − 1

 2.   Fsx, y, zd − y 2z 3 i 1 2yz j 1 4z 2 k, 
E is the solid enclosed by the paraboloid z − x 2 1 y 2 and the 
plane z − 9

 3.  Fsx, y, zd − kz, y, x l, 
E is the solid ball x 2 1 y 2 1 z 2 < 16

 4.  Fsx, y, zd − kx 2, 2y, zl, 
E is the solid cylinder y 2 1 z2 < 9, 0 < x < 2

5–17 Use the Divergence Theorem to calculate the surface 
integral yyS F � dS; that is, calculate the flux of F across S.

 5.  Fsx, y, zd − xyez i 1 xy 2z3 j 2 yez k, 
S is the surface of the box bounded by the coordinate planes 
and the planes x − 3, y − 2, and z − 1

 6.  Fsx, y, zd − x 2yz i 1 xy 2z j 1 xyz2 k, 
S is the surface of the box enclosed by the planes x − 0,  
x − a, y − 0, y − b, z − 0, and z − c, where a, b, and c are 
positive numbers

 7.  Fsx, y, zd − 3xy 2 i 1 xe z j 1 z3 k, 
S is the surface of the solid bounded by the cylinder 
y 2 1 z2 − 1 and the planes x − 21 and x − 2

 8.  Fsx, y, zd − sx 3 1 y 3d i 1 sy 3 1 z3d j 1 sz3 1 x 3d k, 
S is the sphere with center the origin and radius 2

 9.  Fsx, y, zd − xe y i 1 sz 2 e yd j 2 xy k, 
S is the ellipsoid x 2 1 2y 2 1 3z 2 − 4

 10. Fsx, y, zd − e y tan z i 1 x 2y j 1 e x cos y k,  
S is the surface of the solid that lies above the xy-plane and 
below the surface z − 2 2 x 2 y 3, 21 < x < 1, 
21 < y < 1

 11.  Fsx, y, zd − s2x 3 1 y 3d i 1 sy 3 1 z 3d  j 1 3y 2z k, 
S is the surface of the solid bounded by the paraboloid 
z − 1 2 x 2 2 y 2 and the xy-plane

 12.  Fsx, y, zd − sxy 1 2xzd i 1 sx 2 1 y 2d  j 1 sxy 2 z 2d k, 
S is the surface of the solid bounded by the cylinder 
x 2 1 y 2 − 4 and the planes z − y 2 2 and z − 0

 13. Fsx, y, zd − x 2z i 1 xz 3 j 1 y lnsx 1 1d k,  
S is the surface of the solid bounded by the planes 
x 1 2z − 4, y − 3, x − 0, y − 0, and z − 0

x

y

z

x+2z=4

y=3

 14. Fsx, y, zd − sxy 2 z 2 d i 1 x 3 sz  

 j 1 sxy 1 z 2d k, 
S is the surface of the solid bounded by the cylinder x − y 2 
and the planes x 1 z − 1 and z − 0

z

x

y

x=¥

x+z=1

 15.  Fsx, y, zd − z i 1 y  j 1 zx k, 
S is the surface of the tetrahedron enclosed by the coordinate 
planes and the plane

x

a
1

y

b
1

z

c
− 1

where a, b, and c are positive numbers

z

(0, 0, c)

(0, b, 0)

(a, 0, 0)

x

0

y

+ + =1
x

a

y

b

z

c

 16.  F − | r |2 r, where r − x i 1 y j 1 z k,  
S is the sphere with radius R and center the origin
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 25. Verify that div E − 0 for the electric field Esxd −
«Q

| x |3  x.

 26.   Use the Divergence Theorem to evaluate

y
S

y s2x 1 2y 1 z 2d dS

where S is the sphere x 2 1 y 2 1 z2 − 1.

27–32 Prove each identity, assuming that S and E satisfy the 
conditions of the Divergence Theorem and the scalar functions 
and components of the vector fields have continuous second-
order partial derivatives.

 27. y
S

y a � n dS − 0, where a is a constant vector

 28. VsE d − 1
3 y

S

y F � dS, where Fsx, y, zd − x i 1 y j 1 z k

 29. y
S

y curl F � dS − 0 30. y
S

y Dn f dS − y y
E

y = 2f dV

 31. y
S

y s f =td � n dS − y y
E

y s f = 2t 1 = f � =td dV

 32. y
S

y s f =t 2 t= f d � n dS − y y
E

y s f = 2t 2 t= 2f d dV

 33.  Suppose S and E satisfy the conditions of the Divergence 
Theorem and f  is a scalar function with continuous partial 
derivatives. Prove that

y
S

y f n dS − y y
E

y = f dV

   These surface and triple integrals of vector functions are  
vectors defined by integrating each component function. 
[Hint: Start by applying the Divergence Theorem to F − f c, 
where c is an arbitrary constant vector.]

 34.  A solid occupies a region E with surface S and is immersed 
in a liquid with constant density �. We set up a coordinate 
system so that the xy-plane coincides with the surface of the 
liquid, and positive values of z are measured downward into 
the liquid. Then the pressure at depth z is p − �tz, where t 
is the acceleration due to gravity (see Section 8.3). The total 
buoyant force on the solid due to the pressure distribution is 
given by the surface integral

F − 2y
S

y pn dS

where n is the outer unit normal. Use the result of Exer-
cise 33 to show that F − 2Wk, where W is the weight of 
the liquid displaced by the solid. (Note that F is directed 
upward because z is directed downward.) The result is 
Archimedes’ Principle: the buoyant force on an object 
equals the weight of the dis placed liquid.

 17.  F − | r | r, where r − x i 1 y j 1 z k, 
S consists of the hemisphere z − s1 2 x 2 2 y 2  and the 
disk x 2 1 y 2 < 1 in the xy-plane

 18.  Plot the vector field

Fsx, y, zd − sin x cos2 y i 1 sin3y cos4z j 1 sin5z cos6x k

in the cube cut from the first octant by the planes x − �y2, 
y − �y2, and z − �y2. Then use a computer algebra sys-
tem to compute the flux across the surface of the cube.

 19.  Use the Divergence Theorem to evaluate yyS F � dS, where 

Fsx, y, zd − z2x i 1 (1
3 y 3 1 tan21z) j 1 sx 2z 1 y 2 d k 

and S is the top half of the sphere x 2 1 y 2 1 z2 − 1.  
[Hint: Note that S is not a closed surface. First compute  
integrals over S1 and S2, where S1 is the disk x 2 1 y 2 < 1, 
oriented downward, and S2 − S ø S1.]

 20.  Let Fsx, y, zd − z tan21sy 2 d i 1 z3 lnsx 2 1 1d j 1 z k.  
Find the flux of F across the part of the paraboloid 
x 2 1 y 2 1 z − 2 that lies above the plane z − 1 and is  
oriented upward.

 21.  A vector field F is shown. Use the interpretation of diver-
gence derived in this section to determine whether the 
points P1 and P2 are sources or sinks.

2

_2

_2 2

P¡

P™

 22. (a)  Are the points P1 and P2 sources or sinks for the vector 
field F shown in the figure? Give an explanation based 
solely on the picture.

 (b)  Given that Fsx, yd − kx, y 2 l, use the definition of 
divergence to verify your answer to part (a).

2

_2

_2 2

P¡

P™

23–24 Plot the vector field and guess where div F . 0 and 
where div F , 0. Then calculate div F to check your guess.

 23. Fsx, yd − kxy, x 1 y 2 l 24. Fsx, yd − kx 2, y 2 l

;
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1208 CHAPTER 16  Vector Calculus

Summary

The main results of this chapter are all higher-dimensional versions of the Funda mental 
Theorem of Calculus. To help you remember them, we collect them together here (with-
out hypotheses) so that you can see more easily their essential similarity. Notice that in 
each case we have an integral of a “derivative” over a region on the left side, and the right  
side involves the values of the original function only on the boundary of the region.

16.10

r(a)

r(b)

C

a bFundamental Theorem of Calculus

Fundamental Theorem for Line Integrals

Green’s Theorem

Stokes’ Theorem

Divergence Theorem

Solids and their boundaries

Surfaces and their boundaries

Curves and their boundaries (endpoints)

C

D

E

S

n

n

C

S

n

yb

a
 F9sxd dx − Fsbd 2 Fsad

y
C
 = f � dr − f srsbdd 2 f srsadd

y
D

y S −Q

−x
2

−P

−y D dA − y
C
 P dx 1 Q dy

y
S

y curl F � dS − y
C
 F � dr

y y
E

y div F dV − y
S

y F � dS
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 16 REVIEW

 1.  What is a vector field? Give three examples that have physical 
meaning.

 2. (a) What is a conservative vector field?
 (b) What is a potential function?

 3. (a)  Write the definition of the line integral of a scalar func-
tion f  along a smooth curve C with respect to arc length.

 (b) How do you evaluate such a line integral?
 (c)  Write expressions for the mass and center of mass of a 

thin wire shaped like a curve C if the wire has linear 
density function �sx, yd.

 (d)  Write the definitions of the line integrals along C of a 
scalar function f  with respect to x, y, and z.

 (e) How do you evaluate these line integrals?

 4. (a)  Define the line integral of a vector field F along a smooth 
curve C given by a vector function rstd.

 (b)  If F is a force field, what does this line integral represent?
 (c)  If F − kP, Q, R l, what is the connection between the line 

integral of F and the line integrals of the component 
functions P, Q, and R?

 5. State the Fundamental Theorem for Line Integrals.

 6. (a)  What does it mean to say that yC F � dr is independent  
of path?

 (b)  If you know that yC F � dr is independent of path, what 
can you say about F?

 7. State Green’s Theorem.

 8.  Write expressions for the area enclosed by a curve C in terms  
of line integrals around C.

 9. Suppose F is a vector field on R3.
  (a) Define curl F. (b) Define div F.

 (c)  If F is a velocity field in fluid flow, what are the physical 
interpretations of curl F and div F?

 10.  If F − P i 1 Q j, how do you determine whether F is conser-
vative? What if F is a vector field on R3?

 11. (a) What is a parametric surface? What are its grid curves?
 (b) Write an expression for the area of a parametric surface.
 (c)  What is the area of a surface given by an equation 

z − tsx, yd?

 12. (a)  Write the definition of the surface integral of a scalar 
function f  over a surface S.

 (b)  How do you evaluate such an integral if S is a para metric 
surface given by a vector function rsu, vd?

 (c) What if S is given by an equation z − tsx, yd?
 (d)  If a thin sheet has the shape of a surface S, and the 

density at sx, y, zd is �sx, y, zd, write expressions for the 
mass and center of mass of the sheet.

 13. (a)  What is an oriented surface? Give an example of a non- 
orientable surface.

 (b)  Define the surface integral (or flux) of a vector field F 
over an oriented surface S with unit normal vector n.

 (c)  How do you evaluate such an integral if S is a parametric 
surface given by a vector function rsu, vd?

 (d) What if S is given by an equation z − tsx, yd?

 14. State Stokes’ Theorem.

 15. State the Divergence Theorem.

 16.  In what ways are the Fundamental Theorem for Line Inte-
grals, Green’s Theorem, Stokes’ Theorem, and the Diver-
gence Theorem similar?

Answers to the Concept Check are available at StewartCalculus.com.CONCEPT CHECK

Determine whether the statement is true or false. If it is true, 
explain why. If it is false, explain why or give an example that dis-
proves the statement.

 1. If F is a vector field, then div F is a vector field.

 2. If F is a vector field, then curl F is a vector field.

 3.  If f  has continuous partial derivatives of all orders on R 3, 
then divscurl = f d − 0.

 4.  If f  has continuous partial derivatives on R 3 and C is any  
circle, then yC = f � dr − 0.

 5.  If F − P i 1 Q j and Py − Qx in an open region D, then F is 
conservative.

 6. y2C f sx, yd ds − 2yC f sx, yd ds

 7.  If F and G are vector fields and divF − divG, then F − G.

 8.   The work done by a conservative force field in moving a  
particle around a closed path is zero.

 9.  If F and G are vector fields, then

curlsF 1 Gd − curl F 1 curl G

TRUE-FALSE QUIZ
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1210 CHAPTER 16  Vector Calculus

 1. A vector field F, a curve C, and a point P are shown.
 (a) Is yC F � dr positive, negative, or zero? Explain.

 (b) Is div FsPd positive, negative, or zero? Explain.

y

x

P

C

2–9 Evaluate the line integral.

 2.  yC x ds, 
C is the arc of the parabola y − x 2 from (0, 0) to (1, 1)

 3.  yC yz cos x ds, 
C: x − t, y − 3 cos t, z − 3 sin t, 0 < t < �

 4.  yC y dx 1 sx 1 y 2d dy,  C is the ellipse 4x 2 1 9y 2 − 36  
with counterclockwise orientation

 5.  yC y 3 dx 1 x 2 dy,  C is the arc of the parabola x − 1 2 y 2  
from s0, 21d to s0, 1d

 6.  yC sxy  dx 1 e y dy 1 xz dz, 
C is given by rstd − t 4 i 1 t 2 j 1 t 3 k, 0 < t < 1

 7.  yC xy dx 1 y 2 dy 1 yz dz, 
C is the line segment from s1, 0, 21d, to s3, 4, 2d

 8.  yC F � dr, where Fsx, yd − xy i 1 x 2 j and C is given by 
rstd − sin t i 1 s1 1 td j, 0 < t < �

 9.  yC F � dr, where Fsx, y, zd − e z i 1 xz j 1 sx 1 yd k and  
C is given by rstd − t 2 i 1 t 3 j 2 t k, 0 < t < 1

 10.   Find the work done by the force field

Fsx, y, zd − z i 1 x j 1 y k

   in moving a particle from the point s3, 0, 0d to the point 
s0, �y2, 3d along each path.

 (a) A straight line
 (b) The helix x − 3 cos t, y − t, z − 3 sin t

11–12 Show that F is a conservative vector field. Then find a 
function f  such that F − = f .

 11. Fsx, yd − s1 1 xyde xy i 1 se y 1 x 2e xy d j

 12. Fsx, y, zd − sin y i 1 x cos y j 2 sin z k

13–14 Show that F is conservative and use this fact to evaluate 
yC F � dr along the given curve.

 13.  Fsx, yd − s4x 3y 2 2 2xy 3d i 1 s2x 4 y 2 3x 2y 2 1 4y 3d j, 
C: rstd − st 1 sin � td i 1 s2t 1 cos � td j, 0 < t < 1

 14.  Fsx, y, zd − e y i 1 sxe y 1 e zd j 1 ye z k, 
C is the line segment from s0, 2, 0d to s4, 0, 3d

 15.  Verify that Green’s Theorem is true for the line integral 
yC xy 2 dx 2 x 2 y dy, where C consists of the parabola y − x 2 
from s21, 1d to s1, 1d and the line segment from s1, 1d  
to s21, 1d.

 16. Use Green’s Theorem to evaluate

y
C
 s1 1 x 3  dx 1 2xy dy

where C is the triangle with vertices s0, 0d, s1, 0d, and s1, 3d.

 17.  Use Green’s Theorem to evaluate yC x 2 y dx 2 xy 2 dy,  
where C is the circle x 2 1 y 2 − 4 with counterclockwise  
orientation.

 18. Find curl F and div F if

Fsx, y, zd − e2x sin y i 1 e2y sin z j 1 e2z sin x k

 19.  Show that there is no vector field G such that

curl G − 2x i 1 3yz j 2 xz2 k

 20.  If F and G are vector fields whose component functions have 
continuous first partial derivatives, show that

curlsF 3 Gd − F div G 2 G div F 1 sG � = dF 2 sF � = dG

 21.  If C is any piecewise-smooth simple closed plane curve  
and f  and t are differentiable functions, show that 
yC f sxd dx 1 tsyd dy − 0.

EXERCISES

 10.  If F and G are vector fields, then

curlsF � Gd − curl F � curl G

 11.  If S is a sphere and F is a constant vector field, then 
yyS F � dS − 0.

 12. There is a vector field F such that

curl F − x i 1 y j 1 z k

 13.  The area of the region bounded by the positively oriented, 

piecewise smooth, simple closed curve C is A − �yC
 y dx.
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 CHAPTER 16  Review 1211

 33.  Use Stokes’ Theorem to evaluate yC F � dr, where 
Fsx, y, zd − xy i 1 yz j 1 zx k and C is the triangle with 
vertices s1, 0, 0d, s0, 1, 0d, and s0, 0, 1d, oriented counter-
clockwise as viewed from above.

 34.  Use the Divergence Theorem to calculate the surface inte-
gral yyS F � dS, where Fsx, y, zd − x 3 i 1 y 3 j 1 z3 k and S 
is the surface of the solid bounded by the cylinder 
x 2 1 y 2 − 1 and the planes z − 0 and z − 2.

 35.  Verify that the Divergence Theorem is true for the vector  
field Fsx, y, zd − x i 1 y j 1 z k, where E is the unit ball 
x 2 1 y 2 1 z2 < 1.

 36. Compute the outward flux of

Fsx, y, zd −
x i 1 y j 1 z k

sx 2 1 y 2 1 z2 d3y2

through the ellipsoid 4x 2 1 9y 2 1 6z2 − 36.

 37. Let

Fsx, y, zd − s3x 2 yz 2 3yd i 1 sx 3z 2 3xd j 1 sx 3 y 1 2zd k

Evaluate yC F � dr, where C is the curve with initial point 
s0, 0, 2d and terminal point s0, 3, 0d shown in the figure.

0

(0, 0, 2)

(0, 3, 0)
(1, 1, 0)

(3, 0, 0)

z

x

y

 38. Let

Fsx, yd −
s2x 3 1 2xy 2 2 2yd i 1 s2y 3 1 2x 2 y 1 2xd j

x 2 1 y 2

Evaluate   � yC F � dr, where C is shown in the figure.

0 x

y

C

 22. If f  and t are twice differentiable functions, show that

= 2s ftd − f = 2t 1 t= 2f 1 2= f � =t

 23.  If f  is a harmonic function, that is, = 2 f − 0, show that the 
line integral y fy dx 2 fx dy is independent of path in any sim-
ple region D.

 24. (a)  Sketch the curve C with parametric equations

x − cos t    y − sin t    z − sin t    0 < t < 2�

 (b) Find yC 2xe 2y dx 1 s2x 2e 2y 1 2y cot zd dy 2 y 2 csc2z dz.

 25.  Find the area of the part of the surface z − x 2 1 2y that lies 
above the triangle with vertices s0, 0d, s1, 0d, and s1, 2d.

 26. (a)  Find an equation of the tangent plane at the point 
s4, 22, 1d to the parametric surface S given by

rsu, vd − v2 i 2 uv j 1 u 2 k

0 < u < 3, 23 < v < 3

 (b)  Graph the surface S and the tangent plane found in  
part (a).

 (c)  Set up, but do not evaluate, an integral for the surface 
area of S.

 (d) If

Fsx, y, zd −
z2

1 1 x 2  i 1
x 2

1 1 y 2  j 1
 y 2

1 1 z2  k

  use a computer algebra system to find yyS F � dS correct 
to four decimal places.

27–30 Evaluate the surface integral.

 27.  yyS z dS, where S is the part of the paraboloid z − x 2 1 y 2 
that lies under the plane z − 4

 28.  yyS sx 2z 1 y 2zd dS, where S is the part of the plane 
z − 4 1 x 1 y that lies inside the cylinder x 2 1 y 2 − 4

 29.  yyS F � dS, where Fsx, y, zd − xz i 2 2y j 1 3x k and S is 
the sphere x 2 1 y 2 1 z2 − 4 with outward orientation

 30.  yyS F � dS, where Fsx, y, zd − x 2 i 1 xy j 1 z k and S is the 
part of the paraboloid z − x 2 1 y 2 below the plane z − 1 
with upward orientation

 31.  Verify that Stokes’ Theorem is true for the vector field 
Fsx, y, zd − x 2 i 1 y 2 j 1 z2 k, where S is the part of the 
paraboloid z − 1 2 x 2 2 y 2 that lies above the xy-plane and 
S has upward orientation.

 32.  Use Stokes’ Theorem to evaluate yyS curl F � dS, where
Fsx, y, zd − x 2 yz i 1 yz2 j 1 z3e xy k, S is the part of the 
sphere x 2 1 y 2 1 z2 − 5 that lies above the plane z − 1, 
and S is oriented upward.

;
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1212 CHAPTER 16  Vector Calculus

 39.  Find yyS F � n dS, where Fsx, y, zd − x i 1 y j 1 z k and S is 
the outwardly oriented surface shown in the figure (the 
boundary surface of a cube with a unit corner cube removed).

(0, 2, 2)
(2, 0, 2)

(2, 2, 0)S
y

z

x

1

1
1

 40.  If the components of F have continuous second partial deriva-
tives and S is the boundary surface of a simple solid region, 
show that yyS curl F � dS − 0.

 41.   If a is a constant vector, r − x i 1 y j 1 z k, and S is an ori-
ented, smooth surface with a simple, closed, smooth, posi-
tively oriented boundary curve C, show that

y
S

y 2a � dS − y
C
 sa 3 rd � dr
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 1.  Let S be a smooth parametric surface and let P be a point such that each line that starts  
at P intersects S at most once. The solid angle VsS d subtended by S at P is the set of lines 
starting at P and passing through S. Let Ssad be the intersection of VsS d with the surface of 
the sphere with center P and radius a. Then the measure of the solid angle (in steradians) is 
defined to be

| VsS d | −
area of Ssad

a2

  Apply the Divergence Theorem to the part of VsS d between Ssad and S to show that

| VsS d | − y
S

y 
r � n

r 3   dS

   where r is the radius vector from P to any point on S, r − | r |, and the unit normal vector n is 
directed away from P.

     This shows that the definition of the measure of a solid angle is independent of the radius a 
of the sphere. Thus the measure of the solid angle is equal to the area subtended on a unit 
sphere. (Note the analogy with the definition of radian measure.) The total solid angle sub-
tended by a sphere at its center is thus 4� steradians.

 2. Find the positively oriented simple closed curve C for which the value of the line integral

y
C
 sy 3 2 yd dx 2 2x 3 dy 

  is a maximum.

 3.  Let C be a simple closed piecewise-smooth space curve that lies in a plane with unit normal 
vector n − ka, b, c l and has positive orientation with respect to n. Show that the plane area 
enclosed by C is

1
2 y

C
 sbz 2 cyd dx 1 scx 2 azd dy 1 say 2 bxd dz 

 4.  Investigate the shape of the surface with parametric equations x − sin u, y − sin v, 
z − sinsu 1 vd. Start by graphing the surface from several points of view. Explain the  
appearance of the graphs by determining the traces in the horizontal planes z − 0, z − 61,  
and z − 6 1

2.

 5. Prove the following identity:

=sF � Gd − sF � =dG 1 sG � =dF 1 F 3 curl G 1 G 3 curl F

 6.  The figure depicts the sequence of events in each cylinder of a four-cylinder internal combus-
tion engine. Each piston moves up and down and is connected by a pivoted arm to a rotating 
crankshaft. Let Pstd and Vstd be the pressure and volume within a cylinder at time  
t, where a < t < b gives the time required for a complete cycle. The graph shows how P and 
V vary through one cycle of a four-stroke engine.

     During the intake stroke (from ① to ②) a mixture of air and gasoline at atmospheric pres-
sure is drawn into a cylinder through the intake valve as the piston moves downward. Then 
the piston rapidly compresses the mix with the valves closed in the compression stroke (from 
② to ③) during which the pressure rises and the volume decreases. At ③ the sparkplug ignites 
the fuel, raising the temperature and pressure at almost constant volume to ④. Then, with 
valves closed, the rapid expansion forces the piston downward during the power stroke (from 
④ to ⑤). The exhaust valve opens, temperature and pressure drop, and mechanical energy 
stored in a rotating flywheel pushes the piston upward, forcing the waste products out of the 

P

S(a)

a

S

FIGURE FOR PROBLEM  1
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exhaust valve in the exhaust stroke. The exhaust valve closes and the intake valve opens. 
We’re now back at ① and the cycle starts again.

  (a)  Show that the work done on the piston during one cycle of a four-stroke engine is 
W − yC P dV, where C is the curve in the PV-plane shown in the figure. 
  [Hint: Let xstd be the distance from the piston to the top of the cylinder and note that  
the force on the piston is F − APstd i, where A is the area of the top of the piston. Then  
W − y

C1
 F � dr, where C1 is given by rstd − xstd i, a < t < b. An alternative approach is 

to work directly with Riemann sums.]
  (b)  Use Formula 16.4.5 to show that the work is the difference of the areas enclosed by the 

two loops of C.

 7. The set of all points within a perpendicular distance r from a smooth simple curve C in R3 
form a “tube,” which we denote by TubesC, rd; see the figure at the left. (We assume that r is 
small enough that the tube does not intersect itself.) It may seem that the volume of such a 
tube would depend on the twists and turns of C, but in this problem you will find a formula 
for the volume of TubesC, rd which, perhaps surprisingly, depends only on r and the length of 
C. We assume that C is parameterized with respect to arc length s as rssd, where a < s < b, 
so the arc length of C is L − b 2 a .

  (a) Show that the surface of TubesC, qd is parameterized by  

Xsu, vd − rsud 1 q cos v Nsud 1 q sin v Bsud  a < u < b, 0 < v < 2�

   where N and B are the unit normal and binormal vectors for C.
  (b)  Use the Frenet-Serret Formulas (Exercises 13.3.71–72) and the Pythagorean Theorem for 

vectors (Exercise 12.3.66) to show that

| Xusu, vd 3 Xvsu, vd | − q f1 2 �sud q cos vg

   and so the surface area of TubesC, qd is

Ssqd − yb

a
 y2�

0
 | Xusu, vd 3 Xvsu, vd | dv du − 2�qL

  (c)  Consider a thin tubular shell of radius q and thickness Dq along C, a cross-section of 
which is shown in the figure.

Îq

q

    Observe that the volume of the shell is approximately Dq Ssqd and conclude that the 
volume of TubesC, rd is 

yr

0
 Ssqd dq − �r 2L

  (d)  Find the volume of a tube of radius r − 0.2 around the helix rstd − kcos t, sin t, tl, 
0 < t < 4�.

  (e) Find the volume of the torus in Example 8.3.7.

Source: Adapted from A. Gray, Tubes, 2nd ed. (Basel; Boston: Birkhäuser, 2004).

x
y

C

z

r

1214

FIGURE FOR PROBLEM  7
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A1

Appendixes

Proofs of Theorems

In this appendix we present proofs of several theorems that are stated in the main body 
of the text. The sections in which they occur are indicated in the margin.

7  Theorem If lim
n l `

 an − L and the function f  is continuous at L, then 

lim
n l `

  f sand − f sLd

PROOF Let « . 0 be given. Since f  is continuous at L, we have lim
x lL

  f sxd − f sLd. Thus 
there exists � . 0 such that 

1  if  0 , | x 2 L | , �  then  | f sxd 2 f sLd| , «

Now, since lim
n l`

 an − L and � is a positive number, there exists an integer N such that 

2  if  n . N  then  |an 2 L | , �

Combining (1) and (2), we have

if  n . N  then  | f sand 2 f sLd| , «

so by Definition 11.1.2, lim
n l`

  fsand − fsLd. ■

In order to prove Theorem 11.8.4, we first need the following results.

Theorem
1. If a power series � cn xn converges when x − b (where b ± 0), then it converges 

whenever | x | , | b |.
2. If a power series � cn xn diverges when x − d (where d ± 0), then it diverges 

whenever | x | . | d |.

PROOF OF 1 Suppose that �cnbn converges. Then, by Theorem 11.2.6, we have 
lim n l ` cnbn − 0. According to Definition 11.1.2 with « − 1, there is a positive integer  
N such that |cnbn | , 1 whenever n > N. Thus, for n > N, we have

|cn xn | − Z cnbnxn

bn Z − |cnbn | Z x

b Z n

, Z x

b Z n

If | x | , | b |, then | xyb | , 1, so � | xyb |n is a convergent geometric series. Therefore, 
by the Direct Comparison Test, the series �`

n−N |cn xn | is convergent. Thus the series 
�cn xn is absolutely convergent and therefore convergent. ■

F

Section 11.1

Section 11.8
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A2 APPENDIX F  Proofs of Theorems

PROOF OF 2 Suppose that �cndn diverges. If x is any number such that | x | . | d |,  
then �cn xn cannot converge because, by part 1, the convergence of �cn xn would  
imply the convergence of �cndn. Therefore �cn xn diverges whenever | x | . | d |. ■

Theorem For a power series �cnxn there are only three possibilities:

 (i) The series converges only when x − 0.

 (ii) The series converges for all x.

 (iii) There is a positive number R such that the series converges if | x | , R and 
diverges if | x | . R.

PROOF Suppose that neither case (i) nor case (ii) is true. Then there are nonzero 
numbers b and d such that �cn xn converges for x − b and diverges for x − d. There-
fore the set S − hx | �cn xn convergesj is not empty. By the preceding theorem, the 
series diverges if | x | . | d |, so | x | < | d | for all x [ S. This says that | d | is an upper 
bound for the set S. Thus, by the Completeness Axiom (see Section 11.1), S has a least 
upper bound R. If | x | . R, then x Ó S, so �cn xn diverges. If | x | , R, then | x | is not 
an upper bound for S and so there exists b [ S such that b . | x |. Since b [ S, �cn xn 
converges, so by the preceding theorem �cn xn converges. ■

We are now ready to prove Theorem 11.8.4.

4  Theorem For a power series � cnsx 2 adn there are only three possibilities:

 (i) The series converges only when x − a.

 (ii) The series converges for all x.

 (iii)  There is a positive number R such that the series converges if | x 2 a | , R  
and diverges if | x 2 a | . R.

PROOF If we make the change of variable u − x 2 a, then the power series becomes 
�cnun and we can apply the preceding theorem to this series. In case (iii) we have con- 
vergence for | u | , R and divergence for | u | . R. Thus we have convergence for 

| x 2 a | , R and divergence for | x 2 a | . R. ■

Clairaut’s Theorem Suppose f  is defined on a disk D that contains the point 
sa, bd. If the functions fxy and fyx are both continuous on D, then fxysa, bd − fyxsa, bd.

Section 14.3

PROOF For small values of h, h ± 0, consider the difference

Dshd − f f sa 1 h, b 1 hd 2 f sa 1 h, bdg 2 f f sa, b 1 hd 2 f sa, bdg

Notice that if we let tsxd − f sx, b 1 hd 2 f sx, bd, then

Dshd − tsa 1 hd 2 tsad
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 APPENDIX F  Proofs of Theorems A3

By the Mean Value Theorem, there is a number c between a and a 1 h such that

tsa 1 hd 2 tsad − t9scdh − hf fxsc, b 1 hd 2 fxsc, bdg

Applying the Mean Value Theorem again, this time to fx , we get a number d between b 
and b 1 h such that

fxsc, b 1 hd 2 fxsc, bd − fxysc, ddh

Combining these equations, we obtain

Dshd − h 2fxysc, dd

If h l 0, then sc, dd l sa, bd, so the continuity of fxy at sa, bd gives

lim
h l 0

 
Dshd
h 2 − lim 

sc, dd l sa, bd
 fxysc, dd − fxysa, bd

Similarly, by writing

Dshd − f f sa 1 h, b 1 hd 2 f sa, b 1 hdg 2 f f sa 1 h, bd 2 f sa, bdg

and using the Mean Value Theorem twice and the continuity of fyx at sa, bd, we obtain

lim
h l 0

 
Dshd
h 2 − fyxsa, bd

It follows that fxysa, bd − fyxsa, bd. ■

8  Theorem If the partial derivatives fx and fy exist near sa, bd and are continu-
ous at sa, bd, then f  is differentiable at sa, bd.

Section 14.4

PROOF Let

Dz − f sa 1 Dx, b 1 Dyd 2 f sa, bd

According to Definition 14.4.7, to prove that f  is differentiable at sa, bd we have to show 
that we can write Dz in the form

Dz − fxsa, bd Dx 1 fysa, bd Dy 1 «1 Dx 1 «2 Dy

where «1 and «2 l 0 as sDx, Dyd l s0, 0d.
Referring to Figure 4, we write

1  Dz − f f sa 1 Dx, b 1 Dyd 2 f sa, b 1 Dydg 1 f f sa, b 1 Dyd 2 f sa, bdg

x

y

0

R(a, √)

(a, b+Îy)

(a+Îx, b+Îy)
(u, b+Îy)

(a, b)

FIGURE 4
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A4 APPENDIX F   

Observe that the function of a single variable

tsxd − f sx, b 1 Dyd

is defined on the interval fa, a 1 Dxg and t9sxd − fxsx, b 1 Dyd. If we apply the Mean 
Value Theorem to t, we get

tsa 1 Dxd 2 tsad − t9sud Dx

where u is some number between a and a 1 Dx. In terms of f , this equation becomes

f sa 1 Dx, b 1 Dyd 2 f sa, b 1 Dyd − fxsu, b 1 Dyd Dx

This gives us an expression for the first part of the right side of Equation 1. For the  
second part we let hsyd − f sa, yd. Then h is a function of a single variable defined on  
the interval fb, b 1 Dyg and h9syd − fysa, yd. A second application of the Mean Value  
Theorem then gives

hsb 1 Dyd 2 hsbd − h9svd Dy

where v is some number between b and b 1 Dy. In terms of f , this becomes

f sa, b 1 Dyd 2 f sa, bd − fysa, vd Dy

We now substitute these expressions into Equation 1 and obtain

 Dz − fxsu, b 1 Dyd Dx 1 fysa, vd Dy

 − fxsa, bd Dx 1 f fxsu, b 1 Dyd 2 fxsa, bdg Dx 1 fysa, bd Dy

 − 1 f fysa, vd 2 fysa, bdg Dy

 − fxsa, bd Dx 1 fysa, bd Dy 1 «1 Dx 1 «2 Dy

where  «1 − fxsu, b 1 Dyd 2 fxsa, bd

 «2 − fysa, vd 2 fysa, bd

Since su, b 1 Dyd l sa, bd and sa, vd l sa, bd as sDx, Dyd l s0, 0d and since fx and fy 
are continuous at sa, bd, we see that «1 l 0 and «2 l 0 as sDx, Dyd l s0, 0d.

Therefore f  is differentiable at sa, bd. ■
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 APPENDIX G  Answers to Odd-Numbered Exercises A5

CHAPTER 10

EXERCISES 10.1 ■ PAGE 668

1. (2, 13 ), s0, 1d, s0, 3d, s2, 9d, s6, 27d

3. y

0 x1

1

_1

_1_3

_3

_2

_2

t=2,
(_3, 0)

t=1, (0, 1)

t=0,  (1, 0)

t=_1,
(0, _3)

5. y

x

1

0 1 2 3 4 5

2

3

4

5

t=3
(5, 3.125)

t=_3, (3.125, 5)

t=0
(1, 1)

t=1
(1, 1.5)

t=_1, (1.5, 1)

7. (a) y

0 x5_5

2

t=_4,
(_9, _1)

t=0,
(_1, 1)

t=_2,
(_5, 0)

t=2,
(3, 2)

t=4,
(7, 3)

 (b) y − 1
4 x 1 5

4

9. (a) y

0 x_2

2

_4

4

4

_2

2 6

t=1,
(_2, 3)

t=_1,
(_2, 1)

t=3,
(6, 5)

t=_3,
(6, _1)

 (b)  x − y 2 2 4y 1 1, 
21 < y < 5

11. (a) y

0 x

(0, 1)  t=0

(1, 0)  t=1

(2, _3)  t=4

 (b) y − 1 2 x 2, x > 0

13. (a) x 2 1 y 2 − 9, y > 0 (b) 

0 3

3

y

x_3

15. (a) y − 1yx 2, 0 , x < 1 (b) y

0 x1

1

17. (a) y − 1yx, x . 0 (b) y

0 x1

1

19. (a) y − e xy2, x > 0 (b) y

0 x1

1

21. (a) x 1 y − 1, 0 < x < 1 (b) y

0 x1

1

23. 2� seconds; clockwise 

25. Moves counterclockwise along the circle 

 sx 2 5d2 1 s y 2 3d2 − 4 from s3, 3d to s7, 3d
27. Moves 3 times clockwise around the ellipse  
sx 2y25d 1 sy 2y4d − 1, starting and ending at s0, 22d
29. It is contained in the rectangle described by 1 < x < 4  
and 2 < y < 3.

G Answers to Odd-Numbered Exercises
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A6 APPENDIX G  Answers to Odd-Numbered Exercises

31. y

0
x1 2

1

_1

t=0  (0, 0)

t=_1  (1, 1)

t=1  (1, _1)

 33. y

0 x1

1 t=_1, 1  (0, 1)

t=0
(1, 0)

35. π

_π

4_4

37. (b) x − 22 1 5t, y − 7 2 8t, 0 < t < 1    
39. One option: x − 5 sinsty2d, y − 5 cossty2d where t is time in 
seconds
41. (a) x − 2 cos t, y − 1 2 2 sin t, 0 < t < 2� 
(b) x − 2 cos t, y − 1 1 2 sin t, 0 < t < 6� 
(c) x − 2 cos t, y − 1 1 2 sin t, �y2 < t < 3�y2

45. (b) y

0 x1

1

y

0 x1

1

y

0 x1

1

y

0 x1

1

(i)

(iii)

(ii)

(iv)

47. The curve y − x 2y3 is generated in (a). In (b), only the portion  
with x > 0 is generated, and in (c) we get only the portion with  
x . 0.

49. y

0 x

y

x

d<r

d>r

51. x − a cos �, y − b sin �; sx 2ya 2 d 1 sy 2yb 2 d − 1, ellipse

53. y

0 x

2a

55. (a) No   (b) Yes; s6, 11d when t − 1

57. (a) s0, 0d; t − 1, t − 21

(b) s21, 21d; t −
1 1 s5 

2
, t −

1 2 s5 

2

59. For c − 0, there is a cusp; for c . 0, there is a loop whose  
size increases as c increases.

3

0 1.5

_3

c=_1

c=0
0 1.5

1

_1

c=1
1
2c=

61. The curves roughly follow the line y − x and start  
having loops when a is between 1.4 and 1.6 (more precisely,  
when a . s2

 

); the loops increase in size as a increases.
63. As n increases, the number of oscillations increases;  
a and b determine the width and height.

EXERCISES 10.2 ■ PAGE 679

1. 6t 2 1 3, 4 2 10t, 
4 2 10t

6t 2 1 3
    

3. etst 1 1d, 1 1 cos t, 
1 1 cos t

etst 1 1d
    5. ln 2 2 1

4

7. y − 2x    9. y − 1
2 x 1 3

2    11. y − 2x 1 5
4

13. y − 3x 1 3 5

0 3_2

(0, 3)

15. 
2t 1 1

2t
, 2

1

4t 3 , t , 0    

17. e22 ts1 2 td, e23ts2t 2 3d, t . 3
2

19. 
t 1 1

t 2 1
, 

22t

st 2 1d3 , 0 , t , 1    

21. Horizontal at s0, 23d, vertical at s62, 22d

23. Horizontal at (1
2 , 21) and (21

2 , 1), no vertical

25. s0.6, 2d; (5 � 626y5, e6 21y5)    
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 APPENDIX G  Answers to Odd-Numbered Exercises A7

27. 7.5

�1

�8.5 3

29. y − x, y − 2x
 1

_1

1.2_1.2

31. (a) d sin �ysr 2 d cos �d    33. s4,0d    35. 24
5     

37. 4
3    39. �ab    41. 2�r 2 1 �d 2    

43. y3
21 ss6t 2 3t 2d2 1 s2t 2 2d2  dt < 15.2092

45. y4�

0
 s5 2 4 cos t  dt < 26.7298    47. 2

3 (10 s10 2 1)
49. 1

2 s2
  

1 1
2 ln(1 1 s2

 )
51. s2

 

 se � 2 1d   8

0
�25 2.5

53. 16.7102    1.4

_1.4

2.1_2.1

55. 6s2
 

, s2
 

    57. s293 < 17.12 mys    

59. s5  e < 6.08 mys    61. (a) v0 mys   (b) v0 cos � mys

63. (a) 15

�15

�15 15

 t [ f0, 4�g   

(b) 294

65. 3
8 �a2    67. y�y2

0
 2� t cos t st 2 1 1 dt < 4.7394

69. y1
0 2�e2ts1 1 2e t 1 e 2t 1 e22t  dt < 10.6705

71. 2
1215 � (247s13 1 64)    73. 6

5�a 2    

75. 24
5 � (949s26

 

1 1)    81. 1
4

EXERCISES 10.3 ■ PAGE 692

1. (a) 

O

”1,    ’π
4

π
4

   (b) 

O

”_2,      ’3π
2

3π
2

 s1, 9�y4d, s21, 5�y4d s2, �y2d, s22, 7�y2d

(c) 

O

”3,        ’π
3_

π
3_

 s3, 5�y3d, s23, 2�y3d

3. (a) 

O

”2,       ’3π
2

   (b) 

O

”œ„,    ’π
42

π
4

  s0, 22d s1, 1d

(c) 

O

”_1, _    ’

π
6_

π
6

 (2s3
 

y2, 1y2)
5. (a) (i) (4s2

 

, 3�y4)  (ii) (24s2
 

, 7�y4) 
(b) (i) s6, �y3d  (ii) s26, 4�y3d

7. 
r=3

r=1

O

 9. 

O

r=1
¨=

π
2

¨=_
π
2
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11. 

O

r=4

¨=
3π
4

¨=
7π
4

r=2

O

13. 2s7
 

    15. x 2 1 y 2 − 5; circle, center O, radius s5 

17. x 2 1 y 2 − 5x; circle, center s5y2, 0d, radius 5y2
19. x 2 2 y 2 − 1; hyperbola, center O, foci on x-axis
21. r − s7     23. � − �y3    25. r − 4 sin �    
27. (a) � − �y6   (b) x − 3

29. 

O 1

1

2  31. 

1 2O

1

33. 

O

(2, 3π/2)

 35. 

O
(4, 0)

37. 

O

(2π, 2π)

 39. 

(3, 0)

¨=π
6

41. 
¨= π

8

(2, 0)

 43. 

(_2, π)
(4, 0)

45. 

O

(3, π/4)
 47. 

O

(3, π/6)

49. 

(1, π) (_1, 3π)

”œ„2/2,    ’π
2

 51. 

(2, 0) (6, 0)

53. 

O

x=1

55. (a) For c , 21, the inner loop begins at � − sin21 s21ycd 
and ends at � − � 2 sin21 s21/cd; for c . 1, it begins at 
� − � 1 sin21 s1ycd and ends at � − 2� 2 sin21 s1ycd.
57. Center sby2, ay2d, radius sa 2 1 b 2 y2

59. 

_3.4 1.8

_2.6

2.6  61. 

_3 3

_2.5

3.5

63. 

65. By counterclockwise rotation through angle �y6, �y3,  
or � about the origin
67. For c − 0, the curve is a circle. As c increases, the left 
side gets flatter, then has a dimple for 0.5 , c , 1, a cusp for 
c − 1, and a loop for c . 1.
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EXERCISES 10.4 ■ PAGE 699

1. � 2y8    3. �y2    5. 1
2    7. 41

4 �
9. 4� 11. 11�

(4, 0)

O

1
 

O

(3, 0)(3, π)

(1, π/2)

(5, 3π/2)

13. 9
2 � 3

_3

4_4

15. 3
2 � 1.4

_1.4

2.1_2.1

17. 4
3 �    19. 1

16 �   21. � 2 3
2 s3

 

    23. 4
3 � 1 2s3

 

    

25. 4s3
 

2 4
3 �    27. �    29. 9

8 � 2 9
4    31. 1

2 � 2 1    

33. 2s3
 

1 2 1 1
3 �    35. 1

4 (� 1 3s3
 )

37. (1
2, �y6), (1

2, 5�y6), and the pole

39. s1, �d where � − �y12, 5�y12, 13�y12, 17�y12  
and s21, �d where � − 7�y12, 11�y12, 19�y12, 23�y12

41. s1, �y6d, s1, 5�y6d, s1, 7�y6d, s1, 11�y6d    

43. 21�y2    45. �y8

47. Intersection at � < 0.89, 2.25; area < 3.46    

49. 2�    51. 8
3 fs� 2 1 1d3y2 2 1g    53. 6 s2 1 12

55. 16
3     57. y4�

�  scos2s�y5d 1 1
25

 sin2 s�y5d  d�

59. 2.4221    61. 8.0091    63. 1ys3
 

    
65. 2�    67. 1    
69. Horizontal at s0, 0d fthe poleg, s1, �y2d;
vertical at s1ys2 , �y4d, s1ys2 , 3�y4d
71. Horizontal at (3

2, �y3), s0, �d [the pole], and (3
2, 5�y3); 

vertical at (2, 0), (1
2, 2�y3), (1

2, 4�y3)    

75. (b) 2� (2 2 s2
 )

EXERCISES 10.5 ■ PAGE 708

1. s0, 0d, s0, 2d, y − 22 3. s0, 0d, (2 5
12, 0), x − 5

12

y

0 x6

6

(0, 2)

y=_2

 y

0 x1

1

5
12”_     , 0’

5
12x=

5. s3, 21d, s7, 21d, x − 21 7. s4, 23d, ( 72, 23), x − 9
2

y

0 x10

10

(7, _1)

x=_1

 
y

0
x_4

1

x=9
2

7
2”    , _3’

9. x − 2y 2, focus (21
4 , 0), directrix x − 1

4

11. s0, 65d, s0, 63d 13. s63, 0d, (6s6 , 0)
y

0 x4_4

5

3

_5

_3

 
y

0 x3_3

œ„3

œ„6

œ„_   3

œ„_   6

15. s65, 1d, (6s21, 1) 17. 
x 2

4
1

y 2

9
− 1, foci (0, 6s5 )

y

0 x

(5, 1)(_5, 1)

3

{œ„„21, 1}{_œ„„21, 1}

_1

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A10 APPENDIX G  Answers to Odd-Numbered Exercises

19. s0, 65d, (0, 6s34
 ), y − 65

3 x  

x

y
5
3y=  x

5
3y=_  x

(0, _5)

(0, 5)

œ„„34}{0,  

œ„„34}{0, _     

(3, 5)

21. s610, 0d, (610s2
 

, 0), y − 6x

x

y

(_10, 0) (10, 0)

y=x

y=_x

{_10œ„2     , 0} {10œ„2     , 0}

(10, 10)

23. s61, 1d, (6s2
 

, 1), y 2 1 − 6x y

x
(_1, 0)

”_œ„, 1’
(1, 0)

(1, 2)

y=x+1

y=_x+1

2 ”œ„, 1’2

25. 
x 2

9
2

y 2

9
− 1; (63 s2 , 0), y − 6x

27. Hyperbola, s61, 0d, (6s5
 

, 0)
29. Ellipse, (6s2, 1), s61, 1d    

31. Parabola, s1, 22d, (1, 211
6 )    

33. y 2 − 4x    35. y 2 − 212sx 1 1d    

37. sy 1 1d2 − 21
2 sx 2 3d    

39. 
x 2

25
1

y 2

21
− 1    41. 

x 2

12
1

sy 2 4d2

16
− 1

43. 
sx 1 1d2

12
1

sy 2 4d2

16
− 1    45. 

x 2

9
2

y 2

16
− 1

47. 
sy 2 1d2

25
2

sx 1 3d2

39
− 1    49. 

x 2

9
2

y 2

36
− 1

51. 
x 2

3,763,600
1

y 2

3,753,196
− 1

53. (a) 
1.30x 2

10,000
1

5.83y 2

100,000
− 1   (b) < 399 km

57. (a) Ellipse   (b) Hyperbola   (c) No curve    
61. 15.9

63. 
b2c

a
1 ab lnS a

b 1 cD where c 2 − a 2 1 b2

65. s0, 4y�d    69. 
x 2

16
1

y 2

15
− 1

EXERCISES 10.6 ■ PAGE 717

1. r −
2

1 1 cos �
    3. r −

8

1 2 2 sin �

5. r −
10

3 2 2 cos �
    7. r −

6

1 1 sin �
9. VI    11. II    13. IV

15. (a) 4
5   (b) Ellipse   (c) y − 21

(d) 

x

y
(4, π/2)

O”   , π’4
5 ”    , 0’4

5

”    ,     ’4
9

3π
2

y=_1

17. (a) 1   (b) Parabola   (c) y − 2
3

(d) 

x

y

”   ,    ’1
3

π
2

O

”   , π’2
3 ”   , 0’2

3

y=2/3

19. (a) 1
3   (b) Ellipse   (c) x − 9

2   

(d) 

O

x=9
2

”   ,    ’π
2

3
2

”   , 0’9
8”   , π’9

4

”   ,      ’3π
2

3
2

21. (a) 2   (b) Hyperbola   (c) x − 23
8

(d) 

O

x=_ 3
8

”-   , 0’3
4 ”    , π’1

4
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 APPENDIX G  Answers to Odd-Numbered Exercises A11

23. (a) 2, y − 21
2 1

_3

_2 2

-y= 1
2

(b) r −
1

1 2 2 sins� 2 3�y4d
 

2

_2

_2 2

25. The ellipse is nearly circular when e is close to 0 and 
becomes more elongated as e l 12. At e − 1, the curve becomes 
a parabola.

e=0.4 e=1.0

e=0.8
e=0.6

31. r −
2.26 3 108

1 1 0.093 cos �
    33. r −

1.07

1 1 0.97 cos �
; 35.64 AU

35.  7.0 3 107 km    37. 3.6 3 108 km

CHAPTER 10 REVIEW ■ PAGE 719

True-False Quiz

1. False    3. False    5. False    7. True    9. True    

11. True

Exercises

1. x − y 2 2 8y 1 12, 1 < y < 6 3. y − e 2x

y

x

(0, 6), 
t=_4

(5, 1),
t=1

 y

0 x

t=2
(ln 2, 4)

t=1
(0, 1)

5. y − 1yx, 0 , x < 1

x

y

(1, 1), ¨=0

7. x − t, y − st ; x − t 4, y − t 2;  
x − tan2 t, y − tan t, 0 < t , �y2

9. (a) 

O

2π
3

”4,      ’2π
3

 (22, 2s3
 )

 (b) (3s2
 

, 3�y4), (23s2
 

, 7�y4)

11. 

O

(2, π/2)

(1, 0)(1, π)

 13. 
¨=π

6

(1, 0)

15. 

O

1

_1

(2, π) (2, 0)

 17. 
”_3,     ’3π

2

”1,    ’π
2

3
2y=

O

19. r −
2

cos � 1 sin �
     21. 0.75

-0.3 1.2

-0.75

r=sin ̈
¨
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A12 APPENDIX G  Answers to Odd-Numbered Exercises

23. 2    25. 21    27. 
1 1 sin t

1 1 cos t
, 

1 1 cos t 1 sin t

s1 1 cos td3     

29. ( 

11
8 , 34 )

31. Vertical tangent at 

x

y

0

(�3a, 0) (a, 0)

 
( 32 a, 61

2s3 a), s23a, 0d; 
horizontal tangent at 
sa, 0d, (21

2 a, 63
2 s3  a)

33. 18    35. s2, 6�y3d    37. 1
2s� 2 1d   

39. 2(5s5
 

2 1)

41. 
2s� 2 1 1 2 s4� 2 1 1

2�
1 lnS 2� 1 s4� 2 1 1

� 1 s� 2 1 1
D

43. (a) s90 < 9.49 mys   (b) 1
24 (65 s65 2 1) < 21.79 mys

45. 471,295�y1024
47. All curves have the vertical asymptote x − 1. For c , 21, 
the curve bulges to the right; at c − 21, the curve is the line 
x − 1; and for 21 , c , 0, it bulges to the left. At c − 0 there is 
a cusp at (0, 0) and for c . 0, there is a loop.

49. s61, 0d, s63, 0d 51. (2 25
24 , 3), s21, 3d

 

x

y

0

(1, 0)
2œ„2

�2œ„2

�3 3

 

x

(_1, 3)

y

0

53. 
x 2

25
1

y 2

9
− 1    55. 

y 2

72y5
2

x 2

8y5
− 1    

57. 
x 2

25
1

s8y 2 399d2

160,801
− 1    59. r −

4

3 1 cos �

PROBLEMS PLUS ■ PAGE 722

1. 2
3� 1 2 2 2s3    3. f23

4 s3
 

, 34 s3
 g 3 f21, 2g

CHAPTER 11

EXERCISES 11.1 ■ PAGE 735

Abbreviations: C, convergent; D, divergent
1. (a) A sequence is an ordered list of numbers. It can also be 
defined as a function whose domain is the set of positive integers. 
(b) The terms an approach 8 as n becomes large. 
(c) The terms an become large as n becomes large.

3. 0, 7, 26, 63, 124   5. 6, 11, 20, 37, 70   7. 1, 21
4, 19, 2 1

16, 1
25.

9. 21, 1, 21, 1, 21    11. 21, 23, 21
3, 2

15, 2 2
45    

13. 1, 3, 7, 15, 31    15. 2, 23, 25, 27, 29    17. an − 1ys2nd

19. an − 23(2 23)n21
    21. an − s21dn11 

n 2

n 1 1

23. 0.4286, 0.4615, 0.4737, 0.4800, 0.4839, 0.4865, 0.4884, 
0.4898, 0.4909, 0.4918; yes; 12
25. 0.5000, 1.2500, 0.8750, 1.0625, 0.9688, 1.0156, 0.9922, 
1.0039, 0.9980, 1.0010; yes; 1    27. 0    29. 2    
31. D    33. 0    35. 1    37. 2    39. D    
41. 0    43. 0    45. D    47. 0    49. 0    
51. 1    53. e 2    55. ln 2    57. �y2    59. D    
61. D    63. D    65. �y4    67. D    69. 0    
71. (a) 1060, 1123.60, 1191.02, 1262.48, 1338.23   (b) D    
73. (b) 5734    75. 21 , r , 1    
77. Convergent by the Monotonic Sequence Theorem; 5 < L , 8
79. Decreasing; yes    81. Not monotonic; no    
83. Increasing; yes    

85. 2    87. 1
2 (3 1 s5

 )    89. (b) 1
2 (1 1 s5

 )    

91. (a) 0   (b) 9, 11

EXERCISES 11.2 ■ PAGE 747

1. (a) A sequence is an ordered list of numbers whereas a series 
is the sum of a list of numbers. 
(b) A series is convergent if the sequence of partial sums is a 
convergent sequence. A series is divergent if it is not convergent.
3. 2    
5. 1, 1.125, 1.1620, 1.1777, 1.1857, 1.1903, 1.1932, 1.1952; C
7. 0.8415, 1.7508, 1.8919, 1.1351, 0.1762, 20.1033, 0.5537, 
1.5431; D
9. 0.5, 0.55, 0.5611, 0.5648, 0.5663, 0.5671, 0.5675, 0.5677; C
11. 22, 21.33333, 21.55556, 21.48148, 21.50617, 21.49794,
21.50069, 21.49977, 21.50008, 21.49997; convergent, 
sum − 21.5

ssnd

1

0 11

_3

sand

13. 0.44721, 1.15432, 1.98637, 2.88080, 3.80927, 4.75796,
5.71948, 6.68962, 7.66581, 8.64639; divergent

10

0 11

ssnd

sand
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 APPENDIX G  Answers to Odd-Numbered Exercises A13

15. (a) Yes   (b) No    17. 23
2    19. 11

6     

21. e 2 1    23. D    25. 25
3     27. 400

9     29. 1
7    

31. D    33. D    35. 2
3    37. D    39. 9    

41. D    43. 
sin 100

1 2 sin 100
< 20.336    45. D    

47. D    49. eyse 2 1d    

51. (b) 1   (c) 2   (d) All rational numbers with a terminating 
decimal representation, except 0

53. 8
9    55. 838

333    57. 45,679y37,000    

59. 2
1

5
, x ,

1

5
; 

25x

1 1 5x
    

61. 21 , x , 5; 
3

5 2 x

63. x . 2 or x , 22; 
x

x 2 2
    65. x , 0; 

1

1 2 e x

67. 1    69. a1 − 0, an −
2

nsn 1 1d
 for n . 1, sum − 1    

71. (a) 125 mg; 131.25 mg    
(b) Qn11 − 100 1 0.25Qn   (c) 133.3 mg

73. (a) 157.875 mg; 3000
19 s1 2 0.05nd   (b) 3000

19 < 157.895 mg

75. (a) Sn −
Ds1 2 c n d

1 2 c
   (b) 5    77. 1

2 (s3 2 1)    

83. 
1

nsn 1 1d
    85. The series is divergent.    

91. hsn j is bounded and increasing.    

93. (a) 0, 19, 29, 13, 23, 79, 89, 1

95. (a) 1
2, 56, 23

24, 119
120; 

sn 1 1d! 2 1

sn 1 1d!
   (c) 1

EXERCISES 11.3 ■ PAGE 758

1. C   

0 x

y

1

. . .
a™ a£ a¢ a∞

2 3 4

y= 1
x1.5

3. C    5. D    7. D    9. C    11. C    13. C    
15. D    17. C    19. C    21. D    23. D    25. C    
27. C    29. f  is neither positive nor decreasing.
31. p . 1    33. p , 21    35. s1, `d    

37. (a) 9
10� 4   (b) 1

90� 4 2 17
16

39. (a) 1.54977, error < 0.1   (b) 1.64522, error < 0.005    
(c) 1.64522 compared to 1.64493   (d) n . 1000    
41. 0.00145    47. b , 1ye

EXERCISES 11.4 ■ PAGE 764

1. (a) Nothing   (b) C    5. (c)    7. C    9. D    
11. C    13. D    15. C    17. C    19. D    
21. D     23. C    25. D    27. C    29. D    
31. C    33. C    35. C    37. D    39. C    
41. 0.1993, error , 2.5 3 1025    
43. 0.0739, error , 6.4 3 1028

53. Yes    55. (a) False   (b) False   (c) True

EXERCISES 11.5 ■ PAGE 772

Abbreviations: AC, absolutely convergent; 
CC, conditionally convergent
1. (a) A series whose terms are alternately positive and  
negative   (b) 0 , bn11 < bn and limn l ` bn − 0, 

where bn − | an |   (c) | Rn | < bn11

3. D    5. C    7. D    9. C    11. C    13. D    
15. C    17. C    19. C    
21. (a) The series �an is absolutely convergent if �|an | 
converges.   (b) The series �an is conditionally convergent if 
�an converges but �|an | diverges.   (c) It converges absolutely.
23. CC    25. CC    27. AC    29. AC    31. CC    
33. CC    35. 20.5507    37. 5    39. 5    
41. 20.4597    43. 20.1050    
45. An underestimate    47. p is not a negative integer.    

49. hbn j is not decreasing.    53. (b) o
`

n−2
 

s21dn

n ln n
; o

`

n−1
 

s21dn21

n

EXERCISES 11.6 ■ PAGE 778

1. (a) D   (b) C   (c) May converge or diverge    
3. AC    5. D    7. AC    9. AC    11. D    
13. AC    15. AC    17. AC    19. D    21. AC    
23. AC    25. D    27. CC    29. AC    31. D    
33. AC    35. D    37. AC    39. (a) and (d)

43. (a) 661
960 < 0.68854, error , 0.00521    

(b) n > 11, 0.693109

EXERCISES 11.7 ■ PAGE 781

1. (a) C   (b) C    3. (a) C   (b) D
5. (a) D   (b) C    7. (a) C   (b) D
9. D    11. CC    13. D    15. D    17. C    19. C
21. C    23. C    25. C    27. C    29. D    31. D    
33. D    35. C    37. C    39. C    41. D     
43. C    45. D    47. C    

EXERCISES 11.8 ■  PAGE 786

1. A series of the form �`
n−0 cnsx 2 adn, where x is a variable  

and a and the cn’s are constants
3. 1, f21, 1d    5. 1, s21, 1d    7. 5, s25, 5d
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A14 APPENDIX G  Answers to Odd-Numbered Exercises

9. 3, f23, 3d    11. 1, f21, 1d    13. `, s2`, `d    

15. 4, f24, 4g    17. 1
4, (21

4, 14g    19. 2, f22, 2d
21. 1, f1, 3g    23. 2, f24, 0d    25. `, s2`, `d    

27. 1, f21, 1d    29. b, sa 2 b, a 1 bd    31. 0, h1
2j    

33. 1
5, f 3

5, 1g    35. `, s2`, `d    37. (a) Yes   (b) No    

39. k k    41. No    45. 2    

EXERCISES 11.9 ■ PAGE 793

1. 10    3. o
`

n−0
 s21dnx n, s21, 1d    5. o

`

n−0
 x 2n, s21, 1d    

7. 2 o
`

n−0
 

1

3 n11 x n, s23, 3d    9. o
`

n−0
 
s21dn x 4n12

2 4n14 , s22, 2d    

11. 2
1

2
2 o

`

n−1
 
s21dn 3x n

2n11 , s22, 2d

13. o
`

n−0
 S21 2

1

3n11D x n, s21, 1d

15. (a) o
`

n−0
 s21dnsn 1 1dx n, R − 1

(b) 
1

2
 o

`

n−0
 s21dnsn 1 2dsn 1 1dx n, R − 1

(c) 
1

2
 o

`

n−2
 s21dnnsn 2 1dx n, R − 1

17. o
`

n−0
s21dn4nsn 1 1dx n11, R − 1

4

19.  o
`

n−0
s2n 1 1dx n, R − 1    21. ln 5 2 o

`

n−1
 

x n

n5n , R − 5    

23. o
`

n−0
 s21dn x 2n12, R − 1 

1

0 1_1

f

s¡

s£

s™

s¢

s∞

25. o
`

n−0
 

2x 2n11

2n 1 1
, R − 1 3

2

�3

�2

s¡
f

s£ s™

27. C 1 o
`

n−0
 

t 8n12

8n 1 2
, R − 1    

29. C 1 o
`

n−1
 s21dn21 

x n13

nsn 1 3d
, R − 1

31. 0.044522    33. 0.000395    35. 0.19740    

39. (b) 0.920    
41. (a) s2`, `d
(b), (c)

s
^

s¢ s
@

s
%

s
#

s
!

A
_7 2

_2

2

43. s21, 1d, f sxd − s1 1 2xdys1 2 x 2d    

45. f21, 1g, f21, 1d, s21, 1d    47. o
`

n−1
 n 2x n, R − 1

EXERCISES 11.10 ■ PAGE 808

1. b8 − f s8ds5dy8!    3. o
`

n−0
 sn 1 1dx n, R − 1

5. x 1 x 2 1 1
2 x 3 1 1

6 x 4

7. 2 1 1
12 sx 2 8d 2 1

288 sx 2 8d2 1 5
20,736 sx 2 8d3

9. 
1

2
1

s3

2 Sx 2
�

6 D 2
1

4 Sx 2
�

6 D2

2
s3

12 Sx 2
�

6 D3

11. o
`

n−0
 sn 1 1dx n, R − 1    13. o

`

n−0
 s21dn 

x 2n

s2nd!
, R − `

15. 3 2 3x 2 1 2x 4, R − `    17. o
`

n−0
 
sln 2dn

n!
 x n, R − `    

19. o
`

n−0
 

x 2n11

s2n 1 1d!
, R − `    

21. 50 1 105sx 2 2d 1 92sx 2 2d2 1 42sx 2 2d3 1 10sx 2 2d4

1 sx 2 2d5, R − `

23. ln 2 1 o
`

n−1
 s21d n11 

1

n2n  sx 2 2dn, R − 2

25. o
`

n−0
 
2ne6

n!
 sx 2 3dn, R − `

27. o
`

n−0
 

s21dn11

s2n 1 1d!
 sx 2 �d2n11, R − `

29. o
`

n−0
 s21dn 

22n11

s2n 1 1d!
 sx 2 �d2n11, R − `

35. 1 2
1

4
x 2 o

`

n−2
 
3 � 7 � ∙ ∙ ∙ � s4n 2 5d

4 n � n!
x n, R − 1

37. o
`

n−0
 s21dn 

sn 1 1dsn 1 2d
2n14  x n, R − 2

39. o
`

n−0
 s21dn 

1

2n 1 1
 x 4n12, R − 1

41. o
`

n−0
 s21dn  

22n

s2nd!
 x 2n11, R − `
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 APPENDIX G  Answers to Odd-Numbered Exercises A15

43. o
`

n−0
 s21dn 

1

2 2ns2nd!
 x 4n11 , R − `    

45. 
1

2
x 1 o

`

n−1
 s21dn 

1 � 3 � 5 � ∙ ∙ ∙ � s2n 2 1d
n!23n11  x 2n11, R − 2

47. o
`

n−1
 s21dn11 22n21

s2nd!
 x 2n, R − `

51. o
`

n−0
 s21dn 

1

s2nd!
 x 4n, R − `    

1.5

1.5

_1.5

_1.5

Tˆ=T˜=T¡¸=T¡¡

T¢=T∞=Tß=T¶

T¸=T¡=T™=T£

f

53. o
`

n−1
 

s21dn21

sn 2 1d!
 x n, R − `    

6

_6

4_3

T¡

T¡

T£

T£

T™
T™

T¢

T¢

Tß

Tß

T∞

T∞

f

f

55. 0.99619

57. (a) 1 1 o
`

n−1
 
1 � 3 � 5 � ∙ ∙ ∙ � s2n 2 1d

2nn!
 x 2n

 (b) x 1 o
`

n−1
 
1 � 3 � 5 � ∙ ∙ ∙ � s2n 2 1d

s2n 1 1d2nn!
 x 2n11

59. C 1 o
`

n−0
 S1

2

nD 
x 3n11

3n 1 1
, R − 1

61. C 1 o
`

n−1
 s21dn 

1

2ns2nd!
 x 2n, R − `    

63. 0.0059    65. 0.40102    67. 1
2    69. 1

120    71. 3
5

73. 1 2 3
2 x 2 1 25

24 x 4    75. 1 1 1
6 x 2 1 7

360 x 4     

77. x 2 2
3 x 4 1 23

45 x 6    79. e2x 4
    81. tan21sxy2d    

83. 1ye    85. ln 85    87. 1ys2
 

    89. e 3 2 1    

93. 
203!

101!

EXERCISES 11.11 ■ PAGE 818

1. (a)  T0sxd − 0, T1sxd − T2sxd − x, T3sxd − T4sxd − x 2 1
6 x 3,

T5sxd − x 2 1
6 x 3 1 1

120 x 5

5

_5

2π_2π
f

T¸

T¡=T™

T£=T¢

T∞=Tß

(b) x f T0 T1 − T2 T3 − T4 T5

�y4 0.7071 0 0.7854 0.7047 0.7071
�y2 1 0 1.5708 0.9248 1.0045
� 0 0 3.1416 22.0261 0.5240

(c) As n increases, Tnsxd is a good approximation to f sxd on a  
larger and larger interval.

3. e 1 esx 2 1d 1 1
2 esx 2 1d2 1 1

6 esx 2 1d3

12

0 2.5_1

f

T£

5. 2Sx 2
�

2 D 1
1

6 Sx 2
�

2 D3

1.1

_1.1

T£

T£

f

f

π0
π
2

7. sx 2 1d 2 1
2sx 2 1d2 1 1

3sx 2 1d3

T£
2

_4

3_1
f
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A16 APPENDIX G  Answers to Odd-Numbered Exercises

9. x 2 2x 2 1 2x 3

_4f

3

_1 1.5

T£

11. T5sxd − 1 2 2Sx 2
�

4 D 1 2Sx 2
�

4 D2

2
8

3Sx 2
�

4 D3

 1
10

3 Sx 2
�

4 D4

2
64

15Sx 2
�

4 D5

5

_2

T™

T¢

T™

T£

T£

T¢ T∞

T∞

f

f
20

π
4

π
2

13. (a) 1 2 sx 2 1d 1 sx 2 1d2   (b) 0.112 453

15. (a) 1 1 2
3sx 2 1d 2 1

9sx 2 1d2 1 4
81sx 2 1d3   

(b) 0.000 097

17. (a) 1 1 1
2 x 2   (b) 0.001 447    

19. (a) 1 1 x 2   (b) 0.000 053    

21. (a) x 2 2 1
6 x 4   (b) 0.041 667   

23. 0.17365    25. Four    27. 21.037 , x , 1.037    
29. 20.86 , x , 0.86    31. 21 m, no    
37. (c) Corrections differ by about 8 3 1029 km.

CHAPTER 11 REVIEW ■ PAGE 822

True-False Quiz
1. False    3. True    5. False    7. False    9. False
11. True    13. True    15. False    17. True    
19. True    21. True

Exercises

1. 1
2    3. D    5. 0    7. e 12     9. 2    11. C     

13. C    15. D    17. C    19. C    21. C    23. CC
25. AC    27. 1

11    29. �y4    31. e2e    35. 0.9721    
37. 0.189 762 24, error , 6.4 3 1027    
41. 4, f26, 2d    43. 0.5, [2.5, 3.5)

45. 
1

2
 o

`

n−0
 s21dnF 1

s2nd!
 Sx 2

�

6 D2n

1
s3

s2n 1 1d!
 Sx 2

�

6 D2n11G
47. o

`

n−0
 s21dnx n12, R − 1    49. ln 4 2 o

`

n−1
 

x n

n4n , R − 4    

51. o
`

n−0
 s21dn 

x 8n14

s2n 1 1d!
, R − `

53. 
1

2
1 o

`

n−1
 
1 � 5 � 9 � ∙ ∙ ∙ � s4n 2 3d

n!26n11  x n, R − 16

55. C 1 ln | x | 1 o
`

n−1
 

x n

n � n!

57. (a) 1 1 1
2 sx 2 1d 2 1

8 sx 2 1d2 1 1
16 sx 2 1d3

 (b) 1.5

20

T£

f

   (c) 0.000 006

59. 2 1
6    

PROBLEMS PLUS ■ PAGE 825

1. (b) 0 if x − 0, s1yxd 2 cot x if x ± k�, k an integer

3. (a) sn − 3 � 4n, ln − 1y3n, pn − 4ny3n21   (c) 2
5 s3

 

7. 
3�

4
    9. s21, 1d, 

x 3 1 4x 2 1 x

s1 2 xd4     11. ln 12    

15. (a) 250
101� se2sn21d�y5 2 e2n�y5d   (b) 250

101�

17. 
�

2s3 

2 1

19. 2S�

2
2 �kD2

, where k is a positive integer

CHAPTER 12

EXERCISES 12.1 ■ PAGE 835

1. s4, 0, 23d    3. C  ; A
5. A line parallel to the y-axis and 4 units to the right of it;  
a vertical plane parallel to the yz-plane and 4 units in front of it.

x

y

0 4 y

x

4

0

z

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 APPENDIX G  Answers to Odd-Numbered Exercises A17

7. A vertical plane that z

y
2

x

2

0

y=2-x

y=2-x, z=0

intersects the xy-plane in
the line y − 2 2 x, z − 0

9. 6

11. |PQ| − 6, | QR | − 2s10, | RP | − 6; isosceles triangle

13. (a) No   (b) Yes    

15. sx 1 3d2 1 sy 2 2d2 1 sz 2 5d2 − 16; 
sy 2 2d2 1 sz 2 5d2 − 7, x − 0 (a circle)

17. sx 2 3d2 1 sy 2 8d2 1 sz 2 1d2 − 30

19. s24, 0, 1d, 5    21. ( 

1
2, 21, 0), s3 y2

25. (a) sx 1 1d2 1 s y 2 4d2 1 sz 2 5d2 − 25

(b) sx 1 1d2 1 s y 2 4d2 1 sz 2 5d2 − 1

(c) sx 1 1d2 1 s y 2 4d2 1 sz 2 5d2 − 16

27. A horizontal plane 2 units below the xy-plane

29. A half-space consisting of all points on or to the right of the  
plane y − 1 

31. All points on or between the vertical planes x − 21 and x − 2

33. All points on a circle with radius 2 and center on the z-axis 
that is contained in the plane z − 21

35. All points on or inside a circular cylinder of radius 5 with 
axis the x-axis

37. All points on a sphere with radius 2 and center s0, 0, 0d
39. All points on or between spheres with radii 1 and s5  and 
centers s0, 0, 0d
41. All points on or inside a cube with edges along the coordinate 
axes and opposite vertices at the origin and s3, 3, 3d
43. 0 , x , 5    45. r 2 , x 2 1 y 2 1 z2 , R2

47. (a) (2, 1, 4)   (b) 

P

A

C

B

0

z

y
x

L™

L¡

49. 14x 2 6y 2 10z − 9; a plane perpendicular to AB

51. 2s3 2 3

EXERCISES 12.2 ■ PAGE 843

1. (a) Scalar   (b) Vector   (c) Vector   (d) Scalar

3. AB
l

− DC
l

 , DA
l

− CB
l

 , DE
l

− EB
l

 , EA
l

− CE
l

5. 

a+b
a

(a) (b) (c)

(d) (e) (f)

b+c

b

c

a+c

c

a

a

_c

a-c

b

a

c

b+a+c

_b

_c

a-b-c
a

b

7. c − 1
2 a 1 1

2 b, d − 1
2 b 2 1

2 a

9. a − k 3, 1 l 11. a − k21, 4 l

 x

y

A(_2, 1)

0

B(1, 2)

a

 
x

y

A(3, _1)
0

B(2, 3)

a

13. a − k23, 5, 24 l

z

0
y

A(1, _2, 4)

B(_2, 3, 0)

x
a

 

15. k5, 2 l     17. k3, 8, 1 l

x0

y

k6, _2l

k5, 2l

k_1, 4l

 

y

z

k3, 8, 1l

k0, 8, 0l

k3, 0, 1l

x

19. k6, 3 l,  k6, 14 l, 5, 13

21. 6 i 2 3 j 2 2 k, 20 i 2 12 j, s29 , 7

23. K 3

s10 
, 2

1

s10 L    25. 8
9 i 2 1

9 j 1 4
9 k    27. 60°

29. k22s3, 2l     31. �15.32 mys, �12.86 mys

33. 100s7 < 264.6 N, <139.1°

35. �2177.39 i 1 211.41 j, �177.39 i 1 138.59 j;  
� 275.97 N, � 225.11 N
37. � 26.1 N    39. � N 41.6° W, � 237.3 kmyh
41. 6si 1 4 jdys17    43. 0
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A18 APPENDIX G  Answers to Odd-Numbered Exercises

45. (a), (b) y

x0

a

b

c

sa

tb

    (d) s − 9
7, t − 11

7

47. A sphere with radius 1, centered at sx0, y0, z0 d

EXERCISES 12.3 ■ PAGE 852

1. (b), (c), (d) are meaningful    3. 23.6    5. 19    7. 1    

9. 14 s3     11. u � v − 1
2, u � w − 21

2

15. cos21S 17

13s2 

D < 22°    17. cos21(25
6) < 146°

19. cos21S 22

3s70 

D < 95°    21. 48°, 75°, 57°

23. (a) Orthogonal   (b) Neither     
(c) Parallel   (d) Orthogonal

25. Yes    27. si 2 j 2 kdys3  for s2i 1 j 1 kdys3 g
29. � 36.9°    31. 0° at s0, 0d, �8.1° at s1, 1d
33. 4

9, 19, 89; 63.6°, 83.6°, 27.3°    

35. 3ys14 , 21ys14 , 22ys14 ; 36.7°, 105.5°, 122.3°

37. 1ys3, 1ys3, 1ys3; 54.7°, 54.7°, 54.7°    39. 4, k220
13, 48

13 l
41. 1

9, k 4
81, 7

81, 2 4
81 l      43. 27ys19 , 221

19 i 1 21
19 j 2 7

19 k

47. k0, 0, 22s10 l  or any vector of the form

ks, t, 3s 2 2s10l , s, t [ R

49. 144 J    51. 2400 coss40°d < 1839 J    

53. 13
5     55. <54.7°

EXERCISES 12.4 ■ PAGE 861

1. 15 i 2 10 j 2 3 k    3. 14 i 1 4 j 1 2 k    
5. 23

2 i 1 7
4 j 1 2

3 k    
7. s3t 3 2 2t 2d i 1 st 2 2 3t 4d j 1 s2t 4 2 t 3d k    
9. 0    11. i 1 j 1 k    
13. (a) Scalar   (b) Meaningless   (c) Vector    
(d) Meaningless   (e) Meaningless   (f ) Scalar

15. 6; into the page   17. k27, 10, 8 l, k 7, 210, 28 l

19. K2
1

3s3 

, 2
1

3s3 

, 
5

3s3 

L, K 1

3s3 

, 
1

3s3 

, 2
5

3s3 

L
27. 20    29. (a) k210, 11, 3 l    (b) 1

2 s230 

31. (a)  k12, 21, 17 l    (b) 1
2 s434

33. 9    35. 16    39. 10.8 sin 80° < 10.6 N � m

41. <417 N    43. 60°

45. (b) s97y3    53. (a) No   (b) No   (c) Yes

EXERCISES 12.5 ■ PAGE 872

1. (a) True   (b) False   (c) True   (d) False    
(e) False   (f ) True   (g) False   (h) True   (i) True    
( j) False   (k) True

3. r − s2i 1 8 j 1 7 kd 1 t ( 

1
2 i 1 1

3 j 1 1
4 k); 

x − 21 1 1
2 t, y − 8 1 1

3 t, z − 7 1 1
4 t

5. r − s5 i 1 7 j 1 kd 1 t s3 i 2 2 j 1 2 kd;  
x − 5 1 3t, y − 7 2 2t, z − 1 1 2t

7. x − 8t, y − 2t, z − 3t; xy8 − 2y − zy3

9. x − 12 2 19t, y − 9, z − 213 1 24t; 
sx 2 12dys219d − sz 1 13dy24, y − 9
11. x − 26 1 2t, y − 2 1 3t, z − 3 1 t;  
sx 1 6dy2 − sy 2 2dy3 − z 2 3

13. Yes

15. (a) sx 2 1dys21d − s y 1 5dy2 − sz 2 6dys23d
(b) s21, 21, 0d, (23

2 , 0, 23
2), s0, 23, 3d

17. rstd − s6 i 2 j 1 9kd 1 ts i 1 7 j 2 9kd, 0 < t < 1

19. Skew    21. s4, 21, 25d    23. 5x 1 4y 1 6z − 29

25. 2x 1 2y 1 3z − 3    

27. 4x 2 y 1 5z − 24

29. 2x 2 y 1 3z − 20.2 or 10x 2 5y 1 15z − 21    

31. x 1 y 1 z − 2    33. 5x 2 3y 2 8z − 29    

35. 8x 1 y 2 2z − 31    37. x 2 2y 2 z − 23    

39. 3x 2 8y 2 z − 238

41. 

0

z

y

x

(0, 0, 10)

(5, 0, 0)

(0, 2, 0)

43.

0

z

y

x

”0, 0,    ’

(1, 0, 0)

(0, _2, 0)

3
2

45. s22, 6, 3d    47. (2
5, 4, 0)    49. 1, 0, 21    

51. Perpendicular    53. Neither, cos21S2
1

s6 D < 114.1°    

55. Parallel    

57. (a) x − 1, y − 2t, z − t   (b) cos21S 5

3s3
D < 15.8°

59. x − 1, y 2 2 − 2z    61. x 1 2y 1 z − 5    

63. sxyad 1 syybd 1 szycd − 1

65. x − 3t, y − 1 2 t, z − 2 2 2t

67. P2 and P3 are parallel, P1 and P4 are identical

69. s61y14    71. 18
7     73. 5y(2s14)    
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 APPENDIX G  Answers to Odd-Numbered Exercises A19

77. 1ys6    79. 13ys69 

81. (a) x − 325 1 440t, y − 810 2 135t, z − 561 1 38t, 
0 < t < 1   (b) No

EXERCISES 12.6 ■ PAGE 881

1. (a) Parabola 
(b) Parabolic cylinder with rulings parallel to the z-axis 
(c) Parabolic cylinder with rulings parallel to the x-axis
3. Circular cylinder of radius 2 5. Parabolic cylinder

y

z

x
(2, 0, 0)

 
z

x
y

7. Hyperbolic cylinder

y

x

y

9. z − cos x
11. (a) x − k, y2 2 z2 − 1 2 k2, hyperbola sk ±61d; 
y − k, x 2 2 z2 − 1 2 k2, hyperbola sk ±61d; 
z − k, x 2 1 y 2 − 1 1 k2, circle 
(b) The hyperboloid is rotated so that its axis is the y-axis. 
(c) The hyperboloid is shifted one unit in the negative y-direction.
13. Elliptic paraboloid with axis the x-axis

x

z

y

15. Elliptic cone with axis the x-axis

z

yx

17. Hyperboloid of one sheet with axis the x-axis 

z

y
x

19. Ellipsoid

x
y

z
(0, 0, 2)

(3, 0, 0) (0, 5, 0)

21. Hyperbolic paraboloid 

z

y

x

23. VII    25. II    27. VI    29. VIII

31. Circular paraboloid z

y

x
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A20 APPENDIX G  Answers to Odd-Numbered Exercises

33. y 2 − x 2 1
z2

9
 

y

x

z

Elliptic cone with axis the  
y-axis

35. y − z2 2
x 2

2
 z

x

y

Hyperbolic paraboloid

37. z − sx 2 1d2 1 sy 2 3d2 z

yx (1, 3, 0)

Circular paraboloid with  
vertex s1, 3, 0d and axis the  
vertical line x − 1, y − 3

39. 
sx 2 2d2

5
2

y2

5
1

sz 2 1d2

5
− 1 z

y

x

Hyperboloid of one sheet with  
center s2, 0, 1d and axis the  
horizontal line x − 2, z − 1

41. 

_4
0

4 x
_4 0 4y

_4

0z

4
 43. 

_202 x_2 0 2y

z

_2

0

2

45. z

yx

0

z=œ„„„„„≈+¥

z=2

47. x − y 2 1 z2    49. 24x − y 2 1 z2, paraboloid

51. (a) 
x 2

s6378.137d2 1
y 2

s6378.137d2 1
z2

s6356.523d2 − 1

(b) Circle   (c) Ellipse

55. 

2
1
0

y
1

0
�1

x
1

0
�1

z

CHAPTER 12 REVIEW ■ PAGE 884

True-False Quiz
1. False    3. False    5. True    7. True    9. True
11. True    13. True    15. False    17. False    
19. False    21. True

Exercises
1. (a) sx 1 1d2 1 sy 2 2d2 1 sz 2 1d2 − 69 
(b) sy 2 2d2 1 sz 2 1d2 − 68, x − 0 
(c) Center s4, 21, 23d, radius 5

3. u � v − 3s2; | u 3 v | − 3s2; out of the page    
5. 22, 24    7. (a) 2   (b) 22   (c) 22   (d) 0    

9. cos21( 13 ) < 71°    11. (a) k4, 23, 4 l    (b) s41y2    
13. �166 N, �114 N    
15. x − 4 2 3t, y − 21 1 2t, z − 2 1 3t    
17. x − 22 1 2t, y − 2 2 t, z − 4 1 5t
19. 24x 1 3y 1 z − 214    21. (1, 4, 4)    23. Skew    
25. x 1 y 1 z − 4    27. 22ys26    
29. Plane 31. Cone

z

yx

 

x y

z
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 APPENDIX G  Answers to Odd-Numbered Exercises A21

33. Hyperboloid of two sheets 35. Ellipsoid

 z

x

y
(0, 2, 0)

 z

x y

(0, 1, 2)

(0, 2, 0)

(1, 1, 0)

(0, 1, -2)

37. 4x 2 1 y 2 1 z2 − 16    

PROBLEMS PLUS ■ PAGE 887

1. (s3 2 3
2) m

3. (a) sx 1 1dys22cd − sy 2 cdysc 2 2 1d − sz 2 cdysc 2 1 1d 
(b) x 2 1 y 2 − t 2 1 1, z − t   (c) 4�y3
5. 20

CHAPTER 13

EXERCISES 13.1 ■ PAGE 895

1. s21, 3d    3. i 1 j 1 k    5. k21, �y2, 0 l

7. y

x1

π
2

    9. y

x3_3

_2

2

11. 

x y

z

(0, 2, 0)

    13. z

x

y

(3, 0, 2)

15. 

x

z

y y=≈

    17. z

y0

19. 

x
2π

y

1

_1_2π

 

x

z

2

_2

2π_2π

 

y

z

2

_2

_1 1

    
x

y

z

(0, 0, 2)

21. k22 1 7t, 1 1 t, 23t l, 0 < t < 1;  
x − 22 1 7t, y − 1 1 t, z − 23t, 0 < t < 1

23. k3.5 2 1.7t, 21.4 1 1.7t, 2.1l, 0 < t < 1; 
x − 3.5 2 1.7t, y − 21.4 1 1.7t, z − 2.1, 0 < t < 1

25. II    27. V    29. IV    31. y − 4    33. z − 2y

35. z

y

x

0

    37. y − exy2, z − ex, z − y 2

39. s0, 0, 0d, s1, 0, 1d
41.  43. 

1

1 1

0 x

_1

0

0

z

y

_1
_1

 

x
y

z

0

0

0

1
2

3

_1

0.5
_0.5
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A22 APPENDIX G  Answers to Odd-Numbered Exercises

45.  47.

_1
_1

0
1 1 0

x
_1

0z

y

1  

0
2 2

�2

0

2

�2

0
x

y

z

51. rstd − t i 1 1
2 st 2 2 1d j 1 1

2 st 2 1 1d k

53. rstd −  cos t i 1 sin t j 1 cos 2t k, 0 < t < 2�

55. x − 2 cos t, y − 2 sin t, z − 4 cos2t, 0 < t < 2�    

57. Yes    

59. (a) 

2

0

_2

_1 0 1

_1
0

1

EXERCISES 13.2 ■ PAGE 902

1. (a) y

x0 1

1

RC

Q

P

r(4.5)

r(4.2)

r(4)

r(4.5)-r(4)

r(4.2)-r(4)

  (b), (d) 

y

x0 1

1

RC

Q

P

r(4.5)

r(4.2)

r(4)

r(4.5)-r(4)
0.5

r(4.2)-r(4)
0.2

T(4)

 (c) r9s4d − lim
h l 0

 
rs4 1 hd 2 rs4d

h
; Ts4d −

r9s4d

| r9s4d |

3. (a), (c) y

0 x

r(_1)
rª(_1)

(_3, 2)

    (b) r9std − k1, 2t l

5. (a), (c) 

x

y

0

rª(0)

r(0)

(1, 1)

    (b) r9std − 2e 2 t i 1 e t j

7. (a), (c) y

0 x4

2

r(3π/4)

rª(3π/4)
”2œ„2, œ„2’

 (b) r9std − 4 cos t i 1 2 sin t j

9. r9std − K 1

2st 2 2
, 0, 2

2

t 3L
11. r9std − 2t i 2 2 t sinst 2d j 1 2 sin t cos t k
13. r9std − st cos t 1 sin td i 1 etscos t 2 sin td j
 1 scos2t 2 sin2td k
15. r9std − b 1 2tc    17. k 2

7 , 37, 67 l     19. 3
5 j 1 4

5 k

21.  k3ys34 , 3ys34 , 24ys34 

 l
23. k4t 3, 1, 2t l, k4ys21 , 1ys21 , 2ys21 

 l, k12t 2, 0, 2l, 
k2, 16t 3, 212t 2 l
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 APPENDIX G  Answers to Odd-Numbered Exercises A23

25. x − 2 1 2t, y − 4 1 2t, z − 1 1 t
27. x − 1 2 t, y − t, z − 1 2 t
29. rstd − s3 2 4td i 1 s4 1 3td j 1 s2 2 6td k
31. x − t , y − 1 2 t , z − 2t
33. x − 2� 2 t, y − � 1 t, z − 2� t
35. 66°    37. 2 i 2 4 j 1 32 k    

39. sln 2d i 1 s�y4d j 1 1
2 ln 2 k

41. tan21 t i 1 1
2 e

t2j 1 2
3 t 3y2 k 1 C

43. t 2 i 1 t 3 j 1 ( 

2
3t 3y2 2 2

3) k    

49. 2t cos t 1 2 sin t 2 2 cos t sin t    51. 35

EXERCISES 13.3 ■ PAGE 913

1. (a) 2s21    3. 10s10     5. e 2 e21    7. 1
27s13 3y2 2 8d    

9. 18.6833    11. 10.3311    13. 42

15. (a) sstd − s26  st 2 1d; 

rstssdd − S4 2
s

s26 D i 1 S 4s

s26 
1 1D j 1 S 3s

s26 
1 3D k

 (b) S4 2
4

s26 
, 

16

s26 
1 1, 

12

s26 
1 3D

17. s3 sin 1, 4, 3 cos 1d

19. (a) 
1

s5 

 k2, sin t, cos t l, k0, cos t, 2sin t l   (b) 1ys5td

21. (a) 
1

s1 1 4t 2 
 k1, 2t, 0l, 

1

s1 1 4t 2 
 k22t, 1, 0l   

(b) 2ys1 1 4t 2d3y2

23. (a) 
1

s1 1 5t 2 
 k1, t, 2t l, 

1

s5 1 25t 2 
 k25t, 1, 2l   

(b) s5 ys1 1 5t 2d3y2

25. 6t 2ys9t 4 1 4t 2d3y2    27. 
s6 

2s3t 2 1 1d2     

29. 1
7 s19y14    31. 12x 2ys1 1 16x 6d3y2    

33. e x| x 1 2 |yf1 1 sxe x 1 e xd2g3y2

35. (21
2 ln 2, 1ys2); approaches 0    37. (a) P   (b) 1.3,  0.7

39. 4

_4 4

_1

y=k(x)
y=x–@

41. 

5

_5 0
250

500
100500

0z

y

x

 
0.6

50_5 t

�(t)

43. a is y − f sxd, b is y − �sxd

45. �std −
6s4 cos2t 2 12 cos t 1 13 

s17 2 12 cos td3y2

k(t)

t0 2π 4π 6π

 largest at integer multiples of 2�

47. 6t 2ys4 t 2 1 9t 4d3y2

49. 1y(s2et)    51. k  

2
3 , 23, 13 l , k21

3, 23, 2 

2
3 l , k22

3 , 13, 23 l
53. x 2 2z − 24�, 2x 1 z − 2�

55. (x 1 5
2 )2

1 y 2 − 81
4 , x 2 1 (y 2 5

3 )2 − 16
9

5

2.5�7.5

�5

57. s21, 23, 1d    
59. 2x 1 y 1 4z − 7, 6x 2 8y 2 z − 23    67. 0

69. 22yse 2 t 1 e22 t 1 4d, 2 

1
3

75. (b) restd − 2cos t  i 2 sin t  j 1 t  k

 (c) restd − 24t 3 i 1 (3t 2 1 1
2 ) j  or ye − 1

2 1 3sxy4d2y3

77. 2.07 3 1010 Å < 2 m

EXERCISES 13.4 ■ PAGE 923

1. (a) 1.8 i 2 3.8 j 2 0.7k, 2.0 i 2 2.4 j 2 0.6k, 
2.8 i 1 1.8 j 2 0.3k, 2.8 i 1 0.8 j 2 0.4k
 (b) 2.4 i 2 0.8 j 2 0.5k, 2.58
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A24 APPENDIX G  Answers to Odd-Numbered Exercises

3.  vstd − k2t, 1 l 
(_2, 2)

0

y

x

v(2)

a(2)

 
astd − k21, 0 l 
| vstd | − st 2 1 1

5.  vstd − 23 sin t i 1 2 cos t j 

0

y

x

v ”   ’π
3

a ”   ’π
3

”   , œ„3’3
2

(0, 2)

(3, 0)

 
astd − 23 cos t i 2 2 sin t j 

| vstd | − s5 sin2 t 1 4

7.  vstd − i 1 2t j 

(1, 1, 2)

z

y

x

a(1)

v(1)

 
astd − 2 j 

| vstd | − s1 1 4t 2

9. k2t 1 1, 2t 2 1, 3t 2 l,  k2, 2, 6t l,  s9t 4 1 8t 2 1 2 

11. s2 i 1 e t j 2 e2t k, e t j 1 e2t k, e t 1 e2t

13. e t fscos t 2 sin td i 1 ssin t 1 cos td j 1 st 1 1dkg,
 e t f22 sin t i 1 2 cos t j 1 st 1 2dkg, e tst 2 1 2t 1 3 

15. vstd − s2t 1 3d i 2 j 1 t 2 k, 

rstd − st 2 1 3td i 1 s1 2 td j 1 (  

1
3t 3 1 1) k

17. (a) rstd − (  

1
3t 3 1 t) i 1 st 2 sin t 1 1d j 1 (  

1
4 2 1

4 cos 2t) k

 (b) 

_200
0200

x

_10
0

10
y

z

0
0.2
0.4
0.6

19. t − 4    

21. rstd − t i 2 t j 1 5
2 t 2 k, | vstd | − s25t 2 1 2

23. (a) <3535 m   (b) <1531 m   (c) 200 mys

25. �30 mys    27. < 198 mys

29. 13.0° , � , 36.0°, 55.4° , � , 85.5°

31. s250, 250, 0d; 10s93 < 96.4 mys

33. (a) 16 m (b) <23.6° upstream

40

_4

0

20

    

40

_12

0

12

35. The path is contained in a circle that lies in a plane perpen- 
dicular to c with center on a line through the origin in the direction 
of c.

37. 
4 1 18t 2

s4 1 9t 2 
, 

6t

s4 1 9t 2 
    39. 0, 1    

41. 
7

s30 
, Î 131

30
    

43. 4.5 cmys2, 9.0 cmys2    45. t − 1

CHAPTER 13 REVIEW ■ PAGE 927

True-False Quiz
1. True    3. False    5. False    7. False     
9. True    11. False    13. True    15. True

Exercises
1. (a) z

y

x

(0, 1, 0)

(2, 1, 0)

 (b) r9std − i 2 � sin �t j 1 � cos �t k, 
r 0std − 2� 2 cos �t j 2 � 2 sin �t k
3. rstd − 4 cos t i 1 4 sin t j 1 s5 2 4 cos tdk, 0 < t < 2�

5. 1
3 i 2 s2y� 2d j 1 s2y� dk    7. 86.631    9. 90°

11. (a) 
1

s13 
 k3 sin t, 23 cos t, 2l    (b) kcos t, sin t, 0l

 (c) 
1

s13 
 k22 sin t, 2 cos t, 3l

 (d) 
3

13 sin t cos t
 or 

3

13
 sec t csc t

(e) 
2

13 sin t cos t
 or 

2

13
 sec t csc t

13. 12y173y2    15. x 2 2y 1 2� − 0
17. vstd − s1 1 ln td i 1 j 2 e2t k,

| vstd | − s2 1 2 ln t 1 sln td2 1 e22 t  , astd − s1ytd i 1 e2t k
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 APPENDIX G  Answers to Odd-Numbered Exercises A25

19. rstd − st 3 1 td i 1 st 4 2 td j 1 (3t 2 t 3) k
21. �37.3°, �157.4 m
23. (c) 22e2t vd 1 e2t R    

PROBLEMS PLUS ■ PAGE 930

1. (a) v − �Rs2sin �t i 1 cos �t jd   (c) a − 2�2r
3. (a) 90°, v0

2ys2td    
5. (a) <0.25 m to the right of the table’s edge, < 4.9 mys
 (b) < 5.9°   (c) < 0.56 m to the right of the table’s edge
7. 56°
9. sa2b3 2 a3b2dsx 2 c1d 1 sa3b1 2 a1b3dsy 2 c2d 

1 sa1b2 2 a2b1dsz 2 c3d − 0

CHAPTER 14

EXERCISES 14.1 ■ PAGE 946

1. (a) 23
7   (b) 4

5   (c) 
sx 1 hd2 y

2sx 1 hd 2 y 2    (d) 
x 2

2 2 x

3. (a) 9 ln 4   (b) hsx, yd | y . 2xj  

 

y

0 x

y=_x

(c) R

5. (a) 1   (b) hsx, y, zd | z ⩽ xy2, y < 0j, the points on or below 
the plane z − xy2 that are to the right of the xz-plane

7. hsx, yd | x > 2, y > 1j  y

0 x2

1

9. 5sx, yd | x 2 1 1
4 y 2 < 1, x > 06   y

x0 1

2

_2

≈+   ¥=11
4

11. hsx, yd | y ± 2xj  y

0 x

y=_x

13. hsx, yd | xy > 0, x ± 21j  y

0 x
_1

15. hsx, y, zd |22 < x < 2, 23 < y < 3, 21 < z < 1j

z

y
x

(2, 0, 0)
(0, 3, 0)

(0, 0, 1)

17. (a) < 1.90 m2; the surface area of a person 178 cm tall who 
weighs 73 kg is approximately 1.90 square meters.

19. (a) 227; a temperature of 215°C with wind blowing at  
40 kmyh feels equivalent to about 227°C without wind.

 (b) When the temperature is 220°C, what wind speed gives a 
wind chill of 230°C?  20 kmyh

 (c) With a wind speed of 20 kmyh, what temperature gives a wind 
chill of 249°C?  235°C

 (d) A function of wind speed that gives wind-chill values when 
the temperature is 25°C

 (e) A function of temperature that gives wind-chill values when 
the wind speed is 50 kmyh

21. (a) 2.4; a 40 km/h wind blowing in the open sea for 15 h will 
create waves about 2.4 m high.

 (b) f s30, td is a function of t giving the wave heights produced by 
30 km/h winds blowing for t hours.

 (c) f sv, 30d is a function of v giving the wave heights produced by 
winds of speed v blowing for 30 hours.
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A26 APPENDIX G  Answers to Odd-Numbered Exercises

23. z − y, plane through the x-axis

z

x y

0

25. 4x 1 5y 1 z − 10, plane 

0

z

y
x

(0, 0, 10)

(2.5, 0, 0)
(0, 2, 0)

27. z − sin x, cylinder 

z

y
x

29. z − x 2 1 4y 2 1 1, elliptic paraboloid 

z

yx

(0, 0, 1)

31. z − s4 2 4x 2 2 y 2
 

, 

x y

z

(0, 0, 2)

(1, 0, 0) (0, 2, 0)

 top half of ellipsoid

33. <56, <35    35. 11°C, 19.5°C    37. Steep; nearly flat

39. h

0
m20 40 60 80 100 120 140

0.5

1

1.5

2

2.5

k=40
k=30
k=25
k=18.5

B(m, h)=k

  No

41.  43. 

z

14

y
x

 
5

y
x

z

45. x 2 2 y 2 − k y

x

0123

_3
_2

_1

0 1 2 3

_1
_2
_3

47. y − 2sx 1 k 49. y − ke2x

y

x

0

_1

_2

1

2

 

y

x0
0

1 2 3

_1
_2

_3
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 APPENDIX G  Answers to Odd-Numbered Exercises A27

51. x 2 1 y 2 − k 3 sk > 0d

y

x
10 2

3
4

5

53. x 2 1 9y 2 − k

y

0 x

4321

 

y

x

z

z=4

z=3

z=2

z=1

55. y

0 x

57. 

0

_2 0 2 2 0 _2y x

z

59. 

1.0

0.5z

0.0

4
0

x

_4

4

0y

_4

61. (a) C   (b) II    63. (a) F   (b) I    
65. (a) B   (b) VI    67. Family of parallel planes    

69. k − 0: cone with axis the z-axis;
k . 0: family of hyperboloids of one sheet with axis the z-axis;
k , 0: family of hyperboloids of two sheets with axis the z-axis
71. (a) Shift the graph of f  upward 2 units
 (b) Stretch the graph of f  vertically by a factor of 2
 (c) Reflect the graph of f  about the xy-plane
 (d) Reflect the graph of f  about the xy-plane and then shift it 
upward 2 units

73. 

0

20

0

_20

_40

y 50_5 x5
_5

z

 f  appears to have a maximum value of about 15. There are two 
local maximum points but no local minimum point.

75. 10

5

0

_5

_10

y2 0 _2x

2

0

_2

z

 The function values approach 0 as x, y become large; as sx, yd 
approaches the origin, f  approaches 6` or 0, depending on the 
direction of approach.
77. If c − 0, the graph is a cylindrical surface. For c . 0, the 
level curves are ellipses. The graph curves upward as we leave  
the origin, and the steepness increases as c increases. For c , 0, 
the level curves are hyperbolas. The graph curves upward in the  
y-direction and downward, approaching the xy-plane, in the  
x-direction giving a saddle-shaped appearance near (0, 0, 1).

79. c − 22, 0, 2    81. (b) y − 0.75x 1 0.01

EXERCISES 14.2 ■ PAGE 960

1. Nothing; if f  is continuous, then f s3, 1d − 6    3. 25
2

5. 56    7. 26    9. �y2    11. 21
2    19. 125    

21. 0    23. Does not exist    25. 2    27. 22    

29. Does not exist    31. 0    33. 0

35. The graph shows that the function approaches different 
numbers along different lines.

37. hsx, yd − s2x 1 3y 2 6d2 1 s2x 1 3y 2 6 ; 
hsx, yd | 2x 1 3y > 6j
39. Along the line y − x    41. R2    

43. hsx, yd | x 2 1 y 2 ± 1j    45. hsx, yd | x 2 1 y 2 < 1, x > 0j
47. hsx, y, zd | x 2 1 y 2 1 z 2 < 1j    
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A28 APPENDIX G  Answers to Odd-Numbered Exercises

49. hsx, yd | sx, yd ± s0, 0dj    51. 0    53. 21

55. 

0

_4

1

0 0

_4
_2

2
_2

2
4 4

xy

z

EXERCISES 14.3 ■ PAGE 969

1. fT s34, 75d < 2°C; for a temperature of 34°C and relative 
humidity of 60%, the apparent temperature rises by 2°C for each 
degree the actual temperature increases. fHs34, 75d < 0.3°C; for a 
temperature of 34°C and relative humidity of 60%, the apparent 
temperature rises by 0.3°C for each percent that the relative 
humidity increases. 

3. (a) The rate of change of temperature as longitude varies, with 
latitude and time fixed; the rate of change as only latitude varies; 
the rate of change as only time varies
 (b) Positive, negative, positive

5. (a) Negative   (b) Negative    

7. fxs1, 2d − 28 − slope of C1, fys1, 2d − 24 − slope of C2

z

y

0

x

(1, 2, 8)

C¡

(1, 2)

2

16

4

z

y

0

x

(1, 2, 8)

C™

(1, 2)

2

16

4

9. fxsx, yd − 4x 3 1 5y 3, fysx, yd − 15xy 2

11. txsx, yd − 3x 2 sin y, tysx, yd − x 3 cos y

13. 
−z

−x
−

1

x 1 t 2 , 
−z

−t
−

2t

x 1 t 2

15. fxsx, yd − y 2e xy, fysx, yd − e xy 1 xye xy

17. txsx, yd − 5y s1 1 2xydsx 1 x 2yd4, 
tysx, yd − 5x 2ysx 1 x 2yd4 1 sx 1 x 2yd5

19. fxsx, yd −
sad 2 bcdy
scx 1 dyd2 , fysx, yd −

sbc 2 addx
scx 1 dyd2

21. tusu, vd − 10uvsu2v 2 v 3d4, 
tvsu, vd − 5su 2 2 3v 2dsu2v 2 v 3d 4

23. Rpsp, qd −
q 2

1 1 p2q4 , Rqsp, qd −
2pq

1 1 p2q4

25. Fxsx, yd − cosse xd, Fysx, yd − 2cosse yd
27. fx − 3x 2yz 2, fy − x 3z 2 1 2z, fz − 2x 3yz 1 2y

29. −wy−x − 1ysx 1 2y 1 3zd, −wy−y − 2ysx 1 2y 1 3zd, 
−wy−z − 3ysx 1 2y 1 3zd

31. −py−t − 2t 3yst 4 1 u 2 cos v , 

 −py−u − u cos vyst 4 1 u 2 cos v ,

−py−v − 2u 2 sin vy(2st 4 1 u 2 cos v )
33. hx − 2xy cosszytd, hy − x 2 cosszytd, 
 hz − s2x 2yytd sinszytd, ht − sx 2yzyt 2d sinszytd
35. −uy−xi − xiysx1

2 1 x2
2 1 ∙ ∙ ∙ 1 xn

2 

37. 1     39. 1
6     41. 

−z

−x
− 2

x

3z
, 

−z

−y
− 2

2y

3z
    

43. 
−z

−x
−

yz

e z 2 xy
, 

−z

−y
−

xz

e z 2 xy
45. (a) f 9sxd, t9syd   (b) f 9sx 1 yd,  f 9sx 1 yd
47. fxx − 12x 2y 2 12xy 2, fxy − 4x 3 2 12x 2y − fyx , fyy − 24x 3

49. zxx −
8y

s2x 1 3yd3 , zxy −
6y 2 4x

s2x 1 3yd3 − zyx , 

zyy − 2
12x

s2x 1 3yd3

51. vss − 2 cosss 2 2 t 2d 2 4s 2 sinss 2 2 t 2d,  
vst − 4st sinss 2 2 t 2d − vts, 
vt t − 22 cosss 2 2 t 2d 2 4t 2 sinss 2 2 t 2d
57. 24xy 2 2 6y, 24x 2y 2 6x   
59. s2x 2y 2z 5 1 6xyz 3 1 2zde xyz 2

61. 3
4 vsu 1 v 2d25y2    63. 4ysy 1 2zd3, 0    

65. fxsx, yd − y 2 2 3x 2y, fysx, yd − 2xy 2 x 3

67. 6yz 2    69. c − f, b − fx, a − fy

71. 

_2
0

2x
0

2

y

_20

0

20

z

_2

  f sx, yd − x 2y 3

 

_2
_20

2x
0

2

y

_20

0

20

z

  fxsx, yd − 2xy 3

 

_2
0

2x
0

2

y
0

20

40

_2

z

  fysx, yd − 3x 2y 2
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 APPENDIX G  Answers to Odd-Numbered Exercises A29

73. <12.2, <16.8, <23.25    83. R 2yR1
2

85. 
−T

−P
−

V 2 nb

nR
, 

−P

−V
−

2n 2a

V 3 2
nRT

sV 2 nbd2

87. (a) �0.0035; for a person 178 cm tall who weighs 73 kg, an 
increase in weight causes the surface area to increase at a rate of 
about 0.0035 m2ykg. (b) �0.0145; for a person 178 cm tall who 
weighs 73 kg, an increase in height (with no change in weight) 
causes the surface area to increase at a rate of about 0.0145 m2ykg 
of height.

89. −Py−v − 3Av 2 2
Bsmtyxd2

v 2  is the rate of change of the 

 power needed during flapping mode with respect to the bird’s 
velocity when the mass and fraction of flapping time remain 

constant;  −Py−x − 2
2Bm2t 2

x 3v
 is the rate at which the power 

changes  when only the fraction of time spent in flapping mode 

varies;  −Py−m −
2Bmt2

x 2v
 is the rate of change of the power when 

only the  mass varies.
93. x − 1 1 t, y − 2, z − 2 2 2t    95. No    99. 22

101. (a) 

_0.2

0.2

0

_1
0

1
y

1
0

_1
x

z

 (b) fxsx, yd −
x 4y 1 4x 2y 3 2 y 5

sx 2 1 y 2 d2 , fysx, yd −
x 5 2 4x 3y 2 2 xy 4

sx 2 1 y 2 d2

 (c) 0, 0   (e) No, because fxy and fyx are not continuous.

EXERCISES 14.4 ■ PAGE 981

1. z − 24x 2 4y 1 24    3. z − 4x 2 y 2 6    
5. z − x 2 y 1 1    7. z − 22x 2 y 2 3    
9. x 1 y 1 z − 0

11. 

400

200

0

y5 0 _5x
10 0 _10

z

13. 

y
x

z

1 1.50

1

1

2

3

0.5

15. 12x 2 16y 1 32    17. 6x 1 4y 2 23    
19. 2x 1 y 2 1    21. 2x 1 2y 1 � 2 4    25. 6.3    

27. 3
7 x 1 2

7 y 1 6
7 z; 6.9914    29. 2T 1 0.3H 2 40.5; 44.4°C    

31. dm − 5p4q3 dp 1 3p5q2 dq
33. dz − 22e22x cos 2� t dx 2 2�e22x sin 2� t dt
35. dH − 2xy 4 dx 1 s4x 2 y 3 1 3y 2z 5d dy 1 5y 3z 4 dz
37. dR − � 2 cos � d� 1 2�� cos � d� 2 �� 2 sin � d�

39. Dz − 0.9225, dz − 0.9    41. 5.4 cm2    43. 16 cm3

45. (a) 5.89�« m3   (b) �0.0015 m < 0.15 cm    
47. <20.0165mt; decrease    49. 1

17 < 0.059 V
51. (a) 0.8264m 2 34.56h 1 38.02   (b) 18.801

EXERCISES 14.5 ■ PAGE 991

1. 36t 3 1 15t4    3. 2tsy 3 2 2xy 1 3xy 2 2 x 2d

5. 
1

2 st 
 cos x cos y 1

1

t 2
 sin x sin y

7. e yyzf2t 2 sxyzd 2 s2xyyz2 dg

9. −zy−s − 10s 1 14t, −zy−t − 14s 1 20t    

11. −zy−s − 5sx 2 yd4s2st 2 t 2d, −zy−t − 5sx 2 yd4ss 2 2 2std

13. 
−z

−s
−

3 sin t 2 2t sin s

3x 1 2y
, 

−z

−t
−

3s cos t 1 2 cos s

3x 1 2y

15. 
−z

−s
− 2

t sin �

r 2 1
2s cos �

r
, 

−z

−t
− 2

s sin �

r 2 1
2t cos �

r
17. 42    19. 7, 2

21. 
−u

−r
−

−u

−x
 
−x

−r
1

−u

−y
 
−y

−r
, 

−u

−s
−

−u

−x
 
−x

−s
1

−u

−y
 
−y

−s
,

−u

−t
−

−u

−x
 
−x

−t
1

−u

−y
 
−y

−t

23. 
−T

−x
−

−T

−p
 
−p

−x
1

−T

−q
 
−q

−x
1

−T

−r
 
−r

−x
, 

 
−T

−y
−

−T

−p
 
−p

−y
1

−T

−q
 
−q

−y
1

−T

−r
 
−r

−y
, 

−T

−z
−

−T

−p
 
−p

−z
1

−T

−q
 
−q

−z
1

−T

−r
 
−r

−z
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A30 APPENDIX G  Answers to Odd-Numbered Exercises

25. 1582, 3164, 2700    27. 2�, 22�

29. 5
144, 2 5

96 , 5
144    31. 

2x 1 y sin x

cos x 2 2y

33. 
1 1 x 4y 2 1 y 2 1 x 4y 4 2 2xy

x 2 2 2xy 2 2x 5y 3

35. 2
x

3z
, 2

2y

3z
    37. 

yz

e z 2 xy
, 

xz

e z 2 xy

39. 2°Cys    41. < 20.33 mys per minute
43. (a) 6 m3ys   (b) 10 m2ys   (c) 0 mys    

45. < 20.27 Lys    47. 21y(12s3) radys

49. (a) −zy−r − s−zy−xd cos � 1 s−zy−yd sin �,
−zy−� − 2s−zy−xd r sin � 1 s−zy−yd r cos �

53. 4rs 
−2z

−x 2 1 s4r 2 1 4s 2d 
−2z

−x −y
1 4rs 

−2z

−y 2 1 2 
−z

−y

EXERCISES 14.6 ■ PAGE 1005

1. < 20.08 mbykm    3. < 0.778    5. s2 y2

7. 5s2 y74    9. (a) =f sx, yd − s1yyd i 2 sxyy 2d j   

(b) i 2 2 j   (c) 21
11. (a) k2xyz 2 yz 3, x 2z 2 xz 3, x 2y 2 3xyz 2l   

(b) k23, 2, 2l   (c) 2
5

13. 
4 2 3s3 

10
    15. 7y(2s5 )    17. 1    19. 23

42    

21. 256
5     23. 2

5    25. 218
7     27. 20s10 , k20, 260l    

29. 1, k0, 1l    31. 3
4, k1, 22, 22l     

33. (b) k212, 92l, 24s538     
35. All points on the line y − x 1 1    37. (a) 240y(3s3)
39. (a) 32ys3   (b) k38, 6, 12l   (c) 2s406    

41. 327
13     45. 774

25

47. (a) x 1 y 1 z − 11   (b) x 2 3 − y 2 3 − z 2 5

49. (a) x 1 2y 1 6z − 12   (b) x 2 2 −
y 2 2

2
−

z 2 1

6
51. (a) x 1 y 1 z − 1   (b) x − y − z 2 1

53. 

1
_1

0

1

2

1 2x 2

z

y

 55. k2, 3l, 2x 1 3y − 12

  

y

x0

2x+3y=12

xy=6

(3, 2)

f (3, 2)Î

61. No    65. (25
4, 25

4 , 25
8 )

69. x − 21 2 10t, y − 1 2 16t, z − 2 2 12t
71. s21, 0, 1d; �7.8°
75. If u − ka, bl and v − kc, d l, then afx 1 bfy and cfx 1 dfy are 
known, so we solve linear equations for fx and fy .

EXERCISES 14.7 ■ PAGE 1016

1. (a) f  has a local minimum at s1, 1d.
 (b) f  has a saddle point at s1, 1d.
3. Local minimum at s1, 1d, saddle point at s0, 0d
5. Minimum f (1

3, 22
3) − 21

3
7. Minima f s22, 21d − 23,  f s8, 4d − 2128,  
saddle point at s0, 0d
9. Saddle points at s1, 1d, s21, 21d
11. Maximum f s1, 4d − 14
13. Maximum f s21, 0d − 2, minimum f s1, 0d − 22,  
saddle points at s0, 61d
15. Maximum f s0, 21d − 2, minima f s61, 1d − 23,  
saddle points at s0, 1d, s61, 21d
17. Maximum f ( 

1
3, 13) − 1

27, saddle points at s0, 0d, s1, 0d, s0, 1d
19. None
21. Minima f s0, 1d − f s�, 21d − f s2�, 1d − 21,  
saddle points at s�y2, 0d, s3�y2, 0d
25. Minima f s1, 61d − f s21, 61d − 3

27. Maximum f s�y3, �y3d − 3s3y2, 
minimum f s5�y3, 5�y3d − 23s3y2, saddle point at s�, �d
29. Minima f s0, 20.794d < 21.191, 
f s61.592, 1.267d < 21.310, saddle points s60.720, 0.259d,  
lowest points s61.592, 1.267, 21.310d
31. Maximum f s0.170, 21.215d < 3.197,  
minima f s21.301, 0.549d < 23.145, f s1.131, 0.549d < 20.701,  
saddle points s21.301, 21.215d, s0.170, 0.549d, s1.131, 21.215d, 
no highest or lowest point
33. Maximum f s0, 62d − 4, minimum f s1, 0d − 21
35. Maximum f s61, 1d − 7, minimum f s0, 0d − 4
37. Maximum f s0, 3d − f s2, 3d − 7, minimum f s1, 1d − 22
39. Maximum f s1, 0d − 2, minimum f s21, 0d − 22

41. 

_3

_2

_1

0

_1 0 1
_2

2
4

x

y

z

(_1, 0, 0) (1, 2, 0)

43. 2ys3     45. (2, 1, s5), (2, 1, 2s5)    47. 100
3 , 100

3 , 100
3  

49. 8r 3y (3s3)    51. 4
3    53. Cube, edge length cy12

55. Square base of side 40 cm, height 20 cm    57. L 3y(3s3)
59. (a) H − 2p1 ln p1 2 p2 ln p2

2 s1 2 p1 2 p2d  lns1 2 p1 2 p2d
 (b) hsp1, p2d | 0 , p1 , 1, p2 , 1 2 p1j   

 (c) ln 3; p1 − p2 − p3 − 1
3

EXERCISES 14.8 ■ PAGE 1026

1. <59, 30
3. Maximum f s61, 0d − 1, minimum f s0, 61d − 21
5. Maximum f s1, 2d − f s21, 22d − 2,  
minimum f s1, 22d − f s21, 2d − 22
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 APPENDIX G  Answers to Odd-Numbered Exercises A31

7. Maximum f (1ys2 , 61ys2  ) − f (21ys2 , 61ys2  ) − 4, 
minimum f s61, 0d − 2
9. Maximum f s2, 2, 1d − 9, minimum f s22, 22, 21d − 29

11. Maximum f (1, 6s2 , 1) − f (21, 6s2 , 21) − 2, 

 minimum f (1, 6s2 , 21) − f (21, 6s2 , 1) − 22

13. Maximum s3, minimum 1

15. Maximum f ( 1
2 , 12, 12, 12 ) − 2,

 minimum f (21
2, 21

2, 21
2, 21

2 ) − 22

17. 10, 10
19. 25 m by 25 m

21. (26
5, 35 

)
23. Minimum f s1, 1d − f s21, 21d − 2
25. Maximum f s2, 2d − e4    

27. Maximum f (3ys2 , 23ys2 ) − 9 1 12s2 ,  
minimum f s22, 2d − 28

29. Maximum f (61ys2, 71y(2s2 )) − e 1y4,

 minimum f (61ys2, 61y(2s2 )) − e21y4

31. Maximum f (0, 1, s2 ) − 1 1 s2 , 

 minimum f (0, 1, 2s2 ) − 1 2 s2 

33. Maximum 32, minimum 12
41–53. See Exercises 43–57 in Section 14.7.
57. Nearest ( 1

2 , 12, 12 ), farthest s21, 21, 2d
59. Maximum <9.7938, minimum <25.3506
61. Maximum f (6s3 , 3) − 18, minimum f s0, 0d − 0
63. (a) cyn   (b) When x1 − x2 − ∙ ∙ ∙ − xn

CHAPTER 14 REVIEW ■ PAGE 1031

True-False Quiz
1. True    3. False    5. False    7. True    9. False
11. True

Exercises
1. hsx, yd | y . 2x 2 1j 3. 

x y

z

1

1
y

x_1

_1

y=_x-1

5. y

x

1
23 4 5

0

 7. 

x210

y

2

1

9. 2
3    

11. (a) <3.5°Cym, 23.0°Cym    
(b) < 0.35°Cym by Equation 14.6.9 (Definition 14.6.2 gives 
<1.1°Cym.)    
(c) 20.25
13. fx − 32xys5y 3 1 2x 2yd7, fy − s16x 2 1 120y 2ds5y 3 1 2x 2yd7

15. F� −
2� 3

� 2 1 � 2 1 2� lns� 2 1 � 2d, F� −
2� 2�

� 2 1 � 2

17. Su − arctan(vsw ), Sv −
usw 

1 1 v2w
, Sw −

uv

2sw s1 1 v2wd
19. f xx − 24x, f xy − 22y − f yx, f yy − 22x

21. f xx − ksk 2 1dx k22 y lz m, f xy − klx k21y l21z m − f yx , 

f xz − kmx k21y lz m21 − f zx, f yy − lsl 2 1dx k y l22z m, 

f yz − lmx k y l21z m21 − f zy, f zz − msm 2 1dx k y lz m22

25. (a) z − 8x 1 4y 1 1   
(b) x − 1 1 8t, y − 22 1 4t, z − 1 2 t
27. (a) 2x 2 2y 2 3z − 3   
(b) x − 2 1 4t, y − 21 2 4t, z − 1 2 6t
29. (a) x 1 2y 1 5z − 0    
(b) x − 2 1 t, y − 21 1 2t, z − 5t

31. (2, 12, 21), (22, 21
2, 1)    

33. 60x 1 24
5 y 1 32

5 z 2 120; 38.656

35. 2xy 3s1 1 6pd 1 3x 2y 2s pe p 1 e pd 1 4z 3s p cos p 1 sin pd
37. 247, 108    
43. k2xe yz2, x 2z 2e yz2, 2x 2yzeyz2 l    45. 24

5

47. s145y2, k4, 92 l     49. < 0.72 kmyh   
51. Minimum f s24, 1d − 211
53. Maximum f s1, 1d − 1; saddle points at (0, 0), (0, 3), (3, 0)
55. Maximum f s1, 2d − 4, minimum f s2, 4d − 264
57. Maximum f s21, 0d − 2, minima f s1, 61d − 23,
 saddle points at s21, 61d, s1, 0d
59. Maximum f (6s2y3, 1ys3) − 2y(3s3),
 minimum f (6s2y3, 21ys3) − 22y(3s3)
61. Maximum 1, minimum 21

63. (6321y4, 321y4s2, 631y4 ), (6321y4, 2321y4s2, 631y4 )
65. P(2 2 s3), P(3 2 s3)y6, P(2s3 2 3)y3

PROBLEMS PLUS ■ PAGE 1035

1. L2W 2, 14 L2W 2    3. (a) x − wy3, base − wy3   (b) Yes

7. s3y2, 3ys2

CHAPTER 15

EXERCISES 15.1 ■ PAGE 1049

1. (a) 288   (b) 144    3. (a) 0.990   (b) 1.151
5. U , V , L    7. (a) <248   (b) <15.5

9. 24s2     11. 3    13. 2 1 8y 2, 3x 1 27x 2

15. 222    17. 5
2 2 e21    19. 18

21. 15
2  ln 2 1 3

2 ln 4 or 21
2  ln 2    23. 6    
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A32 APPENDIX G  Answers to Odd-Numbered Exercises

25. 31
30    27. 2    29. 9 ln 2    

31. 1
2 (s3 2 1) 2 1

12�    33. 1
2e26 1 5

2

35. z

y
x

0

1

1

4
    37. z

yx
0

z=4-≈

2 3

_1 _2

4

39. (a) y2
0 y

2
0 xy dx dy   (b) 4    

41. (a) y2
1 y

1
0 s1 1 ye xyd dx dy   (b) e 2 2 e    

43. 51    45. 166
27     47. 8

3    49. 64
3

51. 21e 2 57   

2

0

y
1

0

x1
0

z

53. 5
6    55. 0

57. Fubini’s Theorem does not apply. The integrand has an 
infinite discontinuity at the origin.

EXERCISES 15.2 ■ PAGE 1059

1. 868
3     3. 1

6se 2 1d    5. 1
3 sin 1    

7. (a) y2
0 y

3x2x 2

x  2y dy dx   (b) 56
15    

9. (a) y2
0 y

y12
y 2  xy dx dy   (b) 6    

11. 1
4 ln 17    13. 1

2s1 2 e29d
15. (a)  (b) 

0 x

y

D

 
0 x

y

D

17. Type I: D − hsx, yd | 0 < x < 1, 0 < y < xj,

 type II: D − hsx, yd | 0 < y < 1, y < x < 1j; 13
19. y1

0 y
sx 

2sx
   y dy dx 1 y4

1 y
sx 

x22 y dy dx − y2

21
 yy12

y 2  y dx dy − 9
4

21. y1
0 y

cos21y
0  sin2x dx dy − y�y2

0  ycos x
0  sin2x dy dx − 1

3

23. 1
2 s1 2 cos 1d    25. 11

3     27. 0    

29. (a) y1
0 y

y
0 s1 1 xyd dx dy   (b) 5

8    31. 3
4

33. 31
8     35. 16

3     37. 128
15     39. 1

3    

41. 0, 1.213; 0.713    43. 64
3     

45. 
10

3s2 
 or 

5s2 

3

47. 

0

z

y

x

(0, 0, 1)

(1, 0, 0)

(0, 1, 0)

49. 

0

z

y
x

y=x

3
z=œ„„„„„9-≈

y=3

3
3

51. 13,984,735,616y14,549,535    53. �y2   

55. 

x

y

0

y=x

(0, 1)
(1, 1)

  y1
0 y

1
x  f sx, yd dy dx

57. 

x

y

y=sin x

y=1

x=sin_1y
or

π
2

1

0

  y1
0 y

sin21 y
0  f sx, yd dx dy

59. y

x0

x=2

y=ln x  
or x=e†

ln 2

1 2

y=0

  y ln 2
0  y2

e y f sx, yd dx dy

61. 1
6 se 9 2 1d    63. 2

9 (2s2 2 1)    

65. 1
3 (2s2 2 1)    67. 1    

69. 
s3 

2
� < yys s4 2 x 2y 2  dA < �

71. 3
4    75. 9�    77. a 2b 1 3

2 ab 2    79. �a 2b
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 APPENDIX G  Answers to Odd-Numbered Exercises A33

EXERCISES 15.3 ■ PAGE 1067

1. y3�y2
0  y4

0  f sr cos �, r sin �d r dr d�    

3. y�

0  y3
1  f sr cos �, r sin �d r dr d�     

5. y1
0 y

222y
2y22  f sx, yd dx dy

7. 

x

y

0 1 2_2 _1

¨=3π
4 ¨=π

4

R

 3�y4

9. 1250
3     11. s�y4dscos 1 2 cos 9d

13. s�y2ds1 2 e24 d    15. 3
64 � 2    

17. 
3�

2
2 4    19. 

3�

8
1

1

4
    21. �y12    

23. (a) y�y2
0  y2

0 sr 1 r 3 cos � sin �d dr d�   (b) � 1 2

25. (a) y3�y2
0  y3

0  r 2 sin � dr d�   (b) 9

27. (a) y�y2
0  ysin �

0  r 2 cos � dr d�   (b) 1
12

29. 625
2 �    31. 4�    33. 4

3 �a 3    

35. s�y3d(2 2 s2)    37. s8�y3d(64 2 24s3)    

39. s�y4ds1 2 e24d    41. 1
120    43. 4.5951

45. 38� m3    47. 2ysa 1 bd    49. 15
16    

51. (a) s� y4   (b) s� y2

EXERCISES 15.4 ■ PAGE 1078

1. 285 C    3. ( 34, 12 )    5. 42k, (2, 85
28)    7. 6, ( 34,  32)    

9. 8
15 k, (0, 47)    11. 1

8s1 2 3e22d, S e 2 2 5

e 2 2 3
, 

8se 3 2 4d
27se 3 2 3edD    

13. (3
8, 3�y16)    15. s0, 45ys14�dd

17. s2ay5, 2ay5d if vertex is (0, 0) and sides are along positive 
axes
19. 409.2k, 182k, 591.2k
21. 7ka6y180, 7ka6y180, 7ka6y90 if vertex is s0, 0d and sides are 
along positive axes
23. �bh3y3, �b3hy3; bys3, hys3
25. �a4�y16, �a4�y16; ay2, ay2

27. m − 3�y64, sx, y d − S 16384s2 

10395�
, 0D,

 Ix −
5�

384
2

4

105
, Iy −

5�

384
1

4

105
, I0 −

5�

192

29. (a) 1
2   (b) 0.375   (c) 5

48 < 0.1042
31. (b) (i) e20.2 < 0.8187
 (ii) 1 1 e21.8 2 e20.8 2 e21 < 0.3481   (c) 2, 5
33. (a) <0.500   (b) <0.632

35. (a) yyD kf1 2 1
20 ssx 2 x0 d2 1 sy 2 y0 d2 g dA, where D is  

the disk with radius 10 km centered at the center of the city
 (b) 200�ky3 < 209k, 200(�y2 2 8

9 )k < 136k; on the edge

EXERCISES 15.5 ■ PAGE 1081

1. 13
3 s2    3. 12s35    5. 3s14    

7. s�y6d(13s13 2 1)    9. s�y6d(17s17 2 5s5)    

11. s2�y3d(2s2 2 1)    13. a 2s� 2 2d    15. 3.6258    
17. (a) <1.83   (b) <1.8616

19. 45
8 s14 1 15

16 lnf(11s5 1 3s70)y(3s5 1 s70)g
21. 3.3213    25. s�y6d(101s101 2 1)

EXERCISES 15.6 ■ PAGE 1092

1. 27
4     3. 16

15    5. 5
3    7. 3 ln 3 1 3

9. (a) y1
21 y

12x 2

0  y22z
0  x dy dz dx   (b) 0    

11. (a) y2
0 y

22x
0  yx 2

0  sx 1 yd dy dz dx   (b) 8
3

13. 27
2     15. �y8 2 1

3    17. 65
28    

19. 8
15    21. 16�y3    23. 16

3     25. 8
15

27. (a) y1
0 y

x
0 y

s12y 2 
0  dz dy dx   (b) 1

4 � 2 1
3

29. �0.985    31. z

y
x

0
1

2

1

33. y2
22 y

42x 2

0  y
s42x 22y y2
2s42x 22y y2  f sx, y, zd dz dy dx

− y4
0 y

s42y
2s42y y

s42x 22y y2
2s42x 22y y2 f sx, y, zd dz dx dy

− y1
21 y

424z2

0  ys42y24z2 

2s42y24z2 f sx, y, zd dx dy dz

− y4
0 y

s42yy2
2s42y y2 ys42y24z2 

2s42y24z2  f sx, y, zd dx dz dy

− y2
22 y

s42x 2 y2
2s42x 2 y2 y

42x 224z2

0  f sx, y, zd dy dz dx

− y1
21 y

s424z2 

2s424z2 y42x 224z2

0  f sx, y, zd dy dx dz

35. y2
22 y

4
x 2 y22yy2

0  f sx, y, zd dz dy dx

− y4
0 y

sy
2sy y

22yy2
0  f sx, y, zd dz dx dy

− y2
0 y

422z
0  ysy

2sy f sx, y, zd dx dy dz

− y4
0 y

22yy2
0  ysy

2sy f sx, y, zd dx dz dy

− y2
22 y

22x 2y2
0  y422z

x 2  f sx, y, zd dy dz dx

− y2
0 y

s422z
2s422z y

422z
x 2  f sx, y, zd dy dx dz

37. y1
0 y

1
sx y

12y
0  f sx, y, zd dz dy dx − y1

0 y
y 2

0   y
12y
0  f sx, y, zd dz dx dy

− y1
0 y

12z
0  yy 2

0  f sx, y, zd dx dy dz − y1
0 y

12y
0  yy 2

0  f sx, y, zd dx dz dy

− y1
0 y

12sx
0  y12z

sx  f sx, y, zd dy dz dx − y1
0 y

s12zd2

0  y12z
sx  f sx, y, zd dy dx dz

39. y1
0 y

1
y  y

y
0 f sx, y, zd dz dx dy − y1

0 y
x
0 y

y
0 f sx, y, zd dz dy dx

− y1
0 y

1
z  y

1
y  f sx, y, zd dx dy dz − y1

0 y
y
0 y1

y  f sx, y, zd dx dz dy

− y1
0 y

x
0 y

x
z  f sx, y, zd dy dz dx − y1

0 y
1
z  y

x
z  f sx, y, zd dy dx dz

41. 64�    43. 3
2�, (0, 0, 13)    

45. a 5, s7ay12, 7ay12, 7ay12d
47. Ix − Iy − Iz − 2

3 kL5    49. 1
2�kha 4
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A34 APPENDIX G  Answers to Odd-Numbered Exercises

51. (a) m − y1
21 y

1
x 2 y12y

0  sx 2 1 y 2
 

 dz dy dx

 (b) sx, y, zd, where

 x − s1ymd y1
21 y

1
x 2 y12y

0  xsx 2 1 y 2
 

 dz dy dx,

 y − s1ymd y1
21 y

1
x 2 y12y

0  ysx 2 1 y 2
 

 dz dy dx,

 and z − s1ymd y1
21 y

1
x 2 y12y

0  zsx 2 1 y 2
 

 dz dy dx

 (c) y1
21 y

1
x 2 y12y

0  sx 2 1 y 2d3y2 dz dy dx

53. (a) 3
32 � 1 11

24   

 (b) S 28

9� 1 44
, 

30� 1 128

45� 1 220
, 

45� 1 208

135� 1 660D
 (c) 1

240 s68 1 15�d
55. (a) 1

8   (b) 1
64   (c) 1

5760    57. L3y8
59. (a) The region bounded by the ellipsoid x 2 1 2y 2 1 3z2 − 1
 (b) 4s6�y45

EXERCISES 15.7 ■ PAGE 1100

1. (a) 

x

z

y
5

2
π
2

0

”5,    , 2’π
2

 (b) 

y

z

_3

6 0

x

π
4_

”6, _    , _3’π
4

(0, 5, 2) (3s2 , 23s2 , 23)
3. (a) (4 s2 , �y4, 23)   (b) (10, 2�y6, s3  )
5. Circular cylinder with radius 2 and axis the z-axis    
7. Sphere, radius 2, centered at the origin    
9. (a) z 2 − 1 1 r cos � 2 r 2   (b) z − r 2 cos 2�

11. 

x

z

y

z=8-r@

z=r@

8

13.  Cylindrical coordinates: 6 < r < 7, 0 < � < 2�, 
0 < z < 20

15. (a) y�

0  y1
0 y

22r 2

0  r 3 dz dr d�   (b) �y3

17. 

y

z

x

z=≈+¥

z=9     81
4  �

19. 384�    21. 8
3� 1 128

15     23. 2�y5    25. 4
3� (s2 2 1)

27. (a) 512
3 �   (b) (0, 0, 23

2 )    

29. �Ka 2y8, s0, 0, 2ay3d    31. 0    
33. (a) yy yC hsPdtsPd dV, where C is the cone

 (b) < 4.4 3 1018 J

EXERCISES 15.8 ■ PAGE 1106

1. (a) 

x

z

y

”2,     ,    ’3π
4

π
22

π
2

0

3π
4

 (b) 

x

z

y

4

π
3

π
4

_

”4, _   ,    ’π
3

π
4

 (2s2 , s2 , 0) (s2 , 2 s6 , 2 s2  )

3. (a) (3s2, �y4, �y2)    (b) s4, 2�y3, �y6d
5. Bottom half of a cone    7. Horizontal plane
9. (a) � − 3   (b) � 2ssin2� cos 2� 2 cos2�d − 1

11. 

x

z

y

∏=1

˙=π
6

1

    13. 

  x

z

y
0

∏=3

∏=1

15. �y4 < � < �y2, 0 < � < 4 cos �

17. 

x y

z

π
6

3
 s9�y4d (2 2 s3)

19. y�y2
0  y3

0  y2
0  f sr cos �, r sin �, zd r dz dr d�    

21. (a) y�

�y2 y
3�y2
�y2  y3

2 �
3 sin � d� d� d�   (b) 65

4  �    

23. 312,500�y7    25. 1688�y15    27. �y8

29. (s3 2 1)�a 3y3    31. (a) 10�   (b) (0, 0, 2.1)

33. (a) (0, 0, 7
12)   (b) 11K�y960

35. (a) (0, 0, 38 a)   (b) 4K�a 5y15 (K is the density)

37. 1
3� (2 2 s2), (0, 0, 3yf8(2 2 s2)g )    

39. (a) �Ka4hy2 (K is the density)   (b) �Ka 2hs3a 2 1 4h2dy12

41. 5�y6    43. (4s2 2 5)y15    45. 4096�y21

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 APPENDIX G  Answers to Odd-Numbered Exercises A35

47.     49. 136�y99    

EXERCISES 15.9 ■ PAGE 1116

1. (a) VI   (b) I   (c) IV   (d) V   (e) III   (f) II    

3. The parallelogram with vertices (0, 0), (6, 3), (12, 1), s6, 22d
5. The region bounded by the line y − 1, the y-axis, and y − sx 

7. x − 1
3sv 2 ud, y − 1

3su 1 2vd is one possible transformation, 
where S − hsu, vd | 21 < u < 1, 1 < v < 3j
9. x − u cos v, y − u sin v is one possible transformation,  
where S − 5su, vd | 1 < u < s2, 0 < v < �y26
11. 26    13. s    15. 2uvw

17. 23    19. 6�    21. 2 ln 3    

23. (a) 4
3 �abc   (b) 1.083 3 1012 km3   

(c) 4
15�sa2 1 b2dabck

25. 8
5 ln 8    27 3

2 sin 1    29. e 2 e21

CHAPTER 15 REVIEW ■ PAGE 1118

True-False Quiz
1. True    3. True    5. True    7. True    9. False

Exercises
1. <64.0    3. 4e 2 2 4e 1 3    5. 1

2 sin 1    7. 2
3    

9. y�

0  y4
2  f sr cos �, r sin �d r dr d�

11. (s3, 3, 2), s4, �y3, �y3d
13. (2s2, 2s2, 4s3), (4, �y4, 4s3)
15. (a) r 2 1 z 2 − 4, � − 2   (b) r − 2, � sin � − 2

17. The region inside the loop of the four-leaved rose r − sin 2� 
in the first quadrant

19. 1
2 sin 1    21. 1

2 e 6 2 7
2    23. 1

4 ln 2    25. 8    

27. 81�y5    29. 81
2     31. �y96    33. 64

15    

35. 176    37. 2
3    39. 2ma 3y9 

41. (a) 1
4   (b) ( 13, 8

15 )    

 (c) Ix − 1
12, Iy − 1

24; y − 1ys3, x − 1ys6

43. (a) s0, 0, hy4d   (b) �a 5hy15

45. ln(s2 1 s3) 1 s2y3    47. 486
5     49. 0.0512    

51. (a) 1
15   (b) 1

3   (c) 1
45

53. y1
0 y

12z
0  ysy

2sy f sx, y, zd dx dy dz    55. 2ln 2    57. 0

PROBLEMS PLUS ■ PAGE 1121

1. 30    3. 1
2 sin 1    7. (b) 0.90

13. abc�S 2

3
2

8

9s3
D

CHAPTER 16

EXERCISES 16.1 ■ PAGE 1129

1. 

1

10 x

y

3. 

0 x

y

1

1

5. 

x

y

2

_2

_2 2

    7. y

x0

9. 

x

z

y

    11. 

x

z

y

13. IV    15. I    17. III    19. IV    21. III    

23. 4.5

�4.5

�4.5 4.5

   The line y − 2x

25. =f sx, yd − y 2 cossxyd i 1 fxy cossxyd 1 sinsxydg j
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A36 APPENDIX G  Answers to Odd-Numbered Exercises

27. = f sx, y, zd −
x

sx 2 1 y 2 1 z2
 i

1
y

sx 2 1 y 2 1 z2
 j 1

z

sx 2 1 y 2 1 z2
 k

29. =f sx, yd − sx 2 yd i 1 sy 2 xd j y

x

2

4

4

_4

_4 _2
_2

2

31. III    33. II    35. 4

_4

4_4

37. s2.04, 1.03d

39. (a) y

x0

   y − Cyx

(b) y − 1yx, x . 0

EXERCISES 16.2 ■ PAGE 1141

1. 4
3s10 3y2 2 1d    3. 1638.4    5. 1

3 � 6 1 2�    7. 5
2

9. s2y3    11. 1
12s14 se 6 2 1d    13. 2

5se 2 1d    

15. �y2 2 1
6 s2     17. 35

3     

19. (a) Positive   (b) Negative    21. 1
20    

23. 6
5 2 cos 1 2 sin 1    25. 0.5424    27. 94.8231

29. 3� 1 2
3   2.5

�2.5

�2.5 2 .5

31. (a) 11
8 2 1ye   (b) 

0 2.1

2.1

_0.2

F”r”      ’’

F{r(1)}

F{r(0)}

1
œ„2

33. 172,704
5,632,705 s2 s1 2 e214� d    35. 2�k, s4y�, 0d

37. (a) x − s1ymd yC x�sx, y, zd ds,

 y − s1ymd yC y�sx, y, zd ds,

 z − s1ymd yC z�sx, y, zd ds, where m − yC �sx, y, zd ds

 (b) s0, 0, 3�d
39. Ix − k(1

2 � 2 4
3 ), Iy − k (1

2 � 2 2
3 )    41. 2� 2    43. 7

3

45. (a) 2ma i 1 6mbt j, 0 < t < 1   (b) 2ma 2 1 9
2mb 2

47. < 2.26 3 104 J    49. (b) Yes    53. <22 J

EXERCISES 16.3 ■ PAGE 1151

1. 40    3. Not conservative
5. f sx, yd − ye xy 1 K    7. f sx, yd − ye x 1 x sin y 1 K
9. f sx, yd − y 2 sin x 1 x cos y 1 K
11. (b) 16    13. (a) 16   (b) f sx, yd − x 3 1 xy 2 1 K
15. (a) f sx, yd − e xy 1 K   (b) e2 2 1
17. (a) f sx, yd − x 2 1 2y 2   (b) 221
19. (a) f sx, yd − 1

3 x 3y 3   (b) 29
21. (a) f sx, y, zd − x 2y 1 y 2z   (b) 30
23. (a) f sx, y, zd − ye xz   (b) 4    25. 4ye
27. It doesn’t matter which curve is chosen.
29. 31

4     31. No    33. Conservative
37. (a) Yes   (b) Yes   (c) Yes
39. (a) No   (b) Yes   (c) Yes

EXERCISES 16.4 ■ PAGE 1159

1. 120    3. 2
3    5. 4se3 2 1d    7. 29

5    9. 1
3    

11. 224�    13. 14    15. 216
3     17. 4�    

19. 1
15�4 2 4144

1125�2 1
7,578,368
253,125 < 0.0779    

21. 2 1
12    23. 3�    25. (c) 9

2    

27. s4ay3�, 4ay3�d if the region is the portion of the  
disk x 2 1 y 2 − a 2 in the first quadrant
31. 0

EXERCISES 16.5 ■ PAGE 1168

1. (a) 0   (b) y 2z 2 1 x 2z 2 1 x 2y 2

3. (a) zex i 1 sxyez 2 yzexd j 2 xez k   (b) yse z 1 e x d

5. (a) 2
sz 

s1 1 yd2  i 2
sx 

s1 1 zd2  j 2
sy 

s1 1 xd2  k   

 (b) 
1

2sx s1 1 zd
1

1

2sy s1 1 xd
1

1

2sz s1 1 yd
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 APPENDIX G  Answers to Odd-Numbered Exercises A37

7. (a) k2e y cos z, 2e z cos x, 2e x cos yl    
(b) e x sin y 1 e y sin z 1 e z sin x

9. (a) Negative   (b) curl F − 0
11. (a) Zero   (b) curl F points in the negative z-direction.

15. f sx, y, zd − x 2y 3z 2 1 K    
17. f sx, y, zd − x ln y 1 y ln z 1 K    
19. Not conservative    21. No

EXERCISES 16.6 ■ PAGE 1180

1. P: yes; Q: no
3. Plane through s0, 3, 1d containing vectors k1, 0, 4l, k1, 21, 5 l
5. Circular cone with axis the z-axis

7. 

√ constant

z

y

x

2

_2

0

0

0

1
1u constant

9. 

_1
0
x1

0y
1

_1
_1

0z

1

√ constantu constant

11. 

_1
0

x1

_1

0
y

1

_1

0z

1

√ constant

u constant

13. IV    15. I    17. III

19. x − u, y − v 2 u, z − 2v

21. y − y, z − z, x − s1 1 y 2 1 1
4 z 2

 

23. x − 2 sin � cos �, y − 2 sin � sin �,

 z − 2 cos �, 0 < � < �y4, 0 < � < 2�

for x − x, y − y, z − s4 2 x 2 2 y 2, x 2 1 y 2 < 2g

25. x − 6 sin � cos �, y − 6 sin � sin �, z − 6 cos �, 
�y6 < � < �y2, 0 < � < 2�

29. x − x, y −
1

1 1 x 2  cos �, y −
1

1 1 x 2  sin �, 

22 < x < 2, 0 < � < 2�

_2

0
x

2

0
y

1

_1

0z

1

31. (a) Direction reverses   (b) Number of coils doubles

33.  3x 2 y 1 3z − 3    35. 
s3 

2
x 2

1

2
y 1 z −

�

3

37. 2x 1 2z − 1    39. 3s14    41. s14�    

43. 4
15s35y2 2 27y2 1 1d    45. s2�y3d(2s2 2 1)    

47. s�y6ds653y2 2 1d    49. 4    51. �R 2 < AsSd < s3 �R 2

53. 3.5618    55. (a) �24.2055   (b) 24.2476    

57. 45
8 s14 1 15

16 lnf(11s5 1 3s70)y(3s5 1 s70)g
59. (b) 

2

0

�2

�2 �10 2 1 0

z

y x

 (c) y2�

0  y�

0  s36 sin4u cos2v 1 9 sin4u sin2v 1 4 cos2u sin2u   du dv

61. 4�    63. 2a 2s� 2 2d    

EXERCISES 16.7 ■ PAGE 1192

1. �26.93    3. 900�    5. 11s14    7. 2
3 (2s2 2 1)

9. 171s14    11. s21y3    13. s�y120d(25s5 1 1)    

15. 7
4s21 2 17

12s17    17. 16�    19. 0    21. 4    

23. 713
180    25. 8

3�   27. 0    29. 48    31. 2� 1 8
3

33. 4.5822    35. 3.4895

37. yyS F � dS − yyD fPs−hy−xd 2 Q 1 Rs−hy−zdg dA,
 where D − projection of S onto xz-plane

39. s0, 0, ay2d

41. (a) Iz − yyS sx 2 1 y 2 d�sx, y, zd dS   (b) 4329s2�y5

43. 0 kgys    45. 8
3�a 3«0    47. 1248�
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A38 APPENDIX G  Answers to Odd-Numbered Exercises

EXERCISES 16.8 ■ PAGE 1199

3. 16�    5. 0    7. 21    9. 217
20

11. 8�    13. �y2

15. (a) 81�y2   (b) 

�2

5

0

�5

z

0
y

2
�2 2

0
x

 (c) x − 3 cos t, y − 3 sin t, 
 z − 1 2 3scos t 1 sin td,
0 < t < 2� 

_2

0

2

4

_2 0 2 2 0 _2

z

y x

17. 232�    19. 2�    21. 3

EXERCISES 16.9 ■ PAGE 1206

1. 9
2    3. 256�y3    5. 9

2    7. 9�y2    9. 0    

11. �    13. 16    15. 1
24 abcsa 1 4d    17. 2�    

19. 13�y20    21. Negative at P1, positive at P2    
23. div F . 0 in quadrants I, II; div F , 0 in quadrants III, IV

CHAPTER 16 REVIEW ■ PAGE 1209

True-False Quiz
1. False    3. True    5. False    7. False     
9. True    11. True    13. False

Exercises
1. (a) Negative   (b) Positive    3. 6s10    5. 4

15    

7. 110
3     9. 11

12 2 4ye    11. f sx, yd − e y 1 xe xy 1 K    

13. 0    15. 0    17. 28�    25. 1
6 (27 2 5s5)    

27. s�y60d(391s17 1 1)    29. 264�y3    31. 0 

33. 21
2    35. 4�    37. 24    39. 21

PROBLEMS PLUS ■ PAGE 1213

7. (d) 
4 s2 � 2

25
   (e) 2� 2r 2R
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                 A39

absolute maximum and minimum values, 
1008, 1014, 1015

absolutely convergent series, 769
acceleration of a particle, 916

components of, 919
as a vector, 916

addition of vectors, 836, 840
Airy, Sir George, 794
Airy function, 794
algebraic vector, 839
alternating harmonic series, 767, 770
alternating series, 765, 768, 769
Alternating Series Estimation  

Theorem, 768, 769
Alternating Series Test, 766, 768, 780
Ampère’s Law, 1144
angle between planes, 869
angle between vectors, 848, 849
angular momentum, 925
angular speed, 918
aphelion, 716
apolune, 709
approximation

linear, 976, 980
by Taylor polynomials, 811, 812
by Taylor’s inequality, 812, 814

Archimedes’ Principle, 1207
arc length

of a parametric curve, 676
of a polar curve, 697
of a space curve, 904

arc length formula for a space curve, 904
arc length function, 905
area

by Green’s Theorem, 1156, 1157
enclosed by a parametric curve, 675
of a plane region, 1156
in polar coordinates, 661, 694, 1065
of a sector of a circle, 694
surface (see surface area)

arithmetic-geometric mean, 737
astroid, 673
asymptotes of a hyperbola, 706

average value of a function, 1047
over a solid region, 1095

axes, coordinate, 830
axis of a parabola, 703

basis vectors, 841
Bernoulli, John, 796, 800
Bessel, Friedrich, 791
Bessel function, 791
Bézier, Pierre, 684
Bézier curves, 666, 684
binomial coefficients, 803
binomial series, 803

discovery by Newton, 811
binormal vector, 909, 911
blackbody radiation, 820
body mass index (BMI), 949, 965
boundary curve

in double integrals, 1052
positively oriented, 1154, 1195 

bounded sequence, 732, 733
bounded set, 1014
brachistochrone problem, 667
Brahe, Tycho, 921
branches of a hyperbola, 706

C1 transformation, 1109
Cantor, Georg, 750
Cantor set, 750
cardioid, 688
Cassini, Giovanni, 694
catenary, 846
Cauchy, Augustin-Louis, 1044, 1111
Cauchy-Schwarz Inequality, 854, 1028
center of curvature, 910
center of gravity. See center of mass
center of mass, 1070, 1071, 1134

of a lamina, 1071
of a solid, 1091
of a surface, 1184
of a wire, 1134

centripetal acceleration, 930
centripetal force, 930

centroid of a solid, 1091
Chain Rule for several variables, 985,  

987, 988
change of variable(s)

in a double integral, 1109, 1112
in a triple integral, 1097, 1098, 1104, 

1114, 1115
charge, electric, 1070, 1091
charge density, 1070, 1091
circle, osculating, 910
circle of curvature, 910
circular paraboloid, 880
circulation of a velocity field, 1198
cissoid of Diocles, 671, 693
Clairaut, Alexis, 967
Clairaut’s Theorem, 967, A2
Clarke, Author C., 926
Clarke geosynchronous orbit, 926
clipping planes, 874
closed curve, 1146
Closed Interval Method for a function  

of two variables, 1014, 1015
closed set, 1014
closed surface, 1188
Cobb, Charles, 936
Cobb-Douglas production function, 937, 

943, 973, 1027
graph of, 938
level curves for, 943

cochleoid, 720
coefficient(s)

binomial, 803
of a power series, 782
of static friction, 887

collision and intersection 
of particles, 671
of particles in space, 897

collision point, 671
comets, orbits of, 718
common polar curves, 691
common ratio of a geometric series, 742
Comparison Test for series, 760, 779
Completeness Axiom, 734

Index

rp denotes Reference Page numbers at the back of the book.
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component of b along a, 851
component function, 890, 1125
components of acceleration, 919
components of a vector, 838, 851, 919
composition of functions,  

continuity of, 958
conchoid, 668, 693
conditionally convergent series, 769, 

770, 774
conductivity (of a substance), 1192
cone, 702, 879

parametrization of, 1174
conic section, 702, 711

directrix, 703, 711
eccentricity, 711
focus, 703, 704, 711
in polar coordinates, 711
polar equation, 713
shifted, 707
unified description, 711
vertex (vertices), 703

conics, 702
connected region, 1113
conservation of energy, 1150
conservative vector field, 1129, 1147,  

1148, 1163
constant force, 852
Constant Multiple Law of limits, 728 
constraint, 1020, 1025
continued fraction expansion, 738
continuity

of a function of three variables, 959
of a function of two variables, 957
of a vector function, 891

contour curves, 939
contour map, 939, 940
convergence

absolute, 774
conditional, 774
of an improper integral, 543, 546
interval of, 783
radius of, 783
of a sequence, 726
of a series, 740

convergent improper integral, 546, 549
convergent sequence, 726, 740
convergent series, 740

properties of, 728, 746
conversion of coordinates

cylindrical to rectangular, 1096
rectangular to cylindrical, 1096
rectangular to spherical, 1102
spherical to rectangular, 1102

cooling tower, hyperbolic, 881
coordinate axes, 830
coordinate planes, 830

coordinate system
cylindrical, 1096
polar, 684
spherical, 1102
three-dimensional rectangular, 830, 831

coplanar vectors, 860
Coriolis acceleration, 929
corner reflector, 846
Cornu’s spiral, 682
cosine function, power series for,  

800, 802
critical point(s), 1009, 1019
cross product, 855

direction of, 857
geometric characterization of, 858
length of, 857
magnitude of, 858
properties of, 857, 859

cross-section of a surface, 875
curl of a vector field, 1161, 1162
curvature, 683, 906, 907, 908, 911
curvature of a plane parametric curve, 914
curve(s)

Bézier, 666, 684
boundary (see boundary curve)
cissoid of Diocles, 693
closed, 1146
contour, 939
Cornu’s spiral, 682
dog saddle, 949
epicycloid, 673
equipotential, 949
grid, 1172
helix, 892, 900
length of, 904
level, 939
longbow, 670
monkey saddle, 949
orientation of, 1136, 1154
ovals of Cassini, 694
parametric, 662
piecewise-smooth, 1133
polar, 691
simple, 1147
smooth, 906
space, 891
strophoid, 700, 721
swallowtail catastrophe, 672
toroidal spiral, 893
trochoid, 670
twisted cubic, 894
witch of Maria Agnesi, 671

cusp, 673
cycloid, 666
cylinder, 832, 875

parabolic, 875

parametrization of, 1173
rulings of, 875

cylinders, intersection of, 1101
cylindrical coordinate system, 1096

conversion equations for, 1096
triple integrals in, 1097

cylindrical coordinates, 1096

decreasing sequence, 732
definite integral

review of, 1038
of a vector function, 901

del (=), 997, 999
density

of a lamina, 1069
of a solid, 1091

dependent variable, 934, 987
derivative(s)

directional (see directional  
derivative)

higher partial, 966
normal, 1169
notation, 963
partial, 961
of a power series, 789
second, 900
second directional, 1007
second partial, 967
of a vector function, 898, 900

determinant, 855, 856
difference of vectors, 838
differentiable function of two 

variables, 977
differential, 979, 981
differential equation, partial, 968
differentiation

formulas for, rp5
formulas for vector functions, 900
implicit, 966, 990
partial, 961, 962, 963, 966
of a power series, 788
term-by-term, 788
of a vector function, 898, 900

diffusion equation, 972
directed line segment, 836, 839
direction angles, 850
direction cosines, 850
direction of most rapid decrease, 1006
direction numbers, 866
directional derivative, 994, 995,  

996, 999
maximum value of, 1000
second, 1007
of a temperature function, 994, 996

directrix, 703, 711
displacement vector, 836, 837, 852

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



 INDEX A41

distance
between parallel planes, 871, 874
between point and line in space, 

854, 863
between point and plane, 863, 870, 871
between points in space, 833
between skew lines, 871

distance formula in three  
dimensions, 833

divergence
of the harmonic series, 750
of an infinite series, 740
of a sequence, 726
of a vector field, 1165

Divergence, Test for, 744, 779
Divergence Theorem, 1201, 1208
divergent sequence, 726
divergent series, 740
division of power series, 807
DNA, helical shape of, 892
dog saddle, 949
domain

of a function of three  
variables, 944

of a function of two variables, 934
of a vector function, 890

domain sketching, 934
Doppler effect, 993
dot product, 847

in component form, 847
properties of, 848
in vector form, 848

double helix, 892
double integral(s), 1038, 1040

applications of, 1069
change of variables in, 1063,  

1109, 1112
over general regions, 1051
Midpoint Rule for, 1042
in polar coordinates, 1063, 1064, 1065
properties of, 1058, 1059
over rectangles, 1038
volumes and, 1038

double Riemann sum, 1041
Douglas, Paul, 936

e (the number) as a sum of an infinite 
series, 800

eccentricity, 711
Einstein’s theory of special relativity, 815 
electric charge, 1070, 1091
electric field (force per unit  

charge), 1128
electric field E, 895, 1204
electric flux, 1191, 1204
electric force, 1128

ellipse, 215, 704, 711
directrix, 711
eccentricity, 711
foci, 704, 711
major axis, 705, 716
minor axis, 676
polar equation, 713, 716
reflection property, 705, 710
vertices, 705

ellipsoid, 877, 879
elliptic paraboloid, 879

parametrization of, 1174
elusive limit, evaluation of, 810
energy

conservation of, 1150
kinetic, 1151
potential, 1151

epicycloid, 672, 673
epistola posterior, 811
epistola prior, 811
epitrochoid, 682, 722
equation(s)

differential (see differential equation)
diffusion, 972
of an ellipse, 705, 713, 716
heat conduction, 972
of a hyperbola, 706, 707, 713
Laplace’s, 968, 1112
of a line in space, 865
of a line through two points, 866
linear, of a plane, 868
logistic difference, 738
of a parabola, 703, 713
parametric, 662, 865, 891
of a plane, 868
of a plane through three points, 869
polar, 687, 713
of a space curve, 891
of a sphere, 833
symmetric, 866
van der Waals, 972
vector, of a line, 865, 867
wave, 968

equipotential curves, 949
equivalent vectors, 836
error in Taylor approximation, 812
error estimate for alternating series, 768
estimate of the sum of a series, 755, 763,  

768, 775
of an alternating series, 768, 775

Euler, Leonhard, 752, 759, 1121
expected values, 1076, 1077
exponential function(s)

integration of, 805, 806
power series for, 796

Extreme Value Theorem, 1014

family
of epicycloids and hypocycloids, 

672, 673
of parametric curves, 667
of polar curves, 694

Fibonacci, 725, 737
Fibonacci sequence, 725, 737
field

conservative, 1129, 1147, 1148, 1163
electric (force per unit charge), 1128
force, 1124, 1128
gradient, 1128
gravitational, 1128, 1145
incompressible, 1166
irrotational, 1164
scalar, 1125
vector (see vector field)
velocity, 1124, 1164

first-degree Taylor polynomial, 1019
first octant, 830
first-order optics, 817
flow lines, 1131
fluid flow, 1127, 1164, 1165, 1166, 

1198, 1205
flux, 1189, 1191
flux integral, 1189
foci, 704, 706
focus, 704, 711

of a conic section, 711
of an ellipse, 704, 705, 711
of a hyperbola, 706, 711
of a parabola, 703, 711

folium of Descartes, 721
force

centripetal, 930
constant, 852
resultant, 842
torque, 861, 925

force field, 1124, 1128
four-leaved rose, 689
Frenet-Serret formulas, 915
Fubini, Guido, 1044
Fubini’s Theorem

for double integrals, 1044
for triple integrals, 1083

function(s)
Airy, 794
arc length, 905
average value of, 1047, 1095
Bessel, 791
Cobb-Douglas production function, 937, 

938, 943, 973, 1027
component, 890, 1125
composite, 958
continuity of, 891, 957, 959
continuous, 891, 957, 959

Copyright 2021 Cengage Learning. All Rights Reserved. May not be copied, scanned, or duplicated, in whole or in part. Due to electronic rights, some third party content may be suppressed from the eBook and/or eChapter(s).
Editorial review has deemed that any suppressed content does not materially affect the overall learning experience. Cengage Learning reserves the right to remove additional content at any time if subsequent rights restrictions require it.



A42 INDEX

function(s) (continued)
differentiability of, 977
domain of, 890, 934, 944
exponential, rp4
gradient of, 997, 999
graph of, 937
harmonic, 968, 1169
homogeneous, 993
integrable, 1040
joint density, 1074, 1091
limit of, 951, 952, 959
linear, 937
maximum and minimum values  

of, 1008
of n variables, 945
polynomial, of two variables, 955
potential, 1129
probability density, 1074
range, of two variables 934
rational, of two variables 955
representation as a power series, 787
representation by a Taylor series, 797
of several variables, 934, 944, 945, 966
of three variables, 944, 966
of two variables, 934
vector, 890

Fundamental Theorem of Calculus
for double integrals, 1154
for line integrals, 1144
summary of higher-dimensional 

versions, 1208
for surface integrals, 1195
for vector functions, 902

Galileo, 667, 676, 703
Gauss, Karl Friedrich, 817, 1201
Gaussian optics, 817
Gauss’s Law, 1191, 1205
Gauss’s Theorem, 1201
general region, integration over, 1052
geometric series, 742, 779
geometric vector, 836, 839
geometry of a tetrahedron, 864
geosynchronous orbit, 926
Gibbs, Josiah Willard, 842
grad f, 997, 999
gradient, 997, 999
gradient vector, 997, 998, 999, 1004
gradient vector field, 1004, 1128
graph(s)

of equations in three dimensions, 
831, 832

of a function of two variables, 937
of a parametric curve, 662
of a parametric surface, 1184
polar, 687, 691

of a sequence, 730
of a surface, 1184

gravitational field, 1128, 1145
great circle, 1107
Green, George, 1155
Green’s identities, 1169
Green’s Theorem, 1154, 1208

extended versions, 1157
for a union of simple regions, 1157, 

1158
vector forms, 1167

Gregory, James, 790, 796
Gregory’s series, 790
grid curves, 1172

half-space, 944
Halley, Edmund, 931
Hamilton, Sir William Rowan, 855
harmonic function, 968, 1169
harmonic series, 744, 754
harmonic series, alternating, 767
heat conduction equation, 972
heat conductivity, 1192
heat equation, 972
heat flow, 1192
heat index, 961
helix, 892, 900
hidden line rendering, 875
higher partial derivatives, 967
homogeneous function, 993
horizontal plane, 831
humidex, 947, 961
Huygens, Christiaan, 667
hydro-turbine optimization, 1030
hyperbola, 706, 711

asymptotes, 706
branches, 706
directrix, 711
eccentricity, 711
equation, 706, 707, 713
foci, 706 711
polar equation, 713
reflection property, 710
vertices, 706

hyperbolic paraboloid, 878, 879
hyperboloid, 878, 879, 880, 881
hypersphere, volume of, 1095
hypervolume, 1089
hypocycloid, 672

i (standard basis vector), 841
ideal gas law, 972
image of a point, 1109
image of a region, 1109
implicit differentiation, 966, 990
Implicit Function Theorem, 990, 991

incompressible velocity field, 1166
increasing sequence, 732
increment, 981
independence of path, 1145, 1146
independent random variable, 1076
independent variable, 934, 987
inertia, moment of. See moment of inertia
infinite sequence. See sequence
infinite series. See series
initial point

of a parametric curve, 663
of a vector, 836

inner product, 847
integrable function, 1040
integral(s)

change of variables in, 1064, 1097, 
1103

conversion to cylindrical coordinates, 
1097, 1098

conversion to polar coordinates, 1064
conversion to spherical coordinates, 

1103
definite, review of, 1038
double (see double integral(s))
iterated, 1043
line (see line integral)
surface (see surface integral)
table of, rp6–10
triple (see triple integral(s))

Integral Test, 753, 780
proof of, 757

integration
formulas, rp6–10
partial, 1043
of a power series, 788
reversing order of, 1043
over a solid, 1084
term-by-term, 788
of a vector function, 901

intermediate variable, 987
intersection 

of objects in space, 897
of planes, 869
of polar graphs, area of, 696
of three cylinders, 1101

interval of convergence, 783
inverse square field, 1153
inverse transformation, 1110
irrotational vector field, 1164
isobar, 940
isothermal, 940
iterated integral, 1043

j (standard basis vector), 841
Jacobi, Carl Gustav Jacob, 1111
Jacobian of a transformation, 1111
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joint density function
of three variables, 1091
of two variables, 1074

k (standard basis vector), 841
Kepler, Johannes, 715, 921, 925
Kepler’s Laws, 715, 921, 925
kinetic energy, 1151

Lagrange, Joseph-Louis, 1021
Lagrange multiplier, 1020

with one constraint, 1020, 1021
with two constraints, 1025

lamina (of variable density)
center of mass of, 1071
density at a point on, 1069
moment about an axis, 1070, 1071
moment of inertia about an axis, 1072
radius of gyration about an axis, 1074

Laplace, Pierre, 968
Laplace operator, 1167
Laplace’s equation, 968, 1122, 1167
law of conservation of angular 

momentum, 925
Law of Conservation of Energy, 1151
Law of Universal Gravitation, 921, 926
least squares method, 1018
least upper bound, 734
Leibniz, Gottfried Wilhelm, 811
length

of a parametric curve, 676
of a polar curve, 696
of a space curve, 904
of a vector, 839

level curves, 939
level surface, 945

tangent plane to, 1002
limaçon, 690
limit(s)

of a function of three variables, 959
of a function of two variables, 951, 952
properties of, for vector functions, 898
of a sequence, 726, 727
of a vector function, 890,898

Limit Comparison Test, 762
Limit Laws

for functions of two variables, 955
for sequences, 728

line(s) in space, 863, 864
equation of, through two points, 866
normal, 1002
parametric equations of, 865
skew, 867
symmetric equations of, 866
tangent, 898
vector equation of, 865

line integral
Fundamental Theorem for, 1144
of the normal component of F, 1168
for a plane curve, 1131, 1132
with respect to arc length, 1132,  

1135, 1137
with respect to x and y, 1132, 1135
for a space curve, 1137
of the tangential component of F, 1167
work defined as, 1139
of vector fields, 1138, 1140, 1141

linear approximation, 976, 980
linear equation of a plane, 868
linear function, 937
linearization, 976
Lissajous figure, 665, 672
lithotripsy, 706
local maximum and minimum 

values, 1008
logistic difference equation, 738
logistic sequence, 738
longbow curve, 670
LORAN system, 709
LZR Racer, 984

Maclaurin, Colin, 796
Maclaurin series, 795, 796, 802

table of, 804
magnetic field B, 961
magnitude of a vector, 839
major axis of ellipse, 705
marginal productivity of capital, 973
marginal productivity of labor, 973
marginal propensity to consume or 

save, 749
mass

of a lamina, 1069
of a solid, 1090
of a surface, 1184
of a wire, 1134

mass, center of. See center of mass
mathematical induction, 734
maximum and minimum values, 1008
Mean Value Theorem for double 

integrals, 1062
method of Lagrange multipliers

with one constraint, 1020, 1021
with two constraints, 1025

method of least squares, 1018
midpoint formula for points in  

space, 835
Midpoint Rule

for double integrals, 1042
for triple integrals, 1093

minor axis of ellipse, 705
Möbius, August, 1187

Möbius strip, 1181, 1187
moment(s)

about an axis, 1070
of a lamina, 1070
about a plane, 1090
polar, 1073
second, 1072
of a solid, 1090

moment of inertia, 1072, 1091
about axes, 1143
about the origin, 1073

monkey saddle, 949
monotonic sequence, 732
Monotonic Sequence Theorem, 733, 752
motion of a projectile, 918
motion in space, 916
multiple integrals, 1037. See also  

double integral(s); triple integral(s)
multiplication, scalar, 837, 840
multiplication and division of power 

series, 807
multiplier (Lagrange), 1020,  

1021, 1025
multiplier effect, 749

natural exponential function, power  
series for, 796

n-dimensional vector, 840
negative of a vector, 838
Newton, Sir Isaac, 811, 921, 926
Newton’s Law of Gravitation, 922,  

926, 1127
Newton’s method for functions of two 

variables, 1035
Newton’s Second Law of Motion, 918, 

922, 926
Nicomedes, 668
nonparallel planes, 870
normal component

of acceleration, 919, 920
of F, line integral of, 1168

normal derivative, 1169
normal line to a surface, 1002
normal plane, 910
normal vector, 868, 909
normally distributed random variable, 

probability density function  
of, 1077

nth-degree Taylor polynomial, 798
n-tuple, 840
nuclear reactor, cooling towers of, 881

O (origin), 830
octant, 830
one-to-one transformation, 1109
open connected region, 1146
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optics
first-order, 817
Gaussian, 817
third-order, 817

orbit of a planet, 921
order of a differential equation, 608
order of integration, reversed, 1045
ordered triple, 830
Oresme, Nicole, 745
orientation of a curve, 1136, 1154
orientation of a surface, 1187
oriented surface, 1187
origin, 830
orthogonal projection of a  

vector, 854
orthogonal surfaces, 1008
orthogonal vectors, 849
osculating circle, 910
osculating plane, 910
Ostrogradsky, Mikhail, 1201
ovals of Cassini, 694

parabola, 703, 711
axis, 703
directrix, 703
equation, 675, 703
focus, 703, 711
polar equation, 713
vertex, 703

parabolic cylinder, 875
paraboloid

circular, 880
elliptic, 877
hyperbolic, 878

parallel planes, 869
parallel vectors, 838, 858
parallelepiped, volume of, 860
Parallelogram Identity, 854
Parallelogram Law, 837
parameter, 662, 865, 891
parametric curve, 662, 664, 667

arc length of, 662
area under, 675 
slope of tangent line to, 673

parametric equations, 662, 865, 891
of a line in space, 865
of a space curve, 891, 905
of a surface, 1170
of a trajectory, 919

parametric surface, 1170, 1183
graph of, 1165, 1172
smooth, 1176
surface area of, 1177
surface integral over, 1183
tangent plane to, 1175
given by a vector function, 1171

parametrization of a space curve, 905
with respect to arc length, 905
smooth, 906

partial derivative(s), 961
of a function of more than three 

variables, 966
of a function of more than two 

variables, 966
of a function of two variables, 961, 963
interpretations of, 964
at maximum and minimum  

values, 1009
notations for, 963
as a rate of change, 962
with respect to x, 962, 963
with respect to y, 963
rules for finding, 963
second, 967
as slopes of tangent lines, 964

partial differential equation, 968
partial differentiation, 961, 962, 963, 966
partial integration for double 

integrals, 1043
partial sum of a series, 740
particle, motion of, 916
path, 1145
perihelion, 709
perilune, 681
period of a particle, 930
perpendicular vectors, 849
piecewise-smooth curve, 1133
planar curve, 915
Planck’s Law, 820
plane region of type I or type II, 

1053, 1054
plane(s), 868

angle between, 869
coordinate, 830
distance between, 874
distance from point to, 870, 871
equation(s) of, 868
equation of, through three points, 869
horizontal, 831
line of intersection, 869
linear equation of, 868
normal, 910
osculating, 910
parallel, 869
scalar equation of, 868
tangent to a surface, 974, 1175
vector equation of, 868
vertical, 831

planetary motion, laws of, 715, 921
planimeter, 1157
point(s) in space

coordinates of, 830

distance between, 833
projection of, 831

Poiseuille’s Laws, 972
polar axis, 685
polar coordinate system, 684, 685, 1062

arc length in, 697
area in, 694
calculus in, 694
conic sections in, 711
conversion of double integral to, 1063, 

1064, 1065 
conversion equations for Cartesian 

coordinates, 686 
relationship to Cartesian 

coordinates, 686
tangents in, 698

polar curve, 687, 694
arc length of, 697
graph of, 687
graphing with technology, 690
parametric equations for, 697
symmetry in, 689
table of, 691
tangent line to, 698
polar equation(s), 686
of a conic, 713, 923
graph of, 687

polar graph, 687
using technology, 690

polar moment of inertia, 1073 
polar rectangle, 1063
polar region, area of, 694
pole, 685
polynomial function of two variables, 955
position vector, 839
positive orientation

of a boundary curve, 1195
of a closed curve, 1154
of a surface, 1188

potential energy, 1151
potential function, 1129
power series, 781, 782, 789

coefficients of, 782
for cosine and sine, 801
differentiation of, 788
division of, 807
for exponential function, 800
integration of, 788
interval of convergence, 783
multiplication of, 807
radius of convergence, 783
representations of functions as, 787

principal unit normal vector, 909
principle of mathematical induction,  

734
probability, 1074
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probability density function, 1074
product

cross, 855 (see also cross product)
dot, 847 (see also dot product)
scalar, 847
scalar triple, 860
triple, 860

projectile, path of, 672, 918
projectile motion, 918

parametric equations for, 919
projection, 831, 851

orthogonal, 854
p-series, 754, 779
Pythagorean Theorem, three-dimensional 

version, 864

quadratic approximation, 1019
quadric surface(s), 875, 876

cone, 879
ellipsoid, 877, 879
elliptic paraboloid, 877, 879
hyperbolic paraboloid, 878, 879
hyperboloid, 878, 879
paraboloid, 877
standard form of equation for, 876
table of graphs, 879

quaternion, 843

radiation from stars, 820
radius of convergence

of a Maclaurin series, 804
of a power series, 783

radius of gyration of a lamina, 1074
range of a function of two  

variables, 934
rational function of two  

variables, 955
Ratio Test, 774, 780
Rayleigh-Jeans law, 820
rearrangement of a series, 771, 772
rectangular coordinate system, three-

dimensional, 831
conversion to cylindrical 

coordinates, 1096
conversion to spherical 

coordinates, 1102
rectifying plane, 915
reflection property

of conics, 710
of an ellipse, 705
of a hyperbola, 711

region
connected, 1146
open, 1146
plane, of type I or II, 1053, 1054
simple plane, 1155

simple solid, 1201
simply-connected, 1148
solid (of type 1, 2, or 3),  

1084, 1086
remainder estimates

for the Alternating Series, 768
for the Integral Test, 755

remainder of the Taylor series, 798
representation(s) of a function

as a power series, 787
using geometric series, 787

resultant force, 842
reversing order of integration, 1043
Riemann sum

double, 1041
triple, 1083

right-hand rule, 830, 857
Roberval, Gilles de, 676
rocket stages, determining optimal  

masses for, 1028
roller derby, 1108
Root Test, 776, 777, 780
ruled surface, 882, 883
ruling of a surface, 876

saddle point, 1010
sample point, 1039
satellite dish, parabolic, 881
scalar, 837
scalar equation of a plane, 868
scalar field, 1125
scalar multiple of a vector, 837, 840
scalar product, 847
scalar projection, 851
scalar triple product, 860

geometric characterization of, 860
secant vector, 898
second-degree Taylor polynomial, 1019
second derivative of a vector  

function, 900
Second Derivatives Test, 1010, 1015
second directional derivative, 1007
second moment of inertia, 1072
second partial derivative, 967
sector of a circle, area of, 694
sequence, 724

bounded, 732, 733
convergent, 726
decreasing, 732
divergent, 726
Fibonacci, 725
graph of, 730
increasing, 732
limit of, 726, 727
logistic, 738
monotonic, 732

of partial sums, 740
Squeeze Theorem for, 729
term of, 724

series, 738
absolutely convergent, 774
alternating, 765, 780
alternating harmonic, 770, 773
binomial, 803
coefficients of, 782
Comparison Test for, 779
conditionally convergent, 774
convergent, 740, 760
divergent, 740, 760
geometric, 742, 779
Gregory’s, 790
harmonic, 744, 754
infinite, 739
Maclaurin, 795, 796, 802
p-, 754, 779
partial sum of, 740
power, 781. 782, 789
rearrangement of, 771
strategy for testing, 779
sum of, 740
Taylor, 795, 796, 802
term of, 739
trigonometric, 782

set, bounded or closed, 1014
Shannon index, 1018
shifted conic, 709
Sierpinski carpet, 751
simple curve, 1147
simple plane region, 1155
simple solid region, 1201
simply-connected region, 1148
Simpson, Thomas, 1035
sine function, power series for, 801
sink, 1205
skew lines, 867
smooth curve, 906
smooth parametrization of a space 

curve, 906
smooth surface, 1176
snowflake curve, 826
solid, volume of, 1040
solid angle, 1213
solid region (of type 1, 2, or 3),  

1084, 1086
source, 1205
space, three-dimensional, 830
space curve, 891

arc length of, 904
graph of, 893
parametrization of, 893

speed of a particle, 916
Speedo LZR racer, 984
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sphere, 833
equation of, 834
flux across, 1190
graph of, 1173
parametrization of, 1173
surface area of, 1178

spherical coordinate system, 1102
conversion equations for, 1102
triple integrals in, 1103

spherical wedge, 1103
Squeeze Theorem for  

sequences, 729
standard basis vectors, 841

properties of, 859
stationary points, 1009
Stokes, Sir George, 1195
Stokes’ Theorem, 1195, 1208
strategy for testing series, 779
streamlines, 1131
strophoid, 700, 721
subtraction of vectors, 838, 840
sum

of a geometric series, 742
of an infinite series, 740
telescoping, 741
of vectors, 836, 837

surface(s), 831
closed, 1188
graph of, 1184
level, 945
oriented, 1187
orthogonal, 1008
parametric (see parametric surface)
positive orientation of, 1188
quadric, 876
smooth, 1176
traces of, 875

surface area
of a function of two variables, 

1079, 1080
of a graph of a function,  

1178, 1179
of a parametric surface, 679, 1177
of a sphere, 1178

surface integral, 1182
over a parametric surface, 1183
of a vector field, 1188, 1189

surface of revolution, parametric 
representation of, 1175

swallowtail catastrophe curve, 672
symmetric equations of a line, 866
symmetry in polar graphs, 689

T and T –1 transformations, 1109, 1110
table of differentiation formulas, rp5
table of integrals, rp6–10

tangent line
to a parametric curve, 673, 674
to a polar curve, 698
to a space curve, 898

tangent plane, 974, 975
to a level surface, 1002
to a parametric surface, 1175, 1176
to a surface z = f(x, y), 974, 975

tangent plane approximation, 976
tangent vector, 898, 1176
tangential component of acceleration, 

919, 920
tangential component of F, line integral 

of, 1167
tautochrone problem, 667
Taylor, Brook, 796
Taylor polynomial, 798, 812, 1010

applications of, 811
Taylor series, 795, 796, 802

obtaining a new series, 805
Taylor’s inequality, 798, 812, 814
technology, graphing with

function of two variables, 939
gradient vector field, 1004
level curves, 944
parametric curves, 665
parametric equations, 690
parametric surface, 1172, 1173, 1176
polar curve, 690
space curve, 893, 894 ,895
vector field, 1126, 1127

telescoping sum, 741
temperature-humidity index, 947
term of a sequence, 724
term of a series, 739
term-by-term differentiation and  

integration, 788
terminal point of a parametric curve, 663
terminal point of a vector, 836
Test for Divergence, 744
tests for convergence and divergence  

of series
Alternating Series Test, 766
Direct Comparison Test, 760
Integral Test, 751
Limit Comparison Test, 762
Ratio Test, 774
Root Test, 776, 777
summary of tests, 779

tetrahedron, 864
third-order optics, 817
Thomson, William (Lord Kelvin), 

1155, 1195
three-dimensional coordinate systems, 

830, 831
three-dimensional vector, 839

TNB frame, 909
toroidal spiral, 893
torque, 861, 925
Torricelli, Evangelista, 676
torsion of a space curve, 911, 912, 913
torus, 1182
total differential, 979
total electric charge, 1070, 1091
trace of a surface, 875
trajectory, parametric equations for, 919
transfer curve, 929
transformation, 1109

inverse, 1110
Jacobian of, 1111
one-to-one, 1109

tree diagram, 987
trefoil knot, 893, 897
Triangle Inequality for vectors, 854
Triangle Law, 836
trigonometric series, 782
triple integral(s), 1082, 1083

applications of, 1089
change of order of integration in, 1088
change of variables in, 1114, 1115
in cylindrical coordinates, 1095, 

1097, 1098
over a general bounded region, 1084
Midpoint Rule for, 1093
over a rectangular box, 1082, 1083
in spherical coordinates, 1102, 1104
over type I or type II plane region, 

1084, 1085
type 1, 2, or 3 solid region, 1084, 1086
volume in, 1089

triple product, 860
triple Riemann sum, 1083
trochoid, 670
twisted cubic, 894
type I or type II plane region, 1053, 1054
type 1, 2, or 3 solid region, 1084, 1086

ultraviolet catastrophe, 820
unified description of conics, 711
uniform circular motion, 930
unit normal vector, 909, 911
unit tangent vector, 899, 911
unit vector, 842

van der Waals equation, 972
variable(s)

dependent, 934, 987
independent, 934, 987
independent random, 1076
intermediate, 987

variables, change of. See change of 
variable(s)
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 INDEX A47

vector(s), 836
acceleration, 916
addition of, 836, 840
algebraic, 839
angle between, 848, 849
basis, 841
binormal, 909, 911
components of, 838
coplanar, 860
cross product of, 855
difference, 838
displacement, 836, 837, 852
dot product, 847, 848
equality of, 836
geometric representation of, 836, 839
gradient, 997, 998, 999, 1004
gravitational force, 1127
i, j, and k, 841
length of, 839
magnitude of, 839
multiplication of, 837, 840
n-dimensional, 840
normal, 868, 909
orthogonal, 849
orthogonal, projection of, 851
parallel, 838, 858
perpendicular, 849
position, 839
properties of, 840
representation of, 839, 840
scalar multiple of, 837, 840
secant, 898
standard basis, 841
subtraction of, 838, 840
tangent, 898, 1176
three-dimensional, 839, 840
triple product, 860
two-dimensional, 840
unit, 842
unit normal, 909, 911

unit tangent, 899, 911
velocity, 916
zero, 836

vector equation 
of a line, 867
of a plane, 868

vector field, 1124, 1125
component functions, 1125
conservative, 1129, 1147,  

1148, 1163
curl of, 1161, 1162
divergence of, 1165
electric flux of, 1191, 1204
flux of, 1189, 1191 
force, 1124, 1128
gradient, 997, 998, 999, 1128
gravitational, 1128
incompressible, 1166
irrotational, 1164
line integral of, 1138, 1139
potential function, 1129
surface integral of, 1188, 1189
velocity, 1124, 1164

vector function, 890
component functions of, 890
continuity of, 891
differentiation of, 898, 900
integration of, 901
limit of, 890, 898
second derivative, 900

vector product, 855
properties of, 857, 859

vector projection, 851
vector triple product, 861
vector-valued function. See vector  

function
velocity field, 1124, 1127

airflow, 1124
ocean currents, 1124
wind patterns, 1124

velocity vector, 916
velocity vector field, 1124, 1164
Verhulst, Pierre-François, 607
vertex of a parabola, 703
vertices of an ellipse, 705
vertices of a hyperbola, 706
vibration of a drumhead, computer  

model for, 792
volume

by double integrals, 1038
of a hypersphere, 1095
of a parallelepiped, 860
by polar coordinates, 1065
of a solid, 1040
by triple integrals, 1089

wave equation, 968
wave height as a function of two 

variables, 947
wind patterns in San Francisco Bay 

area, 1124
wind-chill index, 935, 936
witch of Maria Agnesi, 671
work (force), 852
work defined as a line integral, 1139
Wren, Sir Christopher, 678

x-axis, 830
x-coordinate, 830
X-mean, 1077

y-axis, 830
y-coordinate, 830
Y-mean, 1077

z-axis, 830
z-coordinate, 830 
zero vector, 836
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SPECIAL FUNCTIONS

Power Functions f sxd − x a

(i) f sxd − x n, n a positive integer 

x

y

0

y=x#

y=x%

(_1, _1)

(1, 1)

n odd

n even

0

y

x

y=x$

(1, 1)(_1, 1)

y=x^
y=≈

(ii) f sxd − x 1yn − sn x , n a positive integer 

ƒ=#œ„xƒ=œ„x

x

y

0

(1, 1)

x

y

0

(1, 1)

(iii) f sxd − x21 −
1

x
 

x

1

y

10

y=∆

Inverse Trigonometric Functions

arcsin x − sin21x − y &?  sin y − x  and  2
�

2
< y <

�

2

arccos x − cos21x − y  &?  cos y − x  and  0 < y < �

arctan x − tan21x − y  &?  tan y − x  and  2
�

2
, y ,

�

2 y=tan–!x=arctan x

π
2

_ π
2

y

0
x

 lim
x l 2`

 tan21x − 2
�

2

 lim
x l `

 tan21x −
�

2
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Exponential and Logarithmic Functions y

1
0

x1

y=x
y=´

y=ln x

logb x − y  &?  by − x

ln x − loge x,  where  ln e − 1 

ln x − y  &?  ey − x 

 Cancellation Equations Laws of Logarithms

  logbsbxd − x b logb  x − x 1. logbsxyd − logb x 1 logb y

  lnsexd − x e ln x − x 2. logbS x

yD − logb x 2 logb y

   3. logbsxr d − r logb x

 

4® e®

0

1®

1.5®

2®10®”   ’®1
4”   ’®1

2

x

y

 

0

y

1

x1

y=ln x

y=log™ x

y=log∞ x

y=log¡¸ x

 Exponential functions Logarithmic functions

Hyperbolic Functions y

x

y=sinh x

y=cosh x

y=tanh x
sinh x −

ex 2 e2x

2
 csch x −

1

sinh x

cosh x −
ex 1 e2x

2
 sech x −

1

cosh x

tanh x −
sinh x

cosh x
 coth x −

cosh x

sinh x

Inverse Hyperbolic Functions

y − sinh21x &? sinh y − x  sinh21x − lnsx 1 sx 2 1 1d

y − cosh21x &?    cosh y − x and y > 0  cosh21x − lnsx 1 sx 2 2 1d

y − tanh21x &?    tanh y − x  tanh21x − 1
2 lnS 1 1 x

1 2 xD 

lim
x l 2`  

e x − 0 lim
x l `

 ex − `

lim
x l 01

 ln x − 2`  lim
x l `

 ln x − `

SPECIAL FUNCTIONS
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DIFFERENTIATION RULES

REFERENCE  page 5

General Formulas

 1. 
d

dx
 scd − 0 2. 

d

dx
 fcf sxdg − cf 9sxd

 3. 
d

dx
 f f sxd 1 tsxdg − f 9sxd 1 t9sxd 4. 

d

dx
 f f sxd 2 tsxdg − f 9sxd 2 t9sxd

 5. 
d

dx
 f f sxdtsxdg − f sxdt9sxd 1 tsxd f 9sxd  (Product Rule) 6. 

d

dx
 F f sxd

tsxd G −
tsxd f 9sxd 2 f sxdt9sxd

ftsxdg2   (Quotient Rule)

 7. 
d

dx
 f stsxdd − f 9stsxddt9sxd  (Chain Rule) 8. 

d

dx
 sx n d − nx n21  (Power Rule)

Exponential and Logarithmic Functions

 9. 
d

dx
 se x d − e x 10. 

d

dx
 sb x d − b x ln b

 11. 
d

dx
 ln | x | −

1

x
 12. 

d

dx
 slogb xd −

1

x ln b

Trigonometric Functions

 13. 
d

dx
 ssin xd − cos x 14. 

d

dx
 scos xd − 2sin x 15. 

d

dx
 stan xd − sec2x

 16. 
d

dx
 scsc xd − 2csc x cot x 17. 

d

dx
 ssec xd − sec x tan x 18. 

d

dx
 scot xd − 2csc2x

Inverse Trigonometric Functions

 19. 
d

dx
 ssin21xd −

1

s1 2 x 2
 20. 

d

dx
 scos21xd − 2

1

s1 2 x 2
 21. 

d

dx
 stan21xd −

1

1 1 x 2

 22. 
d

dx
 scsc21xd − 2

1

xsx 2 2 1
 23. 

d

dx
 ssec21xd −

1

xsx 2 2 1
 24. 

d

dx
 scot21xd − 2

1

1 1 x 2

Hyperbolic Functions

 25. 
d

dx
 ssinh xd − cosh x 26. 

d

dx
 scosh xd − sinh x 27. 

d

dx
 stanh xd − sech2x

 28. 
d

dx
 scsch xd − 2csch x coth x 29. 

d

dx
 ssech xd − 2sech x tanh x 30. 

d

dx
 scoth xd − 2csch2x

Inverse Hyperbolic Functions

 31. 
d

dx
 ssinh21xd −

1

s1 1 x 2
 32. 

d

dx
 scosh21xd −

1

sx 2 2 1
 33. 

d

dx
 stanh21xd −

1

1 2 x 2

 34. 
d

dx
 scsch21xd − 2

1

| x |sx 2 1 1
 35. 

d

dx
 ssech21xd − 2

1

xs1 2 x 2
 36. 

d

dx
 scoth21xd −

1

1 2 x 2
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Basic Forms

 1. y u dv − uv 2 y v du 11. y csc u cot u du − 2csc u 1 C

 2. y u n du −
u n11

n 1 1
 1 C,  n ± 21 12. y tan u du − ln | sec u | 1 C

 3. y 
du

u
− ln | u | 1 C 13. y cot u du − ln | sin u | 1 C

 4. y e u du − e u 1 C 14. y sec u du − ln | sec u 1 tan u | 1 C

 5. y b u du −
b u

ln b
 1 C 15. y csc u du − ln | csc u 2 cot u | 1 C

 6. y sin u du − 2cos u 1 C 16. y 
du

sa 2 2 u 2
− sin21 

u

a
1 C,  a . 0

 7. y cos u du − sin u 1 C 17. y 
du

a 2 1 u 2 −
1

a
 tan21 

u

a
1 C

 8. y sec2u du − tan u 1 C 18. y 
du

usu 2 2 a 2
−

1

a
 sec21 

u

a
1 C

 9. y csc2u du − 2cot u 1 C 19. y 
du

a 2 2 u 2 −
1

2a
 ln Z u 1 a

u 2 a Z 1 C

 10. y sec u tan u du − sec u 1 C 20. y 
du

u 2 2 a 2 −
1

2a
 ln Z u 2 a

u 1 a Z 1 C

Forms Involving sa 2 1 u 2 ,  a . 0

 21. y sa 2 1 u 2 du −
u

2
 sa 2 1 u 2 1

a 2

2
 ln(u 1 sa 2 1 u 2 ) 1 C

 22. y u 2 sa 2 1 u 2 

 du −
u

8
 sa 2 1 2u 2d sa 2 1 u 2 

2
a 4

8
 ln(u 1 sa 2 1 u 2 ) 1 C

 23. y 
sa 2 1 u 2

u
 du − sa 2 1 u 2 2 a ln Z a 1 sa 2 1 u 2

u Z 1 C

 24. y 
sa 2 1 u 2

u 2  du − 2
sa 2 1 u 2

u
1 ln(u 1 sa 2 1 u 2 ) 1 C

 25. y 
du

sa 2 1 u 2 
− ln(u 1 sa 2 1 u 2 ) 1 C

 26. y 
u 2 du

sa 2 1 u 2
−

u

2
 sa 2 1 u 2 2

a 2

2
 ln(u 1 sa 2 1 u 2 ) 1 C

 27. y 
du

usa 2 1 u 2
− 2

1

a
 ln Z sa 2 1 u 2 1 a

u Z 1 C

 28. y 
du

u 2 sa 2 1 u 2
− 2

sa 2 1 u 2

a 2u
1 C

 29. y 
du

sa 2 1 u 2d3y2 −
u

a 2 sa 2 1 u 2
1 C

TABLE OF INTEGRALS
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Forms Involving sa 2 2 u 2 ,  a . 0

 30. y sa 2 2 u 2 du −
u

2
 sa 2 2 u 2 1

a 2

2
 sin21 

u

a
1 C

 31. y u 2sa 2 2 u 2 du −
u

8
 s2u 2 2 a 2d sa 2 2 u 2 1

a 4

8
 sin21 

u

a
1 C

 32. y 
sa 2 2 u 2

u
 du − sa 2 2 u 2 2 a ln Z a 1 sa 2 2 u 2

u Z 1 C

 33. y 
sa 2 2 u 2

u 2  du − 2
1

u
 sa 2 2 u 2 2 sin21 

u

a
1 C

 34. y 
u 2 du

sa 2 2 u 2
− 2

u

2
 sa 2 2 u 2 1

a 2

2
 sin21 

u

a
1 C

 35. y 
du

usa 2 2 u 2
− 2

1

a  ln Z a 1 sa 2 2 u 2

u Z 1 C

 36. y  
du

u 2sa 2 2 u 2
− 2

1

a 2u
 sa 2 2 u 2 1 C

 37. y sa 2 2 u 2d3y2 du − 2
u

8
 s2u 2 2 5a 2dsa 2 2 u 2 1

3a 4

8
 sin21 

u

a
1 C

 38. y 
du

sa 2 2 u 2d3y2 −
u

a 2 sa 2 2 u 2
1 C

Forms Involving su 2 2 a 2 , a . 0

 39. y su 2 2 a 2 du −
u

2
 su 2 2 a 2 2

a 2

2
 ln | u 1 su 2 2 a 2 | 1 C

 40. y u 2su 2 2 a 2 du −
u

8
 s2u 2 2 a 2d su 2 2 a 2 2

a 4

8
 ln | u 1 su 2 2 a 2 | 1 C

 41. y 
su 2 2 a 2

u
 du − su 2 2 a 2 2 a cos21 

a

| u | 1 C

 42. y 
su 2 2 a 2

u 2  du − 2
su 2 2 a 2

u
1 ln | u 1 su 2 2 a 2 | 1 C

 43. y 
du

su 2 2 a 2
− ln | u 1 su 2 2 a 2 | 1 C

 44. y 
u 2 du

su 2 2 a 2
−

u

2
 su 2 2 a 2 1

a 2

2
 ln | u 1 su 2 2 a 2 | 1 C

 45. y du

u 2su 2 2 a 2
−

su 2 2 a 2

a 2u
1 C

 46. y 
du

su 2 2 a 2d3y2 − 2
u

a 2 su 2 2 a 2
1 C

TABLE OF INTEGRALS
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Forms Involving a 1 bu

 47. y 
u du

a 1 bu
−

1

b 2  (a 1 bu 2 a ln | a 1 bu |) 1 C

 48. y 
u 2 du

a 1 bu
−

1

2b 3  fsa 1 bud2 2 4asa 1 bud 1 2a 2 ln| a 1 bu |g 1 C

 49. y 
du

usa 1 bud
−

1

a
 ln Z u

a 1 bu Z 1 C

 50. y 
du

u 2sa 1 bud
− 2

1

au
1

b

a 2  ln Z a 1 bu

u Z 1 C

 51. y 
u du

sa 1 bud2 −
a

b 2sa 1 bud
1

1

b 2  ln | a 1 bu | 1 C

 52. y 
du

usa 1 bud2 −
1

asa 1 bud
2

1

a 2  ln Z a 1 bu

u Z 1 C

 53. y 
u 2 du

sa 1 bud2 −
1

b 3  Sa 1 bu 2
a 2

a 1 bu
2 2a ln | a 1 bu |D 1 C

 54. y usa 1 bu du −
2

15b 2  s3bu 2 2adsa 1 bud3y2 1 C

 55. y 
u du

sa 1 bu
−

2

3b 2  sbu 2 2adsa 1 bu 1 C

 56. y 
u 2 du

sa 1 bu
−

2

15b 3  s8a 2 1 3b 2u 2 2 4abudsa 1 bu 1 C

 57.  y 
du

usa 1 bu
−

1

sa
 ln Z sa 1 bu 2 sa

sa 1 bu 1 sa
Z 1 C, if a . 0

   −
2

s2a
 tan21Î a 1 bu

2a
1 C, if a , 0

 58. y 
sa 1 bu

u
 du − 2sa 1 bu 1 a y 

du

usa 1 bu

 59. y 
sa 1 bu

u 2  du − 2
sa 1 bu

u
1

b

2
 y 

du

usa 1 bu

 60. y u nsa 1 bu du −
2

bs2n 1 3d
 Fu nsa 1 bud3y2 2 na y u n21 sa 1 bu duG

 61. y 
u n du

sa 1 bu
−

2u nsa 1 bu

bs2n 1 1d
2

2na

bs2n 1 1d
 y 

u n21 du

sa 1 bu

 62. y 
du

u nsa 1 bu
− 2

sa 1 bu

asn 2 1du n21 2
bs2n 2 3d
2asn 2 1d  y 

du

u n21sa 1 bu
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Trigonometric Forms

 63. y sin2u du − 1
2 u 2 1

4 sin 2u 1 C 76. y cot nu du −
21

n 2 1
 cot n21u 2 y cot n22u du

 64. y cos2u du − 1
2 u 1 1

4 sin 2u 1 C 77. y secnu du −
1

n 2 1
 tan u secn22u 1

n 2 2

n 2 1
 y secn22u du

 65. y tan2u du − tan u 2 u 1 C 78. y cscnu du −
21

n 2 1
 cot u cscn22u 1

n 2 2

n 2 1
 y cscn22u du

 66. y cot2u du − 2cot u 2 u 1 C 79. y sin au sin bu du −
sin sa 2 bdu

2sa 2 bd
2

sin sa 1 bdu
2sa 1 bd

1 C

 67. y sin3u du − 21
3 s2 1 sin2ud cos u 1 C 80. y cos au cos bu du −

sin sa 2 bdu
2sa 2 bd

1
sin sa 1 bdu

2sa 1 bd
1 C

 68. y cos3u du − 1
3 s2 1 cos2ud sin u 1 C 81. y sin au cos bu du − 2

cos sa 2 bdu
2sa 2 bd

2
cos sa 1 bdu

2sa 1 bd
1 C

 69. y tan3u du − 1
2 tan2u 1 ln | cos u | 1 C 82. y u sin u du − sin u 2 u cos u 1 C

 70. y cot3u du − 21
2 cot2u 2 ln | sin u | 1 C 83. y u cos u du − cos u 1 u sin u 1 C

 71. y sec3u du − 1
2 sec u tan u 1 1

2 ln | sec u 1 tan u | 1 C 84. y u n sin u du − 2u n cos u 1 n y u n21 cos u du

 72. y csc3u du − 21
2 csc u cot u 1 1

2 ln | csc u 2 cot u | 1 C 85. y u n cos u du − u n sin u 2 n y u n21 sin u du

 73. y sinnu du − 2
1

n
 sinn21u cos u 1

n 2 1

n
 y sinn22u du 86.  y sinnu cosmu du − 2

sinn21u cosm11u

n 1 m
1

n 2 1

n 1 m
 y sinn22u cosmu du

 74. y cosnu du −
1

n
 cosn21u sin u 1

n 2 1

n
 y cosn22u du   −

sinn11u cosm21u

n 1 m
1

m 2 1

n 1 m
 y sinnu cosm22u du

 75. y tannu du −
1

n 2 1
 tann21u 2 y tann22u du

Inverse Trigonometric Forms

 87. y sin21u du − u sin21u 1 s1 2 u 2 1 C 92. y u tan21u du −
u 2 1 1

2
 tan21u 2

u

2
1 C

 88. y cos21u du − u cos21u 2 s1 2 u 2 1 C 
93. y u n sin21u du −

1

n 1 1
 Fu n11 sin21u 2 y 

u n11 du

s1 2 u 2G, n ± 21

 89. y tan21u du − u tan21u 2 1
2 lns1 1 u 2d 1 C 

94. y u n cos21u du −
1

n 1 1
 Fu n11 cos21u 1 y 

u n11 du

s1 2 u 2G, n ± 21
 90. y u sin21u du −

2u 2 2 1

4
 sin21u 1

us1 2 u 2

4
1 C 

95. y u n tan21u du −
1

n 1 1
 Fu n11 tan21u 2 y 

u n11 du

1 1 u 2 G, n ± 21 91. y u cos21u du −
2u 2 2 1

4
 cos21u 2

us1 2 u 2

4
1 C
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Exponential and Logarithmic Forms

 96. y ueau du −
1

a 2  sau 2 1deau 1 C 100. y ln u du − u ln u 2 u 1 C

 97. y u neau du −
1

a
 u neau 2

n

a
 y u n21eau du 101. y u n ln u du −

u n11

sn 1 1d2  fsn 1 1d ln u 2 1g 1 C

 98. y eau sin bu du −
eau

a 2 1 b 2  sa sin bu 2 b cos bud 1 C 102. y 
1

u ln u
 du − ln | ln u | 1 C

 99. y eau cos bu du −
eau

a 2 1 b2  sa cos bu 1 b sin bud 1 C

Hyperbolic Forms

 103. y sinh u du − cosh u 1 C 108. y csch u du − ln | tanh 12 u | 1 C

 104. y cosh u du − sinh u 1 C 109. y sech2u du − tanh u 1 C

 105. y tanh u du − ln cosh u 1 C 110. y csch2u du − 2coth u 1 C

 106. y coth u du − ln | sinh u | 1 C 111. y sech u tanh u du − 2sech u 1 C

 107. y sech u du − tan21 | sinh u | 1 C 112. y csch u coth u du − 2csch u 1 C

Forms Involving s2au 2 u2 ,  a . 0

 113. y s2au 2 u 2 du −
u 2 a

2
 s2au 2 u 2 1

a 2

2
 cos21S a 2 u

a D 1 C

 114. y us2au 2 u 2 du −
2u 2 2 au 2 3a 2

6
 s2au 2 u 2 1

a 3

2
 cos21S a 2 u

a D 1 C

 115. y 
s2au 2 u 2

u
 du − s2au 2 u 2 1 a cos21S a 2 u

a D 1 C

 116. y 
s2au 2 u 2 

u 2  du − 2
2s2au 2 u 2 

u
2 cos21S a 2 u

a D 1 C

 117. y 
du

s2au 2 u 2
− cos21S a 2 u

a D 1 C

 118. y 
u du

s2au 2 u 2 
− 2s2au 2 u 2 1 a cos21S a 2 u

a D 1 C

 119. y 
u 2 du

s2au 2 u 2
− 2

su 1 3ad
2

 s2au 2 u 2 1
3a 2

2
 cos21S a 2 u

a D 1 C

 120. y 
du

us2au 2 u 2
− 2

s2au 2 u 2

au
1 C

PP
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