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Abstract. We study invariants defined by count of charged, elliptic J-holomorphic curves in locally
conformally symplectic manifolds. We use this to define Q-valued deformation invariants of certain
complete Riemann-Finlser manifolds and their isometries and this is used to find some new phe-
nomena in Riemann-Finlser geometry. In contact geometry this Gromov-Witten theory is used to
study fixed Reeb strings of strict contactomorphisms. In particular, we prove cases of Mazzucchelli’s
generalization of the Weinstein conjecture. Along the way, we state an analogue of the Weinstein
conjecture in lcs geometry, directly extending the Weinstein conjecture, and discuss various partial
verifications. A counterexample for a stronger, also natural form of this conjecture is given.
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1. Introduction

The study of J-holomorphic curves in symplectic manifolds was initiated by Gromov [13]. In that
work and since then it have been rational J-holomorphic curves that were central in the subject. We
study here certain Gromov-Witten type theory of J-holomorphic elliptic curves in locally conformally
symplectic manifolds, for short lcs manifolds. For lcs manifolds it appears that instead elliptic (and
possibly higher genus) curves are central. One explanation for this is that rational J-curves in an lcs
manifold M have J̃-holomorphic lifts to the universal cover M̃, J̃ , where the form is globally conformally
symplectic. Hence, rational Gromov-Witten theory is a priori insensitive to the information carried by
the Lee form (Section 2), although it can still be useful [31].

We will present various applications for these elliptic curve counts in contact dynamics and for metric
invariants of Riemann-Finlser manifolds. We choose to start the discussion with applications rather
than theory, as the latter requires certain buildup. We start with Riemann-Finlser geometry, and this
story can be understood as a generalization of the theory in [29], which focuses on more elementary
geodesic counts.

In what follows for a manifold X the topology on various functional spaces is usually the topology of
C0 convergence on compact subsets of X, unless specified otherwise. π1(X) will denote the set of free
homotopy classes of continuous maps o : S1 → X.

We recall some definitions from [29].

Definition 1.1. Let X be a smooth manifold. Fix an exhaustion by nested compact sets
⋃

i∈N Ki = X,
Ki ⊃ Ki−1 for all i ≥ 1. We say that a class β ∈ π1(X) is boundary compressible if β is in the
image of

inc∗ : π1(X −Ki) → π1(X)

for all i, where inc : X −Ki → X is the inclusion map. We say that β is boundary incompressible
if it is not boundary compressible.

Let πinc
1 (X) denote the set of such boundary incompressible classes. When X is compact, we set

πinc
1 (X) := π1(X)− const, where const denotes the set of homotopy classes of constant loops.

Terminology 1. All our metrics are Riemann-Finsler metrics unless specified otherwise, and usually
denoted by just g. Completeness, always means forward completeness, and is always assumed, although
we usually explicitly state this. Curvature always means sectional curvature in the Riemannian case
and flag curvature in the Finsler case. Thus we will usually just say complete metric g, for a forward
complete Riemann-Finsler metric. A reader may certainly choose to interpret all metrics as Riemannian
metrics and completeness as standard completeness.

Denote by LβX the class β ∈ πinc
1 (X) component of the free loop space of X, with its compact open

topology. Let g be a complete metric on X, and let S(g, β) ⊂ LβX denote the subspace of all unit
speed parametrized, closed g-geodesics in class β. The elements of O(g, β) = S(g, β)/S1 will be called
geodesic strings. A geodesic string will be called non-degenerate if the corresponding S1 family
of geodesics is Morse-Bott non-degenerate. (Equivalently, the corresponding Reeb orbits in the unit
cotangent bundle are non-degenerate).

Definition 1.2. We say that a metric g on X is β-taut if it is complete and S(g, β) is compact. We
will say that g is taut if it is β-taut for each β ∈ πinc

1 (X).
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As shown in [29], a basic example of a taut metric is a complete metric with non-positive curvature,
or more generally a complete metric all of whose boundary incompressible geodesics are minimizing in
their homotopy class. Other substantial classes of examples are constructed in [29]. Overall, the class
of taut metrics is large and flexible. However, it appears it has not been extensively studied.

Definition 1.3. Let β ∈ πinc
1 (X), and let g0, g1 be a pair of β-taut metrics on X. A β-taut

deformation (or homotopy) between g0, g1, is a continuous (in the topology of C0 convergence on
compact sets) family {gt}, t ∈ [0, 1] of complete metrics on X, s.t.

S({gt}, β) := {(o, t) ∈ LβX × [0, 1] | o ∈ S(gt, β)}

is compact. We say that {gt} is a taut deformation if it is β-taut for each β ∈ πinc
1 (X).

As shown in [29], the β-tautness condition is trivially satisfied if gt have the property that all their
class β closed geodesics are minimal. In particular if gt have non-positive curvature then {gt} is taut
by the Cartan-Hadamard theorem, [3].

Let E(X) be set of equivalence classes of tuples

{(g, φ) | g is a taut and φ is an isometry of g},

where (g0, φ0) is equivalent to (g1, φ1) whenever there is a Frechet smooth homotopy {(gt, φt)}t∈[0,1],
s.t. for each t φt is an isometry of gt, and {gt} is a taut homotopy. Let us call such a {(gt, φt)}t∈[0,1]

an E-homotopy for future use.

By counting certain charged elliptic curves in a lcs manifold associated to (g, φ) we define in Section
4.3 a functional:

Theorem 1.4. For each manifold X, there is a natural, (generally) non-trivial functional

GWF : E(X)× πinc
1 (X)× N → Q.

GWF stands for Gromov-Witten-Fuller, as when φ = id in GWF(g, φ, β, n) or when n = 0 the invariant
reduces to a certain geodesic counting invariant studied in [30], and in this case such counts can be
defined purely using Fuller’s theory [12].

To understand what this functional is counting in general we first define:

Definition 1.5. Let φ be an isometry of X, g. Then a charge n fixed geodesic string of φ is a
closed geodesic o whose image is fixed by φn. That is image o = imageφn ◦ o. If the charge is not
specified it is assumed to be one. We say that such a fixed string is in class β if the class of o is β.

We will see that if GWF(g, φ, β, n) 6= 0 then there is a charge n fixed g-geodesic string of φ in class
β.

Remark 1.6. Moreover, GWF(g, φ, β, n) is in fact the “count” of the latter fixed geodesic strings, if by
count we mean evaluating the fundamental class of a certain compact virtual dimension zero Kuranishi
space with orbifold points. This will be explained once we construct the functional as a Gromov-Witten
invariant in Section 4.3.

Here are some basic related phenomena. Let β ∈ πinc
1 (X) be not a power class (see [29, Definition

1.7]), and suppose that X admits a β-taut metric g, then by Theorem [29, Theorem 1.10] the S1

equivariant homology HS1

∗ (LβX,Z) is finite dimensional. In this case we denote by χS1

(LβX) its
Euler characteristic.
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Theorem 1.7. Let β ∈ πinc
1 (X) be not a power class, and suppose that X admits a β-taut metric.

Suppose further that χS1

(LβX) 6= 0. Then for any β-taut g on X, any isometry φ of g, in the
component of the id, has a charge one fixed geodesic string in class β.

In the next couple of corollaries, we need that the manifold X admits a complete metric of negative
curvature, and also that there is a class β ∈ πinc

1 (X). Notably, this condition is false for Rn. On the
other hand, it holds for instance for any connected, hyperbolic, possibly infinite type Riemann surface,
with at least three ends, or with genus at least 2. Or a three dimensional example: take X to be the
mapping torus by a pseudo-Anosov diffeomorphism of a connected surface with genus at least 2. Then
X admits a complete hyperbolic metric by Thurston’s classification [33], and X satisfies πinc

1 (X) 6= ∅,
(by basic topology calculations).

Corollary 1.8. Suppose that X admits a complete metric of negative curvature, and there is a class
β ∈ πinc

1 (X). Then for any other complete non-positively curved metric g on X, any isometry φ of g
in the component of the id, has a charge one, class β fixed geodesic string, and moreover the suitable
algebraic count of such fixed geodesic strings is one.

Theorem 1.7 deals with isometries homotopic to the id, as such it is interesting only in dimension
three and higher as the topology of surfaces, admitting metrics with continuous isometry groups is
extremely restricted. The following theorem is about general isometries.

Theorem 1.9. Suppose that X is a manifold and:

• There is an E-homotopy {(gt, φt)} on X.

• g0 has a unique and non-degenerate geodesic string in class β ∈ πinc
1 (X).

• φn
0,∗(β) = β, for n ∈ N.

Then there is a class β, charge n, fixed g1-geodesic string of φ1.

The following is an immediate corollary, note that it is non-trivial even for (infinite type) sur-
faces.

Corollary 1.10. Suppose that X is a manifold and:

• There is a Frechet smooth homotopy {(gt, φt)}t∈[0,1], s.t. gt are complete metrics on X and
have non-positive curvature.

• φt is an isometry of gt for each t.

• g0 has negative curvature.

Then for each β ∈ πinc
1 (X), and each n ∈ N s.t. φn

0,∗(β) = β there is a class β, charge n, fixed
g1-geodesic string of φ1.

There is a related theory of isometry-invariant geodesics. The latter are geodesics γ : R → X sat-
isfying γ(1) = φ(γ(0)) for some isometry φ of X, g. (These are also analogous to translated points
of contactomorphisms mentioned ahead.) A charge 1 fixed geodesic string of φ clearly determines an
entire circle family of closed φ-invariant geodesics. On the other hand as these φ-invariant geodesics
are not required to be closed, if we fix a φ they can be shown exist under very general conditions using
Morse theory, Grove [14]. See also [17], [16].
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1.1. Contact dynamics, fixed Reeb strings and more applications to isometries. Let (C2n+1, λ)
be a contact manifold with λ a contact form, that is a one form s.t. λ ∧ (dλ)n 6= 0. Denote by Rλ the
Reeb vector field satisfying:

dλ(Rλ, ·) = 0, λ(Rλ) = 1.

We assume throughout that its flow is complete. Recall that a closed λ-Reeb orbit (or just Reeb
orbit when λ is implicit) is a smooth map

o : (S1 = R/Z) → C

such that
ȯ(t) = cRλ(o(t)),

with ȯ(t) denoting the time derivative, for some c > 0 called period. Let S(Rλ, β) denote the space of
all closed Reeb orbits in free homotopy class β, with its compact open topology. And set

O(Rλ, β) := S(Rλ, β)/S1,

where S1 is acting naturally by reparametrization, see Appendix A. We say that the action spectrum
is discrete if the image of the period map A : S(Rλ, β) → R, o 7→

∫
S0 o

∗λ is discrete.

Definition 1.11. Let φ : (C, λ) → (C, λ) be a strict contactomorphism of a contact manifold. Then
a fixed Reeb string of φ is a closed λ-Reeb orbit o whose image is fixed by φ. We say that it is in
class β if the free homotopy class of o is β.

Definition 1.12. Assuming that the class β is non-torsion 1, we say that (C, λ) is infinite type for
class β if the action spectrum of λ is discrete and there is a Reeb perturbation X of the vector field
Rλ (in a certain natural sense, [30, Definition 2.6]), s.t. all but finitely many class β orbits of X have
even Conley-Zehnder index or or all but finitely many orbits of X have odd Conley-Zehnder index.

A typical example of infinite type is the standard contact form λst on S2k+1, as shown in [30].

Definition 1.13. We say that (C, λ) is finite type for class β if O(Rλ, β) is compact. And we say
that it is finite non-zero type if in addition i(Rλ, β) 6= 0, (the Fuller index, see Appendix A).

We have already seen basic examples coming from unit cotangent bundles of non-positively curved
manifolds. We say that (C, λ) is definite type (for class β) if it is either finite non-zero type or
infinite type.

Theorem 1.14. Let (C, λ) be a contact manifold of definite type for class β orbits, then every strict
contactomorphism φ of (C, λ), homotopic to the id via strict contactomorphisms, has a fixed Reeb
string in class β. Furthermore, the same holds for every λ′ sufficiently C1 nearby to λ. In particular,
for any contact form λ on S2k+1, sufficiently C1 nearby to λst, any strict contactomorphism φ of
(C, λ) homotopic to the id via strict contactomorphisms has a fixed Reeb string.

There is a partial connection of the theorem with the theory of translated points.

Definition 1.15 (Sandon [28]). Given a (not necessarily strict) contactomorphism φ of (C, λ), a point
p ∈ C is called a translated point provided that φ∗λ(p) = λ(p) and φ(p) lies on the λ-Reeb flow line
passing through p.

1In the torsion case the infinite type condition is more complicated see [30].
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A fixed Reeb string for φ in particular determines a special translated point of φ (one for each point on
the image of the fixed Reeb string). So the above theorem is partly related to the Sandon conjecture [28]
on existence of translated points of contactomorphisms. However, also note that the general form of
Sandon’s conjecture has counterexamples on S2k+1 for the standard contact form λst, see Cant [6].
Partially related to the Sandon conjecture is the Conjecture 1 in Section 3, which is an analogue in lcs
geometry of the Weinstein conjecture.

Theorem 1.14 in particular verifies Mazzucchelli’s generalization of the Weinstein conjecture [17, Con-
jecture 1.2], for definite type contact manifolds, in particular for C∞ perturbations of (S2k+1, λst).

Corollary 1.16. Let X, g be complete, with a class β ∈ πinc
1 (X), and such that its unit cotangent

bundle is definite type for class β̃, (defined as in Section 4.3). Then every isometry of X, g homotopic
through isometries to the id has a class β fixed geodesic string.

Theorem 1.17. Suppose that (C, λ) is Morse-Bott and some connected component N ⊂ O(Rλ, β) has
non-vanishing Euler characteristic. Then any contact form λ′ on C, sufficiently C1 nearby to λ, any
strict contactomorphism φ of (C, λ′), homotopic to the id via strict contactomorphisms has class β
fixed Reeb string.

Both of the theorems above are actually special cases of the next theorem proved in Section 7. For
more details on the Fuller index see Appendix A. Let λ be a contact form on a closed manifold C,
N ⊂ O(Rλ, β) and let i(N,Rλ, β) ∈ Q denote the Fuller index. For example, if λ is Morse-Bott
(see [5]) and N is a connected component of O(Rλ, β) then by a computation in [30, Section 2.1.1]
i(Rλ, N, β) 6= 0 if χ(N) 6= 0 (the Euler characteristic).

Theorem 1.18. Let (C, λ) be a contact manifold satisfying the condition: i(N,Rλ, β) 6= 0, for some
open compact N ⊂ O(Rλ, β). Then any strict contactomorphism φ : (C, λ) → (C, λ), homotopic to the
id via strict contactomorphisms has a fixed Reeb string o in class β and moreover o ∈ N .

We have already mentioned that the index assumption of the theorem holds for Morse-Bott contact
forms λ, provided the Euler characteristic of some component of N ⊂ O(Rλ) is non-vanishing. We
may take for instance the standard contact form λst on S2k+1, the unit contangent bundle of the
sphere, or see Bourgeois [5] for more examples. In this Morse-Bott case the theorem may be verified
by elementary considerations. To see this suppose we have a connected component N ⊂ O(Rλ) with
χ(N) 6= 0. Then φ as above induces a topological endomorphism φ̃ of N with non-zero Lefschetz
number, so that in this case the result follows by the Lefschetz fixed point theorem.

In general a compact open component N ⊂ O(Rλ) may not be a finite simplicial complex, or indeed
any kind of topological space to which the classical Lefschetz fixed point theorem may apply. Also the
relationship of i(N,Rλ, β) with χ(N) breaks down in general as i(N,Rλ, β) is partly sensitive to the
dynamics of Rλ.

The following is a variation of Theorem 1.7 in the absence of the condition that β be not a power, and
removing all assumptions on the metric g (of the conclusion) except completeness. This is proved in
Section 7.

Theorem 1.19. Let X admit a complete metric with a unique and non-degenerate geodesic string in
class β ∈ πinc

1 (X). Then one of the following alternatives holds:

(1) Sky catastrophes for families of Reeb vector fields exist, and the sky catastrophe can be essential,
see Definition A.3.

(2) For any complete metric g on X and every isometry φ of X, g homotopic through isometries
to the identity, φ has a charge 1 fixed geodesic string in class β.
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1.2. Conformal symplectic Weinstein conjecture. We introduce in Section 2 certain analogues
of Reeb orbits for lcs manifolds. In particular, we define a unifying concept of a Reeb 2-curve on
which most of the subsequent theory is based. This leads us to state one analogue in lcs geometry
of the classical Weinstein conjecture, and we discuss certain partial verifications. We also state in
this section an important counterexample for a stronger, but also natural form of the lcs Weinstein
conjecture.

1.3. Organization. The main theorems are proved in Section 7. Section 2 presents detailed pre-
liminaries for lcs geometry, which should make this paper self contained and accessible to a general
reader. Section 4 defines the Gromov-Witten invariant GWF, which is central to the applications in
Riemann-Finlser geometry.

2. Background and preliminaries

Definition 2.1. A locally conformally symplectic manifold or just an lcs manifold, is a smooth 2n-fold
M with an lcs structure: which is a non-degenerate 2-form ω, with the property that for every p ∈ M
there is an open U 3 p such that ω|U = fU · ωU , for some symplectic form ωU defined on U and some
smooth positive function fU on U .

These kinds of structures were originally considered by Lee in [15], arising naturally as part of an
abstract study of “a kind of even dimensional Riemannian geometry”, and then further studied by a
number of authors see for instance, [2] and [34]. An lcs manifold admits all the interesting classical
notions of a symplectic manifold, like Lagrangian submanifolds and Hamiltonian dynamics, while at
the same time forming a much more flexible class. For example Eliashberg and Murphy show that if a
closed almost complex 2n-fold M has H1(M,R) 6= 0 then it admits a lcs structure, [8]. Another result
of Apostolov, Dloussky [1] is that any complex surface with an odd first Betti number admits a lcs
structure, which tames the complex structure.

To see the connection with the first cohomology group H1(M,R), mentioned above, let us point out
right away the most basic invariant of a lcs structure ω, when M has dimension at least 4. This is
the Lee class, α = αω ∈ H1(M,R). This class has the property that on the associated α-covering
space (see proof of Lemma 6.1) M̃ , the lift ω̃ is globally conformally symplectic. Thus, an lcs form is
globally conformally symplectic, that is diffeomorphic to ef · ω′, with ω′ symplectic, iff its Lee class
vanishes.

Again assuming M has dimension at least 4, the Lee class α has a natural differential form represen-
tative, called the Lee form, which is defined as follows. We take a cover of M by open sets Ua in which
ω = efa · ωa for ωa symplectic. Then we have 1-forms d(fa) on each Ua, which glue to a well-defined
closed 1-form on M , as shown by Lee. We may denote this 1-form and its cohomology class both by
α. It is moreover immediate that for an lcs form ω,

dω = α ∧ ω,

for α the Lee form as defined above.

As we mentioned lcs manifolds can also be understood to generalize contact manifolds. This works
as follows. First we have a class of explicit examples of lcs manifolds, obtained by starting with a
symplectic cobordism (see [8]) of a closed contact manifold C to itself, arranging for the contact forms
at the two ends of the cobordism to be proportional and then gluing the boundary components, (after
a global conformal rescaling of the form on the cobordism, to match the boundary conditions).

Terminology 2. For us a contact manifold is a pair (C, λ) where C is a closed manifold and λ a
contact form: ∀p ∈ C : λ ∧ λ2n(p) 6= 0. This is not a completely common terminology as usually it
is the equivalence class of (C, λ) that is called a contact manifold, where (C, λ) ∼ (C, λ′) if λ = fλ′

for f a positive function. (Given that the contact structure, in the classical sense, is co-oriented.) A
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contactomorphism between (C1, λ1), (C2, λ2) is a diffeomorphism φ : C1 → C2 s.t. φ∗λ2 = fλ1 for
some f > 0. It is called strict if φ∗λ2 = λ1.

A concrete basic example, which can be understood as a special case of the above cobordism construc-
tion, is the following.

Example 1 (Banyaga). Let (C, λ) be a contact manifold, S1 = R/Z, dθ the standard non-degenerate
1-form on S1 satisfying

∫
S1 dθ = 1. And take M = C × S1 with the 2-form

ωλ = dαλ := dλ− α ∧ λ,

for α := pr∗S1dθ, prS1 : C×S1 → S1 the projection, and λ likewise the pull-back of λ by the projection
C × S1 → C. We call (M,ωλ) as above the lcs-fication of (C, λ). This is also a basic example of a
first kind lcs manifold, as in Definition 2.4 ahead.

The operator
(2.2) dα : Ωk(M) → Ωk+1(M)

is called the Lichnerowicz differential with respect to a closed 1-form α, and it satisfies dα ◦ dα = 0 so
that we have an associated Lichnerowicz chain complex.

Definition 2.3. An exact lcs form on M is an lcs 2-form s.t. there exists a pair of one forms (λ, α)
with α a closed 1-form, s.t. ω = dαλ is non-degenerate. In the case above we also call the pair (λ, α)
an exact lcs structure. The triple (M,λ, α) will be called an exact lcs manifold, but we may also
call (M,ω) an exact lcs manifold when (λ, α) are implicit.

An exact lcs structure determines a generalized distribution Vλ on M :
Vλ(p) = {v ∈ TpM | dλ(v, ·) = 0},

which we call the vanishing distribution. We also define a generalized distribution ξλ that is the
ω-orthogonal complement to Vλ, which we call co-vanishing distribution. For each p ∈ M , Vλ(p)
has dimension at most 2 since dλ − α ∧ λ is non-degenerate. If M2n is closed Vλ cannot identically
vanish since (dλ)n cannot be non-degenerate by Stokes theorem.

Definition 2.4. Let (λ, α) be an exact lcs structure on M . We call α integral, rational or irrational
if its periods are integral, respectively rational, or respectively irrational. We call the structure (λ, α)
scale integral, if cα is integral for some 0 6= c ∈ R. Otherwise we call the structure scale irrational.
If V is non-zero at each point of M , in particular is a smooth 2-distribution, then such a structure is
called first kind. If ω is an exact lcs form then we call ω integral, rational, irrational, first kind if the
exists λ, α s.t. ω = dαλ and (λ, α) is integral, respectively irrational, respectively first kind. Similarly
define, scale integral, scale irrational ω.

Definition 2.5. A conformal symplectomorphism of lcs manifolds φ : (M1, ω1) → (M2, ω2) is a
diffeomorphism φ s.t. φ∗ω2 = efω1, for some f . Note that in this case we have an induced relation
(when M has dimension at least 4):

φ∗α1 = α0 + df,

where α1 is the Lee form of ω1 and α0 is the Lee form of ω0. If f = 0 we call φ a symplectomorphism.
A (conformal) symplectomorphism of exact lcs structures (λ1, α1), (λ2, α2) on M1 respectively M2 is a
(conformal) symplectomorphism of the corresponding lcs 2-forms. If a diffeomorphism φ : M1 → M2

satisfies φ∗λ2 = λ1 and φ∗α2 = α1 we call it an isomorphism of the exact lcs structures. This is
analogous to a strict contactomorphism of contact manifolds.

To summarize, with the above notions we have the following basic points whose proof is left to the
reader:
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(1) An isomorphism of exact lcs structures (λ1, α1), (λ2, α2) preserves the first kind condition, and
moreover preserves the corresponding vanishing distributions.

(2) A symplectomorphism of lcs forms preserves the first kind condition.

(3) A (conformal) symplectomorphism of exact lcs structures generally does not preserve the first
kind condition. (Contrast with 2.)

(4) A (conformal) symplectomorphism of first kind lcs structures generally does not preserve the
vanishing distributions. (Similar to a contactomorphism not preserving Reeb distributions.)

(5) A conformal symplectomorphism of lcs forms and exact lcs structures preserves the rationality,
integrality, scale integrality conditions.

Remark 2.6. We say that ω0 is conformally equivalent to ω1 if ω1 = efω0, i.e. the identity map is a
conformal symplectomorphism id : (M,ω0) → (M,ω1). It is important to note that for us the form ω
is the structure not its conformal equivalence class, as for some authors. In other words conformally
equivalent structures on a given manifold determine distinct but isomorphic objects of the category,
whose objects are lcs manifolds and morphisms conformal symplectomorphisms.

Example 2. One example of an lcs structure of the first kind is a mapping torus of a strict contacto-
morphism, see Banyaga [2]. The mapping tori Mϕ,c of a strict contactomorphism φ of (C, λ) fiber over
S1,

π : C ↪→ Mϕ,c → S1,

with Lee form of the type α = cπ∗(dθ), for some 0 6= c ∈ R. In particular, these are scale integral first
kind lcs structures.

Moreover we have:

Theorem 2.7 (Only reformulating Bazzoni-Marrero [4]). A first kind lcs structure (λ, α) on a closed
manifold M is isomorphic to the mapping torus of a strict contactomorphism if and only if it is scale
integral.

The (scaled) integrality condition is of course necessary since the Lee form of a mapping torus of a
strict contactomorphism will have this property. Thus we may understand scale irrational first kind lcs
structures as first (and rather dramatic) departures from the world of contact manifolds into a brave
new lcs world.

Remark 2.8. Note that scale irrational first kind structures certainly exist. A simple example is given
by taking λ, α to be closed scale irrational 1-forms on T 2 with transverse kernels. Then ω = λ ∧ α is
a scale irrational first kind structure on T 2. In particular (λ, α) cannot be a mapping torus of a strict
contactomorphism even up to a conformal symplectomorphism. In general, on a closed manifold we
may always perturb a (first kind) scale integral lcs structure to a (first kind) scale irrational one. The
examples of the present paper deal with deformations of this sort.

2.1. Reeb 2-curves.

Definition 2.9. Let (M,λ, α) be an exact lcs structure and ω = dαλ. Define Xλ by ω(Xλ, ·) = λ
and Xα by ω(Xα, ·) = α. Let D denote the (generalized) distribution spanned by Xα, Xλ, meaning
D(p) := span(Xα(p), Xλ(p)). This will be called the canonical distribution.

The (generalized) distribution D is one analogue for exact lcs manifolds of the Reeb distribution on
contact manifolds. A Reeb 2-curve, as defined ahead, will be a certain kind of singular leaf of D, and
so is a kind of 2-dimensional analogue of a Reeb orbit.
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Example 3. The simplest example of a Reeb 2-curve in an exact lcs (M,λ, α), in the case D is a true
2-dimensional distribution (for example if (λ, α) is first kind), is a closed immersed surface u : Σ → M
tangent to D. However, it will be necessary to consider more generalized curves.

Definition 2.10. Let Σ be a closed nodal Riemann surface (the set of nodes can be empty). Let
u : Σ → M be a smooth map and let ũ : Σ̃ → M be its normalization (see Definition 7.1). We say that
u is a Reeb 2-curve in (M,λ, α), if the following is satisfied:

(1) For each z ∈ Σ̃, ũ∗(TzΣ̃) = D(ũ(z)), whenever dũ(z) : TzΣ → Tũ(z)M is non-zero, and
dimD(ũ(z)) = 2.

(2) 0 6= [u∗α] ∈ H1(Σ,R).

It is tempting to conjecture that every closed exact lcs manifold has a Reeb 2-curve, in analogy to the
Weinstein conjecture. However this is false:

Theorem 2.11. Let T 2, gst be the 2-torus with its standard flat metric. Let Mϕ̃,1 be the mapping torus
of the unit contangent bundle of T 2, with φ̃ corresponding to an isometry φ : (T 2, gst) → (T 2, gst),
which does not fix the image of any closed geodesic (an irrational rotation in both coordinates). Then
Mϕ,1 has no Reeb 2-curves.

Nevertheless, note that for the counterexample above, the conformal symplectic Weinstein conjecture
as described in the following section readily holds, by Proposition 3.10.

3. Results on Reeb 2-curves and a conformal symplectic Weinstein conjecture

Definition 3.1. Define the set L(M) of exact lcs structures on M , to be:
L(M) = {(β, γ) ∈ Ω1(M)× Ω1(M) | γ is closed, dγβ is non-degenerate}.

Define F(M) ⊂ L(M) to be subset of (possibly irrational) first kind lcs structures.

In what follows we use the following C∞ metric on L(M). For (λ1, α1), (λ2, α2) ∈ L(M) define:
(3.2) d∞((λ1, α1), (λ2, α2)) = dC∞(λ1, λ2) + dC∞(α1, α2),

where dC∞ on the right side is the usual C∞ metric.

The following theorems are proved in Section 7, based on the theory of elliptic pseudo-holomorphic
curves in M . We can use Ck metrics for a certain k, instead of C∞, however we cannot make k = 0
(at least not obviously), and the extra complexity of working with Ck metrics, is better left for later
developments.

Theorem 3.3. Let (C, λ) be a closed contact manifold, satisfying one of the following conditions:

(1) (C, λ) has at least one non-degenerate Reeb orbit.

(2) i(N,Rλ, β) 6= 0 where the latter is the Fuller index of some open compact subset of the orbit
space: N ⊂ O(Rλ, β), see Appendix A.

Then we have the following:

(1) Then for some d∞ neighborhood U of the lcs-fication (λ, α) of the space F(M = C×S1), every
element of U admits a Reeb 2-curve.

(2) For any (λ′, α′) ∈ U , the corresponding Reeb 2-curve u : Σ → M can be assumed to be elliptic
meaning that Σ is elliptic (more specifically: a nodal, topological genus 1, closed, connected
Riemann surface).
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(3) u can also be assumed to be α-charge 1 (see Definition 4.3).

(4) If M has dimension 4 then u can be assumed to be embedded and normal (the set of nodes
is empty). And so in particular, such a u represents a closed, (ω = dαλ)-symplectic torus
hypersurface.

3.1. Reeb 1-curves. We have stated some basic new Reeb dynamics phenomena in the introduction.
We now discuss an application of a different character.

Definition 3.4. A smooth map o : S1 → M is a Reeb 1-curve in an exact lcs manifold (M,λ, α), if
∀t ∈ S1 : (λ(o′(t)) > 0) ∧ (o′(t) ∈ D).

The following is proved in Section 7.

Definition 3.5. We say that an exact lcs manifold (M,λ, α) satisfies the Reeb condition if:
λ(Xα) > 0.

Theorem 3.6. Suppose that (M,λ, α) is an exact lcs manifold satisfying the Reeb condition. If
(M,λ, α) has an immersed Reeb 2-curve then it also has a Reeb 1-curve. Furthermore, if it has an
immersed elliptic Reeb 2-curve, then this Reeb 2-curve is normal.

We have an immediate corollary of Theorem 3.3 and Theorem 3.6.

Corollary 3.7. Let λ be a contact form, on closed 3-manifold C, with at least one non-degenerate
Reeb orbit, or more generally satisfying i(N,Rλ, β) 6= 0 for some open compact N as previously. Then
there is a d∞ neighborhood U of the lcs-fication (λ, α) in the space F(C×S1), s.t. for each (λ′, α′) ∈ U
there is a Reeb 1-curve.

Corollary 3.8. Every closed exact lcs surface satisfying the Reeb condition has a Reeb 1-curve.

Lemma 3.9. Let (M,λ, α) be an exact lcs manifold with M closed then 0 6= [α] ∈ H1(M,R).

Proof. Suppose by contradiction that α is exact and let g be its primitive. Then computing we get:
dαλ = 1

f d(fλ) with f = eg. Consequently, d(fλ) is non-degenerate on M which contradicts Stokes
theorem. □

Proof of Corollary 3.8. This follows by Theorem 3.6. As in this case by the lemma above the identity
map X → X is an immersed Reeb 2-curve, by Lemma 3.9. □

Proposition 3.10. Assume the Weinstein conjecture, then the mapping torus Mϕ of a strict contac-
tomorphism φ : (C, λ) → (C, λ), where C is closed, has a Reeb 1-curve.

Proof. Immediate from definitions. □

Inspired by the above considerations we conjecture:

Conjecture 1. Suppose that (M,λ, α) is a closed exact lcs manifold of dimension 4 satisfying the
Reeb condition, then it has a Reeb 1-curve.

Proposition 3.11. The analogue of Conjecture 1, in all dimensions, implies the Weinstein conjecture:
every closed contact manifold (C, λ) has a closed Reeb orbit.
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Proof of Proposition 3.11. Let (M = C × S1, λ, α) be the lcs-fication of a closed contact manifold
(C, λ). Then it satisfies the Reeb condition. Suppose that o : S1 → M is a Reeb 1-curve. Then
∀t ∈ [0, 1] : λ(ȯ(t)) > 0 and o is tangent to Vλ = D. Consequently, prC ◦o is tangent to ker dλ, and ∀τ ∈
[0, 1] : λ((prC ◦ o)′(τ)) > 0. It follows that prC ◦ o is a Reeb orbit of (C, λ) up to parametrization. □

4. J-holomorphic curves in lcs manifolds and the definition of the invariant GWF

Let M,J be an almost complex manifold and Σ, j a Riemann surface. Recall that a map u : Σ → M
is said to be J-holomorphic if du ◦ j = J ◦ du.

Notation 1. We will often say J-curve in place of J-holomorphic curve.

First kind lcs manifolds give immediate examples of almost complex manifolds where the L2 energy
functional is unbounded on the moduli spaces of fixed class J-curves, as well as where null-homologous
J-curves can be non-constant. We are going to see this shortly after developing a more general
theory.

Definition 4.1. Let (M,λ, α) be an exact lcs manifold, satisfying the Reeb condition: ω(Xλ, Xα) =
λ(Xα) > 0, where ω = dαλ. In this case, D is a 2-dimensional distribution, and we say that an
ω-compatible J is (λ, α)-admissible or ω-admissible (when λ, α are implicit) if:

• J preserves the canonical distribution D and preserves the ω-orthogonal complement D⊥ of D.
That is J(V ) ⊂ D and J(D⊥) ⊂ D⊥.

• dλ tames J on D⊥.

Admissible J exist by classical symplectic geometry, and the space of such J is contractible see [22]. We
call (λ, α, J) as above a tamed exact lcs structure, and (ω, J) is called a tamed exact lcs structure
if ω = dαλ, for (λ, α, J) a tamed exact lcs structure. In this case (M,ω, J), (M,λ, α, J) will be called
a tamed exact lcs manifold.

Example 4. If (M,λ, α) is first kind then by an elementary computation ω(Xλ, Xα) = 1 everywhere.
In particular, we may find a J such that (λ, α, J) is a tamed exact lcs structure, and the space of such
J is contractible. We will call (M,λ, α, J) a tamed first kind lcs manifold.

Lemma 4.2. Let (M,λ, α, J) be a tamed first kind lcs manifold. Then given a smooth u : Σ → M ,
where Σ is a closed (nodal) Riemann surface, u is J-holomorphic only if

image dũ(z) ⊂ Vλ(ũ(z))

for all z ∈ Σ̃, where ũ : Σ̃ → M is the normalization of u (see Definition 7.1). In particular ũ∗dλ = 0.

Proof. As previously observed, by the first kind condition, Vλ is the span of Xλ, Xα and hence
V := Vλ = Dλ.

Let u be J-holomorphic, so that ũ is J-holomorphic (by definition of a J-holomorphic nodal map).
We have ∫

Σ

ũ∗dλ = 0

by Stokes theorem. Let proj(p) : TpM → V ⊥(p) be the projection induced by the splitting TM =
V ⊕ V ⊥.

Suppose that for some z ∈ Σ̃, proj ◦ dũ(z) 6= 0. By the conditions:

• J is tamed by dλ on V ⊥.

• dλ vanishes on V .
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• J preserves the splitting TM = V ⊕ V ⊥.

we have
∫
Σ̃
ũ∗dλ > 0, a contradiction. Thus,

∀z ∈ Σ̃ : proj ◦ dũ(z) = 0,

so
∀z ∈ Σ̃ : image dũ(z) ⊂ Vλ(ũ(z)).

□

Example 5. Let (C × S1, λ, α) be the lcs-fication of a contact manifold (C, λ). In this case
Xα = (Rλ, 0),

where Rλ is the Reeb vector field and
Xλ = (0,

d

dθ
)

is the vector field generating the natural action of S1 on C × S1.

If we denote by ξ ⊂ T (C × S1) the distribution ξ(p) = kerλ(p), then in this case ξ = V ⊥ in the
notation above. We then take J to be an almost complex structure on ξ, which is S1 invariant, and
compatible with dλ. The latter means that

gJ(·, ·) := dλ|ξ(·, J ·)
is a J invariant Riemannian metric on the distribution ξ.

There is an induced almost complex structure Jλ on C × S1, which is S1-invariant, coincides with J
on ξ and which satisfies:

Jλ(Xα) = Xλ.

Then (C × S1, λ, α, Jλ) is a tamed integral first kind lcs manifold.

4.1. Charged elliptic curves in an lcs manifold. We now study moduli spaces of elliptic curves
in a lcs manifold, constrained to have a certain charge. 2 In the present context, one reason for the
introduction of “charge” is that it is now possible for non-constant holomorphic curves to be null-
homologous, so we need additional control. Here is a simple example: take S3 × S1 with J = Jλ, for
the λ the standard contact form, then all the Reeb holomorphic tori (as defined further below) are
null-homologous.

Let Σ be a complex torus with a chosen marked point z ∈ Σ, i.e. an elliptic curve over C. An
isomorphism φ : (Σ1, z1) → (Σ2, z2) is a biholomorphism s.t. φ(z1) = z2. The set of isomorphism
classes forms a smooth orbifold M1,1. This has a natural compactification - the Deligne-Mumford
compactification M1,1, by adding a point at infinity, corresponding to a nodal genus 1 curve with one
node.

The notion of charge can be defined in a general setting. Let M be a manifold endowed with a closed
integral 1-form α. Let u : T 2 → M be a continuous map satisfying [u∗α] 6= 0 ∈ H1(T 2,Z). We then
have a classifying map g : T 2 → S1 s.t. g∗dθ = c · u∗α for some c. Take a component of a regular
fiber of g, and let [γ] ∈ H1(T

2,Z) denote the corresponding class, represented by γ : S1 → T 2. Let
[ρ] ∈ H1(T

2,Z), likewise represented by ρ : S1 → T 2, be the Poincare dual class so that:
〈[γ], u∗α〉 = 0, 〈[ρ], u∗α〉 6= 0,

where 〈, 〉 is the natural pairing of homology and cohomology. These [γ], [ρ] generate H1(T
2,Z), and

[γ] · [ρ] = 1, where · is the intersection pairing with respect to the standard complex orientation on
T 2.

2The name charge is inspired by the notion of charge in Oh-Wang [26], in the context of contact instantons. However,
the respective notions are not obviously related.
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Definition 4.3. For u, γ, ρ as above. We call

n = |〈[ρ], u∗α〉| ∈ N>0,

the α-charge of u, or just the charge of u when α is implicit. Suppose furthermore that 〈ρ, u∗α〉 > 0.
Then the class [u ◦ γ] ∈ π1(M) will be called the π-class of u, for π1(M) the set of free homotopy
classes of loops as before.

It is easy to see that the α-charge and π-class is independent of the choices above. We may extend
the definition of charge to curves u : Σ → M , with Σ a nodal elliptic curve, as follows. If ρ : S1 → Σ
represents the generator of H1(Σ,Z) then define the charge of u to be |〈ρ, u∗α〉|. Obviously the charge
condition is preserved under Gromov convergence of stable maps. But it is not preserved in homology,
so that charge is not a functional H2(M,Z) → N.

Definition 4.4. By the above, associated to a continuous map u : Σ → M with Σ an elliptic curve,
and non-zero α-charge, we have a triple (A, β, n) ∈ H2(M,Z) × π1(M) × N>0, corresponding to the
homology class, the π-class, and the α-charge. This triple will be called the charge class of u.

Let (M,J) be an almost complex manifold and α a closed integral 1-form on M non vanishing in
cohomology, then we call (M,J, α) a Lee manifold. Suppose for the moment that there are no non-
constant J-holomorphic maps (S2, j) → (M,J) (otherwise we need stable maps), then for n ≥ 1 we
define:

Mn

1,1(J,A, β)

as the set of equivalence classes of tuples (u, S), for S = (Σ, z) a possibly nodal elliptic curve and
u : Σ → M a charge class (A, β, n), J-holomorphic map. The equivalence relation is (u1, S1) ∼ (u2, S2)
if there is an isomorphism φ : S1 → S2 s.t. u2 ◦φ = u1. It is not hard to see that such an isomorphism
of preserves the charge class, so that Mn

1,1(J,A, β) is well defined.

Also note that the expected dimension of M1

1,1(J
λ, A, β) is 0. It is given by the Fredholm index of

the operator (6.5) which is 2, minus the dimension of the reparametrization group (for non-nodal
curves) which is 2. That is given an elliptic curve S = (Σ, z), let G(Σ) be the 2-dimensional group
of biholomorphisms φ of Σ. Then given a J-holomorphic map u : Σ → M , (Σ, z, u) is equivalent to
(Σ, φ(z), u ◦ φ) in M1

1,1(J
λ, A, β), for φ ∈ G(Σ).

By slight abuse we may just denote such an equivalence class above simply by u, so we may write
u ∈ Mn

1,1(J,A, β), with S implicit.

4.2. Reeb holomorphic tori in (C ×S1, Jλ). In this section we discuss an important example. Let
(C, λ) be a contact manifold and let α and Jλ be as in Example 5. So that in particular we get a Lee
manifold (C × S1, Jλ, α).

In this case we have one natural type of charge 1 Jλ-holomorphic tori in M = C × S1. Let o be a
period c, closed Reeb orbit o of Rλ, and let β it’s class in π1(C) ⊂ π1(M). A Reeb torus uo for o is
the map

uo : (S1 × S1 = T 2) → C × S1

uo(s, t) = (o(s), t).

A Reeb torus is Jλ-holomorphic for a uniquely determined holomorphic structure j on T 2 defined
by:

j(
∂

∂s
) = c

∂

∂t
.
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4.3. Definition of the invariant GWF. Let X be a manifold. For g a taut metric on X, let λg be
the Liouville 1-form on the unit cotangent bundle C of X. If φ is an isometry of g then there is a
strict contactomorphism φ̃ of (C, λg), and this gives the “mapping torus” lcs manifold (Mϕ̃,1, λϕ̃, α) as
described in Section 7.1.

If β ∈ πinc
1 (X), let β̃ ∈ π1(C) denote the lift of the class, defined by representing β by a unit speed

closed geodesic o, taking the canonical lift õ to a closed Reeb orbit, and setting β̃ = [õ]. Given n ≥ 1,
suppose that

(4.5) φ̃n
∗ (β̃) = β̃.

Then, as explained in Section 7.1, this naturally induces a map

un : T 2 → Mϕ̃,1

well defined up to homotopy, whose class in homology is denoted by An
β̃
∈ H2(Mϕ̃,1,Z). The α-charge

of un is n, and its π-class is i∗β̃, where i : C → Mϕ̃,1 is the fiber inclusion map.

By the tautness assumption on g the space O(Rλg , β̃) is compact. We then get that Mn

1,1(J
λϕ , An

β̃
, β̃)

is compact and has expected dimension 0 by the Proposition 7.2. We then define

GWF(g, φ, β, n) :=

{
0, if (4.5) is not satisfied
GWn

1,1(J
λϕ , An

β̃
, i∗β̃)([M1,1]⊗ [C × S1]), otherwise ,

where the Gromov-Witten invariant on the right side is as in (5.2), of the following section. Although
we take here a specific almost complex structure Jϕ, using Proposition 7.2 and Lemma 5.3 we may
readily deduce that any (λϕ, α)-admissible almost complex structure gives the same value for the
invariant.

Also note that when φ = id

(4.6) ∀n ∈ N : GWF (g, id, β, n) = F (g, β),

where the latter is the invariant studied in [30]. This readily follows by Theorem 6.8.

5. Elements of Gromov-Witten theory of an almost complex manifold

Suppose that (M,J) is an almost complex manifold (possibly non-compact), where the almost complex
structures J are assumed throughout the paper to be C∞. Let N ⊂ Mg,k(J,A) be an open compact
subset with energy positive on N . The latter energy condition is only relevant when A = 0. We shall
primarily refer in what follows to work of Pardon in [27], being more familiar to the author. But we
should mention that the latter is a follow up to a theory that is originally created by Fukaya-Ono [11],
and later expanded with Oh-Ohta [10].

The construction in [27] of an implicit atlas, on the moduli space M of J-curves in a symplectic
manifold, only needs a neighborhood of M in the space of all curves. So for an open compact component
N as above, we have a well defined natural implicit atlas, (or a Kuranishi structure in the setup of
[11]). And so such an N will have a virtual fundamental class in the sense of [27]. This understanding
will be used in other parts of the paper, following Pardon for the explicit setup.

We may thus define functionals:

(5.1) GWg,n(N, J,A) : H∗(Mg,n)⊗H∗(M) → Q.

In our more specific context we must in addition restrict the charge, which is defined at the moment
for genus 1 curves. So supposing (M,J, α) is a Lee manifold we may likewise define functionals:

(5.2) GW k
1,1(N, J,A, β) : H∗(M1,1)⊗H∗(M) → Q,
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meaning that we restrict the count to charge class (A, β, k) curves, with N ⊂ Mk

1,1(J,A, β), an open
compact subset. If N is not specified it is understood to be the whole moduli space (if it is known to
be compact).

We now study how functionals depend on N, J . To avoid unnecessary generality, we discuss the case of
GW k

1,1(N, J,A, β). Given a Frechet smooth family {Jt}, t ∈ [0, 1], on M , we denote by Mk

1,1({Jt}, A, β)

the space of pairs (u, t), u ∈ Mk

1,1(Jt, A, β).

Lemma 5.3. Let {Jt}, t ∈ [0, 1] be a Frechet smooth family of almost complex structures on M .
Suppose that Ñ is an open compact subset of the cobordism moduli space Mk

1,1({Jt}, A, β), with k > 0.
Let

Ni = Ñ ∩
(
Mk

1,1(Ji, A, β)
)
,

then
GW k

1,1(N0, J0, A) = GW k
1,1(N1, J1, A, β).

In particular if GW k
1,1(N0, A, J0, β) 6= 0, there is a J1-holomorphic, stable, charge class (A, β, k) elliptic

curve in M .

Proof of Lemma 5.3. We may construct exactly as in [27] a natural implicit atlas on Ñ , with boundary
Nop

0 tN1, (op denoting opposite orientation). And so we immediately get

GW k
1,1(N0, J0, A, β) = GW k

1,1(N1, J1, A, β).

□

Remark 5.4. The condition that k > 0 is a simple way to rule out degenerations to constant curves,
but is not really essential. In the case the manifold is closed, degenerations of J-holomorphic curves
to constant curves are impossible. This can be deduced from energy quantization coming from the
general monotonicty theorem as appearing in Zinger [38, Proposition 3.12]. This was noted to me by
Spencer Cattalani. Even if the manifold is not compact, given the assumption that Ñ itself is compact,
we may similarly preclude such degenerations.

The following generalization of the lemma above will be useful later. First a definition.

Definition 5.5. Let M be a smooth manifold. Denote by Hinc
2 (M), the set of boundary incompressible

homology classes, defined analogously to Definition 1.1, We say that a Frechet smooth family {Jt},
t ∈ [0, 1] on a manifold M has a right holomorphic sky catastrophe in charge class (A, β, k) for
A ∈ Hinc

2 (M), if there is an element u ∈ Mk

1,1(J0, A, β), which does not belong to any open compact
subset of Mk

1,1({Jt}, A, β). We say that the sky catastrophe is essential if the same is true for any
smooth family {J ′

t} satisfying J ′
0 = J0 and J ′

1 = J1.

Lemma 5.6. Let {Jt}, t ∈ [0, 1] be a Frechet smooth family of almost complex structures on M ,
A ∈ Hinc

2 (M) and k > 0. Suppose that Mk

1,1(J0, A, β) is compact, and there is no right holomorphic
sky catastrophe for {Jt}. Then there is a charge class (A, β, k), J1-holomorphic, stable, elliptic curve
in M .

Proof. By assumption for each u ∈ Mk

1,1(J0, A, β) there is an open compact u 3 Cu ⊂ Mk

1,1({Jt}, A, β).
Then {Cu ∩ Mk

1,1(J0, A, β)}u is an open cover of Mk

1,1(J0, A, β) and so has a finite sub-cover, corre-
sponding to a collection u1, . . . , un.
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Set
Ñ =

⋃
i∈{1,...,n}

Ci.

Then Ñ is an open-compact subset of Mk

1,1({Jt}, A) s.t. Ñ ∩Mk

1,1(J0, A, β) = N0 := Mk

1,1(J0, A, β).
Then the result follows by Lemma 5.3.

□

We now state a basic technical lemma, following some standard definitions.

Definition 5.7. An almost symplectic pair on M is a tuple (ω, J), where ω is a non-degenerate
2-form on M , and J is ω-compatible, meaning that ω(·, J ·) defines J-invariant Riemannian metric,
denoted by gJ (with ω implicit).

Definition 5.8. We say that a pair of almost symplectic pairs (ωi, Ji) are δ-close, if ω0, ω1 are C∞

δ-close, and J0, J1 are C∞ δ-close, i = 0, 1.

Let S(A) denote the space of equivalence classes of all smooth, nodal, stable, charge k, elliptic curves
in M in class A, with the standard Gromov topology determined by gJ . That is elements of S(A)

are like elements of Mk

1,1(J,A, β) but are not required to be J-holomorphic. In particular, we have a
continuous function:

e = egJ : S(A) → R≥0.

Lemma 5.9. Let (ω, J) be an almost symplectic pair on a compact manifold M and let N ⊂
Mk

1,1(J,A, β) be compact and open (as a subset of Mk

1,1(J,A)). Then there exists an open U ⊂ S(A)
satisfying:

(1) e is bounded on U .

(2) U ⊃ N .

(3) U ∩Mk

1,1(J,A, β) = N .

Proof. The Gromov topology on S(A) has a basis B satisfying:

(1) If V ∈ B then e is bounded on V .

(2) If U is open and u ∈ U , then

∃V ∈ B : (u ∈ V ) ∧ (V ⊂ U).

In the genus 0 case this is contained in the classical text McDuff-Salamon [23, page 140]. The basis
B is defined using a collection of “quasi distance functions” {ρϵ}ϵ on the set stable maps. The higher
genus case is likewise well known.

Thus, since N is relatively open, using the properties of B above, we may find a collection {Vα} ⊂ B
s.t.

• {Vα} covers N .

• V α ∩Mk

1,1(J,A, β) ⊂ N.

As N is compact, we have a finite subcover {Vα1 , . . . , Vαn}. Set U := ∪i∈{1,...,n}Vαi . Then U satisfies
the conclusion of the lemma. □
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Lemma 5.10. Let (M,ω, J, α) be as above, N ⊂ Mk

1,1(J,A, β) an open compact set, and U as in the
lemma above. Then there is a δ > 0 s.t. whenever J ′ is C2 δ-close to J if u ∈ Mk

1,1(J
′, A, β) and

u ∈ U then u ∈ U .

Proof. Suppose otherwise, then there is a sequence {Jk} C2 converging to J , and a sequence {uk} ∈
U−U of Jk-holomorphic stable maps. Then by property 1 egJ is bounded on {uk}. Hence, by Gromov
compactness, specifically theorems [23, B.41, B.42], we may find a Gromov convergent subsequence
{ukj} to a J-holomorphic stable map u ∈ U − U . But by Properties 3, 2 of the set U ,

(U − U) ∩Mk

1,1(J,A, β) = ∅.
So that we obtain a contradiction. □

Lemma 5.11. Let M,ω, J, α and N ⊂ Mk

1,1(J,A, β) be as in the previous lemma. Then there is a
δ > 0 s.t. the following is satisfied. Let (ω′, J ′) be δ-close to (ω, J), then there is a continuous in the
C∞ topology family {Jt}, J0 = J , J1 = J ′ s.t. there is an open compact subset

Ñ ⊂ Mk

1,1({Jt}, A, β),

satisfying
Ñ ∩Mk

1,1(J,A, β) = N.

Proof. First let δ be as in Lemma 5.10. We then need:

Lemma 5.12. Given a δ > 0 there is a δ′ > 0 s.t. if (ω′, J ′) is δ′-near (ω, J) then there is a continuous
in the C∞ topology family {(ωt, Jt)} satisfying:

• (ωt, Jt) is δ-close to (ω, J) for each t.

• (ω0, J0) = (ω, J) and (ω1, J1) = (ω′, J ′).

Proof. Let {gt} be the family of metrics on M given by the convex linear combination of g = gωJ
, g′ =

gω′,J ′ , gt = (1 − t)g + tg′. Clearly gt is C∞ δ′-close to g0 for each t. Likewise, the family of 2 forms
{ωt} given by the convex linear combination of ω, ω′ is non-degenerate for each t if δ′ was chosen to
be sufficiently small. And each ωt is C∞ δ′-close to ω0 = ωg,J .

Let
ret : Met(M)× Ω(M) → J (M)

be the “retraction map” (it can be understood as a retraction followed by projection) as defined in [22,
Prop 2.50], where Met(M) is space of metrics on M , Ω(M) the space of 2-forms on M , and J (M)
the space of almost complex structures. This map has the property that the almost complex structure
ret(g, ω) is compatible with ω, and that ret(gJ , ω) = J for gJ = ω(·, J ·). Then {(ωt, ret(gt, ωt)} is a
compatible family. As ret is continuous in C∞-topology, δ′ can be chosen such that {rett(gt, ωt} are
C∞ δ-nearby. □

Returning to the proof of the main lemma. Let δ′ < δ be chosen as in Lemma 5.12 and let {(ωt, Jt)}
be the corresponding family. Set

Ñ = Mk

1,1({Jt}, A, β) ∩ (U × [0, 1]),

where U is as in Lemma 5.10.

Then Ñ is an open subset of Mk

1,1({Jt}, A, β). By Lemma 5.10,

Ñ = Mk

1,1({Jt}, A, β) ∩ (U × [0, 1]),

so that Ñ is also closed.
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Finally, sup(u,t)∈Ñ egt(u) < ∞, by condition 1 of U , and since {egt}, t ∈ [0, 1] is a continuous family.
Consequently Ñ is compact by the Gromov compactness theorem. Resetting δ := δ′, we are then done
with the proof of the main lemma. □

Proposition 5.13. Given an almost complex manifold M,J suppose that N ⊂ Mk

1,1(J,A) is open
and compact. Suppose also that GW k

1,1(N, J,A, β) 6= 0. Then there is a δ > 0 s.t. whenever J ′ is C2

δ-close to J , there exists u ∈ Mk

1,1(J
′, A, β).

Proof. For N as in the hypothesis, let U , δ and Ñ be as in Lemma 5.11, then by the conclusion of
that lemma and by Lemma 5.3

GW k
1,1(N1, J

′, A, β) = GW k
1,1(N, J,A, β) 6= 0,

where N1 = Ñ ∩Mk

1,1(J1, A, β). □

6. Elliptic curves in the lcs-fication of a contact manifold and the Fuller index

The following elementary result is crucial for us.

Lemma 6.1. Let (M,λ, α, J) be a tamed first kind lcs manifold. Then every non-constant (nodal)
J-holomorphic curve u : Σ → M is a Reeb 2-curve.

Proof of Lemma 6.1. Let u : Σ → M be a non-constant, nodal J-curve. By Lemma 4.2 it is enough to
show that [u∗α] 6= 0. Let M̃ denote the α-covering space of M , that is the space of equivalence classes
of paths p starting at x0 ∈ M , with a pair p1, p2 equivalent if p1(1) = p2(1) and∫

[0,1]

p∗1α =

∫
[0,1]

p∗2α.

Then the lift of ω to M̃ is
ω̃ =

1

f
d(fλ),

where f = e−g and where g is a primitive for the lift α̃ of α to M̃ , that is α̃ = dg. In particular ω̃ is
conformally symplectomorphic to an exact symplectic form on M̃ . So if J̃ denotes the lift of J , any
closed J̃-curve is constant by Stokes theorem. Now if [u∗α] = 0 then u has a lift to a J̃-holomorphic
map v : Σ → M̃ . Since Σ is closed, it follows by the above that v is constant, so that u is constant,
which is impossible. □

6.1. Preliminaries on Reeb tori. Let (M = C×S1, λ, α) be the lcs-fication of (C, λ). For β ∈ π1(C)
we set A1

β = β⊗ [S1] ∈ H2(M,Z). Let O(Rλ, β), be the orbit space as in Section 1.1. Let Jλ on C×S1

be as in Section 4.2. We have a map:

(6.2) P : O(Rλ, β) → M1

1,1(J
λ, A1

β , β), P(o) = uo,

for uo the Reeb torus as previously. We can say more:

Proposition 6.3. For any (λ, α)-admissible J there is a natural bijection: 3

P : O(Rλ, β) → M1

1,1(J,A
1
β , β),

with P the map (6.2) in the case J = Jλ. (Note that there is an analogous bijection O(Rλ, β) →
Mn

1,1(J,A
n
β , β), for n > 1, where An

β = n · β ⊗ [S1]).

3It is in fact an equivalence of the corresponding topological action groupoids, but we do not need this explicitly.
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In the particular case of Jλ, we see that all elliptic curves in C × S1 are Reeb tori, and hence the
underlying complex structure on the domain is “rectangular”. That is, they are quotients of the
complex plane by a rectangular lattice. This stops being the case when we consider generalized Reeb
tori in Section 7.1 for the mapping torus of some strict contactomorphism. Moreover, for more general
compatible complex structures we might have nodal degenerations.

Proof of Proposition 6.3. We define P(o) to be the class represented by the unique up to isomorphism
J-holomorphic curve u : T 2 → M determined by the conditions:

• u is charge 1.

• The image of u is the image T of the map uo : T 2 → M , (s, t) → (o(s), t), i.e. the image of
the Reeb torus of o.

• The degree of the map u : T 2 → T is the multiplicity of o.

We need to show that P is bijective. Injectivity is automatic. Suppose we have a curve u ∈
M1

1,1(J,A, β), represented by u : Σ → M . By Lemma 6.1 u is a Reeb 2-curve. Then u has no
spherical components, as such a component corresponds to a Jλ-holomorphic map u′ : CP1 → M ,
which by Lemma 6.1 is also a Reeb 2-curve, and this is impossible by second property in the definition.

We first show that u is a finite covering map onto the image of some Reeb torus uo.

By Lemma 7.7 normalization ũ is also a Reeb 2-curve. If u is not normal then ũ is a Reeb 2-curve
with domain CP1, which is impossible by the argument above. Hence u is normal.

By the charge 1 condition prS1 ◦ u is surjective, where prS1 : C × S1 → S1 is the projection. By the
Sard theorem we have a regular value t0 ∈ S1, so that u−1 ◦ pr−1

S1 (t0) contains an embedded circle
S0 ⊂ Σ. Now d(prS1 ◦ u) is surjective onto Tt0S

1 along TΣ|S0 . And so by first property of u being a
Reeb 2-curve, o = prC ◦u|S0 has non-vanishing differential d(o). Moreover, again by the first property,
o is tangent to ker dλ. It follows that o is an unparametrized λ-Reeb orbit.

Also, the image of d(prC ◦ u) is in ker dλ from which it follows that image d(prC ◦ u) = image d(o).
By Sard’s theorem and by basic differential topology it follows that the image of u is contained in the
image of the Reeb torus uo, which is an embedded 2-torus T .

By Jλ-holomorphicity of u, since Σ ' T 2, and by basic complex analysis of holomorphic maps T 2 → T 2,
u is a holomorphic covering map onto T , of degree deg u.

Let õ be deg u cover of o. Then P(õ) is also represented by a degree deg u, charge one holomorphic
covering map u′ : T 2 → T . By basic covering map theory there is a homeomorphism of covering
spaces:

T 2 T 2

T .

f

u
u′

Then f is a biholomorphism, so that u, u′ are equivalent. □

Proposition 6.4. Let (C, ξ) be a general contact manifold. If λ is a non-degenerate contact 1-form
for ξ then all the elements of M1

1,1(J
λ, A, β) are regular curves. Moreover, if λ is degenerate then

for a period c Reeb orbit o, the kernel of the associated real linear Cauchy-Riemann operator for the
Reeb torus uo is naturally identified with the 1-eigenspace of φλ

c,∗ - the time c linearized return map
ξ(o(0)) → ξ(o(0)) induced by the Rλ Reeb flow.
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Proof. We already know by Proposition 6.3 that all u ∈ M1

1,1(J
λ, A, β) are equivalent to Reeb tori.

In particular, such curves have a representation by a Jλ-holomorphic map
u : (T 2, j) → (Y = C × S1, Jλ).

Since each u is immersed we may naturally get a splitting u∗T (Y ) ' N × T (T 2), using the gJ metric,
where N → T 2 denotes the pull-back, of the gJ -normal bundle to imageu, and which is identified with
the pullback of the distribution ξλ on Y , (which we also call the co-vanishing distribution).

The full associated real linear Cauchy-Riemann operator takes the form:
(6.5) DJ

u : Ω0(N ⊕ T (T 2))⊕ TjM1,1 → Ω0,1(T (T 2), N ⊕ T (T 2)).

This is an index 2 Fredholm operator (after standard Sobolev completions), whose restriction to
Ω0(N ⊕ T (T 2)) preserves the splitting, that is the restricted operator splits as

D ⊕D′ : Ω0(N)⊕ Ω0(T (T 2)) → Ω0,1(T (T 2), N)⊕ Ω0,1(T (T 2), T (T 2)).

On the other hand the restricted Fredholm index 2 operator
Ω0(T (T 2))⊕ TjM1,1 → Ω0,1(T (T 2)),

is surjective by classical Teichmuller theory, see also [36, Lemma 3.3] for a precise argument in this
setting. It follows that DJ

u will be surjective if the restricted Fredholm index 0 operator
D : Ω0(N) → Ω0,1(N),

has no kernel.

The bundle N is symplectic with symplectic form on the fibers given by restriction of u∗dλ, and together
with Jλ this gives a Hermitian structure (gλ, jλ) on N . We have a linear symplectic connection A
on N , which over the slices S1 × {t} ⊂ T 2 is induced by the pullback by u of the linearized Rλ

Reeb flow. Specifically the A-transport map from the fiber N(s0,t) to the fiber N(s1,t) over the path
[s0, s1]× {t} ⊂ T 2, is given by

(u∗|N(s1,t)
)−1 ◦ (φλ

c(s1−s0)
)∗ ◦ u∗|N(s0,t)

,

where φλ
c(s1−s0)

is the time c · (s1 − s0) map for the Rλ Reeb flow, where c is the period of the Reeb
orbit ou, and where u∗ : N → TY denotes the natural map, (it is the universal map in the pull-back
diagram.)

The connection A is defined to be trivial in the θ2 direction, where trivial means that the parallel
transport maps are the id maps over θ2 rays. In particular the curvature RA, understood as a lie
algebra valued 2-form, of this connection vanishes. The connection A determines a real linear CR
operator DA on N in the standard way, take the complex anti-linear part of the vertical differential of
a section. Explicitly,

DA : Ω0(N) → Ω0,1(N),

is defined by
DA(µ)(p) = jλ ◦ πvert(µ(p)) ◦ dµ(p)− πvert(µ(p)) ◦ dµ(p) ◦ j,

where
πvert(µ(p)) : Tµ(p)N → T vert

µ(p)N ' N

is the A-projection, and where T vert
µ(p)N is the kernel of the projection Tµ(p)N → TpΣ. It is elementary

to verify that the operator DA is Fredholm 0 with the kernel isomorphic to the kernel of D. See also
[25, Section 10.1] for a computation of this kind in much greater generality.

We have a differential 2-form Ω on the total space of N defined as follows. On the fibers T vertN ,
Ω = u∗ω, for ω = dαλ, and for T vertN ⊂ TN denoting the vertical tangent space, or subspace of
vectors v with π∗v = 0, for π : N → T 2 the projection. While on the A-horizontal distribution Ω is
defined to vanish. The 2-form Ω is closed, which we may check explicitly by using that RA vanishes
to obtain local symplectic trivializations of N in which A is trivial. Clearly Ω must vanish on the
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0-section since it is a A-flat section. But any section is homotopic to the 0-section and so in particular
if µ ∈ kerD then Ω vanishes on µ.

Since µ ∈ kerD, and so its vertical differential is complex linear, it follows that the vertical differential
vanishes. To see this note that Ω(v, Jλv) > 0, for 0 6= v ∈ T vertN and so if the vertical differential
did not vanish we would have

∫
µ
Ω > 0. So µ is A-flat, in particular the restriction of µ over all slices

S1 × {t} is identified with a period c orbit of the linearized at o Rλ Reeb flow, and which does not
depend on t as A is trivial in the t variable. So the kernel of D is identified with the vector space of
period c orbits of the linearized at o Rλ Reeb flow, as needed. □

Proposition 6.6. Let λ be a contact form on a (2n + 1)-fold C, and o a non-degenerate, period
c, λ-Reeb orbit, then the orientation of [uo] induced by the determinant line bundle orientation of
M1

1,1(J
λ, A), is (−1)CZ(o)−n, which is

signDet(Id |ξ(o(0)) − φλ
c,∗|ξ(o(0))).

Proof of Proposition 6.6. Abbreviate uo by u. Let N → T 2 be the vector bundle associated to u as in
the proof of Proposition 6.4. Fix a trivialization φ of N induced by any trivialization of the contact
distribution ξ along o in the obvious sense: N is the pullback of ξ along the composition

T 2 → S1 o−→ C.

Let the symplectic connection A on N be defined as before. Then the pullback connection A′ := φ∗A
on T 2 × R2n is a connection whose parallel transport paths pt : [0, 1] → Symp(R2n), along the closed
loops S1 × {t}, are paths starting at 1, and are t independent. And so the parallel transport path of
A′ along {s}×S1 is constant, that is A′ is trivial in the t variable. We shall call such a connection A′

on T 2 × R2n induced by p.

By non-degeneracy assumption on o, the map p(1) has no 1-eigenvalues. Let p′′ : [0, 1] → Symp(R2n)
be a path from p(1) to a unitary map p′′(1), with p′′(1) having no 1-eigenvalues, and s.t. p′′ has only
simple crossings with the Maslov cycle. Let p′ be the concatenation of p and p′′. We then get

CZ(p′)− 1

2
signΓ(p′, 0) ≡ CZ(p′)− n ≡ 0 mod 2,

since p′ is homotopic relative end points to a unitary geodesic path h starting at id, having regular
crossings, and since the number of negative, positive eigenvalues is even at each regular crossing of h
by unitarity. Here signΓ(p′, 0) is the index of the crossing form of the path p′ at time 0, in the notation
of [?]. Consequently,
(6.7) CZ(p′′) ≡ CZ(p)− n mod 2,

by additivity of the Conley-Zehnder index.

Let us then define a free homotopy {pt} of p to p′, pt is the concatenation of p with p′′|[0,t], reparametrized
to have domain [0, 1] at each moment t. This determines a homotopy {A′

t} of connections induced by
{pt}. By the proof of Proposition 6.4, the CR operator Dt determined by each A′

t is surjective except
at some finite collection of times ti ∈ (0, 1), i ∈ N determined by the crossing times of p′′ with the
Maslov cycle, and the dimension of the kernel of Dti is the 1-eigenspace of p′′(ti), which is 1 by the
assumption that the crossings of p′′ are simple.

The operator D1 is not complex linear. To fix this we concatenate the homotopy {Dt} with the
homotopy {D̃t} defined as follows. Let {Ãt} be a homotopy of A′

1 to a unitary connection Ã1, where
the homotopy {Ãt} is through connections induced by paths {p̃t}, giving a path homotopy of p′ = p̃0
to h. Then {D̃t} is defined to be induced by {Ãt}.

Let us denote by {D′
t} the concatenation of {Dt} with {D̃t}. By construction, in the second half of

the homotopy {D′
t}, D′

t is surjective. And D′
1 is induced by a unitary connection, since it is induced
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by unitary path p̃1. Consequently, D′
1 is complex linear. By the above construction, for the homotopy

{D′
t}, D′

t is surjective except for N times in (0, 1), where the kernel has dimension one. In particular
the sign of [u] by the definition via the determinant line bundle is exactly

−1N = −1CZ(p)−n,

by (6.7), which was what to be proved. □

Theorem 6.8.
GW 1

1,1(N, Jλ, Aβ , β)([M1,1]⊗ [C × S1]) = i(P−1(N), Rλ, β),

where N ⊂ M1

1,1(J
λ, Aβ , β) is an open compact set (where P is as in Proposition 6.3), i(P−1(N), Rλ, β)

is the Fuller index as described in the Appendix below, and where the left-hand side of the equation is
the functional as in (5.2).

Proof. Suppose that N ⊂ M1

1,1(J
λ, Aβ , β) is open-compact and consists of isolated regular Reeb tori

{ui}, corresponding to orbits {oi}. Denote by mult(oi) the multiplicity of the orbits as in Appendix
A. Then we have:

GW 1
1,1(N, Jλ, Aβ , β)([M1,1]⊗ [C × S1]) =

∑
i

(−1)CZ(oi)−n

mult(oi)
,

where n half the dimension of M , the numerator is as in (A.2), and mult(oi) is the order of the
corresponding isotropy group, see Appendix B.

The expression on the right is exactly the Fuller index i(P−1(N), Rλ, β). Thus, the theorem follows
for N as above. However, in general if N is open and compact then perturbing slightly we obtain a
smooth family {Rλt}, λ0 = λ, s.t. λ1 is non-degenerate, that is has non-degenerate orbits. And such
that there is an open-compact subset Ñ of M1

1,1({Jλt}, Aβ , β) with (Ñ ∩ M1

1,1(J
λ, Aβ , β) = N , see

Lemma 5.11. Then by Lemma 5.3 if

N1 = (Ñ ∩M1

1,1(J
λ1 , Aβ , β))

we get

GW 1
1,1(N, Jλ, Aβ , β)([M1,1]⊗ [C × S1]) = GW 1

1,1(N1, J
λ1 , Aβ , β)([M1,1]⊗ [C × S1]).

By the previous discussion

GW 1
1,1(N1, J

λ1 , Aβ , β)([M1,1]⊗ [C × S1]) = i(N1, R
λ1 , β),

but by the invariance of Fuller index (see Appendix A),

i(N1, R
λ1 , β) = i(N,Rλ, β).

□

What about higher genus invariants of C × S1? Following the proof of Proposition 6.3, it is not hard
to see that all Jλ-holomorphic curves must be branched covers of Reeb tori. If one can show that
these branched covers are regular when the underlying tori are regular, the calculation of invariants
would be fairly automatic from this data. See [37], [35] where these kinds of regularity calculation are
made.
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7. Proofs of main theorems

To set notation and terminology we review the basic definition of a nodal curve.

Definition 7.1. A nodal Riemann surface (without boundary) is a pair Σ = (Σ̃,N ) where Σ̃ is a
Riemann surface, and N a set of pairs of points of Σ̃ : N = {(z00 , z10), . . . , (z0n, z1n)}, nj

i 6= nl
k for i 6= k

and all j, l. By slight abuse, we may also denote by Σ the quotient space Σ̃/ ∼, where the equivalence
relation is generated by n0

i ∼ n1
i . Let qΣ : Σ̃ → (Σ̃/ ∼) denote the quotient map. The elements

qΣ({z0i , z1i }) ∈ Σ̃/ ∼, are called nodes. Let M be a smooth manifold. By a map u : Σ → M of a
nodal Riemann surface Σ, we mean a set map u : (Σ̃/ ∼) → M . u is called smooth or immersion or
J-holomorphic (when M is almost complex) if the map ũ = u ◦ qΣ is smooth or respectively immersion
or respectively J-holomorphic. We call ũ normalization of u. u is called an embedding if u is a
topological embedding and its normalization is an immersion. The cohomology groups of Σ are defined
as H•(Σ) := H•(Σ̃/ ∼), likewise with homology. The genus of Σ is the topological genus of Σ̃/ ∼.

We shall say that (Σ̃,N ) is normal if N = ∅. Similarly, u : Σ → M , Σ = (Σ̃,N ) is called normal if
N = ∅. The normalization of u is the map of the nodal Riemann surface ũ : Σ̃ → M , Σ̃ = (Σ̃, ∅). Note
that if u is a Reeb 2-curve, its normalization ũ may not be a Reeb 2-curve (the second condition may
fail).

7.1. Mapping tori and Reeb 2-curves. Let (C, λ) be a contact manifold and φ a strict contacto-
morphism and let M = (Mϕ,1, λϕ, α) denote the mapping torus of φ, as also appearing in Theorem
2.7. More specifically, M = C ×R/ ∼, where the equivalence ∼ is generated by (x, θ) ∼ (φ(x), θ + 1),
for more details on the corresponding lcs structure see for instance [4]. Then (M,λϕ, α) is an integral
first kind lcs manifold.

In this case Vλ = D, and in mapping torus coordinates at a point (x, θ), it is spanned by Xλ =
(0, ∂

∂θ ), Xα = (Rλθ , 0) for Rλθ the λθ-Reeb vector field, where λθ = λCθ
the fiber over θ of the

projection M → S1. Analogously to the Example 5 there is an S1-invariant almost complex structure
on M , which we call Jλϕ .

We now show that all Reeb 2-curves in M must be of a certain type. Let o : S1 → C be a λ-Reeb and
suppose that imageφn(o) = image o, for some n > 0, so that

∀t ∈ [0, 1] : φn(o)(t) = o(t+ θ0)

for some uniquely determined θ0 ∈ [0, 1). Let õ : S1 × [0, n] → C × R be the map

õ(t, τ) = (o(t+ θ0 ·
τ

n
), τ).

Then õ is well defined on the quotient T 2 ' S1 × ([0, n]/0 ∼ n), and we denote the quotient map by
un
o , called the charge n generalized Reeb torus of o. If the class [o] ∈ π1(C) = β we denote by An

β

the class of un
o in H2(M,Z). The class An

β can be defined more generally whenever φn
∗ (β) = β, it is

the class of a torus map T 2 → M defined analogously to the map un
o , but no longer having the Reeb

2-curve property. We may abbreviate A1
β by Aβ .

By construction, un
o is a charge n Reeb 2-curve and its image is an embedded Jλϕ -holomorphic torus

T . Moreover, un
o is Jλϕ -holomorphic with respect to a uniquely determined complex structure on T 2,

similarly to the case of Reeb tori of Section 4.2. However, unlike the case of Reeb tori, this complex
structure is not “rectangular” unless φn ◦ o = o.

Proposition 7.2. Let M = (Mϕ, λϕ, α) be the mapping torus of a strict contactomorphism φ as above.
Then:
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(1) Every charge n Reeb 2-curve u in M has a factorization:
(7.3) u = un

o ◦ ρ,
for ρ : Σ → T 2 some degree one map, and for some orbit string o uniquely determined by u.

(2) Every element u ∈ Mn

1,1(J
λϕ , An

β , β) is represented (as an equivalence class in this moduli
space) by un

o , where the latter is as above, for some o uniquely determined.

(3) The Fredholm index of the corresponding real linear CR operator is 2, so that the expected
dimension of Mn

1,1(J
λϕ , An

β , β) is 0.

(4) Let J be a (λϕ, α)-admissible almost complex structure on M . There is a natural proper
topological embedding:

emb : Mn

1,1(J,A
n
β , β) → O(Rλ, β),

defined by u 7→ o, where o is uniquely determined by the condition (7.3).

Proof. The proof of part one is completely analogous to the proof of Proposition 6.3. To prove the
second part, first note that by the first part u has image T = imageun

o for some n, o, and T is an
embedded Jλϕ -holomorphic torus. By basic theory of mappings of complex tori u must be a covering
map Σ → T . Since we know the charge n, as in final part of the proof of Proposition 6.3, we may
conclude that u ' un

o for some uniquely determined o, where ' is an isomorphism.

We prove Part 3. Note that c1(A
n
β) = 0, as by construction the complex tangent bundle along un

o

admits a flat connection, induced by the natural G-connection on Mϕ → S1, for G the group of
strict contactomorphisms of (C, λ), cf. Proof of Proposition 6.4. The needed fact then follows by the
index/Riemann-Roch theorem.

The last part of the proposition readily follows from the first part. □

Proof of Theorem 2.11. Let u : Σ → (M = Mϕ̃,1) be a Reeb 2-curve in the mapping torus as in the
statement. By part one of Proposition 7.2, there must be a generalized charge n Reeb torus in M . By
definitions this means that φ̃ has a charge n fixed Reeb string, so that φ has a charge n fixed geodesic
string, which is impossible by assumptions. □

Proposition 7.4. Let (C, λ) be a contact manifold with λ satisfying one of the following conditions:

(1) There is a non-degenerate λ-Reeb orbit.

(2) i(N,Rλ, β) 6= 0 for some open compact N ⊂ O(Rλ, β), and some β.

Then:

(1) Let (λ, α) be the lcs-fication of (C, λ). There exists an ε > 0 s.t. for any tamed exact lcs
structure (λ′, α′, J) on M = C×S1, with (dα′λ′, J) ε-close to (dαλ, J

λ) (as in Definition 5.8),
there exists an elliptic, J-holomorphic α-charge 1 curve u in M .

(2) In addition, if (M,λ′, α′) is first kind and has dimension 4 then u may be assumed to be normal
and embedded.

Proof. If we have a closed non-degenerate λ-Reeb orbit o then we also have an open compact subset
N = {o} ⊂ Sλ. Thus suppose that the condition 2 holds.

Set
(Ñ := P(N)) ⊂ M1

1,1(J
λ, Aβ , β),

which is an open compact set. By Theorem 6.8, and by the assumption that i(N,Rλ, β) 6= 0

GW 1
1,1(N, Jλ, Aβ , β) 6= 0.
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The first part of the conclusion then follows by Proposition 5.13.

We now verify the second part. Suppose that M has dimension 4. Let U be an ε-neighborhood of
(λ, α, Jλ), for ε as given in the first part, and let (λ′, α′, J) ∈ U . Suppose that u ∈ M1

1,1(J, β). Let u
be a simple J-holomorphic curve covered by u, (see for instance [23, Section 2.5].

For convenience, we now recall the adjunction inequality.

Theorem 7.5 (McDuff-Micallef-White [24], [19]). Let (M,J) be an almost complex 4-manifold and
let A ∈ H2(M) be a homology class that is represented by a simple J-holomorphic curve u : Σ → M .
Let δ(u) denote the number of self-intersections of u, then

2δ(u)− χ(Σ) ≤ A ·A− c1(A),

with equality if and only if u is an immersion with only transverse self-intersections.

In our case A = Aβ so that c1(A) = 0 and A · A = 0. If u is not normal its normalization is of the
form ũ : CP1 → M with at least one self intersection and with 0 = [ũ] ∈ H2(M), but this contradicts
positivity of intersections. So u and hence u are normal. Moreover, the domain Σ′ of u satisfies:
χ(Σ′) = χ(T 2) = 0, so that δ(u) = 0, and the above inequality is an equality. In particular u is an
embedding, which of course implies our claim.

□

Proof of Theorem 3.3. Let
U 3 (ω0 := dαλ, J0 := Jλ)

be a set of pairs (ω, J) satisfying the following:

• ω is a first kind lcs structure.

• For each (ω, J) ∈ U , J is ω-compatible and admissible.

• Let ε be chosen as in the first part of Proposition 7.4. Then each (ω, J) ∈ U is ε-close to
(ω0, J0), (as in Definition 5.8).

To prove the theorem we need to construct a map E : V → J (M), where V is some neighborhood of
ω0 in the space (F(M), d∞) (see Definition 3.1) and where

∀ω ∈ V : (ω,E(ω)) ∈ U.

As then Proposition 7.4 tells us that for each ω ∈ V , there is a class A, E(ω)-holomorphic, elliptic
curve u in M . Using Lemma 6.1 we would then conclude that there is an elliptic Reeb 2-curve u in
(M,ω). If M has dimension 4 then in addition u may be assumed to be normal and embedded. If ω
is integral, by Proposition 7.4, u may be assumed to be charge 1. And so we will be done.

Define a metric ρ0 measuring the distance between subspaces W1,W2, of same dimension, of an inner
product space (T, g) as follows.

ρ0(W1,W2) := |PW1 − PW2 |,
for | · | the g-operator norm, and PWi g-projection operators onto Wi.

Let δ > 0 be given. Suppose that ω = dα
′
λ′ is a first kind lcs structure δ-close to ω0 for the metric

d∞. Then Vλ′ , ξλ′ are smooth distributions by the assumption that (α′, λ′) is a lcs structure of the
first kind and TM = Vλ′ ⊕ ξλ′ . Moreover,

ρ∞(Vλ′ ,Vλ) < εδ

and
ρ∞(ξλ′ , ξλ) < εδ
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where εδ → 0 as δ → 0, and where ρ∞ is the C∞ analogue of the metric ρ0, for the family of subspaces
of the family of inner product spaces (TpM, g).

Then choosing δ to be suitably be small, for each p ∈ M we have an isomorphism
φ(p) : TpM → TpM,

φp := P1 ⊕ P2, for P1 : Vλ0(p) → Vλ′(p), P2 : ξλ0(p) → ξλ′(p) the g-projection operators. Define
E(ω)(p) := φ(p)∗J0. Then clearly, if δ was chosen to be sufficiently small, if we take V to be the δ-ball
in (F(M), d∞) centered at ω0, then it has the needed property.

□

Definition 7.6. Let α be a scale integral closed 1-form on a closed smooth manifold M . Let 0 6= c ∈ R
be such that cα is integral. A classifying map p : M → S1 of α is a smooth map s.t. cα = p∗dθ. A
map p with these properties is of course not unique.

Lemma 7.7. Let u : Σ → M be a Reeb 2-curve in a closed, scale integral, first kind lcs manifold
(M,λ, α), then its normalization ũ : Σ̃ → M is a Reeb 2-curve.

Proof. By Lemma 3.9 we have a surjective classifying map p : M → S1 of α. Note that the fibers Mt

of p, for all t ∈ S1, are contact with contact form λt = λ|Ct , as 0 6= ωn = α ∧ λ ∧ dλn−1 and c · α = 0
on Mt, where c is as in the definition of p.

Let ũ : Σ̃ → M be the normalization of u. Suppose it is not a Reeb 2-curve, which in this case, by
definitions, just means that 0 = [ũ∗α] ∈ H1(Σ̃,R). Since 0 6= [u∗α] ∈ H1(Σ,R), some node z0 of Σ lies
on closed loop o : S1 → Σ with 〈[o], [u∗α]〉 6= 0.

Let qΣ : Σ̃ → Σ be the quotient map as previously appearing. In this case, we may find a smooth
embedding η : D2 → Σ̃, s.t. qΣ ◦η(D2)|∂D2 is a component of a regular fiber Ct, of the classifying map
p′ : Σ → S1 of u∗α. See Figure 1, η(D2) is a certain disk in Σ̃, whose interior contains an element of
φ−1(z0).

Figure 1. The figure for Σ. The gray shaded area is the image qΣ ◦ η(D2). The red
shaded curve is the image of the closed loop o as above.

Then analogously to the proof of Proposition 6.3 ũ ◦ η|∂D2 is a (unparametrized) λt-Reeb orbit in Mt.
(The classifying maps can be arranged, such that u(Ct) ⊂ Mt.) And in particular

∫
∂D

ũ∗λ 6= 0. Now
u (not ũ) is a Reeb 2-curve, and the first condition of this implies that

∫
D
dũ∗λ = 0, since ker dλ on

M is spanned by Xλ, Xα. So we have a contradiction to Stokes theorem. Thus, ũ must be a Reeb
2-curve.
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□

Proof of Theorem 1.18. Let (C, λ) and φ be as in the hypothesis. Let {φt}, t ∈ [0, 1] be a smooth
family of strict contactomorphisms φ0 = id, φ1 = φ. This gives a smooth fibration M̃ → [0, 1], with
fiber over t ∈ [0, 1]: Mϕt,1, which is moreover endowed with the first kind lcs structure (λϕt , α), where
this is the “mapping torus structure” as above. Let tr : M̃ → (C×S1)×[0, 1] be a smooth trivialization,
restricting to the identity C × S1 → C × S1 over 0. Pushing forward by the bundle map tr, the above
mentioned family of lcs structures, we get a smooth family {(λt, α)}, t ∈ [0, 1], of first kind integral lcs
structures on C × S1, with (λ0, α) = (λ, α) the standard lcs-fication of λ.

Fix a family {Jλt} of almost complex structures on C × S1 with each Jλt admissible with respect
(λt, α). Let N ⊂ O(Rλ, β) be an open compact set satisfying i(N,Rλ, β) 6= 0. The embedding emb
from part 4 of Proposition 7.2 induces a proper embedding

ẽmb : M̃ = M1

1,1({Jλt}, Aβ , β) → O(Rλ, β)× [0, 1],

defined by ẽmb(u, t) = (emb(u), t).

Set N0 = P(N) ⊂ M1

1,1(J
λ0 , Aβ , β) ⊂ M̃. So that by construction ẽmb(N0) = N × {0}. Set

Ñ = ẽmb
−1

(ẽmb(M̃) ∩ (N × [0, 1])),

then this is an open and compact subset of M̃. And by construction Ñ ∩M1

1,1(J
λ0 , Aβ , β) = N0. Set

N1 = Ñ ∩M1

1,1(J
λ1 , Aβ , β).

It follows by Theorem 6.8 that
GW 1

1,1(N0, J
λ0 , Aβ , β)([M1,1]⊗ [C × S1]) = i(N,Rλ, β) 6= 0.

Then applying Lemma 5.3 we get that
GW 1

1,1(N1, J
λ1 , Aβ , β)([M1,1]⊗ [C × S1]) 6= 0.

By part two of Proposition 7.2 there is a charge 1 generalized Reeb torus uo in M . In particular,
imageφ(o) = image(o). Also by construction, o ∈ N and so we are done. □

Proof of Theorem 1.14. If Rλ is finite type and i(Rλ, β) 6= 0 then the theorem follows immediately by
Theorem 1.18.

We leave the full definition of infinite type vector fields to the reference [30, Definition 2.5]. We have
that Rλ is infinite type in class β. WLOG assume that it is positive infinite type. In particular, we
may find a perturbation Xa of Rλ together with a homotopy Xt, t ∈ [0, 1], s.t.:

(1) X0 = Xa, X1 = Rλ.

(2) O(Xa, a, β) = {o ∈ O(Xa, β) |A(o) ≤ a} is discrete, where A is the period map as in the
introduction.

(3) Each o ∈ O(Xa, a, β) is contained in a non-branching open compact subset Ko ⊂ O({Xa
t }, β).

Where the latter means that:

(a) Ko ∩ O(X1, β) is connected.

(b) For o, o′ ∈ O(Xa, a, β) Ko = Ko′ or Ko ∩Ko′ = ∅.

(c) O(X1, β) = ∪o(Ko ∩ O(X1, β)).

(d) (Ko ∩ O(Xa, β)) ⊂ O(Xa, a, β).

(4)
∑

o∈O(Xa,a,β) i(o) > 0.
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Set N := O(Xa, a, β), then by the condition 3 and by the non-branching property,

N = ti∈{1,...,n}O(Xa, β) ∩Koi ,

disjoint union for some o1, . . . on ∈ O(Xa, a, β). Set Ñ := ∪i∈{1,...,n}Koi . Then Ñ ∩ O(Xa, β) = N .
Set N1 := Ñ ∩ O(Rλ, β), then this is an open compact subset of O(X1, β).

Finally, using invariance of the Fuller index we get that i(N1, R
λ, β) 6= 0. Then the result follows by

Theorem 1.18. □

Proof of Theorem 1.17. Suppose that λ is Morse-Bott and we have an open compact component N ⊂
O(Rλ, β), with χ(N) 6= 0 so that i(N,Rλ, β) 6= 0, [30, Section 2.1.1]. If λ′ is sufficiently C1 nearby to
λ then we may find open compact N ′ ∈ O(Rλ′

) s.t.

i(N ′, Rλ′
, β) = i(N,Rλ, β) 6= 0.

See [30, Lemma 1.6]. Then the result follows by Theorem 1.18. □

Proof of Theorem 1.7. Under the assumptions on the Euler characteristic by [29, Theorem 1.10] for
any β-taut g on X:

GWF(g, id, β, 1) = F (g, β) = χS1

(LβX) 6= 0.

Then for φ as in the hypothesis, let {φt}t∈[0,1] be a homotopy between id and φ, with each φt an
isometry of g. Then {(g, φt)}t clearly furnishes an E-homotopy between (g, id) and (g, φ). So that
GWF(g, φ, β, 1) 6= 0, by Theorem 1.4. □

Proof of Corollary 1.8. If X admits a complete metric of negative curvature, then by the proof of [29,
Theorem 1.14] we may find a not a power class β′ ∈ πinc

1 (X), s.t. β has a representative which is a
k-cover of a representative of β′. Also,

χS1

(Lβ′X) = χ(Lβ′X/S1) as the action is free by the condition that β′ is not a power
= 1,

where the last equality is immediate from the hypothesis that X admits a complete metric of negative
curvature and classical Morse theory, see proof of [29, Theorem 1.10]. Now, if g is any other complete
metric on X with non-positive curvature then in particular it is β′-taut. Then by Theorem 1.7, φ has
a charge one, class β′ fixed geodesic string. It readily follows that φ also has a class β, charge one fixed
geodesic string. □

Proof of Theorem 1.9. Let {(gt, φt)} be an E-homotopy as in the hypothesis. And let o ∈ O(g0, β) be
the unique and non-degenerate element. As φn

0,∗(β) = β, it is immediate that o is a charge n fixed
geodesic string of φ0.

Moreover, the moduli space Mn

1,1(J
λϕ0 , A1

β̃
, β̃) consists of one point, and it is regular by the non-

degeneracy of o. So we conclude that GWF(g0, φ0, β, n) 6= 0 ( 1
k where k is the multiplicity of o.). Then

by Theorem 1.4 we get that GWF(g1, φ1, β, n) 6= 0 and so we are done. □

Proof of Corollary 1.16. Let g and β ∈ πinc
1 (X) be as in the hypothesis. By assumption the corre-

sponding unit cotangent bundle (C, λ) is definite type in class β̃. If φ is some isometry of g homotopic
through isometries to the identity, then the induced strict contactomorphism φ̃ is homotopic through
strict contactomorphisms to the id, and so by Theorem 1.14 φ̃ has a class β̃ fixed Reeb string. So that
φ has a class β fixed geodesic string. □
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Proof of Theorem 1.19. Let g0 be a complete metric on X with a unique and non-degenerate class
β ∈ πinc

1 (X) geodesic string. Let λ0 = λg0 be the Liouville 1-form on the g0-unit contangent bundle
C of X. Let g be as in the hypothesis and let λ1 be Liouville 1-form on C corresponding to g.

Let {λt}, t ∈ [0, 1], be a smooth homotopy between λ0, λ1. We may in addition assume that this
homotopy is constant near the end points. We then get a family {(λt, α)} of first kind integral lcs
structures on C × S1.

Now let {φ̃t}, t ∈ [0, 1] be a smooth homotopy of strict contactomorphisms of (C, λ1) with φ̃0 = id,
corresponding to a homotopy {φt} of isometries of X, g, with φ0 = id. We may suppose that {φ̃t}
is constant near end points. As in the Proof of Theorem 1.18, this gives a smooth fibration over
M̃ → [0, 1]. And as before we get a family {(λ′′

t , α)}, t ∈ [0, 1], of first kind integral lcs structures on
C × S1, s.t.:

• (λ′′
0 , α) is the lcs-fication of λ0.

• For each t (λ′′
t , α) is isomorphic to the mapping torus structure (λϕ̃t

, α).

Let {(λ′
t, α)} be the concatenation of the families {(λt, α)}, {(λ′′

t , α)}, i.e.:

λ′
t =

{
λ2t, if t ∈ [0, 1

2 ]

λ′′
2t−1, if t ∈ [ 12 , 1].

Let {J ′
t}, t ∈ [0, 1] be a family of almost complex structures on M = C×S1 s.t. J ′

t is (λ′
t, α)-admissible

for each t. Let β̃ be the lift of β ∈ πinc
1 (X), as in Section 4.3. Now, by construction and by Theorem

6.8
GW 1

1,1(J
′
0, Aβ̃ , β) = i(Rλg0 , β̃) 6= 0,

with the last inequality due to the assumption that there is a unique non-degenerate g0-geodesic string
in class β. Then by Lemma 5.6, we get that one of the following holds:

• (λϕ̃, α) has an elliptic charge 1, class Aβ̃ Reeb 2-curve u, and hence by part one of the Propo-
sition 7.2, φ̃ has a charge 1 fixed Reeb string in class β̃, and so φ has a charge 1 fixed geodesic
in class β.

• The family {J ′
t}, t ∈ [0, 1] has an essential right holomorphic sky catastrophy, of charge 1,

class Aβ̃ curves.

Suppose that the latter holds. By the admissibility condition and by Lemma 6.1, if

(u, t) ∈ M1

1,1({J ′
t}, Aβ̃ , β)

then u is a charge 1 elliptic Reeb 2-curve. Let {Xt}, t ∈ [0, 1], be the smooth family of vector fields
satisfying Xt = Rλ2t for t ∈ [0, 1

2 ], Xt = Rλ1 for t ∈ [ 12 , 1]. Analogously to part 4 of Proposition 7.2,
we have a proper topological embedding

emb : M1

1,1({J ′
t}, Aβ̃ , β) → O({Xt}, β̃),

It follows, by the previous hypothesis, that the family {Xt}t∈[0,1] has a sky catastrophe in class β =
0. In addition, this sky catastrophe must be essential, as otherwise the original holomorphic sky
catastrophe would not be essential.

□

Proof of Theorem 1.4. We have to prove invariance of the counts. Let {(gt, φt)}t∈[0,1], be an E-
homotopy. Let (C, λt = λgt), be the gt-unit cotangent bundle of X, and λgt the Liouville 1-form.
(Fixing an implicit identification of the unit cotangent bundles with a fixed manifold C.) Let β̃ ∈ π1(C),
be the lift of a class β ∈ πinc

1 (X) as in Section 4.3. Denote by (Mt, λt, αt) the mapping torus of φ̃t
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action on (C, λt), where φ̃t is the strict contactomorphism induced by the isometry φt. Finally, let
{Jt}t∈[0,1], be a smooth family with Jt (λt, αt)-admissible almost complex structures on Mt.

By the tautness assumption the family {Rλt} has no sky catastrophe in the class β̃. Then by the third
part of Proposition 7.2, {Jt} has no sky catastrophe in class in Aβ̃ , and so by Theorem 5.6 we have

GWF(g0, φ0, β, n) = GWF(g1, φ1, β, n)

and we are done. □

Proof of Theorem 3.6. Suppose that u : Σ → M is an immersed Reeb 2-curve, we then show that M

also has a Reeb 1-curve. Let ũ : Σ̃ → M be the normalization of u, so that ũ is an immersion. We
have a pair of transverse 1-distributions D1 = ũ∗R〈Xα〉, D2 = ũ∗R〈Xλ〉 on Σ̃. We may then find an
embedded path γ : [0, 1] → Σ̃, tangent to D1 s.t. λ(γ′(t)) > 0, ∀t ∈ [0, 1], and s.t. γ(0) and γ(1) are
on a leaf of D2. It is then simple to obtain from this a Reeb 1-curve o, by joining the end points of γ
by an embedded path tangent to D2, and perturbing, see Figure 2. This proves the first part of the

Figure 2. The green shaded path is γ, the indicated orientation is given by u∗λ,
the D1 folliation is shaded in black, the D2 folliation is shaded in blue. The purple
segment is part of the loop o : S1 → Σ, which is is smooth and satisfies λ(o′(t)) > 0
for all t.

theorem.

To prove the second part, suppose that u : Σ → M is an immersed elliptic Reeb 2-curve. Suppose
that u is not normal. Let ũ : Σ̃ → M be its normalization. Then Σ̃ has a genus 0 component S. So
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that ũ : S ' CP1 → M is immersed. The distribution D1 = ũ∗R〈Xα〉, as appearing above, is then a
ũ∗λ-oriented 1-dimensional distribution on CP1 which is impossible. □

A. Fuller index

Let X be a complete vector field without zeros on a smooth manifold M . Set
(A.1) S(X,β) = {o ∈ LβM | ∃p ∈ (0,∞), o : R/Z → M is a periodic orbit of pX},

where LβM denotes the free homotopy class β component of the free loop space
LM = {o : S1 → M | o is smooth}.

And where recall that S1 = R/Z. The above p is uniquely determined and we denote it by p(o) called
the period of o.

There is a natural S1 reparametrization action on S(X,β): t · o is the loop t · o(τ) = o(t + τ). The
elements of O(X,β) := S(X,β)/S1 will be called orbit strings. Slightly abusing notation we just write
o for the equivalence class of o.

The multiplicity m(o) of an orbit string is the ratio p(o)/l for l > 0 the period of a simple orbit covered
by o.

We want a kind of fixed point index of an open compact subset N ⊂ O(X,β), which counts orbit
strings o with certain weights. Assume for simplicity that N ⊂ O(X) is finite. (Otherwise, for a
general open compact N ⊂ O(X,β), we need to perturb.) Then to such an (N,X, β) Fuller associates
an index:

i(N,X, β) =
∑
o∈N

1

m(o)
i(o),

where i(o) is the fixed point index of the time p(o) return map of the flow of X with respect to a local
surface of section in M transverse to the image of o.

Fuller then shows that i(N,X, β) has the following invariance property. For a continuous homotopy
{Xt}, t ∈ [0, 1] set

S({Xt}, β) = {(o, t) ∈ LβM × [0, 1] | o ∈ S(Xt)}.
And given a continuous homotopy {Xt}, X0 = X, t ∈ [0, 1], suppose that Ñ is an open compact subset
of S({Xt}, β)/S1, such that

Ñ ∩ (LβM × {0}) /S1 = N.

Then if
N1 = Ñ ∩ (LβM × {1}) /S1

we have
i(N,X, β) = i(N1, X1, β).

In the case where X is the Rλ-Reeb vector field on a contact manifold (C2n+1, λ), and if o is non-
degenerate, we have:
(A.2) i(o) = signDet(Id |ξ(x) − Fλ

p(o),∗|ξ(x)) = (−1)CZ(o)−n,

where Fλ
p(o),∗ is the differential at x of the time p(o) flow map of Rλ, and where CZ(o) is the Conley-

Zehnder index, see [?].

There is also an extended Fuller index i(X,β) ∈ Qt{±∞}, for certain X having definite type. This is
constructed in [30], and is conceptually analogous to the extended Gromov-Witten invariant described
in this paper.

The following is a version of the definition of sky catastrophes first appearing in Savelyev [30], gener-
alizing a notion commonly called a “blue sky catastrophe”, see Shilnikov-Turaev [32].
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Definition A.3. Let {Xt}, t ∈ [0, 1] be a continuous family of non-zero, complete smooth vector fields
on a closed manifold M , and let β ∈ πinc

1 (X). And let S({Xt}) be as above. We say that {Xt} has a
right sky catastrophe in class β, if there is an element

y ∈ S(X0, β) ⊂ S({Xt}, β)

so that there is no open compact subset of S({Xt}, β) containing y. We say that {Xt} has a left sky
catastrophe in class β, if there is an element

y ∈ S(X1, β) ⊂ S({Xt}, β)

so that there is no open compact subset of S({Xt}, β) containing y. We say that {Xt} has a sky
catastrophe in class β, if it has either left or right sky catastrophe in class β.

Definition A.4. In the case that Xt = Rλt for {λt}, t ∈ [0, 1] smoothly varying, we say that a sky
catastrophe of Reeb vector fields {Xt} is essential if the condition of the definition above holds for
any family {X ′

t = Rλ′
t} satisfying X ′

0 = X0 and X ′
1 = X1, and such that {λ′

t} is smooth.

B. Remark on multiplicity

This is a small note on how one deals with curves having non-trivial isotropy groups, in the virtual
fundamental class technology. We primarily need this for the proof of Theorem 6.8.

Given a closed oriented orbifold X, with an orbibundle E over X Fukaya-Ono [11] show how to con-
struct using multi-sections its rational homology Euler class, which when X represents the moduli space
of some stable curves, is the virtual moduli cycle [X]vir. When this is in degree 0, the corresponding
Gromov-Witten invariant is

∫
[X]vir 1. However, they assume that their orbifolds are effective. This

assumption is not really necessary for the purpose of construction of the Euler class but is convenient
for other technical reasons. A different approach to the virtual fundamental class which emphasizes
branched manifolds is used by McDuff-Wehrheim, see for example McDuff [18], [21] which does not
have the effectivity assumption, a similar use of branched manifolds appears in [7]. In the case of a
non-effective orbibundle E → X McDuff [20], constructs a homological Euler class e(E) using multi-
sections, which extends the construction [11]. McDuff shows that this class e(E) is Poincare dual to
the completely formally natural cohomological Euler class of E, constructed by other authors. In other
words there is a natural notion of a homological Euler class of a possibly non-effective orbibundle. We
shall assume the following black box property of the virtual fundamental class technology.

Axiom B.1. Suppose that the moduli space of stable maps is cleanly cut out, which means that it is
represented by a (non-effective) orbifold X with an orbifold obstruction bundle E, that is the bundle
over X of cokernel spaces of the linearized CR operators. Then the virtual fundamental class [X]vir

coincides with e(E).

Given this axiom it does not matter to us which virtual moduli cycle technique we use. It is satisfied
automatically by the construction of McDuff-Wehrheim, (at the moment in genus 0, but surely extend-
ing). It can be shown to be satisfied in the approach of John Pardon [27]. And it is satisfied by the
construction of Fukaya-Oh-Ono-Ohta [9], the latter is communicated to me by Kaoru Ono. When X is
0-dimensional this does follow immediately by the construction in [11], taking any effective Kuranishi
neighborhood at the isolated points of X, (this actually suffices for our paper.)

As a special case most relevant to us here, suppose we have a moduli space of elliptic curves in X,
which is regular with expected dimension 0. Then its underlying space is a collection of oriented
points. However, as some curves are multiply covered, and so have isotropy groups, we must treat this
is a non-effective 0 dimensional oriented orbifold. The contribution of each curve [u] to the Gromov-
Witten invariant

∫
[X]vir 1 is ±1

[Γ([u])] , where [Γ([u])] is the order of the isotropy group Γ([u]) of [u], in the
McDuff-Wehrheim setup this is explained in [18, Section 5]. In the setup of Fukaya-Ono [11] we may
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readily calculate to get the same thing taking any effective Kuranishi neighborhood at the isolated
points of X.
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