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SMOOTH SIMPLICIAL SETS AND UNIVERSAL CHERN-WEIL
FOR INFINITE DIMENSIONAL GROUPS

YASHA SAVELYEV

Abstract. We give the construction of the universal, natural up to homotopy
Chern-Weil differential graded algebra homomorphism:

cw : I(G) → Ω•(BG,R)

for infinite dimensional Milnor regular Lie groups G, where Ω•(BG,R) is a
certain de Rham algebra of BG (Milnor BG up to a natural weak homotopy
equivalence) and where I(G) is the algebra of continuous, AdG invariant, sym-
metric multilinear functionals on the Lie algebra. In particular, this applies
to the group of compactly generated Hamiltonian symplectomorphisms, using
which we verify a conjecture of Reznikov. For the construction of cw we intro-
duce a basic geometric-categorical notion of a smooth simplicial set. Loosely,
this is to Chen spaces as simplicial sets are to spaces. We then give a new
construction of the classifying space of G as a smooth Kan complex, with the
geometric realization weakly equivalent to the Milnor BG.

Contents

1. Introduction 2

1.1. Generalized Lie groups 3

1.2. Universal dg Chern-Weil homomorphism 3

1.3. dg Enhancement 5

1.4. An example: the group of Hamiltonian symplectomorphisms 6

1.5. Other examples 7

1.6. Acknowledgements 7

2. Preliminaries and notation 8

2.1. Topological simplices and smooth singular simplicial sets 8

2.2. The simplex category of a simplicial set 9

2.3. Geometric realization 10

3. Smooth simplicial sets 10

3.1. Smooth Kan complexes 13

3.2. Some examples 13

3.3. Smooth simplex category of a smooth simplicial set 14

Supported by CONAHCYT research grant CF-2023-I.
1



2 YASHA SAVELYEV

3.4. Products 16

3.5. More on smooth maps 16

3.6. Smooth homotopy 17

3.7. Geometric realization 17

4. Differential forms on smooth simplicial sets 17

4.1. Homology and cohomology of a simplicial set 19

4.2. Integration 20

4.3. Pull-back 21

4.4. Relation with ordinary homology and cohomology 21

5. Smooth simplicial G-bundles 23

5.1. Pullbacks of simplicial bundles 29

6. Connections on simplicial G-bundles 30

7. Chern-Weil homomorphism 31

7.1. The classical case 31

7.2. Chern-Weil homomorphism for simplicial G-bundles 35

8. The universal simplicial G-bundle 37

8.1. The classifying spaces BGU 38

8.2. The universal smooth simplicial G-bundle EGU → BGU 39

9. The universal Chern-Weil homomorphism 52

9.1. Universal cohomological Chern-Weil homomorphism 53

9.2. Universal dg Chern-Weil homomorphism 54

9.3. Relation with Whitney-Sullivan de Rham algebra 54

10. Universal Chern-Weil theory for the group of Hamiltonian
symplectomorphisms 55

11. Universal coupling class for Hamiltonian fibrations 56

A. A∞ homotopies 57

References 59

1. Introduction

First, we introduce the notion of a smooth simplicial set, which is most directly
an analogue in the world of simplicial sets of Chen spaces [3], and less directly
of diffeological spaces of Souriau [44]. The Chen/diffeological spaces are perhaps
the most basic notions of a “smooth space”. The language of smooth simplicial
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sets turns out to be a powerful tool to resolve the long standing problem of the
construction of the universal Chern-Weil dg algebra homomorphism for infinite
dimensional Lie groups.

1.1. Generalized Lie groups. By an infinite dimensional Lie group G we will
mean a Lie group whose underlying infinite dimensional smooth manifold is mod-
eled on a locally convex topological vector space. For Chern-Weil theory we will
need that G is Milnor regular, see [34, Definition II.5.2]. This condition may not
ultimately be necessary, see Remark 7.1. As explained in [34], a basic example of
a regular group is the group Diffc(M) of compactly supported diffeomorphisms of
a smooth finite dimensional manifold. In this case regularity boils down to the fact
that a smooth family of smooth (compactly supported) vector fields {Xt} integrates
to a smooth family of self-diffeomorphisms (a.k.a. a smooth isotopy), and the de-
pendence of this on {Xt} is itself smooth. 1 The group Diffc(M) in addition has
the homotopy type of a CW complex, see [14]. This also applies to other LF (limit
Frechet) generalized Lie groups like the group of compactly generated Hamiltonian
symplectomorphisms, which forms an important example for us.

Since this definition also encompasses standard finite dimensional Lie groups, it is
convenient to give this a new working name: generalized Lie group.

1.2. Universal dg Chern-Weil homomorphism. One problem of topology is
the construction of a “smooth structure” on the Milnor classifying space BG of
a generalized (real or complex) Lie group G. There are specific requirements for
what such a notion of a smooth structure should entail. At the very least we hope
to be able to carry out Chern-Weil theory universally on BG. We now describe
this.

In what follows, we keep to real generalized Lie groups G, but there is no essential
difficulty to extending our theory to the complex case. Denote by I(G) the algebra
over R of AdG invariant, continuous, symmetric multilinear functionals on the Lie
algebra g, see Section 7.1.2.

Denote by Ω•(BG,R) the “dg algebra of differential forms on BG” (for the mo-
ment left unspecified) whose cohomology is H•(BG,R). Then we want a “purely”
differential geometric construction of the Chern-Weil dg algebra homomorphism
(natural up to homotopy of dg maps, Definition 7.3):

cw : I(G) → Ω•(BG,R),
where the differential on the left is trivial (and the grading is in even degrees). The
goal is to set up all structures in such a way that the differential geometry in this
construction becomes trivial, modulo the inherent differential geometry involved in
Chern-Weil forms.

For finite dimensional Lie groups, the cohomological universal Chern-Weil homo-
morphism:
(1.1) hcw : I(G) → H•(BG,R)
has been studied for instance by Bott [1]. It has also been directly constructed
in Dupont [7] using simplicial techniques, also important for us here. However, to

1As I understand, there are no known examples of locally convex Lie groups that are not
regular, see however [28] for a diffeological example.
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produce a (natural) dg enhancement of this, some geometric theory is ostensibly
required. For example, working on the dg level is important in Freed-Hopkins [9].
However they work on smooth classifying stacks (and with classical Lie groups G),
rather then on the Milnor spaces BG.

1.2.1. Smooth structures on BG. One candidate for a smooth structure on BG is
some kind of diffeology. For example Magnot and Watts [29] construct a natural
diffeology on the Milnor classifying space BG. Another approach to this is contained
in Christensen-Wu [5], where the authors also state their plan to develop some kind
of universal Chern-Weil theory in the future.

A further specific possible requirement for the above discussed “smooth structures”,
is that the smooth singular simplicial set BG• should have a geometric realization
weakly homotopy equivalent to BG. See for instance [23] for one approach to
this particular problem in the context of diffeologies. In the category of smooth
simplicial sets we have a stronger analogue of this, in the form of Proposition 3.7.
The latter and more specifically Theorem 8.6 is used in [40] to prove universality
of the global Fukaya category.

The structure of a smooth simplicial set is initially more flexible than a space with
diffeology, but we may add further conditions, like the Kan condition, which will be
important for us. Given a generalized Lie group G, for each choice of a particular
kind of Grothendieck universe U we construct a smooth simplicial set BGU with
a specific classifying property. We note that this is not the Milnor construction.
But it will be shown that |BGU | always has the weak homotopy type of Milnor
BG.

The simplicial set BGU is moreover a Kan complex, and so is a basic example
of what we call a smooth Kan complex. Our constructions, will work naturally
on BGU rather than its geometric realization. And all the desires of “smoothness”
mentioned above then is some sense hold true for BGU via its smooth Kan complex
structure.

1.2.2. Cohomological Chern-Weil homomorphism. We first note that the cohomo-
logical Chern-Weil homomorphism 1.1 has a direct extension for generalized Lie
groups. The base space Y of ordinary smooth G-bundles 2 is throughout assumed
to be a finite dimensional smooth manifold, without corners unless specified so.
The following is proved in Section 9.1.

Theorem 1.1. Let G be a generalized Lie group then there is an algebra homo-
morphism:

hcw : I(G) → H•(BG,R).
This has the following property. Suppose that P → Y is a smooth G-bundle over a
smooth manifold Y , and

hcwP : I(G) → H•(Y,R)

is the associated Chern-Weil map. Then
hcwP = f∗

P ◦ hcw

2A G-bundle is henceforth a short name for: a principal G bundle.
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where
fP : Y → BG

is the classifying map of P and
f∗
P : H•(BG,R) → H•(Y,R)

the induced algebra map.

1.3. dg Enhancement. In the infinite dimensional case, the dg algebra I(G) may
not be freely generated 3. Therefore we cannot readily enhance the map hcw to a
differential graded map purely formally. Furthermore, even when a formal enhance-
ment is possible it may not be adequate for more in depth geometric applications
like the theory of Cheeger-Simons characters, [2], which needs suitably natural dif-
ferential forms.

We can at first avoid Grothendieck universes in the statement, and in fact get a
purely algebraic-topological result. We will however need the notion of geomet-
ric homotopy of dg maps 4 as given in Definition 7.3, the latter is shown in the
Appendix A to induce an A∞ homotopy of dg maps. However, unless specified oth-
erwise homotopy will mean geometric homotopy throughout. Let A(BG) denote
the Whitney-Sullivan commutative dga of BG over R, as reviewed in Section 9.3.
The following is also proved there:

Theorem 1.2. Let G be a generalized Lie group having the homotopy of a CW
complex (e.g. G = Diffc(M)). Then there is a lifting:

A(BG)

I(G) H•(BG,R),hcw

cw

where the arrow on the right is the cohomology projection, and cw is a dg map that
is natural up to homotopy.

Remark 1.3. As one ingredient the proof uses the Grothendieck’s axiom of uni-
verses, as there are no universes in the statement one may wonder if there is a pure
ZFC proof of the above.

There is an ostensibly stronger formulation of the above. More specifically, once
a “smooth model” for BG as a smooth Kan complex BGU is fixed, there is a
canonical “de Rham algebra” Ω•(BGU ,R), as described in Section 4. We also need
some additional ingredients. If P → Y is a U -small G-bundle, then there is a certain
classifying simplicial map fP∆ : Y• → BGU , see Theorem 8.6, where Y• denotes
the smooth singular set of Y . Also there is an obvious natural dg map:

Θ : Ω•(Y,R) → Ω•(Y•,R).

The following is proved in Section 9.2.

3This was nicely pointed out to me by a referee, using Reznikov’s tensors (appearing just
ahead) as an example.

4A dg map will be shorthand for dg algebra homomorphism.
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Theorem 1.4. Let G be a generalized Lie group and U a G-admissible Grothendieck
universe. For each choice of a G-connection D on the universal G-bundle EGU →
BGU there is a natural dg map:

cwD : I(G) → Ω•(BGU ,R),

whose homotopy class is independent of the choice of D. The map has the following
property. Suppose that P → Y is a U-small smooth G-bundle, over a smooth
manifold Y , and

cwP : I(G) → Ω•(Y,R)
is the associated standard Chern-Weil dg map (natural up to homotopy). Then

Θ ◦ cwP ' f∗
P∆ ◦ cw, (homotopy relation).

1.4. An example: the group of Hamiltonian symplectomorphisms. Here is
one concrete example, with more details in Sections 10 and 11. Let H = Ham(M,ω)
denote the generalized Lie group of compactly generated Hamiltonian symplecto-
morphisms of some symplectic 2n-manifold (M,ω). Here φ is compactly generated
means that there is a smooth compactly supported H : M × [0, 1] → R s.t. φ is the
time one map of the Hamiltonian flow {Xt}, ω(Xt, ·) = dHt.

Let h denote the Lie algebra of H. When M is compact h is naturally isomorphic to
the space of mean 0 (with respect to dvolω = ωn) smooth functions on M ; otherwise
it is the space of all smooth compactly supported functions. In [37] Reznikov defined
AdH invariant, continuous, symmetric multilinear functionals {rk}k≥1 on the Lie
algebra h. These are defined by:

(H1, . . . , Hk) 7→
∫
M

H1 · . . . ·Hk ω
n.

Denote by Rez the sub-algebra of I(H) generated by {rk}.

By Chern-Weil theory we get cohomology classes crk(P ) ∈ H2k(X,R) for any
smooth H-bundle P over a smooth manifold X. The following results are proved
in Section 10. Using Theorem 1.4 we get:

Corollary 1.5. There is a dg map (natural up to homotopy)
rez : Rez → Ω•(BHU ,R),

satisfying the restriction property as in Theorem 1.4. And in particular, there are
universal Reznikov cohomology classes crk ∈ H2k(BH,R), satisfying the following.
Let Z → Y be a smooth principal H-bundle. Let crk(Z) ∈ H2k(Y ) denote the
Reznikov class. Then

f∗
Zc

rk = crk(Z),

where fZ : Y → BH is the classifying map of the underlying topological H-bundle.

The second part of the corollary is an explicit form of a statement asserted by
Reznikov [37, page 12], on the extension of his classes to the universal level on BH
5. The above corollary is actually stronger, since we don’t require compactness of
M .

5His assertion is left without proof.
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Likewise, we obtain a differential geometric proof that the Guillemin-Sternberg-
Lerman coupling class c(P ) ∈ H2(P ) [10], [30] of a Hamiltonian fibration (Definition
11.1) has a universal representative. Specifically, let MH denote the M -fibration
associated to the universal principal H-fibration E → BH. (In other words the
universal Hamiltonian M -bundle.)

Theorem 1.6. There is a cohomology class c ∈ H2(MH) so that if P → X is
a smooth Hamiltonian M -fibration and f̃ : P → MH the corresponding map then
f̃∗
P c = c(P ).

For M closed this is proved by Kedra-McDuff [18, Proposition 3.1] using homotopy
theory techniques.

Here is a basic application. Let Symp(CPk) denote the group of symplectomor-
phisms of CPk, that is diffeomorphisms φ : CPk → CPk s.t. φ∗ω0 = ω0 for ω0 the
Fubini-Study symplectic 2-form on CPk. Using the above corollary, we may obtain
an elementary proof of the following theorem of Kedra-McDuff:

Theorem 1.7 (Kedra-McDuff). Let

i : BPU(n) → BSymp(CPn−1)

be the natural map. Then

i∗ : H•(BPU(n),R) → H•(BSymp(CPn−1),R)

is an injection for all n ≥ 2.

More history and background surrounding these theorems is in Sections 9 and
10.

1.5. Other examples. One other basic set of examples of generalized Lie groups,
with a wealth of invariant polynomials on the Lie algebra, are the loop groups.
That is the groups LG,ΩG, where G is any (finite dimensional) Lie group, LG is
the free loop space, and ΩG is the based loop space at id. See for instance [35]
for related computations. Loop groups are prominent in conformal field theory, see
for instance [36] for the foundation of the subject. The relevant Chern-Weil theory
then has physical connotations. Other examples of infinite dimensional Chern-Weil
theory include: [26], [31], [38], [25].

There are various precedents in giving a differential geometric definition of the
(infinite dimensional group) Chern-Weil homomorphism in some cases, for example
Magnot [27].

1.6. Acknowledgements. I am grateful to Daniel Freed, Yael Karshon, Dennis
Sullivan, Egor Shelukhin, and Jean-Pierre Magnot, for comments and questions.
I am also grateful to Jarek Kedra and Dusa McDuff for explaining the proof of
Corollary 1.6 in [18]. Thanks also to IAS for providing a wonderful atmosphere,
while working on a part of this work, as a member.
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2. Preliminaries and notation

We denote by ∆ the simplex category:

• The set of objects of ∆ is N.

• hom∆(n,m) is the set of non-decreasing maps [n] → [m], where [n] =
{0, 1, . . . , n}, with its natural order.

A simplicial set X is a functor
X : ∆op → Set.

The set X(n) is called the set of n-simplices of X. Given a collection of sets
{X(n)}n∈N, by a simplicial structure we will mean the extension of this data to
a functor: X : ∆op → Set.

∆d
simp will denote a particular simplicial set: the standard representable d-simplex,

with
∆d

simp(n) = hom∆(n, d).

A morphism or a map of simplicial sets, or a simplicial map f : X → Y is a
natural transformation f of the corresponding functors. The category of simplicial
sets will be denoted by s− Set.

By a d-simplex Σ of a simplicial set X, we may mean, interchangeably, either the
element in X(d) or the map of simplicial sets:

Σ : ∆d
simp → X,

uniquely corresponding to Σ via the Yoneda lemma. If we write Σd for a simplex
of X, it is implied that it is a d-simplex.

With the above identification if f : X → Y is a map of simplicial sets then
(2.1) f(Σ) = f ◦ Σ.

2.1. Topological simplices and smooth singular simplicial sets. Let ∆d be
the topological d-simplex, i.e.

∆d := {(x1, . . . , xd) ∈ Rd |x1 + . . .+ xd ≤ 1, and ∀i : xi ≥ 0}.

The vertices of ∆d will be assumed ordered in the standard way.

Definition 2.1. Let X be a smooth manifold with corners, in the diffeological
sense [11]. We say that a map σ : ∆n → X is smooth if it is smooth as a map
of manifolds with corners. In particular, σ : ∆n → ∆d is smooth iff it has an
extension to a smooth map V ⊃ ∆n → Rd, with V open. (See [17, Theorem 4.1]).

We denote by ∆d
• the smooth singular simplicial set of ∆d, i.e. ∆d

•(k) is the set of
smooth maps

σ : ∆k → ∆d .

We call an affine map ∆k → ∆d taking vertices to vertices, in an order preserving
way, simplicial. And we denote by

∆d
simp ⊂ ∆d

•
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the sub-simplicial set consisting of these topological simplicial maps. That is
∆d

simp(k) is the set of simplicial maps ∆k → ∆d.

Note that ∆d
simp is naturally isomorphic to the standard representable d-simplex

∆d
simp as previously defined, so that this abuse of notation should not cause issues.

Thus we may also understand ∆ as the category with objects topological simplices
∆d, d ≥ 0 and morphisms simplicial maps.

Notation 2.2. A morphism m ∈ hom∆(n, k) uniquely corresponds to a simplicial
map ∆n

simp → ∆k
simp, which uniquely corresponds to a topological simplicial map

∆n → ∆k (as defined right above). The correspondence is by taking the maps
∆n

simp → ∆k
simp, ∆n → ∆k, to be determined by the set map m : {0, . . . , n} →

{0, . . . , k}. We will not notationally distinguish these corresponding morphisms.
So that m may simultaneously refer to all of the above morphisms.

2.2. The simplex category of a simplicial set.

Definition 2.3. For X a simplicial set, ∆(X) will denote a certain category called
the simplex category of X. This is the category s.t.:

• The set of objects obj∆(X) is the set of simplices
Σ : ∆d

simp → X, d ≥ 0.

• Morphisms f : Σ1 → Σ2 are commutative diagrams in s− Set:

(2.2)
∆d

simp ∆n
simp

X

f̃

Σ1 Σ2

with top arrow a simplicial map, which we denote by f̃ .

An object Σ : ∆d
simp → X is likewise called a d-simplex, and such a Σ will be said

to have degree d. We may specify the degree with a superscript, for example Σd for
degree d.

Definition 2.4. We say that Σm ∈ ∆(X) is non-degenerate if there is no mor-
phism

∆m
simp ∆n

simp

X

f̃

Σm

Σn

s.t. m > n.

There is a forgetful functor
T : ∆(X) → ∆,

T (Σd) = ∆d
simp, T (f) = f̃ . We denote by ∆inj(X) ⊂ ∆(X) the sub-category

with same objects, and morphisms f such that f̃ are monomorphisms, i.e. are face
inclusions.
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2.3. Geometric realization. Let Top be the category of topological spaces. Let
X be a simplicial set, then define as usual the geometric realization of X by the
colimit in Top:

|X| := colim∆(X) T,

for T : ∆(X) → ∆ ⊂ Top as above, understanding ∆ as a subcategory of Top as
previously explained.

3. Smooth simplicial sets

If
σ : ∆d → ∆n

is a smooth map then we have an induced map of simplicial sets
(3.1) σ• : ∆d

• → ∆n
• ,

defined by
σ•(ρ) = σ ◦ ρ.

We now give a pair of equivalent definitions of smooth simplicial sets. The first is
more hands on, and has a close connection to the definition of Chen/diffeological
spaces, while the second is more conceptual/categorical.

Definition 3.1 (First definition). A smooth simplicial set consists of the fol-
lowing data:

(1) A simplicial set X.

(2) For each Σ : ∆n
simp → X an n-simplex there is an assigned map of simplicial

sets
g(Σ) : ∆n

• → X.

This satisfies:

(a)
(3.2) g(Σ)|∆n

simp
= Σ.

We abbreviate g(Σ) by Σ∗, when there is no need to disambiguate which
structure g is meant.

(b) The following property will be called push-forward functoriality:
(3.3) (Σ∗(σ))∗ = Σ∗ ◦ σ•

where σ : ∆k → ∆d is a k-simplex of ∆d
•, and where Σ as before is a

d-simplex of X.

Thus, formally a smooth simplicial set is a 2-tuple (X, g), satisfying the axioms
above. When there is no need to disambiguate we omit specifying g.

Definition 3.2. A smooth map between smooth simplicial sets
(X1, g1), (X2, g2)

is a simplicial map
f : X1 → X2,
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which satisfies the condition:
(3.4) ∀n ∈ N ∀Σ ∈ X1(n) : g2(f(Σ)) = f ◦ g1(Σ),
or more succinctly:

∀n ∈ N ∀Σ ∈ X1(n) : (f(Σ))∗ = f ◦ Σ∗.

A diffeomorphism between smooth simplicial sets is defined to be a smooth map,
with a smooth inverse.

Now let ∆sm denote the category:

(1) The set of objects of ∆sm is N.

(2) hom∆sm(k, n) is the set of smooth maps ∆k → ∆n.

(3) The composition of morphism is the natural composition.

Definition 3.3 (Second definition). A smooth simplicial set X is a functor
X : (∆sm)op → Set. A smooth map f : X → Y of smooth simplicial sets is defined
to be a natural transformation from the functor X to Y .

The equivalence of the above definitions is established further ahead, as we need
certain preliminaries. In what follows, we refer to the first definition unless specified
otherwise.

Remark 3.4. There are respective advantages to both definitions. With the second
definition we can lean more on category theory. In particular, some of the technical
results ahead are incarnations of the Yoneda lemma and other such tools. For the
first definition one can work with the Kan condition more directly, and it is simpler
to relate the first definition to the existing theory of diffeological/Chen spaces, and
to the existing theory of differential forms on simplicial sets.

Example 3.5 (The tautological smooth simplicial set). ∆n
• has a tautological

smooth simplicial set structure, where
g(Σ) = Σ•,

for Σ : ∆k → ∆n a smooth map, hence a k-simplex of ∆n
• , and where Σ• is as in

(3.1).

Lemma 3.6. Let X be a smooth simplicial set and Σ : ∆n
simp → X an n-simplex.

Let Σ∗ : ∆n
• → X be the corresponding simplicial map. Then Σ∗ is smooth with

respect to the tautological smooth simplicial set structure on ∆n
• as above.

Proof. Let σ be a k-simplex of ∆n
• , so σ : ∆k → ∆n is a smooth map. We need

that
(Σ∗(σ))∗ = Σ∗ ◦ σ∗.

Now σ∗ = σ•, by definition of the tautological smooth structure on ∆n
• . So we have:

(Σ∗(σ))∗ = Σ∗ ◦ σ• by Axiom 2b
= Σ∗ ◦ σ∗.

□
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The following proposition in particular tells us that the weak homotopy type of
a smooth simplicial set (as a plain simplicial set) is determined by its complex
of smooth simplices. For contrast, the weak homotopy type of Chen/Diffeological
space is not generally determined by its complex of smooth simplices (cf. [4, Ex-
ample 3.12]).

Proposition 3.7. The set (just set) of n-simplices of a smooth simplicial set X
is naturally isomorphic to the set of smooth maps ∆n

• → X. In fact, define X• to
be the simplicial set whose n-simplices are smooth maps ∆n

• → X, and so that if
i : m → n is a morphism in ∆ then

X•(i) : X(n) → X(m)

is the “pull-back” map:
X•(i)(Σ) = Σ ◦ i•,

for i• : ∆m
• → ∆n

• the induced map. Then X• is naturally isomorphic to X.

Proof. Let ρ : ∆n
simp → X be an n-simplex. By the lemma above, we have a

uniquely associated to it smooth map ρ∗ : ∆n
• → X. Conversely, suppose we are

given a smooth map m : ∆n
• → X. Then we get an n-simplex ρm := m|∆n

simp
. Let

idn : ∆n → ∆n be the identity map. We have that
m = m ◦ idn• = m ◦ idn∗

= (m(idn))∗, as m is smooth
= (ρm(idn))∗, trivially by definition of ρm
= (ρm)∗ ◦ idn∗ , as (ρm)∗ is smooth by Lemma 3.6
= (ρm)∗.

Thus, the map In(ρ) = ρ∗, from the set of n-simplices of X to the set of smooth
maps ∆n

• → X, is bijective.

Given an element m ∈ hom∆(n, d), let msimp : ∆n
simp → ∆d

simp denote the cor-
responding natural transformation, also identified with an element of ∆d

simp(n).
Then the corresponding map

X(m) : X(d) → X(n)

is
ρ 7→ ρ ◦msimp,

for ρ : ∆n
simp → X.

With that in mind, the diagram below commutes

X(d) X(n)

X•(d) X•(n),

X(m)

Id In

X•(m)

as
X•(m) ◦ Id(ρ) = X•(m)(ρ∗)

= ρ∗ ◦m•
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while
In ◦X(m)(ρ) = (ρ ◦msimp)∗

= (ρ∗ ◦msimp)∗, by (3.2)
= (ρ∗(msimp))∗, by (2.1)
= ρ∗ ◦m•, by Axiom 3.3.

Thus I is a natural transformation and is an isomorphism of simplicial sets I : X →
X•. □

Lemma 3.8. Given a smooth m : ∆d
• → ∆n

• there is a unique smooth map f :
∆d → ∆n such that m = f•.

Proof. Define f by m(id) for id : ∆d → ∆d the identity. Then
f• = (m(id))•

= (m(id))∗

= m ◦ id∗ (as m is smooth)
= m.

So f induces m. Now if g induces m then g• = m hence g = g•(id) = m(id). □

3.1. Smooth Kan complexes.

Definition 3.9. A smooth simplicial set whose underlying simplicial set is a Kan
complex will be called a smooth Kan complex.

The above notion will be crucial for us.

3.2. Some examples. Let Y be a smooth manifold or more generally a diffeolog-
ical space and let Singsm(Y ) denote the simplicial set of smooth singular simplices
in Y 6. That is Singsm(Y )(k) is the set of smooth maps Σ : ∆k → Y , with its
natural simplicial structure. Singsm(Y ) will often be abbreviated by Y•.

Example 3.10. Let Y be a smooth manifold, or a diffeological space. Set X = Y•,
then X is naturally a smooth simplicial set. When Y is a finite dimensional
manifold, X is a smooth Kan complex, this is essentially [5, Corollary 4.36]. Only
“essentially”, as the latter uses “non-compact simplices”. We will however not need
this and so will not elaborate.

Example 3.11. Here is one special example. Let M be a smooth manifold. Then
there is a natural smooth simplicial set LM∆ whose d-simplices Σ are smooth maps
fΣ : ∆d ×S1 → M . The maps Σ∗ are defined by

Σ∗(σ) = fΣ ◦ (σ × id),

for σ ∈ ∆d
•(k) and

σ × id : ∆k ×S1 → ∆d ×S1,

6This is often called the “smooth singular simplicial set of Y ”. However, for us “smooth” is
reserved for another purpose, so to avoid confusion we do not use such terminology.
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the product map. This LM∆ is one simplicial model of the free loop space. Nat-
urally, the free loop space LM also has the structure of a Fréchet manifold, in
particular we have the smooth simplicial set LM•, whose n-simplices are Gateaux
C∞ maps Σ : ∆n → LM , see Hamilton [12]. There is a natural simplicial map
LM∆ → LM•, which is readily seen to be smooth. (It is indeed a diffeomorphism.)

The above smooth simplicial set structure LM∆ , in the language of diffeologies,
is closely related to the functional diffeology on C∞(Y, Z), for which there are
diffeological diffeomorphisms:

C∞(X × Y, Z) → C∞(X,C∞(Y, Z)),

given another diffeological space X.

3.3. Smooth simplex category of a smooth simplicial set. Given a smooth
simplicial set X, there is an extension of the previously defined simplex category
∆(X).

Definition 3.12. For X a smooth simplicial set, ∆sm(X) will denote the category
whose set of objects obj∆sm(X) is the set of smooth maps

Σ : ∆d
• → X, d ≥ 0

and morphisms f : Σ1 → Σ2, commutative diagrams:

(3.5)
∆d

• ∆n
•

X

f̃•

Σ1
Σ2

with top arrow any smooth map (for the tautological smooth simplicial set structure
on ∆d

•), which we denote by f̃•. By Lemma 3.8, f̃• is induced by a unique smooth
map f̃ : ∆d → ∆n.

By Proposition 3.7 we have a natural faithful embedding ∆(X) → ∆sm(X) that is
an isomorphism on object sets. We call elements of ∆sm(X) d-simplices.

Proposition 3.13. Definitions 3.1, 3.3 are equivalent.

Proof. Let C1 denote the category of smooth simplicial sets as given by the Defini-
tion 3.1. And let C2 denote the category of smooth simplicial sets as given by the
Definition 3.3.

Given X ∈ C1, we define a functor I(X) : (∆sm)op → Set by setting
I(X)(k) = {Σ• : ∆k

• → X |Σ• is smooth i.e. is a morphism in C1}.
And for σ : ∆k → ∆d a smooth map setting

I(X)(σ) : I(X)(d) → I(X)(k)

to be the map
(3.6) I(X)(σ)(Σ•) = Σ• ◦ σ•.

This defines
I : C1 → C2



SMOOTH SIMPLICIAL SETS AND UNIVERSAL CHERN-WEIL 15

on objects.

Conversely, given F ∈ C2, define a simplicial set I−1(F ) by the rules:

(1) I−1(F )(k) := F (k).

(2) For Σ ∈ I−1(F )(k), Σ∗ : ∆k
• → X is the map:

Σ∗(σ) = F (σ)(Σ).

So that we get an element I−1(F ) ∈ C1. This defines
I−1 : C2 → C1

on objects. By Proposition 3.7 (I−1 ◦ I(X)) ' X, an isomorphism in C1.

Suppose now we are given a morphism in C1: f : X0 → X1 i.e. a simplicial map
satisfying the condition:
(3.7) ∀n ∈ N ∀Σ ∈ X(n) : (f(Σ))∗ = f ◦ Σ∗.

Define a natural transformation:
I(f) : I(X0) → I(X1),

by setting I(f)k : I(X0)(k) → I(X1)(k) to be the map I(f)k(Σ•) = f ◦ Σ•.

This is a natural transformation by the associativity of the composition f ◦ (Σ• ◦
σ•) = (f ◦ Σ•) ◦ σ•.

It is clear that I : C1 → C2 is a functor. We show that it is faithful on hom sets. If
f0, f

′ : X0 → X1 are a pair of morphisms in C1 suppose that I(f) = I(f ′). Then
∀n ∈ N ∀Σ• ∈ I(X)(n) : f ◦ Σ• = f ′ ◦ Σ•.

In particular,
∀n ∈ N ∀Σ ∈ X(n) : f ◦ Σ∗ = f ′ ◦ Σ∗,

as Σ∗ ∈ I(X)(n). And so
∀n ∈ N ∀Σ ∈ (X)(n) : f(Σ) = f ′(Σ).

And thus f = f ′.

We show that I surjective on hom sets. Suppose that N : I(X0) → I(X1) is a
morphism in C2, i.e. a natural transformation of the corresponding functors. So for
σ : ∆d → ∆k smooth, we have a commutative diagram:

(3.8)
I(X0)(k) I(X0)(d)

I(X1)(k) I(X2)(d)

I(X0)(σ)

Nk Nd

I(X1)(σ)

Define a simplicial map
fN : X0 → X1,

by
fN (Σ) = Nk(Σ∗)|∆k

simp
,

for Σ ∈ X0(k).
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We check that I(fN ) = N . Let Σ• : ∆d
• → X0 be smooth. For σ : ∆k → ∆d

smooth, we have:
I(fN )d(Σ•)(σ) = (fN ◦ Σ•)(σ), by definition of I

= fN (Σ•(σ))

= Nk(Σ•(σ)∗)|∆k
simp

, by definition of fN
= Nk(Σ• ◦ σ•)|∆k

simp
, as Σ• is smooth

= Nd(Σ•) ◦ σ•|∆k
simp

, by N being a natural transformation, (3.8) and (3.6)
= Nd(Σ•) ◦ σ, notation 2.2
= Nd(Σ•)(σ), identification (2.1).

Since Σ•, σ were general it follows that I(fN ) = N .

We have proved that I is a functor that is essentially surjective on objects, and is
fully-faithful on hom sets, it follows by a classical theorem of category theory that
I is an equivalence of categories. □

3.4. Products. Given a pair of smooth simplicial sets (X1, g1), (X2, g2), the prod-
uct X1×X2 of the underlying simplicial sets, has the structure of a smooth simplicial
set

(X1 ×X2, g1 × g2),

constructed as follows. Denote by πi : X1 × X2 → Xi the simplicial projection
maps. Then for each Σ ∈ (X1 ×X2)(d),

(g1 × g2)(Σ) : ∆
d
• → X1 ×X2

is defined by:
(g1 × g2)(Σ)(σ) := (g1(π1(Σ))(σ), g2(π2(Σ))(σ)).

3.5. More on smooth maps. As defined, a smooth map f : X → Y of smooth
simplicial sets, induces a functor

∆smf : ∆sm(X) → ∆sm(Y ).

This is defined by ∆smf(Σ) = f ◦ Σ, where Σ : ∆d
• → X is in ∆sm(X). If

m : Σ1 → Σ2 is a morphism in ∆sm(X):

∆k
• ∆d

•

X,

m̃•

Σ1
Σ2

then obviously the diagram below also commutes:

∆k
• ∆d

•

Y,

m̃•

h1
h2

where hi = ∆smf(Σi) = f ◦ Σi, i = 1, 2. And so the latter diagram determines
a morphism ∆smf(m) : h1 → h2 in ∆sm(Y ). Clearly, this determines a functor
∆smf as needed.
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3.6. Smooth homotopy.

Definition 3.14. Let X,Y be smooth simplicial sets. Set I := ∆1
• and let I0, I1 ⊂ I

be the images of the pair of inclusions ∆0
• → I corresponding to the pair of endpoints.

A pair of smooth maps f, g : X → Y are called smoothly homotopic if there
exists a smooth map

H : X × I → Y

such that H|X×I0 = f and H|X×I1 = g. H will be called a smooth homotopy
between f, g.

Let X be a smooth simplicial set and x0 ∈ X(0). We say that a smooth f : ∆n
• → X

is relative to x0 if f |∂∆n
•

has image in x0,•, where x0,• denotes the image of
∆0

• → X determined by x0, and where ∂∆n
• is the sub-simplicial set corresponding

to simplices with image in ∂∆n. We may analogously define F : ∆n
• × I → X to be

relative to x0, if ∂∆n
• × I has image in x0,•. We call this a relative homotopy.

Then we have:

Definition 3.15. Set πsm
k (X,x0) to be the set of equivalence classes of smooth

relative to x0 maps f : ∆k
• → X, where f ∼ g if there is a smooth relative homotopy

H : ∆k
• × I → X, between f, g.

Remark 3.16. When X is a Kan complex πsm
k (X,x0) can be shown to be a group,

but we will not need this.

3.7. Geometric realization. Geometric realization of a smooth simplicial set X
is defined to be the geometric realization of the underlying simplicial set.

4. Differential forms on smooth simplicial sets

The theory of differential forms on smooth simplicial sets that we now present is
part of the standard abstract theory of differential forms on simplicial sets. Some
of the results of this are folklore, for example the de Rham theorem can be credited
to Sullivan [46], but many much more detailed, subsequent expositions have been
made, for example DuPont [7]. As such, the theory of differential forms here is a
priori inequivalent to the theory of differential forms on diffeological spaces in the
sense of Souriau [45]. If one wanted to translate our discussion of differential forms
into the language of diffeological spaces, then probably it would be similar to the
work of Katsuhiko [21], see also [22], [15].

First we define smooth differential forms on the topological simplices ∆d.

Definition 4.1. Set T∆d := i∗TRd for i : ∆d → Rd the natural inclusion. Let
T ∗∆d denote the dual vector bundle. A smooth differential k-form ω on ∆d

is a section of Λk(T ∗∆d), having a smooth extension to a section of Λk(T ∗N) for
N ⊃ ∆d an open subset of Rd.

The above is equivalent to various other possible definitions. For example we may
take ∆d to be a special case of a smooth manifold with corners, and use a more
general theory of differential forms. This can be done, for example, using theory of
diffeological spaces [11]. See also Karshon-Watts [17], which establishes one kind of
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“uniqueness of notions of smooth structures” for the case of simplices, so that our
chosen model is canonical up to suitable equivalence.

Definition 4.2. Let X be a simplicial set. A simplicial differential k-form ω,
or just differential k-form where there is no possibility of confusion, is an assignment
for each d-simplex Σ of X a smooth differential k-form ω(Σ) = ωΣ on ∆d, such
that
(4.1) i∗ωΣ2 = ωΣ1 ,

for every morphism i : Σ1 → Σ2 in ∆(X), (see Section 2.2). If in addition X is a
smooth simplicial set, and if in addition:
(4.2) i∗ωΣ2 = ωΣ1 ,

for every morphism i : Σ1 → Σ2 in ∆sm(X) then we say that ω is coherent.

Remark 4.3. In the main applications here coherence will be unnecessary, and so
will not be assumed. We can sharpen our constructions to get universal Chern-Weil
forms that are coherent, but this will add much length to the paper, and is only
interesting in more in depth applications so is postponed. (To get coherence, in the
construction of the universal bundles we must include connections as part of the
data, somewhat akin to what is done in Freed-Hopkins [9].)

A simplicial differential form ω may be denoted simply as ω = {ωΣ}. It may also
be convenient to use the anonymous function notation Σ 7→ ωΣ.

Example 4.4. If Y is a smooth d-fold, and if ω is a differential k-form on Y ,
then Σ 7→ Σ∗ω is a coherent simplicial differential k-form on Y• called the induced
simplicial differential form. And this determines a dg map:
(4.3) Θ : Ω•(Y,R) → Ω•(Y•,R).

Example 4.5. Let LM∆ be the smooth Kan complex of Example 3.11. Then
Chen’s iterated integrals [3] naturally give coherent differential forms on LM∆ .
More specifically, each d-simplex of LM∆ corresponds to a smooth “plot” of the
form ∆d → LM (in Chen’s language). Chen’s iterated integrals as differential forms
on LM , amount to a rule in particular giving a differential forms on ∆d, for each
such plot. The coherence condition in our language is implied by the condition [3,
Definition 1.2.2] for this rule. So that this exactly gives a coherent differential form
in our language.

Let X be a simplicial set. We denote by Ωk(X) the R-vector space of differential
k-forms on X. Define

d : Ωk(X) → Ωk+1(X)

so that d(ω) abbreviated by dω is:
Σ 7→ dωΣ.

Clearly we have
d2 = 0.

A k-form ω is said to be closed if dω = 0, and exact if for some (k − 1)-form η,
ω = dη.
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Definition 4.6. The wedge product on

Ω•(X) =
⊕
k≥0

Ωk(X)

is defined by
ω ∧ η(Σ) = ωΣ ∧ ηΣ.

Then Ω•(X) has the structure of a differential graded R-algebra with respect to ∧.

We then, as usual, define the de Rham cohomology of X:

Hk
DR(X) =

closed k-forms
exact k-forms ,

then
H•

DR(X) =
⊕
k≥0

Hk
DR(X)

is a graded commutative R-algebra.

Versions of the simplicial de Rham complex have been used by Whitney and perhaps
most famously by Sullivan [46]. In particular, the proof of the de Rham theorem
(next section) is due to Sullivan.

4.1. Homology and cohomology of a simplicial set. We go over this mostly
to establish notation. For a simplicial set X, we define an abelian group

Ck(X,Z),

as the free abelian group generated by the set of k-simplices X(k). Elements of
Ck(X,Z) are called k-chains. The boundary operator:

∂ : Ck(X,Z) → Ck−1(X,Z),

is defined on a k-simplex σ by

∂σ =

n∑
i=0

(−1)idiσ,

where di : X(k) → X(k − 1) are the face maps, this is then extended by linearity
to general chains. Then clearly ∂2 = 0.

The homology of this complex is denoted by Hk(X,Z), called integral homology.
The integral cohomology is defined analogously to the standard topology setting, us-
ing dual chain groups Ck(X,Z) = hom(Ck(X,Z),Z). The corresponding cobound-
ary operator is denoted by d as usual:

d : Ck(X,Z) → Ck+1(X,Z).

Homology and cohomology with other ring coefficients (or modules) are defined
analogously. Given a simplicial map f : X → Y there are natural induced chain
maps f∗ : Ck(Y,Z) → Ck(X,Z), and f∗ : Ck(X,Z) → Ck(X,Z).

We say that a pair of simplicial maps f, g : X → Y are homotopic if there is a
simplicial map H : X ×∆1

simp → Y so that f = H ◦ i0, g = H ◦ i1 for i0, i1 : X →
X × ∆1

simp corresponding to the pair of end point inclusions ∆0
simp → ∆1

simp. A
simplicial homotopy equivalence is then defined analogously to the topological
setting.



20 YASHA SAVELYEV

As is well known if f, g are homotopic then f∗, g∗ and f∗, g∗ are chain homo-
topic.

4.2. Integration. Let X be a simplicial set. Given a chain

σ =
∑
i

aiΣi ∈ Ck(X,Z)

and a smooth differential form ω, we define:∫
σ

ω =
∑
i

ai

∫
∆k

ωΣi

where the integrals on the right are the standard integrals of differential forms.
Thus, we obtain a homomorphism:∫

: Ωk(X) → Ck(X,R),∫
(ω) is the k-cochain defined by:∫

(ω)(σ) :=

∫
σ

ω,

where σ is a k-chain. We will abbreviate
∫
(ω) by

∫
ω. The following is well

known.

Lemma 4.7. For a simplicial set X, the homomorphism
∫

commutes with d, and
so induces a homomorphism:

DR : Ω•(X) → C•(X,R),

with the induced map on cohomology denoted by the same symbol.

Proof. We need that ∫
dω = d

∫
ω.

Let Σ : ∆k
simp → X be a k-simplex. Then

(

∫
dω)Σ =

∫
∆k

dωΣ, by definition

=

∫
∂∆k

ωΣ, by Stokes theorem

= d(

∫
ω)Σ, by the definition of d on co-chains.

□

The de Rham theorem tells us that DR is a quasi-isomorphism see [7], but we will
not need this.
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4.3. Pull-back. Given a (smooth) map f : X1 → X2 of (smooth) simplicial sets,
we define

f∗ : Ωk(X2) → Ωk(X1)

naturally by
(4.4) f∗(ω)(Σ) := ω(f(Σ)).

Let’s check that f∗ commutes with d. We have:
∀Σ : f∗(dω)(Σ) = dω(f(Σ))

= d(f∗ω(Σ))

= d(f∗ω)(Σ).

So we have an induced differential graded R-algebra homomorphism:
f∗ : Ω•(X2) → Ω•(X1).

And in particular an induced R-algebra homomorphism:
f∗ : H•

DR(X2) → H•
DR(X1).

4.4. Relation with ordinary homology and cohomology. Let s−Set denote
the category of simplicial sets and Top the category of topological spaces. Let

| · | : s− Set → Top

be the geometric realization functor as defined in Section 2.3. Let X be a (smooth)
simplicial set. Then for any ring K and any d ∈ N we have natural chain maps

CR : Cd(X,K) → Cd(|X|,K),

CR∨ : Cd(|X|,K) → Cd(X,K).
(4.5)

The chain map CR is defined as follows. A d-simplex Σ : ∆d
simp → X, by construc-

tion of |X| naturally induces a continuous map Σtop : ∆d → |X|. Denote by also
by Σtop the corresponding generator of Cd(|X|,K), then we set CR(Σ) = Σtop in
this notation. Then CR∨ is the dual chain map.

CR and CR∨ are quasi-isomorphisms, i.e. induce isomorphisms
R : Hd(X,K) → Hd(|X|,K),

R∨ : Hd(|X|,K) → Hd(X,K).
(4.6)

Remark 4.8. This works as follows. Let |X|f denote the geometric realization of
X omitting the degeneracies in the colimit construction, (that is we take the colimit
over the category of face maps). Then |X|f is an infinite dimensional ∆-complex,
and as shown by Hatcher [13, Section 2.1], the ∆-complex homology of a ∆-complex
is isomorphic to its singular homology. On the other hand, for |X|f the ∆-complex
homology is naturally identified with Hd(X,K). Since |X|f is weakly equivalent to
|X| [42, Appendix A], this readily implies the claim.

Now let Y be a (finite dimensional, possibly with corners) smooth manifold and
X = Y• = Singsm(Y ). The natural map
(4.7) h : |Y•| → Y
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is a weak homotopy equivalence. To see this let f : Sn → Y represent a class
in πn(Y, y0), then there is a smooth f ′ : Sn → Y representing the same class.
It readily follows that the class [f ′] is in the image of h∗ : πk(|Y•|, h−1(y0)) →
πk(Y, y0). Injectivity of h∗ is verified similarly. So h is a homotopy equivalence by
the Whitehead’s theorem.

Let us denote by
(4.8) N : Y → |Y•|,
a homotopy inverse.

Define
I : Hd(Y•,K) → Hd(Y,K)

to be the map induced by the chain map
CI : Cd(Y•,K) → Cd(Y,K)

sending the generator of Cd(Y•,K), corresponding to a simplex Σ ∈ Y•(d), to the
generator of Cd(Y ), corresponding to the smooth map Σtop : ∆d → Y (as Σ ∈ Y•(d)
by definition uniquely corresponds to such a smooth map).

Then factor R as:
Hd(Y•,K) Hd(Y,K)

Hd(|Y•|,K).

I

R
N∗

We may factor R∨ as:

(4.9)
Hd(|Y•|,K) Hd(Y,K)

Hd(Y•,K),

N∗

R∨
I∨

where I∨ is induced by the dual CI∨ of CI.

Notation 4.9. Let α ∈ Hd(X,K).

(1) We set
|α| := (R∨)−1(α) ∈ Hd(|X|,K).

(2) If Y is a smooth manifold, and X = Y•. We set
|α|sm := (I∨)−1(α) ∈ Hd(Y,K).

Given a map of simplicial sets f : X1 → X2 we let |f | : |X1| → |X2| denote the
induced map of geometric realizations.

Lemma 4.10. Let f : X1 → X2 be a simplicial map of simplicial sets. Let
f∗ : Hd(X2,K) → Hd(X1,K) be the induced homomorphism then:

|f∗(α)| = |f |∗(|α|).
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Proof. We have a clearly commutative diagram of chain maps (omitting the coeffi-
cient ring):

Cd(X1) Cd(|X1|)

Cd(X2) Cd(|X2|),

CR

f∗ |f |∗

CR

from which the result immediately follows. □

The following is immediate from definitions.

Lemma 4.11. If K = R then

I∨ ◦DRord = DR ◦HΘ,

where:

• DRord : Hd
DR(Y,R) → Hd(Y,R) is the ordinary de Rham integration iso-

morphism.

• DR is as in Lemma 4.7.

• HΘ : Hd
DR(Y,R) → Hd

DR(Y•,R) is the cohomology map induced by the map
Θ as in (4.3).

5. Smooth simplicial G-bundles

In what follows G may be assumed to be either a locally convex Lie group or a
diffeological Lie group, with smoothness interpreted in the corresponding categories,
and where the diffeology on ∆n is the subspace diffeology.

In Section 7 we specialize to G being a generalized Lie group, for some basics on
the subject of infinite dimensional Lie groups we refer the reader to Neeb [34]. We
now introduce the basic building blocks for simplicial G-bundles.

Definition 5.1. Let P be a topological principal G-bundle over ∆n, with the em-
bedding ∆n ⊂ Rn as previously. Suppose we have a choice of a maximal atlas
of topological G-bundle trivializations φi : Ui × G → P , Ui ⊂ ∆n open, s.t. the
transitions maps

(Ui ∩ Uj)×G
ϕij=ϕ−1

j ◦ϕi,
−−−−−−−−→ (Ui ∩ Uj)×G

extend to smooth maps N × G → N × G, for N ⊃ Ui ∩ Uj some open set in Rn.
Then with such a choice of an atlas we call P a smooth G-bundle over ∆n.
Smooth bundle maps, and isomorphisms are then defined as with standard smooth
bundles.

At this point our terminology may partially clash with common terminology, in
particular a simplicial G-bundle will not be a presheaf on ∆ with values in the
category of smooth G-bundles. Instead, it will be a functor (not a co-functor!) on
∆sm(X) with additional properties. Presheafs of this type will not appear in the
paper so that this should not cause confusion.
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In the definition of simplicial differential forms we omitted coherence. In the case
of simplicial G-bundles, the analogous condition (full functoriality on ∆sm(X))
turns out to be necessary if we want universal simplicial G-bundles with expected
behavior.

Notation 5.2. Let G be as above, we denote by G the category of smooth principal
G-bundles over the simplices ∆n, (n not fixed) with morphisms smooth G-bundle
maps.

Let F1 : ∆sm(X) → ∆sm be the natural forgetful functor. And F2 : G → ∆sm

the functor taking a G-bundle P → ∆k to k and defined on morphisms as follows.
If φ̃ : P1 → P2 is a morphism in G over a smooth map φ : ∆k → ∆n then
F2(φ̃)(k, n) = φ.

Definition 5.3. Let G be as above and X a smooth simplicial set. A smooth
simplicial G-bundle P over X is a functor P : ∆sm(X) → G, so that the diagram:

∆sm(X) G

∆sm,

P

F1 F2

commutes. We will call this the compatibility condition.

We will only deal with smooth simplicial G-bundles, and so will usually say sim-
plicial G-bundle, omitting the qualifier ‘smooth’.

Notation 5.4. To reduce the use of the parenthesis, we often use notation PΣ for
P (Σ). Note that this notation is used exclusively for objects. If we write a simplicial
G-bundle P → X, this means that P is a simplicial G-bundle over X in the sense
above. So that P → X is just notation not a morphism.

Example 5.5. If X is a smooth simplicial set and G is as above, we denote by
X ×G the simplicial G-bundle,

∀n ∈ N, ∀Σn ∈ ∆(X) : (X ×G)Σn is the trivial bundle ∆n ×G → ∆n.

And where for σ : ∆n → ∆k, (X ×G)(σ) : ∆n ×G → ∆k ×G is the map σ × id.

This is called the trivial simplicial G-bundle over X.

Example 5.6. Let Z → Y be a diffeological G-bundle over a diffeological space Y .
Or a smooth G-bundle over a smooth manifold Y with G locally convex. Then we
have a simplicial G-bundle Z∆ over Y• defined by the conditions:

(1) Z∆
Σ = Σ∗Z.

(2) For f : Σ1 → Σ2 a morphism, the bundle map
Z∆(f) : Z∆

Σ1
→ Z∆

Σ2

is the universal map u : Σ∗
1Z → Σ∗

2Z corresponding to the universal pull-
back property of Σ∗

2Z.
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The uniqueness of the universal maps readily implies that Z∆ is a functor. We say
that Z∆ is the simplicial G-bundle induced by Z.

Definition 5.7. Let P1 → X1, P2 → X2 be a pair of simplicial G-bundles. Let
h : X1 → X2 be a smooth map. A smooth simplicial G-bundle map over h
from P1 to P2 is a natural transformation of functors:

h̃ : P1 → P2 ◦∆smh,

such that the following additional property is satisfied. For each d-simplex Σ ∈
∆sm(X1) the natural transformation h̃ specifies a morphism in G:

h̃Σ : P1(Σ) → P2(h ◦ Σ),
and we ask that this is a bundle map over the identity, so that the following diagram
commutes:

P1(Σ) P2(h ◦ Σ)

∆d ∆d .

h̃Σ

p1 p2

id

We will usually say simplicial G-bundle map instead of smooth simplicial G-bundle
map, (as everything is always smooth) when h is not specified it is assumed to be
the identity.

Definition 5.8. Let P1, P2 be simplicial G-bundles over X1, X2 respectively. A
simplicial G-bundle isomorphism is a simplicial G-bundle map

h̃ : P1 → P2

s.t. there is a simplicial G-bundle map

h̃−1 : P2 → P1

with
h̃−1 ◦ h̃ = id.

Usually X1 = X2 and in this case, unless specified otherwise, it is assumed h =
id. A simplicial G-bundle isomorphic to the trivial simplicial G-bundle is called
trivializeable.

Definition 5.9. If X = Y• for Y a smooth manifold, we say that a simplicial
G-bundle P over X is inducible by a smooth G-bundle N → Y if there is a
simplicial G-bundle isomorphism N∆ → P .

The following will be one of the crucial ingredients later on. (Recall also that we
are treating two distinct cases simultaneously: a diffeological G and locally convex
G, the proof of the following theorem works the same way in both cases.)

Theorem 5.10. Let G be as above and let P → Y• be a simplicial G-bundle, for Y
a smooth d-manifold (or a manifold with corners, understood as previously). Then
P is inducible by some smooth G-bundle N → Y .
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Proof. We need to introduce an auxiliary notion. Let Z be a smooth d-manifold
with corners, as before understood as a diffeological space. And let D(Z) denote
the category whose objects are smooth (diffeological) embeddings Σ : ∆d → Z, (for
the same fixed d). A morphism f ∈ homD(Z)(Σ1,Σ2) is a commutative diagrams:

(5.1)
∆d ∆d

Z.

f̃

Σ1 Σ2

Note that the map f̃ is unique, when such a diagram exists, as Σi are embeddings.
Thus homD(Z)(Σ1,Σ2) is either empty or consists of a single element.

Although, we state the result for manifolds with corners, for simplicity we assume
here that Y is a manifold. Let {Oi}i∈I be a locally finite open cover of Y , closed
under intersections, with each Oi diffeomorphic to an open ball in Rd. Such a cover
is often called a good cover of a manifold. Existence of such a cover is a folklore
theorem, but a proof can be found in [8, Prop A1].

Let O denote the category with the set of objects {Oi} and with morphisms inclu-
sions. And set Ci = D(Oi), then clearly Ci is a full subcategory of ∆sm(Y•). For
each i, we have the functor

Fi = P |Ci : Ci → G.

By assumption that each Oi is diffeomorphic to an open ball, Oi has an exhaus-
tion by embedded d-simplices. This means that there is a sequence of smooth
embeddings Σj : ∆

d → Oi satisfying:

• interior image(Σj+1) ⊃ image(Σj) for each j ∈ N.

•
⋃

j image(Σj) = Oi.

As each element of Ci is contained in some Σj ,
Σ0 → . . . → Σj → Σj+1 → . . .

forms a final sub-category of Ci. Thus, for each i, the colimit in G:
(5.2) Pi := colimCi Fi

is the colimit of the sequence
P (Σ0) → . . . → P (Σj) → P (Σj+1) . . .

And this colimit is naturally a topological G-bundle over Oi = ∪i image(Σi).

We may give Pi the structure of a smooth G-bundle, with G-bundle charts defined
as follows. For each Σ ∈ Ci, pick a smooth trivialization:

ξΣ : (∆d)◦ ×G → (P ◦
Σ := PΣ|(∆d)◦).

Then set φΣ,i to be the composition map

(∆d)◦ ×G
ξΣ−→ P ◦

Σ
cΣ−→ Pi,

where cΣ : (PΣ = Fi(Σ)) → Pi is the natural map in the colimit diagram of (5.2).

Lemma 5.11. The collection {φΣ,i} forms a smooth G-bundle atlas for Pi.
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Proof. Suppose that z ∈ (imageφΣ,i) ∩ (imageφΣ′,i). Then there is a morphism
Σ′′ m−→ Σ and a morphism Σ′′ m′

−−→ Σ′ such that z ∈ imageφΣ′′,i. And such that the
following composition maps coincide:

P ◦
Σ′′

P (m)−−−→ P ◦
Σ

cΣ−→ Pi

P ◦
Σ′′

P (m′)−−−−→ P ◦
Σ′

cΣ′−−→ Pi.

Hence, c−1
Σ′ ◦ cΣ = P (m′) ◦ P (m)−1 where the inverses are defined on the suitable

open sub-domains. Thus c−1
Σ′ ◦ cΣ is smooth, which clearly implies our claim.

□

So we obtain a functor
D : O → G,

defined by
D(Oi) = Pi,

and defined naturally on morphisms. Specifically, a morphism Oi1 → Oi2 induces a
functor Ci1 → Ci2 and hence a smooth G-bundle map Pi1 → Pi2 , by the naturality
of the colimit.

Let t : O → Top denote the tautological functor, sending the subspace O to the
corresponding topological space, so that Y = colimO t, where for simplicity we write
equality for natural isomorphisms here and further on in this proof.

Now,
(5.3) N := colimO D,

is naturally a topological G-bundle

N
p−→ colimO t = Y.

Let ci : Pi → N denote the natural maps in the colimit diagram of (5.3). The
collection of charts {ci ◦ φΣ,i}i,Σ∈Ci forms a smooth G-bundle atlas on N (repeat
the argument of Lemma 5.11). Let us rename these charts as {ρk}, for k elements
of the index set implicit above.

We now prove that P is induced by N . Let Σ : ∆n → Y be smooth, then {Vi :=
Σ−1(Oi)}i∈I is a locally finite and hence finite open cover of ∆n closed under
intersections. Let N∆ be the simplicial G-bundle over Y• induced by N . So

N∆
Σ := Σ∗N.

As ∆n is a convex subset of Rn, the open metric balls in ∆n, for the induced metric,
are convex as subsets of Rn. Consequently, as each Vi ⊂ ∆n is open, it has a basis
of convex metric balls, with respect to the induced metric. By Rudin [39] there is
then a locally finite cover of Vi by elements of this basis. In fact, Rudin shows any
open cover of Vi has a locally finite refinement by elements of such a basis.

Let {W i
j} consist of elements of this cover and all intersections of its elements,

(which must then be finite intersections). So W i
j ⊂ Vi are open convex subsets and

{W i
j} is a locally finite open cover of Vi, closed under finite intersections.
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As each W i
j ⊂ ∆n is open and convex it has an exhaustion by nested images of

embedded simplices. That is

(5.4) W i
j =

⋃
k∈N

imageσi,j
k

for σi,j
k : ∆d → W i

j smooth and embedded, with imageσi,j
k ⊂ imageσi,j

k+1 for each
k.

Let C be the small category with objects I × J × N, so that there is exactly one
morphism from a = (i, j, k) to b = (i′, j′, k′) whenever imageσi,j

k ⊂ imageσi′,j′

k′ , and
no morphisms otherwise. Let

F : C → D(∆d)

be the functor F (a) = σi,j
k for a = (i, j, k), (the definition on morphisms is forced).

For brevity, we denote σa := F (a).

For a smooth manifold with corners Y , if O(Y ) denotes the category of topological
subspaces of Y with morphisms inclusions, then there is a forgetful functor

T : D(Y ) → O(Y )

which takes f to image(f̃). With all this in place, we have:

Lemma 5.12.
(5.5) ∆d = colimC T ◦ F,
as a colimit in Top.

Proof. First recall that a general topological space X is the colimit of any open
cover {Oi} of X closed under intersections. In particular, ∆d is the colimit of
the cover {W i

j}i,j . On the other hand W i
j = colimSi,j T ◦ F , for Si,j ⊂ C a full

subcategory corresponding to the exhaustion 5.4. Moreover, C = ∪i,jSi,j . The
result readily follows. □

It follows that
N∆

Σ = colimC N∆ ◦∆smΣ ◦ F.

Now, by construction for each a ∈ C, Σ ◦ σa is contained in an open set Oi diffeo-
morphic to the standard open ball in Rd. It follows that we may express:
(5.6) Σ ◦ σa = Σa ◦ma ◦ σa,

for some Σa : ∆d → Oi ⊂ Y a smooth embedded d-simplex. And ma : ∆n → ∆d

smooth.

So for all a ∈ C,
N∆ ◦∆smΣ ◦ F (a) = (ma ◦ σa)

∗PΣa ,

after naturally identifying PΣa with N∆
Σa

. More precisely, there is a natural iso-
morphism φa : PΣa → N∆

Σa
given by the composition:

(5.7) PΣa → Pi → N,

with the first map the bundle map in the colimit diagram of (5.2), and the second
map the bundle map in the colimit diagram of (5.3). The composition (5.7) gives
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a bundle map over Σa. And so, by the defining universal property of the pull-back,
there is a uniquely induced universal map

PΣa → (Σa)
∗N = N∆

Σa
,

which is a G-bundle isomorphism.

Also,
PΣ = colimC P ◦∆smΣ ◦ F.

Similarly to the above discussion we have that for all a ∈ C:
P ◦∆smΣ ◦ F (a) = PΣa◦ma◦σa ,

and by functoriality of P there is a morphism:
P (ma ◦ σa) : PΣa◦ma◦σa → PΣa ,

over ma ◦ σa and hence an induced natural morphism:
PΣa◦ma◦σa → (ma ◦ σa)

∗PΣa ,

which is also a G-bundle isomorphism.

To summarize, we obtain for all a ∈ C a natural isomorphism

N ◦∆smΣ ◦ F (a)
ϕa−→ P ◦∆smΣ ◦ F (a).

These fit into a natural transformation of functors:
φ : N ◦∆smΣ ◦ F → P ◦∆smΣ ◦ F.

So that φ induces a map of the colimits:
hΣ : PΣ → N∆

Σ ,

by naturality, and this is an isomorphism of these smooth G-bundles. It is then
clear that {hΣ}Σ determines the bundle isomorphism h : P → N∆ we are looking
for. □

5.1. Pullbacks of simplicial bundles. Let P → X be a simplicial G-bundle
over a smooth simplicial set X. And let f : Y → X be a smooth map of smooth
simplicial sets. We define the pull-back simplicial G-bundle f∗P → Y to be the
functor f∗P := P ◦∆smf .

Note that the analogue of the following lemma is not true in the category of topolog-
ical fibrations. The pull-back by the composition is not the composition of pullbacks
(except up to a natural isomorphism).

Lemma 5.13. The pull-back is functorial. So that if f : X → Y and g : Y → Z are
smooth maps of smooth simplicial sets, and P → Z is a smooth simplicial G-bundle
over Z then

(g ◦ f)∗P = f∗(g∗(P )) this is an actual equality.

Proof. This is of course elementary, as functor composition is associative:
(g ◦ f)∗P = P ◦∆sm(g ◦ f) = P ◦ (∆smg ◦∆smf) = (P ◦∆smg) ◦∆smf = f∗(g∗P ).

□
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6. Connections on simplicial G-bundles

In this section G is a generalized Lie group. A G-connection on a smooth G-bundle
P over a finite dimensional smooth manifold X is an Ehresmann G-connection,
that is a smooth, right G-invariant horizontal distribution. Existence of such con-
nections is proved as in the case of finite dimensional bundles. One notes that in
trivializations connections form an affine space, and then uses partitions of unity
over the base, 7 see for instance [6].

In our setting, we only need to treat the case of G-bundles P over a simplex ∆n. As
such a G-bundle is trivializable, the space of G-connections on P is in correspon-
dence with the space of Lie algebra valued 1-forms. The regularity condition also
ensures that there is a good theory of parallel transport, see Section 7.1.1. Thus,
we can completely avoid the generalities.

Definition 6.1. A simplicial G-connection D on a simplicial G-bundle P over
a smooth simplicial set X is for each d-simplex Σ of X, a smooth G-invariant
Ehresmann G-connection D(Σ) = DΣ on PΣ. This data is required to satisfy: if
f : Σ1 → Σ2 is a morphism in ∆(X) then
(6.1) P (f)∗DΣ2 = DΣ1 .

We say that D is coherent if the same holds for all morphisms f : Σ1 → Σ2 in
∆sm(X). We will often say G-connection instead of simplicial G-connection, where
there is no need to disambiguate.

As with differential forms the coherence condition is very restrictive, and is not
part of the basic definition.

Let P → X be a simplicial G-bundle. Define P × I → X × I, for I := [0, 1]•, to be
the simplicial G-bundle pr∗P , for pr : X × I → X the natural projection.

Lemma 6.2. G-connections on simplicial G-bundles exist and any pair of G-
connections D1, D2 on a simplicial G-bundle P are concordant. The latter means
that there is a G-connection on D̃ on P × I → X × I, which restricts to D1, D2 on
P × I0, respectively on P × I1, for I0, I1 ⊂ I denoting the images of the two end
point inclusions ∆0

• → I.

Proof. Suppose that Σ : ∆d
simp → X is a degeneracy of a 0-simplex Σ0 : ∆0

simp →
X, meaning that there is a morphism from Σ to Σ0 in ∆(X). Then PΣ = ∆d×PΣ0

(as previously equality indicates natural isomorphism) and we fix the corresponding
trivial connection DΣ on PΣ. This assignment satisfies the condition that for all
morphisms m : Σ1 → Σ2 in ∆(X), for Σ1,Σ2 degeneracies of 0-simplices, DΣ1 =
P (m)∗DΣ2 . We then proceed inductively.

Suppose we have constructed connections DΣ for all k-simplices, 0 ≤ k ≤ n, and
all their degeneracies, satisfying the condition S(n), which is as follows. For all
morphisms m : Σ1 → Σ2 in ∆(X), for Σ1,Σ2 k-simplices or their degeneracies with
0 ≤ k ≤ n, DΣ1 = P (m)∗DΣ2 . We construct an extension DΣ for all (n + 1)-
simplices and their degeneracies, so that this extension satisfies S(n+ 1).

7This is where we used that X is finite dimensional, this can likely be relaxed.
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If Σ is a non-degenerate (n + 1)-simplex then DΣ is already determined over the
boundary of ∆n+1 by the defining condition (6.1). For by the hypothesis, DΣ is
already defined on all n-simplices. Then extend DΣ over all of ∆n+1 arbitrarily
(since the corresponding bundle is trivializable this amounts to choosing a smooth
extension of a Lie algebra valued 1-form). Given a non-identity morphism of non-
degenerate k-simplices m : Σ0 → Σ, 0 ≤ k ≤ n+1, degreeΣ0 < n+1 and hence m
maps to the boundary of Σ, i.e. to a subsimplex of degree n or less and hence by
the inductive hypothesis we have that P (m)∗DΣ = DΣ.

Thus, we have extended DΣ to all (n + 1)-simplices, as such a simplex is either
non-degenerate or is a degeneracy of an n-simplex, and in the latter case DΣ is
defined by the hypothesis.

Now, suppose we have a degeneracy mor : Σm → Σk, k < m, k ≤ n + 1 (Σk can
itself be degenerate). Then we have bundle map:

P (mor) : P (Σm) → P (Σk).

And we define DΣm = P (mor)∗DΣk . The property S(n) ensures that this is well
defined. And so we have constructed an assignment DΣ for all degeneracies of
(n+1)-simplices. By construction this satisfies S(n+1). And so we have completed
the inductive step.

The second part of the lemma follows by an analogous argument, since we may
extend D1, D2 to a concordance connection D̃, using the above inductive procedure.

□

Example 6.3. Given a smooth G-connection D on a smooth principal G-bundle
Z → Y , we naturally get a simplicial G-connection on the induced simplicial G-
bundle Z∆. Concretely, this is defined by setting DΣ on Z∆

Σ = Σ∗Z to be Σ̃∗D, for
Σ̃ : Σ∗Z → Z the natural map (in the pull-back diagram). The pull-back Σ̃∗D, is
the pre-image by Σ̃ of the corresponding distribution. This is called the induced
simplicial connection, and it will be denoted by D∆. Going in the other direction
is always possible if the given simplicial G-connection in addition satisfies coherence,
but we will not elaborate.

7. Chern-Weil homomorphism

7.1. The classical case. To establish notation we first discuss the standard Chern-
Weil homomorphism. In this section again G will be a generalized Lie group. Let
g denote its Lie algebra. Let P be a G-bundle over a smooth finite dimensional
manifold Y . Fix a G-connection D on P .

7.1.1. Curvature 2-form. Associated to D we have the curvature 2-form RD on Y ,
understood as a 2-form valued in the vector bundle P → Y , whose fiber over y ∈ Y
is R(Py) - the Lie algebra of right G-invariant vector fields on Py. In the infinite
dimensional setting the definition of this 2-form is more subtle.

Remark 7.1. No general reference is known to me. But it might be possible to
adapt the finite dimensional approach of Kobayashi-Nomizu [19], [20], to the locally
convex infinite dimensional setting. The potential difficulty may be in differential
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geometric details like the Bianchi identity in infinite dimensions. The approach
below relies on regularity, but on the other hand it is intuitive, and there is no
differential geometry just calculus. It is also, at least implicitly, the approach one
takes in symplectic geometry for curvature of Hamiltonian fibrations, see [30, Section
6.4].

Suppose first we have a trivial bundle (U ⊂ Rd) ×G, with 0 ∈ U , U open. Define
a smooth g valued one form αD on U by:

αD(v) = prG(ṽ),

where ṽ is the D-horizontal lift of v, prG : (U ⊂ Rd) × G → G is the projection,
and where we identify g with the space of right invariant vector fields.

Then for any smooth path γ : [0, 1] → U , we get a smooth path in g,

t 7→ ξt = αD(γ′(t)).

We use the defining property of the regularity of G to find the unique smooth
solution curve γ̃ : [0, 1] → G satisfying:

γ̃′(t) = ξt(γt).

Set φD(γ) = γ̃(1).

This determines a map, called the holonomy map, on the smooth based loop
space:

HolD : ΩpU → G,

HolD(γ) = φD(γ).

The regularity of G gives that HolD is smooth, taking the standard Fréchet manifold
structure on ΩpU .

Now, for v, w ∈ T0U and h, k ∈ [0, 1) let γhv,hw ∈ Ω0U , parametrize the oriented
boundary of the parallelogram, three of whose vertices are 0, hv, hw, where the
orientation on the parallelogram is {v, w}. (We need to perturb the natural piece-
wise linear parametrization to be smooth, with the same image, basically making
it constant near corners of the parallelogram.)

Then the mapping (h, k) 7→ HolD(γhv,hw) ∈ G is smooth (it is well defined with
respect to any choice of the smoothing mentioned above), and of course (0, 0) 7→ e
(the unit). And so we may set:

(7.1) ∀v, w ∈ T0U : RD
0 (v, w) =

∂

∂h∂k
|(0,0)HolD(γhv,hw) ∈ g,

where g is now understood as TeG. Define RD
p analogously at other points of

p ∈ U .

Given a G-bundle map f : T0 → T1 of G-bundles over a point let

lie f : R(T0) → R(T1)

denote the induced mapping of the Lie algebras. Note that for T0 = T1 = G any
such map f uniquely corresponds to left multiplication by some g ∈ G.
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Lemma 7.2. Let f̃ : U ×G → U ×G be a smooth G-bundle map over f : U → U .
Let f̃p denote the restriction of f̃ to the map of the fiber over p to the fiber over
f(p). And let D′ = f̃∗D denote the pull-back connection, then for v, w ∈ TpU :

(f∗RD)p = lie f̃p ◦RD′

p(7.2)

= Adgp(R
D′

p ),(7.3)

where gp ∈ G corresponds to f̃p as above, and where Adg denotes the adjoint action
by g 8.

Proof. For simplicity suppose that p = 0 and f(0) = 0. By definition of the pull-
back connection we have:

HolD
′
(γhv,hw) = f̃−1

p ◦HolD(f ◦ γhv,kw).

So

RD′

0 (v, w) =
∂

∂h∂k
|(0,0)HolD

′
(γhv,kw)

= lie f̃−1
p (

∂

∂h∂k
|(0,0)HolD(f ◦ γhv,kw)

= lie f̃−1
p (

∂

∂h∂k
|(0,0)HolD(γhf∗v,kf∗w)

= lie f̃−1
p (RD

0 (f∗v, f∗w))

= lie f̃−1
p (f∗RD

0 (v, w)).

Here the third equality from the top is obtained as follows. We have the composi-
tion:

(V ⊂ R × R) → Ω0U
Ωf−−→ Ω0U

HolD−−−→ G,

where V 3 (0, 0) is open, Ωf : Ω0U → Ω0U is just the map γ 7→ f ◦ γ, and the
first map is the map (h, k) 7→ γhv,kw. Note that the differential D(Ωf)0 : Ω0T0U →
Ω0T0U , at the constant loop at zero (just denoted as 0), is the map η 7→ Df0 ◦ η,
i.e. it is the map ΩDf0. Then apply chain rule to this composition.

□

The curvature 2-form RD on Y is then defined as follows. Let f̃ : U ×G → P , be
a smooth G-bundle parametrization map over a parametrization f : U → Y . Then
define RD by the condition:

∀f̃ : (f∗RD)p = lie f̃p ◦Rf̃∗D
p .

It is an elementary verification using the lemma above that RD is well defined.

8As it is natural here to work with right invariant vector fields, we define the adjoint action on
the Lie algebra as the left G action on right invariant vector fields.
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7.1.2. The algebra I(G) and the homomorphism for smooth G-bundles. We denote
by Id(G) the space of continuous, symmetric multilinear functionals

i=d∏
i=1

g → R,

we will just call d-tensors, fixed by the adjoint G action. Meaning that for ρ ∈
Ik(G):

ρ(Adg(ξ1), . . . , Adg(ξk)) = ρ(ξ1, . . . , ξk), ∀g ∈ G, ξi ∈ g.

And set
I(G) =

⊕
d≥0

Id(G).

This forms an algebra under the symmetric product, see for instance [20, Chapter
12].

As mentioned in the introduction, in the infinite dimensional setting I(G) may not
be freely generated, and is possibly very intricate algebraically.

Now, let ρ ∈ Ik(G). As ρ is Ad invariant, it uniquely determines a multilinear map
with the same name:

ρ :

i=k∏
i=1

R(Py) → R,

by taking any G-bundle map over a point Py → G and pulling back the functionals.
We may now define a closed R-valued 2k-form ωρ,D on Y :
(7.4)
ωρ,D(v1, . . . , v2k) =

1

2k!

∑
η∈S2k

sign η · ρ(RD(vη(1), vη(2)), . . . , R
D(vη(2k−1), vη2k

)),

for S2k the permutation group of a set with 2k elements, and where v1, . . . , v2k ∈
TyY .

Set
cwP,D(ρ) = ωρ,D.

In this way we get a dg map:

cwP,D : I(G) → Ω•(Y,R).

Set

αρ,D :=

∫
ωρ,D ∈ C2k(Y,R).

Then we define the Chern-Weil characteristic class:

(7.5) cρ(P ) := [αρ,D] ∈ H2k(Y,R).
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7.2. Chern-Weil homomorphism for simplicial G-bundles. Now let P be a
simplicial G-bundle over a smooth simplicial set X. Fix a simplicial G-connection
D on P .

For each simplex Σd, we have the curvature 2-form RD
Σ of the connection DΣ on

PΣ, defined as in the section just above. For concreteness:
∀v, w ∈ Tz∆

d : RD
Σ (v, w) ∈ R(Py),

for Pz the fiber of PΣ over z ∈ ∆d.

As in the previous section, let ρ ∈ Ik(G). We may now define a closed, R-valued,
simplicial differential 2k-form ωρ,D on X:

ωρ,D
Σ (v1, . . . , v2k) =

1

2k!

∑
η∈S2k

sign η · ρ(RD
Σ (vη(1), vη(2)), . . . , R

D
Σ (vη(2k−1), vη2k

)).

Set cwP,D(ρ) = ωρ,D. This defines a dg map:
cwP,D : I(G) → Ω•(X,R).

Definition 7.3. Let
fi : A → Ω•(X,R), i = 0, 1

be dg maps of differential graded R algebras where X is a simplicial set (we work
over R for simplicity). We say that fi are geometrically homotopic if there is a
dg map:

f̃ : A → Ω•(X × I,R),
satisfying e0 ◦ f̃ = f0, and e1 ◦ f̃ = f1, where ei : Ω

•(X × I,R) → Ω•(X) are the
dg maps induced by the end point inclusions pt → ∆1.

It is not hard to see that being geometrically homotopic is an equivalence relation,
but we will not need this.

Lemma 7.4. For P → X as above
cwP,D0 ' cwP,D1 ,

for any pair of simplicial G-connections D0, D1 on P , where ' is the geometric
homotopy relation. The latter homotopy can be made to depend solely on the choice
of a concordance connection D̃.

Proof. For D0, D1 as in the statement, fix a concordance simplicial G-connection
D̃, between D0, D1, on the simplicial G-bundle P × I → X × I, as in Lemma 6.2.

We have a diagram of dg maps:

I(G) Ω•(X × I,R) Ω•(X,R),cwP,D̃ ri

where

• ri are the restriction maps corresponding to the pair of natural inclusions
X → X × I.

• ri ◦ cwP,D̃ = cwP,Di , i = 0, 1.

□
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Definition 7.5. Let
fi : A → B, i = 0, 1

be dg maps of differential graded R algebras A,B. We say that fi are A∞ homo-
topic if there is an A∞ map:

f̃ : A → B ⊗ Ω•(I,R),

satisfying ẽ0 ◦ f̃ = f0, and ẽ1 ◦ f̃ = f1, where ẽi : B ⊗ Ω•(I) → B are the natural
dg maps induced by the end point inclusions pt → I, formally defined in the proof
of Proposition A.1.

A geometric homotopy induces an A∞ homotopy of dg maps. We relegate this to
the Appendix A.

Set
αρ,D :=

∫
ωρ,D ∈ C2k(X,R).

Then in particular, the cohomology class:

cρ(P ) := [αρ,D] ∈ H2k(X,R),

is well defined, and this is called the Chern-Weil characteristic class.

Notation 7.6. Let us denote by cwP any representative of the homotopy class
[cwP,D]. (For smooth or simplicial G-bundles P .)

We have the expected naturality:

Lemma 7.7. Let P be a simplicial G-bundle over Y , ρ as above and f : X → Y a
smooth simplicial map. Then

f∗ ◦ cwP ' cwf∗P ,

where ' as before means homotopic.

Proof. Let D be a simplicial G-connection on P . Define the pull-back connection
f∗D on f∗P by f∗D(Σ) = Df(Σ). Then f∗D is a simplicial G-connection on f∗P .
Now,

∀Σ : ωρ,f∗D(Σ) = ωρ,D(f(Σ)), by definition of f∗D

= f∗ωρ,D(Σ), definition (4.4).

And consequently, ωρ,f∗D = f∗ωρ,D. It follows that:

f∗ ◦ cwP,D = cwf∗P,f∗D.

The result then readily follows by Lemma 7.4. □

Proposition 7.8. Let G ↪→ Z → Y be an ordinary smooth principal G-bundle,
and ρ as above. Let Z∆ be the induced simplicial G-bundle over Y• as in Example
5.6. Then:
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(1) The form ωρ,D∆ is the simplicial differential form induced by ωρ,D, where
induced is as in Example 4.4. In particular,

cwZ∆

' Θ ◦ cwZ ,

where Θ is as in (4.3).

(2) If cρ(Z) ∈ H2k(Y,R) is the Chern-Weil characteristic class as in (7.5), then
(7.6) |cρ(Z∆)|sm = cρ(Z),

where |cρ(Z∆)|sm is as in part 2 of Notation 4.9.

Proof. Fix a smooth G-connection D on Z. This induces a simplicial G-connection
D∆ on Z∆, as in Example 6.3. Let ωρ,D denote the smooth Chern-Weil differential
2k-form on Y , as in (7.4).

Now,

∀Σ : ωρ,D∆

(Σ) = ωρ,Σ̃∗D by definitions
= Σ∗ωρ,D by standard naturality of Chern-Weil forms.

So we obtain the first part of the Proposition.

Let αρ,D =
∫
ωρ,D ∈ C2k(Y,R). It readily follows by Lemma 4.11 that:

|cρ(Z∆)|sm = (I∨)−1([αρ,D∆

]) = [αρ,D] = cρ(Z),

where I∨ is as in (4.9). □

8. The universal simplicial G-bundle

Briefly, a Grothendieck universe is a set U forming a model for set theory. That is
if we interpret all terms of set theory as elements of U , then all the set theoretic
constructions keep us within U . We will assume Grothendieck’s axiom of universes
which says that for any (pure) set X there is a Grothendieck universe U 3 X. Intu-
itively, such a universe U is formed by taking all possible set theoretic constructions
starting with X. For example if P(X) denotes the power set of X, then P(X) ∈ U .
Note that this axiom is beyond ZFC, and the resulting axiomatic system is some-
times denoted as ZFCG. This is now a common framework of modern set theory,
especially in the context of category theory, c.f. [24]. In some contexts one works
with universes implicitly. This is impossible here, as we need to establish certain
universe independence.

Let G be a locally convex Lie group. Let U be a Grothendieck universe satisfy-
ing:

G ∈ U , ∀n ∈ N : ∆n ∈ U ,
where ∆n are the usual topological n-simplices. Such a U will be called G-admissible.

We will construct smooth Kan complexes BGU for each G-admissible U . Moreover,
we will construct a weak equivalence |BGU | → BG for each U , where BG the
standard Milnor classifying space.

If G has the homotopy type of a CW complex, then BG has the homotopy type
of a CW complex. In particular, by Whitehead’s theorem the homotopy type of
|BGU | is the independent of U , and in fact |BGU | is BG up to homotopy.
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Definition 8.1. A U-small set is an element of U . For X a smooth simplicial
set, a smooth simplicial G-bundle P → X will be called U-small if for each n X(n)
is U-small, and for each simplex Σ of X the bundle PΣ is U-small.

8.1. The classifying spaces BGU . Let U be G-admissible. We define a simplicial
set BGU , whose set of k-simplices BGU (k) is the set of U -small smooth simplicial
G-bundles over ∆k

•. The simplicial maps are defined by pull-back so that given a
map i ∈ hom∆(m,n) the map

BGU (i) : BGU (n) → BGU (m)

is the natural pull-back:
BGU (i)(P ) = i∗•P,

for i•, the induced map i• : ∆m
• → ∆n

• , P ∈ BGU (n) a simplicial G-bundle over
∆n

• , and where the pull-back map i∗• is as in Section 5.1. Then Lemma 5.13 ensures
that BGU : ∆op → s−Set is a functor, so that we get a simplicial set BGU .

We define a smooth simplicial set structure g on BGU as follows. Given a d-simplex
P ∈ BGU (d) the induced map

(g(P ) = P∗) : ∆
d
• → BGU ,

is defined naturally by

(8.1) P∗(σ) := σ∗
•P.

where P on the right is the initial simplicial G-bundle P → ∆d
•. More explicitly,

σ ∈ ∆d
•(k) is a smooth map σ : ∆k → ∆d, σ• : ∆k

• → ∆d
• denotes the induced

map and the pull-back is as previously defined. We need to check the push-forward
functoriality Axiom 2b.

Let σ ∈ ∆d
•(k), then for all j ∈ N, ρ ∈ ∆k

•(j):

(P∗(σ))∗(ρ) = (σ∗
•P )∗(ρ)

= ρ∗•(σ
∗
•P ), by definition of g.

And

P∗ ◦ σ•(ρ) = (σ•(ρ))
∗
•P

= (σ• ◦ ρ•)∗P, as σ• is smooth
= ρ∗•(σ

∗
•P ).

And so
(P∗(σ))∗ = P∗ ◦ σ•,

so that BGU is indeed a smooth simplicial set.
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8.2. The universal smooth simplicial G-bundle EGU → BGU . To abbre-
viate already complex notation, in what follows V denotes BGU for a general,
G-admissible U . There is a tautological functor
(8.2) E : ∆sm(V ) → G
that we now describe.

A smooth map P : ∆d
• → V , uniquely corresponds to a d-simplex P b of V via

Proposition 3.7, i.e. a simplicial G-bundle P b → ∆d
•. In other words P b is the

bundle:
(8.3) P b = P (idd),

for idd : ∆d → ∆d the identity, and where the equality is an equality of simplicial
G-bundles, in other words functors.

Notation 8.2. Although we disambiguate in the discussion just below, later on we
may conflate the notation P, P b with just P .

Recalling that P b is a certain functor ∆sm(∆d
•) → G we then set:

E(P ) = P b(idd•).

We now define the action of E on morphisms. Suppose we have a morphism m ∈
∆sm(V ):

∆k
• ∆d

•

V,

m̃•

P1
P2

then we have an equality:
P b
1 = P1(id

k) (8.3)
= (P2 ◦ m̃•)(id

k)

= P2(m̃)

= (P b
2 )∗(m̃), thinking of P b

2 as a simplex of V
= P b

2 ◦∆smm̃•, by (8.1).

(8.4)

So that
P b
1 (id

k
•) = P b

2 (m̃• ◦ idk•) = P b
2 (m̃•).

We have a tautological morphism em ∈ ∆sm(∆d
•) corresponding to the diagram:

∆k
• ∆d

•

∆d
•.

m̃•

m̃•
idd

•

So we get a smooth G-bundle map:
P b
2 (em) : (E(P1) = P b

2 (m̃•)) → (E(P2) = P b
2 (id

d
•)),

which is over the smooth map m̃ : ∆k → ∆d induced by m̃•. And we set E(m) =
P b
2 (em).
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We need to check that with these assignments E is a functor. Suppose we have a
diagram:

∆l
• ∆k

• ∆d
•

V.

m̃0
•

P0

m̃1
•

P1
P2

In other words, we have a diagram for the composition m = m1 ◦m0 in ∆sm(V ).
Then em = em1 ◦ e′m0 where e′m0 is the diagram:

∆l
• ∆k

•

∆d
•,

m̃0
•

m̃•
m̃1

•

and em1 is the diagram:

∆k
• ∆d

•

∆d
•.

m̃1
•

m̃1
•

idd
•

So
E(m) = P b

2 (em) = P b
2 (em1) ◦ P b

2 (e
′
m0) = E(m1) ◦ P b

2 (e
′
m0).

Now,

E(m0) = P b
1 (em0)

= (P b
2 ◦∆smm̃1

•)(em0), analogue of (8.4)
= P b

2 (e
′
m0

).

And so we get: E(m) = E(m1) ◦ E(m0). Thus, E is a functor.

By construction the functor E satisfies the compatibility condition, and hence de-
termines a simplicial G-bundle.

Definition 8.3. Given G,U as previously, the universal simplicial G-bundle EGU

is defined to be the functor E as constructed above.

Proposition 8.4. BGU is a Kan complex.

Proof. In what follows we again abbreviate BGU as V . Recall that Λn
k ⊂ ∆n

simp,
denotes the sub-simplicial set corresponding to the “boundary” of ∆n with the k’th
face removed, where by k’th face we mean the face opposite to the k’th vertex. Let
h : Λn

k → V , 0 ≤ k ≤ n, be a simplicial map, this is also called a horn. We need to
construct an extension of h to ∆n

simp.

For simplicity we assume n = 2, and k = 1 as the general case is identical. There
are three natural inclusions

ij : ∆
0
simp → ∆2

simp,



SMOOTH SIMPLICIAL SETS AND UNIVERSAL CHERN-WEIL 41

j = 0, 1, 2, with i1 corresponding to the inclusion of the horn vertex. The corre-
sponding 0-simplices will be denoted by 0, 1, 2. Let

σi,j : ∆
1
simp → ∆2

be the edge between vertexes i, j, that is σi,j(0) = i, σi,j(1) = j.

Let us denote by L the smooth sub-simplicial set of ∆2
• corresponding to the sim-

plices whose images lie in imageσ0,1 or imageσ1,2. There are then smooth maps
σi,j : ∆

1
• → L extending σi,j above.

The map h above, induces a smooth map h• : L → V , and we denote P := h∗
•E. So

P → L is a simplicial G-bundle. The extension of h to ∆2
simp will be accomplished

once we extend the P over ∆2
•.

Lemma 8.5. The bundle P → L is trivializable.

Proof. Set Pi,j := σ∗
i,jP , then by Theorem 5.10 Pi,j is induced by a smooth G-

bundle over ∆1. The latter is trivializable, and hence Pi,j is trivializable as a
simplicial G-bundle. Denote by φi,j : ∆

1
•×G → Pi,j the corresponding trivialization

over the id : ∆1
• → ∆1

•.

Denoting 0, 1 ∈ ∆1
•(0) the end-point vertices as previously, φ0,1 induces a G-

equivariant smooth map:
G = (∆1

• ×G)(1) → P0,1(1),

and we denote this map by φ1. Likewise, φ1,2 induces a smooth map:
G = (∆1

• ×G)(0) → P1,2(0),

and we denote this map by φ2.

Now the map φ−1
1 ◦ φ2 may not be the id : G → G, but clearly we may adjust φ1,2

so that it is. And so we may assume this holds.

Then φ0,1 and φ1,2 clearly induce a trivialization tr : T → P , for T → L the trivial
simplicial G-bundle.

□

We have the trivial extension of T to the trivial simplicial G-bundle over ∆2
•. And

so by the lemma above it should be clear that P likewise has an extension P̃ over
∆2

•, but we need this extension to be U -small so that we must be explicit.

We proceed inductively. Let D0 denote the full sub-category of ∆sm(∆2
•) with the

set objects objL ∪∆2
•(0) (non-disjoint union).

We extend P to a functor P̃ 0 : D0 → G. For σ ∈ ∆2
•(d), if σ has image in the horn

Λ2
1 ⊂ ∆2, then set P̃ 0(σ) = P (σ). The extension of P̃ 0 to morphisms in D0 is then

taken to be the trivial extension.

Let T 0 : D0 → G be the trivial functor (as in the definition of a trivial bundle
in Example 5.5). Then in addition, there is clearly a natural transformation tr0 :

T 0 → P̃ 0 extending the natural transformation tr of the lemma above.

Let S(n) be the statement:
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(1) There is an extension P̃n of P over the full-subcategory Dn ⊂ ∆sm(∆2
•),

defined analogously to D0, with objects

objL ∪
⋃

0≤k≤n

∆2
•(k).

(2) P̃n satisfies compatibility.

(3) There is a natural transformation trn : Tn → P̃n extending the natural
transformation tr of the lemma above. Where Tn : Dn → G is the trivial
functor defined analogously to T 0 above.

We prove
S(n) =⇒ S(n+ 1),

and that moreover the corresponding functor P̃n+1 can be chosen to extend P̃n.
Then natural induction implies the existence of the needed extension P̃ over ∆2

•.

Let σ ∈ ∆2
•(n+ 1). By the hypothesis S(n) the functor:

σ∗
•P̃

n : Cn+1 → G,

is defined, where Cn+1 denotes the sub-category of ∆(∂∆n+1
simp) with objects all non-

degenerate objects and with morphisms injections. (The pull-back is as in Section
5.1).

We then have a topological bundle

p′ : N ′
σ → ∂∆n+1

defined as the colimit of σ∗
•P̃

n over Cn+1.

Let
inc : ∂∆n+1 → ∆n+1

denote the inclusion. We first construct a principal G-bundle with discrete topology

Nσ
p−→ ∆n+1,

by the following conditions:

Nσ|∂∆n+1 := p−1(∂∆n+1) = N ′
σ,(8.5)

Nσ|(∆n+1)◦ = (∆n+1)◦ ×G,(8.6)

where the projection map p is determined by the maps p′ : N ′
σ → ∂∆n+1, and the

projection map (∆n+1)◦ ×G → (∆n+1)◦.

By the inductive hypothesis S(n) part 3, there is a distinguished trivialization
hn : ∂∆n+1 × G → N ′

σ, corresponding to trn. The map hn and the identity map
(∆n+1)◦×G → (∆n+1)◦ induce a discrete G-bundle isomorphism ∆n+1×G → Nσ.
Then push-forward the smooth G-bundle structure and the topology along this
map. The resulting smooth G-bundle is then set to be P̃n+1(σ).

We have thus defined the extension P̃n+1 on objects. We now need to treat mor-
phisms in Dn+1 ⊂ ∆(∆2

•). For any d-simplex ρ of ∆2 let ρi denote the i’th face of ρ,
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0 ≤ i ≤ d. For clarity, this means that we have an inclusion morphism inci : ρi → ρ
corresponding to the diagram:

∆n ∆d

∆2,

ĩnci

ρi ρ

where ĩnci is the topological face inclusion map corresponding to the face opposite
the vertex i, also called the i-face of ∆d.

By construction we have natural maps:

P̃n+1(inci) : P̃
n(σi) = P̃n+1(σi) → P̃n+1(σ),

for each i ∈ {0, . . . , n+ 1}.

If m : σn+1 → ρn+1 is an identity morphism, then set P̃n+1(m) to be the id.

Suppose we given a morphism m : σ → ρ, σ ∈ ∆2
•(n + 1), ρ ∈ ∆2

•(n). We then
define P̃n+1(m) as follows. First we define a map:

∂ : inc∗P̃n+1(σ) → P̃n+1(ρ),

for inc : ∂∆n+1 → ∆n+1 the inclusion.

Over a j-face of ∆n+1, P̃n+1(σ) is naturally identified with P̃n(σj). The composi-
tion mj = m ◦ incj ,

σj
incj−−−→ σ

m−→ ρ,

is a morphism in Dn. So we have the map

P̃n(mj) : P̃
n(σj) → P̃n+1(ρ).

The collection of these maps for 0 ≤ j ≤ n+ 1 then naturally induces the map ∂.

We then define P̃n+1(m) using the identifications (8.5), (8.6) as follows. Set
P̃n+1(m) to be the map ∂ on

P̃n+1(σ)|∂∆n+1 = p−1(∂∆n+1).

The hypothesis S(n) part 3 ensures that P̃n+1(m) has an extension to a map
P̃n+1(σ) → P̃n+1(ρ).

As P̃n+1 must extend P̃n, combined with the construction above, we have thus
specified the functor P̃n+1 on a generating set of morphisms in Dn+1, which defines
P̃n+1 completely. For example, given a degeneracy m : σn → ρn−2, we may
factorize it as σn m′

−−→ ρn−1 pr−→ ρn−2, and then set:

P̃n+1(m) = (P̃n+1(pr) = P̃n(pr)) ◦ P̃n+1(m′).

Functoriality of P̃n, implies that this is well defined. And by construction P̃n+1

will be a functor satisfying compatibility. So we are done.

□
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Theorem 8.6. Let X be a smooth simplicial set. U-small simplicial G-bundles
P → X are “classified by” smooth maps

fP : X → BGU .

Specifically:

(1) For every U-small P there is a natural smooth map fP : X → BGU so that
f∗
PEGU = P

as simplicial G-bundles. We say in this case that fP classifies P .

(2) If P1, P2 are isomorphic U-small smooth simplicial G-bundles over X then
the classifying maps fP1 , fP2 are smoothly homotopic, as in Definition 3.14.

(3) If X = Y• for Y a smooth manifold and f, g : X → BGU are smoothly
homotopic then Pf = f∗EGU , Pg = g∗EGU are isomorphic simplicial G-
bundles.

Note that the above is a partly stronger (because of equality in Part 1) and partly
weaker than just saying that isomorphism classes of U -small bundles over X are in
correspondence with smooth homotopy classes of maps X → BGU . It is strictly
stronger when X = Y• for Y a smooth manifold.

Proof. Set V = BGU , E = EGU . Let P → X be a U -small simplicial G-bundle.
Define fP : X → V by:
(8.7) fP (Σ) = Σ∗

∗P,

where Σ ∈ ∆d(X), Σ∗ : ∆d
• → X, the induced map, and the pull-back Σ∗

∗P our
usual simplicial G-bundle pull-back. We check that the map fP is simplicial.

Let m : k → d be a morphism in ∆. We need to check that the following diagram
commutes:

X(d) X(k)

V (d) V (k).

X(m)

fP fP

V (m)

Let Σ ∈ X(d), then by push-forward functoriality Axiom 2b (X(m)(Σ))∗ = Σ∗ ◦m•
where m• : ∆k

• → ∆d
• is the simplicial map induced by m : ∆k → ∆m. And so

fP (X(m)(Σ)) = (Σ∗ ◦m•)
∗P = m∗

•(Σ
∗
∗P ) = V (m)(fP (Σ)),

where the second equality uses Lemma 5.13. Hence the diagram commutes.

We now check that fP is smooth. Let Σ ∈ X(d), then we have:
(fP (Σ))∗(σ) = σ∗

•(Σ
∗
∗P )

= (Σ∗ ◦ σ•)
∗P, Lemma 5.13

= (Σ∗(σ))
∗
∗P, as Σ∗ is smooth, Lemma 3.6

= fP (Σ∗(σ)), by (8.7)
= (fP ◦ Σ∗)(σ),

and so fP is smooth.
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We check that f∗
PE = P . Let Σ : ∆d

• → X be smooth, and σ ∈ ∆d
•. First, we need

the identity:

(8.8)

∆smfP (Σ)(σ) = (fP ◦ Σ)(σ) = fP (Σ(σ)) = (Σ(σ))∗∗P by definition of fP
= (Σ∗ ◦ σ•)

∗P as Σ is smooth
= σ∗

•(Σ
∗P ) Lemma 5.13

= g(Σ∗P )(σ).

So
(8.9) ∆smfP (Σ) = g(Σ∗P ).

Then
f∗
PE(Σ) = (E ◦∆smfP )(Σ) = E(g(Σ∗P )), by (8.8)

= (Σ∗P )(idd•), definition of E
= P (Σ).

So f∗
PE = P on objects.

Now let m be a morphism:
∆k

• ∆d
•

X,

m̃•

Σ1
Σ2

in ∆sm(X). We then have, for em is as in the definition of E:
f∗
PE(m) = E(∆smfP (m))

= (∆smfP (Σ2))
b(em) by definition of E

= Σ∗
2P (em) by (8.9)

= (P ◦∆smΣ2)(em).

But ∆smΣ2(em) is the diagram:

∆k
• ∆d

•

X,

m̃•

Σ2◦m̃•
Σ2◦idd

•

i.e. it is the diagram m. So (P ◦ ∆smΣ2)(em) = P (m). Thus, f∗
PE = P on

morphisms.

So we have proved the first part. We now prove the second part. Suppose that
φ : P1 → P2 is an isomorphism of U -small simplicial G-bundles over X. We
construct a U -small simplicial G-bundle P̃ over X × I as follows, where I = ∆1

• as
before.

Let σ be a k-simplex of X. Then φ specifies a G-bundle diffeomorphism φσ :
P1(σ) → P2(σ) over the identity map ∆k → ∆k. Let Mσ be the mapping cylinder
of φσ. So that
(8.10) Mσ = (P1(σ)×∆1 t P2(σ))/ ∼,
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for ∼ the equivalence relation generated by the condition

(x, 1) ∈ P1(σ)×∆1 ∼ φ(x) ∈ P2(σ).

Then Mσ is a smooth G-bundle over ∆k ×∆1.

Let prX , prI be the natural projections of X × I, to X respectively I. Let Σ be a
d-simplex of X×I, for any d. Set σ1 = prXΣ, and σ2 = prI(Σ). Let idd : ∆d → ∆d

be the identity, so
(idd, σ2) : ∆

d → ∆d ×∆1,

is a smooth map, where σ2 is the corresponding smooth map σ2 : ∆d → ∆1 = [0, 1].
We then define

P̃Σ := (idd, σ2)
∗Mσ1 ,

which is a smooth G-bundle over ∆d.

Notice that if Σ is in X × 0• ⊂ X × I, then we do not have P̃ (Σ) = P1(Σ), instead
there is a natural isomorphism. This is for the same reason that fixing the standard
construction of the set theoretic pull-back, a bundle P → B is not set theoretically
equal to the bundle id∗P → B, for id : B → B the identity, (but they are of
course naturally isomorphic.) However, we can adjust the construction of P̃Σ so
that P̃ (Σ) = P1(Σ) does hold, similarly to the inductive procedure in the proof of
Proposition 8.4. In what follows, we ignore this minor ambiguity.

Suppose that ρ : σ → σ′ is a morphism in ∆sm(X), for σ a k-simplex and σ′ a
d-simplex. As φ is a simplicial G-bundle map, we have a commutative diagram:

(8.11)
P1(σ) P1(σ

′)

P2(σ) P2(σ
′).

P1(ρ)

ϕσ ϕσ′

P2(ρ)

And so we get a naturally induced (by the pair of maps P1(ρ), P2(ρ)) bundle map:

(8.12)
Mσ Mσ′

∆k ×∆1 ∆d ×∆1 .

gρ

ρ̃×id

More explicitly, let qσ : P1(σ)×∆1tP2(σ) → Mσ denote the quotient map. Define

g̃ρ : P1(σ)×∆1 t P2(σ) → Mσ′

by:
g̃(x, t) = qσ′((P1(ρ)(x), t)) ∈ Mσ′ ,

for
(x, t) ∈ P1(σ)×∆1,

while g̃ρ(y) = qσ′(P2(ρ)(y)) for y ∈ P2(σ). By commutativity of (8.11) g̃ρ induces
the map gρ : Mσ → Mσ′ , appearing in (8.12).
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Now suppose we have a morphism m : Σ → Σ′ in ∆sm(X × I), where Σ is a
k-simplex and Σ′ is a d-simplex. Then we have a commutative diagram:

(8.13)

Mσ Mσ′

∆k ×∆1 ∆d ×∆1

∆k ∆d

P̃Σ P̃Σ′

gprX (m)

m̃×id

m̃

h1 h2

where h1 = (idk, prI(Σ)) and h2 = (idd, prI(Σ
′)). We then readily get an induced

natural bundle map:
P̃ (m) : P̃Σ → P̃Σ′ ,

as left most and right most arrows in the above commutative diagram are the
natural maps in pull-back squares, and so by universality of the pull-back such a
map exists and is uniquely determined. Of course P̃ (m) is the unique map making
the whole diagram (8.13) commute.

With the above assignments, it is immediate that P̃ is indeed a functor, by the
uniqueness of the assignment P̃ (m). And this determines our U -small smooth
simplicial G-bundle P̃ → X × I. By the first part of the theorem, we have an
induced smooth classifying map fP̃ : X×I → V . By construction, it is a homotopy
between fP1 , fP2 . So we have verified the second part of the theorem.

We now prove the third part of the theorem. Let X = Y•. Suppose that f, g : X →
V are smoothly homotopic, and let H : X × I → V be the corresponding smooth
homotopy. Now PH = H∗E is a simplicial G-bundle over X × I = (Y × [0, 1])• and
hence by Theorem 5.10 PH is induced by a smooth G-bundle P ′

H over Y × [0, 1].

Now by construction
Pf ' (P ′

H |Y×{0})
∆

and
Pg ' (P ′

H |Y×{1})
∆ .

And
P ′
H |Y×{0} ' P ′

H |Y×{1}

by standard smooth bundle theory and hence

(P ′
H |Y×{0})

∆ ' (P ′
H |Y×{1})

∆ .

And so Pf ' Pg.

□
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Since Theorem 5.10 works for manifolds with corners, and since ∆k
•×I ' (∆k×∆1)•

the proof of the theorem above readily extends to give the following theorem. We
say that a smooth G-bundle P over ∆k is trivial over ∂∆k, if there is a distinguished
trivialization of P over ∂∆k. A relative isomorphism of P0, P1 as above, is
an isomorphism that is trivial trivial over ∂∆k, in the respective distinguished
trivializations.

Let v0 ∈ BGU (0) correspond to the trivial simplicial G-bundle G×∆0
• → ∆0

•.

Theorem 8.7. The set πsm
k (BGU , v0) (Definition 3.15) is naturally isomorphic to

the set PU
k of equivalence classes of smooth, U-small G-bundles P over ∆k trivial

over ∂∆k, where P0 ∼ P1 if there is a relative bundle isomorphism from P0 to P1.
The map
(8.14) clk : πsm

k (BGU , v0) → PU
k

is given by [f ] 7→ [Pf ], where Pf = f∗EGU (idk), idk : ∆k → ∆k the identity.

We now study the dependence on a Grothendieck universe U .

Theorem 8.8. Let G be a locally convex Lie group. Let U be a G-admissible
universe, let |BGU | denote the geometric realization of BGU and let BGtop denote
the classifying space of G as defined by the Milnor construction [32]. Then there is
a weak homotopy equivalence

eU : |BGU | → BGtop,

which is natural in the sense that if U ∈ U ′ then
(8.15) [eU

′
◦ |iU,U ′

|] = [eU ],

where |iU,U ′ | : |BGU | → |BGU ′ | is the map of geometric realizations, induced by the
natural inclusion iU,U ′

: BGU → BGU ′ and where [·] denotes the homotopy class.
In particular, if G has the homotopy type of a CW complex, then for all U BGU

has the homotopy type of BGtop.

Proof. To cut down on notation set V := BGU , and E := EGU , v0 ∈ V will be as
above, and we will not disambiguate by decoration with U .

Lemma 8.9. Let P → X be a simplicial G-bundle. Set |P | = colim∆(X) P , where
the colimit is understood to be in the category of topological G-bundles, and recalling
that P is a functor ∆sm(X) → G, and so restricts to a functor ∆(X) → G. Then
the natural map |P | → |X| is a topological principal G-bundle. We call this the
geometric realization of P .

Proof. Set P ′ = F1 ◦ P , where F1 is as in Definition 5.3. So there is a natural
transformation N : P → P ′ of Top valued functors. By naturality of the colimit
there is an induced map:

colim∆(X) P → colim∆(X) P
′,

i.e. a continuous map |P | → |X|.

We check that the map |p| is a locally trivial fibration. By a topological d-simplex
Σ : ∆d → |X| we shall mean the natural map (in the colimit diagram) ∆d → |X|
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corresponding to a non-degenerate d-simplex of X. If v ∈ |X| is a vertex, i.e.
the image of a topological 0-simplex ∆0 → |X|, we construct a contractible open
neighborhood Uv 3 v as follows.

Let Sd be the set of the topological d-simplices with images containing v. For
Σ ∈ Sd, let Σ̃ = imageΣ − imageΣv, where Σv : ∆d−1 → |X| is the face of Σ not
containing v. Then define:

Uv =
⋃
d

⋃
Σ∈Sd

Σ̃.

Over each Σ̃ the bundle |p| is obviously a trivializeable topological G-bundle. More-
over, any trivialization over the boundary of Σ̃ (the collection of the remaining faces
of Σ) may be extended to a trivialization over Σ̃. We may then proceed inductively.

Set
Uk =

⋃
d≤k

⋃
Σ∈Sd

Σ̃,

by convention set U0 = {v}. We construct G-bundle trivialization maps ∀k ∈ N:

fk : |p|−1(Uk) → Uk ×G,

with the property that each fk+1 extends fk. Clearly, f0 exists. Suppose we have
constructed f0, . . . , fk for some k ≥ 0 with the property above. We then construct
fk+1. Let Σ ∈ Sk+1, then over the boundary of Σ̃ we already have a trivialization
determined by fk. Clearly the set JΣ of extensions of this trivialization over Σ̃ is
nonempty.

Using axiom of choice fix an element of JΣ for each Σ ∈ Sk+1, and this determines
our extension fk+1. 9 □

By the lemma above we have a topological G-bundle

|E| → |V |.

Then

(8.16) |E| ' e∗EGtop,

where

• EGtop is the universal G-bundle over BGtop.

•
e = eU : |V | → BGtop

is uniquely determined up to homotopy.

• ' here and the rest of this argument will mean G-bundle isomorphism or
simplicial G-bundle isomorphism, depending on context.

9Strictly speaking, to formalize the existence of the infinite sequence {fk} (not just any frag-
ment) requires a separate invocation of the axiom of choice, or more specifically the so called
axiom of dependent choice, but this is standard.
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We say that e classifies |E| → |V |. We will show that e induces an isomorphism
of all homotopy groups.

We first prove an auxiliary lemma. Let U ′ be a universe enlargement of U , that is
U ′ is a universe with U ∈ U ′. There is a natural inclusion map

i = iU,U ′
: BGU → BGU ′

,

and
i∗EGU ′

= E 10.

Lemma 8.10. Let G be a locally convex Lie group, then
i∗ : πsm

k (BGU , v0) → πsm
k (BGU ′

, v0)

is a set isomorphism for all k ∈ N.

Proof. We show that i∗ is injective. Let’s abbreviate V = BGU , V ′ = BGU ′ ,
E = EGU , E′ = EGU ′ . Let f, g : ∆k

• → V be a pair of smooth maps relative to
v0. Let Pf , Pg denote the smooth bundles over ∆k as given by the correspondence
of Theorem 8.7. Set f ′ = i ◦ f , g′ = i ◦ g and suppose that f ′, g′ are smoothly
homotopic. Then by Theorem 8.7, Pf ′ , Pg′ are relatively isomorphic and so Pf ′

and Pg′ are relatively isomorphic. (Since we may identify Pf ′ , Pg′ with Pf , Pg.)

We now show surjectivity of i∗. Let f : ∆k
• → V ′ be a smooth relative to v0 map.

Let Pf → ∆k be the corresponding smooth bundle trivial over ∂∆k, via Theorem
8.7.

It is elementary that any such smooth bundle is isomorphic to a bundle obtained
by the clutching construction corresponding to some smooth relative to e map
φ : ∆k−1 → G (meaning as before the boundary is taken to e). Specifically, P ′ is
isomorphic as a smooth G-bundle to a bundle of the form:

Cϕ = ∆k
− ×G t∆k

+ ×G/ ∼,

where:

(1) ∆k
+,∆

k
− are connected and closed subsets of ∆k diffeomorphic to ∆k, cover-

ing ∆k, whose intersection is the image of a smooth embedding i : ∆k−1 →
∆k mapping boundary to boundary, and mapping the interior to the inte-
rior of ∆k.

(2) ∼ is the equivalence relation generated by the relation: for (i(x), g) ∈
∆k

− ×G,
(i(x), g) ∼ (i(x), φ(x) · g) ∈ Dk

+ ×G.

This gluing construction can be carried out in L, for any G-admissible Grothendieck
universe L. In particular, Cϕ is U -small and Cϕ and Pf are relatively isomorphic
U ′-small smooth G-bundles.

If we denote by fϕ a representative for cl−1
k ([Cϕ]), then by Theorem 8.7 fϕ : ∆k

• →
V ′ is smoothly relatively homotopic to f . But Cϕ is U -small, and hence [Cϕ] ∈ PU

k

is clk([f ′]) for a smooth based map f ′ : ∆k
• → V . It is immediate that [i◦f ′] = [fϕ],

since i∗E′ = E. And so i∗([f
′]) = [f ]. □

10This is indeed an equality, not just a natural isomorphism.



SMOOTH SIMPLICIAL SETS AND UNIVERSAL CHERN-WEIL 51

Corollary 8.11. Let G be a locally convex Lie group, and let U ,U ′ be as in the
previous lemma. Then the natural map

j : PU
k → PU ′

k ,

is a set bijection.

We now prove that e∗ : πk(|V |, v0) → πk(BGtop, x0) is an isomorphism, where x0

is any fixed point s.t. EGU is given a fixed trivialization over x0.

Let f : ∆k → BGtop be a continuous based at x0 map. By Müller-Wockel [33,
Theorem II.11], the bundle Pf := f∗EGtop is topologically relatively isomorphic to
a smooth G-bundle P ′ → ∆k trivial over the boundary. By the axiom of universes
P ′ is U0-small for some G-admissible U0 3 U .

By Theorem 8.7 [P ′] = j(clk([g])) for some smooth relative to v0

g : ∆k
• → V.

Hence Pf is relatively isomorphic as a topological G-bundle to |g|∗|E|, where
|g| : ∆k ' |∆k

simp| → |V |

is the natural map induced by g, and ∆k ' |∆k
simp| is the natural topological

homeomorphism. And so Pf is relatively isomorphic to |g|∗e∗EGtop, and so as
relative classes [f ] = e∗[g], so that we are done with surjectivity.

We now prove injectivity. Let f0, f1 : ∆k → |V | be continuous and relative to v0.
We may represent the relative classes [fi] by |gi|, where

|gi| : |∆k
simp| → |V |

are induced by some relative to v0 maps gi : ∆
k
simp → V . This is by generalities of

homotopy groups of Kan complexes, see for instance [Chapter 1][16].

Let Pi → ∆k be the smooth trivial over the boundary G-bundles corresponding
to gi, meaning: take the simplices corresponding to gi, these represent simplicial
G-bundles over ∆k

• by construction of V , then evaluate on idk : ∆k → ∆k.

Now suppose that [e◦f0] = [e◦f1]. Then Pi are relatively isomorphic as topological
G-bundles, and so by [33, Theorem II.12] Pi are smoothly relatively isomorphic G-
bundles over ∆k. And so by Theorem 8.7 gi are smoothly homotopic. Consequently,
|gi| are homotopic and so [f0] = [f1].

It follows that:
(8.17) ∀k ∈ N : e∗ : πk(|V |, v0) → πk(BGtop, x0)

is an isomorphism.

Finally, we show naturality. Let
|iU,U ′

| : |V | → |V ′|

denote the map induced by the inclusion iU,U ′ . Since E = (iU,U ′
)∗E′, we have that

|E| ' |iU,U ′
|∗|E′|

and so
|E| ' |iU,U ′

|∗ ◦ (eU
′
)∗EGtop,
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by (8.16), from which the conclusion immediately follows. And we are done with
the proof of the theorem. □

9. The universal Chern-Weil homomorphism

In this section G is a generalized Lie group and g its Lie algebra. Pick any simplicial
G-connection D on EGU → BGU . By construction of Section 7 we obtain a dg
homomorphism:

(9.1) cwD := cwEGU ,D : I(G) → Ω•(BGU ,R).

Let cw represent [cwD] as in Notation 7.6. This satisfies the following prop-
erty:

Proposition 9.1. Let U be a G-admissible Grothendieck universe. Let P → X be
a U-small simplicial G-bundle and let

cwP : I(G) → Ω•(X,R),

be as in Notation 7.6. Then
f∗
P ◦ cw ' cwP ,

where fP : X → BGU is the classifying map.

Proof. This follows immediately from Lemma 7.7. □

Let eU be as in Theorem 8.8, then this is a weak equivalence. And so induces an
isomorphism

eU∗ : H•(|BGU |,R) → H•(BGtop,R),

Hatcher [13, Proposition 4.21].

Set
cρ,U := cρ(EGU ) = [

∫
(cw(ρ))] ∈ H2k(BGU ,R).

Then we define the cohomology class
cρ := eU∗ (|cρ,U |) ∈ H2k(BGtop,R),

where the G-admissible universe U is chosen arbitrarily and where
|cρ,U | ∈ H2k(|BGU |,R)

is as in Notation 4.9.

Lemma 9.2. The cohomology class cρ is well-defined.

Proof. Given another choice of a G-admissible universe U ′, let U ′′ ⊃ {U ,U ′} be a
common universe enlargement. By Lemma 7.7 and Lemma 4.10

|iU,U ′′
|∗(|cρ,U

′′
|) = |cρ,U |.

Now |iU,U ′′ | is a weak equivalence by Theorem 8.8. Let

|iU,U ′′
|∗ : H•(|BGU ′

|,R) → H•(|BGU |,R)

be the corresponding algebra isomorphism, and let |iU,U ′′ |∗ denote its inverse.
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Then we have:
(9.2) |iU,U ′′

|∗(|cρ,U |) = |cρ,U
′′
|.

Consequently,
eU∗ (|cρ,U |) = eU

′′

∗ ◦ |iU,U ′′
|∗(|cρ,U )|, by the naturality part of Theorem 8.8

= eU
′′

∗ (|cρ,U
′′
|), by (9.2).

In the same way we have:
eU

′

∗ (|cρ,U
′
|) = eU

′′

∗ (|cρ,U
′′
|).

So
eU∗ (|cρ,U |) = eU

′

∗ (|cρ,U
′
|),

and so we are done.

□

We call cρ ∈ H2k(BGtop,R) the universal Chern-Weil characteristic class
associated to ρ.

9.1. Universal cohomological Chern-Weil homomorphism. Let
hcw : I(G) → H∗(BGtop,R),

be the algebra map sending ρ to cρ as above. Then to summarize, we have the
following theorem purely about the Milnor classifying space BGtop, reformulating
Theorem 1.1 of the introduction:

Theorem 9.3. Let G be a generalized Lie group. The homomorphism hcw satisfies
the following property. Let G ↪→ Z → Y be a smooth principal G-bundle. Let
cρ(Z) ∈ H2k(Y ) denote the standard Chern-Weil class associated to ρ. Then

f∗
Zhcw(ρ) = cρ(Z),

where fZ : Y → BGtop is the classifying map of the underlying topological G-bundle.

Proof. Let U0 3 Z be a G-admissible Grothendieck universe. By Proposition 9.1
cρ(Z∆) = f∗

Z∆ (cρ,U0).

And by Proposition 7.8, |cρ(Z∆)|sm = cρ(Z). So we have
cρ(Z) = |cρ(Z∆)|sm

= |f∗
Z∆ (cρ,U0)|sm

= N∗(|f∗
Z∆ cρ,U0 |), Part 2 of Notation 4.9

= N∗ ◦ |fZ∆ |∗(|cρ,U0 |), by Lemma 4.10
= N∗ ◦ |fZ∆ |∗ ◦ (eU0)∗cρ, by definition of cρ.

Now, we have a diagram of topological G-bundle maps:

|Z∆ | Z EG

|Y•| Y BGtop,h fZ
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for h as in (4.7). And so eU ◦ f|Z∆ | being the classifying map for |Z∆ | → |Y•|, is
homotopic to fZ ◦ h.

Thus, eU0 ◦ |fZ∆ | ◦N is homotopic to fZ . So that

cρ(Z) = f∗
Zc

ρ = f∗
Zhcw(ρ),

and we are done. □

9.2. Universal dg Chern-Weil homomorphism.

Proof of Theorem 1.4. Let cwD : I(G) → Ω•(BGU ) be as in the preamble of Sec-
tion 9. The first part of the theorem readily follows by Lemma 7.4.

Now, let P → Y be a smooth, U -small G-bundle over a smooth manifold, and set
X = Y•. Let P∆ → X denote the induced U -small simplicial G-bundle, and fP∆

its classifying map. We need to show that cw satisfies the naturality condition:

Θ ◦ cwP ' f∗
P∆ ◦ cw.

By Proposition 9.1 we have:

f∗
P∆ ◦ cw ' cwP∆

.

And by Part 1 of Proposition 7.8 cwP∆ ' Θ ◦ cwP . And so we are done. □

9.3. Relation with Whitney-Sullivan de Rham algebra. Let Y be a topo-
logical space and X the simplicial set of singular topological simplices in Y . Set
A(Y ) = Ω•(X,R), then this is a commutative dga.

Note that if X is a Kan complex then we have a homotopy equivalence of simplicial
sets |X|• ' X (the natural map h : X → |X|• is a weak equivalence, but as
both sides are Kan complexes it is then an equivalence.) It follows that for a Kan
complex X we have a geometric homotopy equivalence h∗ : A(|X|) → Ω•(X).
That is if h−1 denotes a homotopy inverse of h, then h∗ ◦ h−1

∗ is homotopic to the
identity and h−1

∗ ◦ h∗ is homotopic to the identity. Furthermore, such a homotopy
inverse for h∗ is unique up to homotopy.

Proof of Theorem 1.2. Fix any G admissible U . As BGU is a Kan complex, we
have a diagram with each map a homotopy equivalence of simplicial sets:

BGU h−→ |BGU |•
eU•
−−→ |BGTop|•.

Let f : A(BGTop) → Ω•(BGU ) be the dg mapping induced by the composition
above. By the discussion of the prior paragraph, and since eU is also a homotopy
equivalence, there is a homotopy inverse f−1, unique up to homotopy. Then set
cw = f−1 ◦ cwU . □
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10. Universal Chern-Weil theory for the group of Hamiltonian
symplectomorphisms

Let (M,ω) be a possibly non-compact symplectic manifold of dimension 2n, so that
ω is a closed non-degenerate 2-form on M . Let H = Ham(M,ω) denote the group
of its compactly generated Hamiltonian symplectomorphisms (as in Section 1.1),
and h its Lie algebra.

For example, take M = CPn−1 with its Fubini-Study symplectic 2-form ωst. Then
the natural action of PU(n) on CPn−1 is by Hamiltonian symplectomorphisms.

In [37] Reznikov constructs multilinear functionals
{rk}k≥1 ⊂ I(H) :

(H1, . . . , Hk) 7→
∫
M

H1 · . . . ·Hk ω
n,

upon identifying:

h =

{
C∞

0 (M), if M is compact
C∞

c (M), if M is non-compact.

Here C∞
0 (M) denotes the set of smooth functions H satisfying

∫
M

H ωn = 0, and
C∞

c (M) denotes the set of smooth, compactly supported functions. In the case
k = 1, the associated functional vanishes whenever M is compact.

When M is compact the group H is a Fréchet Lie group having the homotopy
type of a countable CW complex. Otherwise, as mentioned in Section 1.1, it is a
generalized Lie group having the homotopy type of a CW complex.

Thus, Theorem 9.3 implies the Corollary 1.5 of the introduction, and in particular
we get induced Reznikov cohomology classes
(10.1) crk ∈ H2k(BH,R).

As mentioned, the group PU(n) naturally acts on CPn−1 by Hamiltonian symplec-
tomorphisms. So we have an induced map

i : BPU(n) → BHam(CPn−1, ω0).

Then as one application we prove Theorem 1.7 of the introduction, reformulated as
follows:

Theorem 10.1. [Originally Kedra-McDuff [18]]
i∗ : Hk(BHam(CPn−1, ω0),R) → Hk(BPU(n),R)

is surjective for all n ≥ 2, k ≥ 0 and so
i∗ : Hk(BPU(n),R) → Hk(BHam(CPn−1, ω0),R),

is injective for all n ≥ 2, k ≥ 0.

Proof. Let g denote the Lie algebra of PU(n), and h the Lie algebra of Ham(CPn−1, ω0).
Let j : g → h denote the natural Lie algebra map induced by the homomorphism
PU(n) → Ham(CPn−1, ω0). Reznikov [37] shows that {j∗rk}k>1 are the Chern
polynomials. In other words, the classes

cj
∗rk ∈ H2k(BPU(n),R),
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are the Chern classes {ck}k>1, which generate real cohomology of BPU(n), as is
well known. But cj

∗rk = i∗crk , for crk as in (10.1), and so the result immediately
follows. □

In Kedra-McDuff [18] a proof of the above is given via homotopical techniques.
Theirs is a difficult argument, but as they show their technique is also partially
applicable to study certain generalized, homotopical analogues of the group H. Our
argument is elementary (at least given the general theory), but does not obviously
have homotopical ramifications as in [18].

In Savelyev-Shelukhin [41] there are a number of results about induced maps in
(twisted) K-theory. These further suggest that the map i above should be a
monomorphism in the homotopy category. For a start we may ask:

Question 10.2. Is the map i above an injection on integral homology?

For this one may need more advanced techniques like [40].

11. Universal coupling class for Hamiltonian fibrations

Although we use here some language of symplectic geometry no special expertise
should be necessary. As the construction here is a partial reformulation of our
general constructions, for the special case of G = H = Ham(M,ω), we will not give
exhaustive details.

Let (M,ω) and H be as in the previous section, (keeping in mind our M is not
assumed to be compact) and let 2n be the dimension of M .

Definition 11.1. A Hamiltonian M-fibration is a smooth fiber bundle M ↪→
P → X, with structure group H.

Each H-connection A on such P uniquely induces a coupling 2-form on P , as
originally appearing in [10]. Specifically, this is a closed 2-form CA on P whose
restriction to fibers coincides with ω and which has the following property. Let
ωA ∈ Ω2(X) denote the 2-form defined by:

ωA(v, w) = n

∫
Px

RA(v, w)ωn
x ,

for v, w ∈ TxX. Here RA as before is the curvature 2-form of A, so that

RA(v, w) ∈

{
C∞

0 (Px), if M is compact
C∞

c (Px) if M is non-compact.

Note of course that ωA = 0 when M is compact. The characterizing property of
CA is then: ∫

M

Cn+1
A = ωA,

where the left-hand side is integration along the fiber. 11

11CA is not generally compactly supported but Cn+1
A is, which is a consequence of taking H

to be compactly generated Hamiltonian symplectomorphisms.
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It can then be shown that the cohomology class c(P ) of CA is uniquely determined
by P up to H-bundle isomorphism. This is called the coupling class of P , and it
has important applications in symplectic geometry. See for instance [30] for more
details and some applications.

By replacing the category G with other fiber bundle categories we may define other
kinds of simplicial fibrations over a smooth simplicial set. For example, we may
replace G by the category of smooth Hamiltonian M -fibrations, keeping the other
axioms in the Definition 5.3 intact. This then gives us the notion of a Hamiltonian
simplicial M -bundle over a smooth simplicial set.

Let U be a H-admissible Grothendieck universe. Let MU,H denote the Hamiltonian
simplicial M -fibration, naturally associated to EHU → BHU . So that for each k-
simplex Σ ∈ BHU we have a Hamiltonian M -fibration MU,H

Σ → ∆k, which is the
associated M -bundle to the principal H-bundle EHU

Σ.

Fix a (simplicial) H-connection A on the universal H-bundle EHU → BHU . This
induces a (simplicial) connection with the same name A on MU,H.

By the discussion above, for each k-simplex Σ ∈ BHU we have the associated cou-
pling 2-form CA,Σ on the Hamiltonian M -bundle MU,H

Σ → ∆k. The collection of
these 2-forms then readily induces a cohomology class cU on the geometric realiza-
tion:

|MU,H| = colimΣ∈∆(BHU ) M
U,H
Σ .

This is analogous to the construction of the class |α| in Section 4.4.

Now by the proof of Theorem 8.8 we have an H-structure preserving, M -bundle
map over the homotopy equivalence eU :

gU : |MU,H| → MH,

where MH denotes the universal Hamiltonian M -fibration over BH. And these gU

are natural, so that if U 3 U ′ then

(11.1) [gU
′
◦ |̃iU,U ′

|] = [gU ],

where |̃iU,U ′ | : |MU,H| → |MU,H′ | is the natural M -bundle map over iU,U ′ (as in
Theorem 8.8 ), and where [·] denotes the homotopy class.

Each gU is a homotopy equivalence, so we may set
c := gU∗ (c

U ) ∈ H2(MH).

Lemma 11.2. The class c is well-defined, (independent of the choice U).

The proof is analogous to the proof of Lemma 9.2. Given this definition of the
universal coupling class c, the proof of Theorem 1.6 is analogous to the proof of
Theorem 9.3.

A. A∞ homotopies

We prove here the following:

Proposition A.1. A geometric homotopy of dg maps induces an A∞ homotopy.
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This is relegated to the appendix for the following reasons. It is somewhat esoteric,
and not central to the paper. Moreover, the best reference I have is too general,
working with non-unital A∞ categories and functors rather than unital algebras.
In the restricted setting here, the result above should be known. Secondly, the
geometric homotopy is a more refined notion and should work better for intended
future applications like Cheeger-Simons differential characters. However, A∞ ho-
motopy notion does have some advantages, as it is purely algebraic and so should
be easier to manipulate.

Proof. (Sketch) We omit specifying the coefficient ring R in what follows. Suppose
we are given a geometric homotopy:

f̃ : A → Ω•(X × I),

between dg maps f0, f1 : A → Ω•(X).

Define ẽi : Ω
•(X)⊗ Ω•(I) → Ω•(X), i = 0, 1, on generators by:

ẽi(ω0 ⊗ ω1) =

{
0, if degree ω1 > 0

ω0 · ω1(i), if degree ω1 = 0,

where ω1(i) is evaluation at i.

For ei as in Definition 7.3, we will factorize:

Ω•(X × I) Ω•(X)

Ω•(X)⊗ Ω•(I),

ei

u
ẽi

where u is a certain A∞ homotopy inverse to the Kunneth, injective dg quasi-
isomorphism h : Ω•(X) ⊗ Ω•(I) → Ω•(X × I), h(a ⊗ b) = π∗

Xa ∧ π∗
I b. This will

readily imply our claim.

Note first that an A∞ homotopy inverse exists, see Seidel [43, Corollary 1.14]. But
we need u with the specific property above, and we’ll construct it following Seidel’s
argument based on homological perturbation lemma.

To get this u, note first that we have the opposite factorization:

Ω•(X × I) Ω•(X),

Ω•(X)⊗ Ω•(I),

ei

h
ẽi

and the image of h will be denoted by A.

We have a splitting of chain complexes:
(A.1) Ω•(X × I) ' A⊕B,

where B = Ω•(X × I)/A is acyclic.

Then u is the composition of maps:

Ω•(X × I) A Ω•(X)⊗ Ω•(I),
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where the last map is the natural map (the inverse to h), and the first map as a
set map is the projection map with respect to the decomposition (A.1). The latter
map can be upgraded to an A∞ map using the homological perturbation lemma as
described in [43, Proof of Corollary 1.14]. □
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