
Direct link to author’s version

INCOMPLETENESS THEOREMS VIA TURING CATEGORY

YASHA SAVELYEV

Abstract. We give a reframing of Gödel’s first and second incompleteness theorems that applies
even to some undefinable theories of arithmetic. The usual Hilbert–Bernays provability conditions
and the “diagonal lemma” are absent, replaced by a more direct diagonalization argument, from first
principles, based in category theory and in a sense analogous to Cantor’s original argument. To this
end, we categorify the theory Gödel encodings, which might be of independent interest. In our setup,
the Gödel sentence is computable explicitly by construction even for Σ0

2 theories (likely extending to
Σ0

n). In an appendix, we study the relationship of our reframed second incompleteness theorem with
arguments of Penrose.

1. Introduction

Ordinarily, Gödel incompleteness theorems are formulated for definable arithmetic theories. In fact,
the original incompleteness theorems applied to computably enumerable theories of arithmetic, but
the latter can be generalized in some ways to Σn theories, see for instance [7]. One of the goals here
is to extend first and second incompleteness theorems to certain undefinable theories of arithmetic.
Another goal is to rework the incompleteness theorems from a more set theoretic/categorical point of
view, utilizing a certain category of Gödel encodings. The extension to some undefinable theories is
then one proof of concept, for this recasting of the incompleteness theorems.

We will work from first principles, and within the meta-theory ZFC, that is all theorems are theorems
of ZFC (and mostly just ZF ). Our setup will be partly language agnostic, we work with a general
L-theory, interpreting arithmetic but our notion of interpretation is very weak. Partly for this reason
various standard tools like Hilbert-Bernays provability conditions and the “diagonal lemma” will not
appear, as translating them to our context is difficult. Instead, the diagonalization argument that
we use is more direct, in a sense elementary, and more analogous to the set theoretic diagonalization
argument of Cantor, as well as to Turing’s original work on the halting problem. To this end we also
categorify the theory of Gödel encodings, obtaining what we call the Turing category. This might be
of independent interest.

If we simplify some assumptions 1, our argument drastically simplifies, and may be of interest purely
as another, from first principles of Turing machines approach to the classical incompleteness theo-
rems.

The primary motivation and many of the choices we make, most notably the choice to work with stably
c.e. theories (see following section), are based around the problem of formalizing a certain version of an
argument of Roger Penrose on potential non-computability in physics. The reader may see Appendix
A, however many terms there are defined throughout the paper.

1.1. Definition of stably c.e. theories and statements of results. Let L be a first order language,
in particular a formal language in a countable alphabet including the symbols of first order logic, with
syntax of first order logic, such that elements of L are sentences (in the logical sense).

We now quickly introduce stable c.e. theories. In what follows, a map is always a partial map, unless
it is specified to be total. Suppose we are given a map

M : N → L× {±},

1For example restrict to c.e. theories of arithmetic as in the original incompleteness theorems.
1

http://yashamon.github.io/web2/papers/stableincompleteness.pdf


2 YASHA SAVELYEV

for {±} denoting a set with two elements +,−.

Definition 1.1. We say that α ∈ L is M-stable if there is an m with M(m) = (α,+) s.t. there is
no n > m with M(n) = (α,−). Let Ms ⊂ L denote the set of M -stable α, called the stabilization
of M .

Remark 1.2. For an informal motivation of how such an M may appear in practice consider the
following. With N playing the role of time, M might be a mathematician producing sentences of
arithmetic that it believes to be true, at each moment n ∈ N. But M is also allowed to correct itself in
the following sense.

• M(n) = (α,+), only if at the moment n M decides that α is true.

• M(m) = (α,−), only if at the moment m, M no longer asserts that α is true, either because
at this moment M is no longer able to decide α, or because it has decided it to be false.

Definition 1.3. A subset S ⊂ L, is called stably computably enumerable or stably c.e., if there
is a computable map (see Definition 2.3) T : N → L × {±} so that S = T s. In this case we also
say that T stably enumerates S. We say that T ∈ T stably computes M : N → L × {±}, if it
computes some N : N → L× {±}, s.t. Ms = Ns.

It is fairly immediate that a stably c.e. S is Σ2 = Σ0
2 definable. The converse is also true, every

Σ2 definable set S ⊂ L is stably c.e.. To prove this we may build on Example 3.3, to construct an
oracle and then use the theorems of Post, (see [13]), relating the arithmetic hierarchy with the theory
of Turing degrees. We omit the details as this will not be essentially used, and is a well understood
idea.

Let A denote the first order language of arithmetic with non-logical symbols {0,+,×, s, <}). In the
following we need a notion of a n-translation from the language of arithmetic to another abstract
language, as well as the notion of n-consistency and strong consistency. The preliminaries for this are
given in Section 2.2.

Note that because our notion of a translation is weak, we cannot reduce the following to the second
incompleteness theorems for definable arithmetic theories. This is because the corresponding arithmetic
theory, that is the theory Fi,A in the notation of Section 2.2, will generally not be arithmetically
definable.

Theorem 1.4. Let F be a theory in any language L, such that F `i ZFC for a 2-translation i. Then
if F is strongly consistent:

(1.5) (F ⊬i F is 1-consistent) ∨ (F ⊬i F is stably c.e., i.e. is Σ2).

The above is based on the following results. The next theorem in particular tells us that the Gödel
sentence is “computable”, even in the setup of abstract L-theories above.

Theorem 1.6. Let L be any fixed first order language, and let i : A → L be some 2-translation. Then
there is a total computable map

G : T → A,

(depending only on i) where the domain T is the set of Turing machines N → N, and where G satisfies
the following. Suppose that T stably computes M : N → L× {±}. Let F = Ms, then we have:

(1) F ⊬i G(T ) if F is 1-consistent.

(2) F ⊬i ¬G(T ) if F is 2-consistent.



INCOMPLETENESS THEOREMS VIA TURING CATEGORY 3

(3)
(1.7) (F is 1-consistent) =⇒ G(T ).

Furthermore, the Turing machine computing G, can itself be given constructively.

As a corollary we get a more basic form of Theorem 1.4:

Corollary 1.8. For F a theory in any language L such that F `i ZFC, where i is a 2-translation:
∀T ∈ T ((F is 1-consistent) ∧ (F `i T stably enumerates F ) =⇒ (F ⊬i F is 1-consistent)).

1.2. Generalizations to Σn. There are natural candidates for how to generalize the above. We may
replace M : N → L × {±} by M : Nn → L × {±}, using this we can define a notion of n-stable
computability, specializing to stable computability for n = 1. The above theorems should generalize
to this setting of n-stable computability. In terms of arithmetic complexity this should be exactly the
class Σ0

n+1. We leave this for future developments.

2. Some preliminaries

2.1. Abstractly encoded sets and the Turing category. The material of this section will be used
in the main argument. The approach here is in essence the standard approach, but usually encoding
systems are implicit and fixed, as ordinarily one is working with some concrete sets and concrete
encodings. We need to work with abstract sets (in particular all abstract first order languages), and
we need to formalize the properties of encodings in such a way that showing maps are computable can
be done axiomatically, as the maps we construct are fairly complex. For this, it is very natural to use
the language of category theory.

Definition 2.1. An encoding map of a set A is an injective total set map e : A → N, such that the
set Ae = e(A) is computable (recursive).

Here, as is standard, a set S ⊂ N is called computable if both S and its complement are computably
enumerable, with S called computably enumerable if there is a computable partial function N → N
with range S.

We extend the collection of encodings to a structure of a category.

Definition 2.2. We denote by T the set of all Turing machines T : N → N. We write ∗T (n) for the
computation sequence of the Turing machine T with input n. As usual, for T ∈ T , T also denotes the
underlying partial function with T (n) = m if ∗T (n) halts with output m, and undefined otherwise.

In what follows, a map is a partial map, unless we specify that it is total. Define a large (the set
of objects is a proper class) arrow type category S whose objects are encoding maps eA : A → N.
Explicitly, objects objS of S consists of pairs (A, eA) where A is a set, and eA : A → N an encoding
map.

We now describe the morphisms of S.

Definition 2.3. For (N, eN ), (M, eM ) in objS, a morphism is a map f s.t. there is a commutative
diagram:

N M

N N,

f

eN eM

T

for some T ∈ T .



4 YASHA SAVELYEV

To simplify notation, we may omit specifying the encoding map for a given object of S, keeping track
of it implicitly. With this in mind, for N,M ∈ S we say that T computes a map f : N → M if T fits
into a commutative diagram as above. We say that f : N → M is computable if there exists a T ∈ T
which computes f .

So in the terms above, the set homS((N, eN ), (M, eM )) is the set of computable maps f : N → M . In
what follows, if not specified, the encoding of N is the id : N → N.

Proposition 2.4. The category S, called the Turing category, satisfies the following:

(1) The category S has finite products. (In fact it has all finite limits and colimits, but we will
not need this.) This entails the following. If (A, eA), (B, eB) ∈ S then there is a distinguished
encoding map eA×B : A×B → N, called the product encoding map s.t.:

(a) The projection maps prA : A× B → A, prB : A× B → B are computable. Similarly for
prB.

(b) If f : A → B is computable, and g : A → C is computable then A → B × C, a 7→
(f(a), g(a)) is computable.

(c) If f : A → B, g : C → D are computable then the map A×B → C×D, (a, b) 7→ (f(a), g(b))
is computable.

From now on, the encoding map of A×B is taken to be the product encoding map (with respect
to some possibly implicit encoding maps of A,B).

(2) The set T has a distinguished encoding eT s.t. the following holds. Define
U : T × N → N,

U(T,Σ) :=

{
T (Σ), if ∗T (Σ) halts
undefined, otherwise.

Then U is computable. (The Turing machine computing U may be called the “universal Turing
machine”.) From now T as an object S is taken with respect to this distinguished encoding.

(3) Let A,B,C ∈ S, and suppose that f : A× B → C is computable. Let fa : B → C be the map
fa(b) = f(a, b). Then there is a computable map

s : A → T
so that for each a s(a) computes fa.

(4) For a set A let
L(A) :=

∪
n∈N

Maps({0, . . . , n}, A),

where Maps({0, . . . , n}, A) denotes the set of total maps. If (A, eA) ∈ S then there is a
distinguished encoding eL(A) of L(A) s.t.:

(a) The length function
length : L(A) → N,

is computable, where for l ∈ L(A), l : {0, . . . n} → A, length(l) = n.

(b) Define
P : L(A)× N → A,

P (l, i) :=

{
l(i), if 0 ≤ i ≤ length(l)

undefined, for i > length(l).

Then P is computable.

(c) For A,B ∈ S and f : A → L(B) a partial map, suppose that:



INCOMPLETENESS THEOREMS VIA TURING CATEGORY 5

• The partial map A× N → B, (a, n) 7→ P (f(a), n) is computable.

• The partial map A → N, a 7→ length(f(a)) is computable.

Then f is computable. From now, given A ∈ S the encoding of L(A) is assumed to be
such a distinguished encoding, called the list encoding map.

(5) Let L be a first order language, then there is a distinguished encoding of L with the following
property. There is a total computable map:

Φ : L(L)× N → L,

s.t. for each l ∈ L(L), Φ({l} × N) is the deductive closure of the theory Fl = image l. From
now such an L is assumed to have such a distinguished encoding.

Lemma 2.5. If f : A → B is computable then the map L(f) : L(A) → L(B),

l 7→

{
i 7→ f(l(i)), if f(l(i)) is defined for all 0 ≤ i ≤ length(l)

undefined, otherwise,

is computable. Also, the map LU : T × L(U) → L(U),

l 7→

{
i 7→ U(T, (l(i))), if U(T, (l(i))) is defined for all 0 ≤ i ≤ length(l)

undefined, otherwise

is computable.

Proof. This is just a straightforward application of the proposition and part 4 in particular. We leave
the details as an exercise. □

Proof of Proposition 2.4. As this is just an elaboration on classical theory we only sketch the proof.
To prove the first part, given (A, eA), (B, eB) the encoding map eA×B : A × B → N can be taken to
be the map (a, b) 7→ 2eA(a) · 3eB(b). The needed properties readily follow.

The second part is just the classical story of the universal Turing machine.

The third part corresponds to the “s-m-n theorem” Soare [13, Theorem 1.5.5], which works as follows.
Given a classical 2-input Turing machine

T : N× N → N,

there is a Turing machine sT : N → N s.t. for each m sT (m) is the Turing-Gödel encoding natural, of
a Turing machine computing the map fm: n 7→ T (m,n).

For the fourth part we can just explicitly construct the needed encoding, by setting eL(A) to be the
map

l 7→ 2eA(l(0)) · . . . · peA(l(n))
n ,

where l : {0, . . . , n} → A and pn is the n’th prime.

The last part follows by basic theory of first order logic and the previous parts. □

Remark 2.6. The above properties suffice for our purposes. As mentioned S in fact has all finite
limits and colimits, this is proved analogously. For example the sum (coproduct) of (A, eA) and (B, eB),
can be given by (A tB, eA⊔B) where

eA⊔B(x) =

{
2eA(x), if x ∈ A

3eB(x), if x ∈ B.



6 YASHA SAVELYEV

S having finite products and sums is in part what it makes it possible to have a computer programming
language with algebraic data types, e.g. Haskell. Haskell also has more general, finite “colimit, limit”
data types.

2.2. Some preliminaries on first order theories. Let L be a first order language. An L-theory F
is a subset F ⊂ L. F will be called deductively complete if it is closed under inference, that is if F ` α
then α ∈ F . Denote by F the deductive closure of F .

F = ∩{H ⊂ L |H is deductively complete and F ⊂ H}.
We will need a notion of one first order theory interpreting another first order theory, possibly in a
different language.

Definition 2.7. Given first order languages L,L′, a translation is a total set embedding i : L′ → L
such that

(1) i preserves the logical operators ∧,∨,¬. (For example, i(¬α ∧ β) = ¬i(α) ∧ i(β)).

(2)
(∀α ∈ L′ ∀S ⊂ L′) S ` α =⇒ i(S) ` i(α).

Here is one well understood example.

Example 2.8. If Z denotes the first order language of set theory and A the first order language of
arithmetic as in the introduction, then there is a translation iA,Z : A → Z. This map assigns to
numerals in the language of arithmetic the Von Neumann naturals, e.g. we assign ∅ to 0. In this
example, assuming standard encodings of A,Z, i is computable.

If i as above is computable we call i a computable translation map. The following, weakens this
notion.

Definition 2.9. For a translation i : A → L, if the restriction of i to the subset of Σ0
n formulas is

computable we say that i is a n-translation. Likewise, for a translation j : Z → L we say it is a
n-translation, if the induced translation j ◦ iA,Z : A → L, where iA,Z is as above, is a n-translation.

Definition 2.10. Given a translation i : L′ → L and an L-theory F , we set
Fi,L′ = i−1(F ) ⊂ L′.

To paraphrase, this is set of L′-sentences proved by F under the given translation.

The following is immediate from the definitions.

Lemma 2.11. For L,L′, i, F as above Fi,L′ is a deductively closed theory.

Definition 2.12. For a given translation i : L′ → L, given an L-theory F and a sentence α ∈ L′, we
write F `i α if

Fi,L′ ` α.

Likewise, we write F `i F ′ if
Fi,L′ ` F ′.

Whenever, there exists an i s.t. F `i F ′, we say that F interprets F ′.

The following is also immediate from definitions.

Lemma 2.13. Given first order languages L0,L1,L2 and an L2-theory F2. If F2 interprets F1 and
F1 interprets F0 then F2 interprets F0.



INCOMPLETENESS THEOREMS VIA TURING CATEGORY 7

Let F0 denote the set of Σ0
0 formulas of arithmetic A with one free variable.

Definition 2.14 (cf. [4]). Given a first order theory F in any language L, we say that F 1-consistent
relative to the translation i if:

(1) F `i Q as in Definition 2.12.

(2) For any formula ϕ ∈ F0 the following holds:
F `i ∃m ϕ(m)) =⇒ (∃m F ⊬i ¬ϕ(m)).

We say that F is 2-consistent relative to the translation i if the same holds for Π0
1 formulas ϕ

with one free variable, more specifically formulas ϕ = ∀n g(m,n), with g Σ0
0.

From now on n-consistency is always with respect to some implicit translation i, that should be clear
from the context, and so may not be denoted.

Definition 2.15. Suppose we are given a theory F in some language L, such that F `i ZFC. Then
we say that it is strongly consistent if there is a ‘standard model’ M for Fi,Z . More specifically, we
suppose that M is a substructure of Vκ for Vκ some stage in the Von Neumann hierarchy.

3. Stable computability and decision maps

In this section, general sets, often denoted as B, are intended to be objects of S with an implicit
encoding map (sometimes made explicit). All maps are partial maps, unless specified otherwise. The
set {±} is always understood to be with the fixed encoding map e{±}(−) = 0, e{±}(+) = 1.

Definition 3.1. Given a map:
M : N → B × {±},

We say that b ∈ B is M-stable if there is an m with M(m) = (b,+) and there is no n > m with
M(n) = (b,−).

Definition 3.2. Given a map
M : N → B × {±},

we define
Ms ⊂ B

to be the set of all the M -stable b. We call this the stabilization of M . When M is computable,
that is furnishes a morphism in S, we say that S ⊂ B is stably c.e. if S = Ms. We say that T ∈ T
stably computes M : N → B × {±}, if it computes N : N → B × {±}, s.t. Ms = Ns.

In general Ms may not be computable even if M is computable. Explicit examples of this sort can be
readily constructed as shown in the following.

Example 3.3. Let Pol denote the set of all Diophantine polynomials, with a distinguished encoding
map whose properties will be specified shortly. We can construct a total computable map

A : N → Pol × {±}
whose stabilization consists of all Diophantine (integer coefficients) polynomials with no integer roots.

Fix a distinguished encodings of Pol,Z so that the map
E : Z× Pol → Z, (n, p) 7→ p(n)

is computable. Let
Z : N → Pol, N : N → Z

be any total bijective computable maps.



8 YASHA SAVELYEV

In what follows, for each n ∈ N, An ∈ L(Pol × {±}). ∪ will be here and elsewhere in the paper the
natural list union operation. More specifically, if

l1 : {0, . . . , n} → B, l2 : {0, . . . ,m} → B

are two lists then l1 ∪ l2 is defined by:

(3.4) l1 ∪ l2(i) =

{
l1(i), if i ∈ {0, . . . , n}
l2(i− n− 1), if i ∈ {n+ 1, . . . , n+m+ 1} .

If B ∈ S, it is easy to see that

∪ : L(B)× L(B) → L(B), (l, l′) 7→ l ∪ l′

is computable, given that we are using the list encoding map for L(A), as in part 4c of Proposition
2.4.

For n ∈ N define An recursively by: A0 := ∅,

An+1 := An ∪
n∪

m=0

(Z(m), dn(Z(m))),

where dn(p) = + if none of {N(0), . . . , N(n)} are roots of p, dn(p) = − otherwise.

Define A(n) := An+1(n). Note that

(∀n ∈ N) An+1|domainAn = An, and length(An+1) > length(An),

so that with this definition A(N) = ∪n∈N image(An).

Since E is computable, utilizing the recursive program above and Proposition 2.4, it can be readily
verified that the map A is computable. Moreover, by construction the stabilization As consists of all
Diophantine polynomials that have no integer roots.

3.1. Decision maps. By a decision map, we mean a map of the form:

D : B × N → {±}.

This kind of maps will play in the incompleteness theorems, and we now develop some of their the-
ory.

Definition 3.5. Let B ∈ S, define DB to be the set of T ∈ T s.t. exists T ′ : B × N → {±}, and a
commutative diagram:

B × N {±}

N N.

T ′

eB×N e{±}

T

More concretely, this is the set of T s.t.:

(∀n ∈ image eB×N ⊂ N) (T (n) ∈ image eB×{±} or T (n) is undefined.)

As e{±} is injective, T ′ above is uniquely determined if it exists. From now on, for T ∈ DB , when we
write T ′ it is meant to be of the form above.

First we will explain one construction of elements of DB , from Turing machines of the following
form.



INCOMPLETENESS THEOREMS VIA TURING CATEGORY 9

Definition 3.6. Let B ∈ S. Define TB to be the set of T ∈ T s.t. exists T ′ : N → B × {±}, and a
commutative diagram:

N B × {±}

N N.

T ′

id eB×{±}

T

From now on, given T ∈ TB , if we write T ′ then it is will be assumed to be of the form above. As
before, it is uniquely determined when exists.

Lemma 3.7. For (A, eA) ∈ S define the map:

(3.8) e−1
A : N → A,

by

e−1
A (n) =

{
e−1
A (n), if n ∈ image eA

undefined, otherwise.

Then e−1
A is computable.

Proof. Let T ∈ T compute the map N → N defined by

n 7→

{
n, if n ∈ image eA

undefined, otherwise.

As image eA is decidable T does exist.

Then clearly we have a commutative diagram:

N A

N N,

e−1
A

id eA

T

so that e−1
A is computable. □

Lemma 3.9. Let (B, eB) ∈ S. There is a computable total map

K = K(B,eB) : T → T ,

with the properties:

(1) For each T , K(T ) ∈ TB.

(2) If T ∈ TB then K(T ) and T compute the same maps N → B × {±}.

Proof. Let G : T × N → B × {±} be the composition of the sequence of maps

T × N U−→ N
e−1
B×{±}−−−−−→ B × {±}.

Hence, G is a composition of computable maps and so is computable. By Part 3 of the Proposition 2.4,
there is an induced computable map K : T → T so that for each T , K(T ) computes GT : N → B×{±},
GT (n) = G(T, n). By construction, if T ∈ TB then T ′ = (K(T ))′. So that we are done. □



10 YASHA SAVELYEV

3.1.1. Constructing decision Turing machines. We will need a few preliminaries as we need to deal with
the following issue. For a given computable N → B × {±}, we may construct a total computable map
with the same image, but possibly losing the stability conditions. So we must adjust the totalization
procedure to keep track of the stability conditions.

The following is well known:

Lemma 3.10. There is a computable map Tot : T → T s.t. ∀T ∈ T :

(1) Tot(T ) is total for each T .

(2) image(Tot(T )) = imageT .

Let
πN : N×B × {±} → N
πB×{±} : N×B × {±} → B × {±}

be the natural projections. We say that a subset S ⊂ N × B × {±} is graphical, if π−1
N (n) is at most

one element for each n ∈ N.

For a graphical S ⊂ N×B×{±} there is a natural total order, defined as follows. For s, s′ ∈ S, s ≤ s′

if πN(s) ≤ πN(s
′). So a finite graphical S ⊂ N×B × {±} determines a list lS ∈ L(B × {±}) by

(3.11) lS(i) = πB×{±}(si),

where si is the i− 1 element of S with respect to the total order.

Definition 3.12. Let l ∈ L(B × {±}). Define b ∈ B to be l-stable if there is an m ≤ length(l) s.t.
l(m) = (b,+) and there is no m < k ≤ length(l) s.t. l(k) = (b,−).

Given a map f : N → B×{±} let gr f : N → N×B×{±} be the map gr f(n) = (n, f(n)). Expanding
on Lemma 3.9, there is a total computable map:
(3.13) GrB : T → T ,

with the property: GrB(T ) computes the map gr(KB(T )
′).

Set
(3.14) fT := e−1

N×B×{±} ◦ Tot ◦GrB(T ) ◦ eN.

So that fT : N → N×B × {±} and is total.

Finally, define
G : B × T × N → {±}

to be the map:

G(b, T, n) =

{
+, b is lS-stable, for S = image(fT |{0,...n}).
−, otherwise.

Lemma 3.15. G is computable.

Proof. This is clear, but we make this explicit. Let
(3.16) g : N → L(N)

be the map g(n) = {0, . . . , n}, it is clearly computable directly by part 4 of the Proposition 2.4. Let
Lgraph(N×B × {±}) ⊂ L(N×B × {±})



INCOMPLETENESS THEOREMS VIA TURING CATEGORY 11

consist of lists l s.t. S = image l is graphical. The latter subset is given the induced encoding by
restricting eL(N×B×{±}).

Then we can express G as the composition of the sequence of maps:

B × T × N id×(GrB)×g−−−−−−−−→ B × T × L(N) id×L(U)−−−−−→ B × L(N)
id×L(e−1

N×B×{±})−−−−−−−−−−−→ B × Lgraph(N×B × {±}) id×ord−−−−→ B × L(B × {±}) → {±},

where

(1) ord : Lgraph(N×B × {±}) → L(B × {±}) is the map ord(l) = lS , for S = image l.

(2) The last map is:

(b, l) 7→

{
+, if b is l-stable
−, otherwise.

The latter two maps are computable by explicit verification. In particular all the maps in the compo-
sition are computable and so G is computable.

□

Let

(3.17) DecB : T → T ,

be the computable total map corresponding G via Axiom 3, so that DecB(T ) is the Turing machine
computing

GT : B × N → {±}, GT (b, n) = G(b, T, n).

The following is immediate from the construction:

Lemma 3.18. DecB(T ) has the properties:

(1) ∀T ∈ T DecB(T ) ∈ DB.

(2) DecB(T ) is total.

Definition 3.19. For a map D : B×N → {±}, we say that b ∈ B is D-decided if there is an m s.t.
D(b,m) = + and for all n ≥ m D(b, n) 6= −. Likewise, for T ∈ DB we say that b ∈ B is T -decided if
it is T ′-decided. Also for T ∈ TB we say that b is T -stable if it is T ′-stable in the sense of Definition
3.1.

Lemma 3.20. Suppose that T ∈ TB then b is T -stable iff b is DecB(T )-decided.

Proof. Suppose that b is T -stable. In particular, there is an m ∈ N so that T (m) = (b,+) and there
is no n > m so that T (m) = (b,−). By construction, there exists an m′ s.t. fT (m′) = (m, b,+). It is
then immediate that b is lSn -stable, for any Sn = image(fT |{0,...,n}) s.t. n ≥ m′.

Then by construction of G, G(b, T,m′) = + and there is no n > m′ s.t. G(b, T,m′) = −. Thus b is
GT -decided and so DecB(T )-decided.

The converse is also clear. Suppose b is GT decided. Let N be s.t.

(1) G(b, T,N) = +.

(2) There is no n > N s.t. G(b, T, n) = −.



12 YASHA SAVELYEV

By property 1 there is an n0 ∈ {0, . . . , N} s.t. fT (n0) = (nb, b,+), and there is no n ∈ {0, . . . , N},
with prN ◦ fT (n) > nb, s.t. prB×{±} ◦ fT (n) = (b,−).

Now, if b is not T -stable then there is a n′ > nb s.t. T (n′) = (b,−). By the previous paragraph,
n′ /∈ image prN ◦ fT |{0,...,N}.

So there is an n > N so that fT (n) = (n′, b,−). But then G(b, T, n) = − which contradicts property
2. □

Example 3.21. By the Example 3.3 above there is a computable map
P = DecPol(A) : Pol × N → {±}

that stably soundly decides if a Diophantine polynomial has integer roots, meaning:
p is P -decided ⇐⇒ p has no integer roots.

Definition 3.22. Given a pair of maps
M0 : B × N → {±}

M1 : B × N → {±},
we say that they are stably equivalent if

b is M -decided ⇐⇒ b is M ′-decided.
If T ∈ DB then we say that T stable computes M iff T ′ is stably equivalent to M .

3.2. Decision maps in first order theories. Let L be as in the Introduction. Let TL be as in
Definition 3.6 with respect to B = L. The following is a version for stably c.e. theories of the classical
fact, going back to Gödel, that for a theory with a c.e. set of axioms we may computably enumerate
its theorems. Moreover, the procedure to obtain the corresponding Turing machine is computably
constructive.

Notation 1. Note that each T ∈ TL, determines the set
(T ′)s ⊂ L,

called the stabilization of T ′, we hereby abbreviate the notation for this set as T s.

Lemma 3.23. Let L be given. There is a computable total map:
C : T → T

so that ∀T ∈ T : C(T ) ∈ TL. If in addition T ∈ TL then (C(T ))s is the deductive closure of T s.

Proof. Let L(L) be the list construction on L as previously. Let Φ : L(L)×N → L be as in the Axiom
5.

Using the map ord from Lemma 3.15, define a map
ζ : L(L)× Lgraph(N× L× {±}) → {±}

by

ζ(l, l′) =

{
+, if for each 0 ≤ i ≤ length(l), l(i) is ord(l′)-stable.
−, otherwise.

Utilizing Proposition 2.4 we readily see that ζ is computable.

Now define H to be the composition of the sequence of maps:



INCOMPLETENESS THEOREMS VIA TURING CATEGORY 13

T × L(N) GrL×id−−−−−→ T × L(N) LU−−→ L(N)
L(e−1

N×L×{±})−−−−−−−−−→ Lgraph(N× L× {±}).
All the maps in the composition are computable directly by the Proposition 2.4 and Lemma 3.7 and
so H is computable.

We may now construct our map C. In what follows ∪ will be the natural list union operation as
previously in (3.4). Set

Ln(N) := {l ∈ L(N)|max l ≤ n, max l the maximum of l as a map}.
Let

prL : N× L× {±} → L
be the natural projection. For n ∈ N, define UT

n ∈ L(L × {±}) recursively by UT
0 := ∅,

UT
n+1 := UT

n ∪
∪

l∈Ln+1(N)

∪
0≤m≤n+1

(Φ(LprL ◦H(T, l),m), ζ(LprL ◦H(T, l),H(T, {0, . . . , n+ 1})).

As in Example 3.3 we define
UT : N → L× {±}, UT (n) := UT

n+1(n).

And this induces a total map
U : T × N → L× {±},

U(T, n) := UT (n). U is computable by explicit verification, utilizing Proposition 2.4, and the recursive
program for {UT

n }. Hence, by part 3 of Proposition 2.4, there is an induced by U computable total
map:

C : T → T ,

s.t. for each T ∈ T , C(T ) computes UT .

By construction, this has the needed properties, and we are done. □

Notation 2. Given M : N → L × {±}, and some translation i : A → L, we use from now the
shorthand: M `i α, for Ms `i α, whenever α ∈ A, and whenever this may cause no confusion.

Let F0, as in the introduction, denote the set of formulas ϕ of arithmetic with one free variable so that
for any term n, ϕ(n) is Σ0

0 and in particular is Q-decidable.

Definition 3.24. Let L be a first order language, with some translation i : A → L. We say that
M : N → L× {±} is speculative (with respect to i) if the following holds. Let ϕ ∈ F0, and set
(3.25) αϕ = ∀m ϕ(m),

then
(∀m Q ` ϕ(m)) =⇒ M `i αϕ.

Note that we previously constructed an Example 3.3 of a Turing machine, with an analogue of this
speculative property. Moreover, we have the following crucial result, which to paraphrase states that
there is an operation Spec that converts a stably c.e. theory to a speculative stably c.e. theory, at a
certain loss of consistency.

Theorem 3.26. Let L be given and i : A → L be some fixed 2-translation. Then there is a computable
total map Speci : T → T , with the following properties:

(1) imageSpeci ⊂ TL.

(2) Suppose that T ∈ TL and T s `i Q, set Tspec = Speci(T ) then T ′
spec is speculative, moreover if

T ′ is total then so is T ′
spec.



14 YASHA SAVELYEV

(3) Using Notation 1, if T ∈ TL then T s
spec ⊃ T s

(4) If T ∈ TL and T s is 1-consistent with respect to i then T s
spec is consistent.

Proof. F0 is assumed to be encoded so that the map
ev : F0 × N → A, (ϕ,m) 7→ ϕ(m)

is computable. Let G ⊂ F0 be the subset of formulas ϕ s.t. ∀n Q ` ϕ(n◦), where n◦ denotes the
corresponding numeral.

We then need:

Lemma 3.27. There is a total computable map J : N → F0 × {±} with the property:
Js = G.

Proof. The construction is analogous to the construction in the Example 3.3 above. Fix any total,
bijective, Turing machine

Z : N → F0.

For a ϕ ∈ F0 we will say that it is n-decided if
(∀m ∈ {0, . . . , n}) Q ` ϕ(m).

In what follows each Jn has the type of ordered finite list of elements of F0 × {±}, and ∪ will be the
natural list union operation, as previously. Define {Jn}n∈N recursively by J0 := ∅,

Jn+1 := Jn ∪
∪

ϕ∈{Z(0),...,Z(n)}

(ϕ, dn(ϕ)),

where dn(ϕ) = + if ϕ is n-decided and dn(ϕ) = − otherwise.
We set J(n) := Jn+1(n). This is a total map

J : N → F0 × {±},
having the property F (N) = ∪n image(Jn). J is computable by explicit verification, using Proposition
2.4. □

Returning to the proof of the theorem. Let K = KL : T → T be as in Lemma 3.9. For ϕ ∈ F0 let αϕ

be as in (3.25). Define: H : T × N → L× {±} by

H(T, n) :=

{
(K(T ))′(n), if n = 2k + 1

(i(αprF0
◦J(n)), pr±(J(n))), if n = 2k,

where prF0 : F0 ×{±} → F , and pr± : F0 ×{±} → {±} are the natural projections. H is computable
by Proposition 2.4. (Factor H as a composition of computable maps as previously.)

Let Speci : T → T be the computable map corresponding to H via Axiom 3. In particular, for each
T ∈ T , Speci(T ) computes the map

T ′
spec := HT : N → L× {±}, HT (n) = H(T, n),

which by construction is speculative. Now, Speci(T ) satisfies the Properties 1, 2, 3 immediately by
construction.

It only remains to check Property 4. In what follows, let T ∈ TL, and set Fspec = (T ′
spec)

s, and
F = (T ′)s, which is 1-consistent by assumption.

Lemma 3.28. Fspec consistent unless for some ϕ ∈ G

F `i ¬∀m ϕ(m).



INCOMPLETENESS THEOREMS VIA TURING CATEGORY 15

Proof. Suppose that Fspec is inconsistent so that:

F ∪ {i(αϕ1), . . . , i(αϕn)} ` α ∧ ¬α

for some α ∈ L, and some ϕ1, . . . , ϕn ∈ G. Hence,

F `i ¬(αϕ1 ∧ . . . ∧ αϕn), as i preserves logical operators.

But
αϕ1 ∧ . . . ∧ αϕn ⇐⇒ ∀m ϕ(m),

where ϕ is the formula with one free variable: ϕ(m) := ϕ1(m) ∧ . . . ∧ ϕn(m). Clearly ϕ ∈ G, since
ϕi ∈ G, i = 1, . . . , n. Hence, the conclusion follows. □

Suppose that Fspec inconsistent, then by the lemma above for some ϕ ∈ G:

F `i ∃m ¬ϕ(m).

By assumption F is 1-consistent with respect to i and so:

∃m F ⊬i ϕ(m).

But ϕ is in G, and F `i Q (part of our 1-consistency assumption) so that ∀m F `i ϕ(m) and so

∃m F ` ¬ϕ(m) ∧ ϕ(m).

So F is inconsistent, a contradiction, so Fspec is consistent. □

4. The stable halting problem

We now discuss a version of the halting problem in the context of stable computability. This will
illustrate the main ideas that will be used in the proof of the incompleteness theorems, and will allow
us to setup notation for later use.

Let DT ⊂ T be as in Definition 3.5 with respect to B = T .

Lemma 4.1. There is a computable total map

Ω : T → T ,

with the properties:

(1) For each T , Ω(T ) ∈ DT .

(2) If T ∈ TD then Ω(T ) and T compute the same maps T × N → {±}, that is T ′ = (Ω(T ))′.

Proof. Analogous to the proof of Lemma 3.9. □

Definition 4.2. For T ∈ DT , T is T -decided, is a special case of Definition 3.19. Or more
specifically, it means that the element T ∈ T is T ′-decided. We also say that T is not T -decided, when
¬(T is T -decided) holds.

In what follows, denote by s(T ) the sentence:

T is not Ω(T )-decided.

which can be naturally interpreted as a sentence of arithmetic, but we leave this implicit for the
moment.



16 YASHA SAVELYEV

Definition 4.3. We say that D : T × N → {±} is stably sound if

∀T ∈ T (T is D-decided) =⇒ s(T ).

We say that D stably decides T if:

s(T ) =⇒ T is D-decided.

We say that D is stably sound and complete if D is stably sound and D stably decides T for all
T ∈ T .

The informal interpretation of the above is that each such D is understood as an operation with the
properties:

• For each T, n D(T, n) = + if and only if D “decides” the sentence s(T ) is true, at the moment
n.

• For each T, n D(T, n) = − if and only if D cannot “decide” the sentence s(T ) at the moment
n, or D “decides” that s(T ) is false.

In what follows for T ∈ T , and D as above, ΘD,T is shorthand for the sentence:

T stably computes D,

where this is as in Definition 3.22.

Lemma 4.4. If D is stably sound then

(∀T ∈ T ) ¬ΘD,T ∨ ¬(T is D-decided).

Proof. If T is D-decided then since D is stably sound, T is not Ω(T )-decided. So if in addition ΘD,T

then by property 2 of Ω, (Ω(T ))′ = D. And so T is not D-decided a contradiction. □

The following is the “stable” analogue of Turing’s halting theorem.

Theorem 4.5. There is no (stably) computable D : T × N → {±} that is stably sound and complete.

Proof. Let D be stably sound and complete. Then by the above lemma we obtain:

(4.6) (∀T ∈ T ) (ΘD,T ` ¬(T is D-decided)).

Again as a consequence of property 2 of Ω, it is immediate:

(4.7) (∀T ∈ T ) (ΘD,T =⇒ (¬(T is D-decided)) =⇒ ¬(T is Ω(T )-decided)) .

So combining (4.6), (4.7) above we obtain

(∀T ∈ T ) (ΘD,T =⇒ ¬(T is Ω(T )-decided)).

But D is complete so
(T is Ω(T )-decided) =⇒ T is D-decided

and so:
(∀T ∈ T ) (ΘD,T =⇒ (T is D-decided)).

Combining with (4.6) we get
(∀T ∈ T ) ¬ΘD,T ,

which is what we wanted to prove. □



INCOMPLETENESS THEOREMS VIA TURING CATEGORY 17

5. Incompleteness theorems

Let s : T → A, T 7→ s(T ) be as in the previous section. Define
H : T × T × N → {±},

by
H(F, T, n) := (DecL(C(Speci(F ))))′(i ◦ s(T ), n).

We can express H as the composition of the sequence of maps:

(5.1) T × T × N (DecL◦C◦Speci)×(i◦s)×id−−−−−−−−−−−−−−−−−→ T × L× N id×eL×N−−−−−→ T × N U−→ N
e−1
{±}−−−→ {±}.

Thus, H is a composition of maps that are computable by Proposition 2.4 and so H is computable.
Hence, by part 3 of Proposition 2.4, there is an associated total computable map:
(5.2) Tur : T → T ,

s.t. for each F ∈ T , Tur(F ) computes the map
(5.3) DF : T × N → {±}, DF (T, n) = H(F, T, n),

In what follows, T ∈ TL, and we rename T ′ as M so M : N → L× {±}.

Notation 3. As usual, for a map J : N → L × {±}, notation of the form J ` α means Js ` α.
If i : A → L is a translation, then J `i α will denote Js `i α. J is (n)-consistent stands for Js is
(n)-consistent.

Proposition 5.4. For (M,T ) as above and given a 2-translation i : A → L we have:

(1) M is 1-consistent relative to the translation i =⇒ M ⊬ i ◦ s(Tur(T )).

(2) M is 2-consistent relative to the translation i =⇒ M ⊬ ¬i ◦ s(Tur(T )).

(3) M is 1-consistent relative to the translation i =⇒ s(Tur(T )).

Proof. Since T will be fixed, let us abbreviate s(Tur(T )) by s. Set N := (C ◦Speci(T ))′, in particular
this is a speculative (with respect to i) map N → L× {±}. Suppose that M ` i(s). In particular, i(s)
is N -stable, and so by Lemma 3.20 i(s) is DecL(C(Speci(T )))-decided. And so Tur(T ) is DT -decided
by definitions, where DT is as in (5.3).

Now, since Tur(T ) computes DT by construction, we have (Ω(Tur(T )))′ = DT and so:

Tur(T ) is DT -decided ⇐⇒ Tur(T ) is Ω(Tur(T ))-decided
⇐⇒ ¬s.

(5.5)

That it to say:
(5.6) (M ` i(s)) =⇒ ¬s.

Now, ¬s is an arithmetic sentence of the form:
(5.7) ∃m∀n γ(m,n),

where γ ∈ Σ0
0.

And we have:
¬s =⇒ (∃m∀n) Q ` γ(m,n), since γ is Σ0

0(5.8)
=⇒ ∃m N `i ∀n γ(m,n), since N is speculative(5.9)
=⇒ N `i ¬s, (by existential introduction).(5.10)



18 YASHA SAVELYEV

And so combining with (5.6), we get:

(M ` i(s)) =⇒ (N ` i(s)) ∧ (N ` ¬i(s)).

Since by Theorem 3.26
M is 1-consistent =⇒ N is consistent,

it follows:

M is 1-consistent =⇒ M ⊬i s(5.11)
=⇒ (Tur(T ) is not Ω(Tur(T ))-decided), by (5.5)(5.12)
=⇒ s.(5.13)

This proves the first and the third part of the proposition.

Now suppose
(M is 2-consistent) ∧ (M `i ¬s).

Set
ϕ(m) = ∀n γ(m,n),

where γ(m,n) is as in (5.7). Now,

M `i ¬s ⇐⇒ M `i ∃m ϕ(m)

=⇒ ∃m M ⊬i ¬ϕ(m), by 2-consistency
=⇒ ∃m∀n Q ` γ(m,n), as M `i Q and γ(m,n) is Q-decidable.

And so,
(M is 2-consistent ∧ (M `i ¬s)) =⇒ ¬s.

Now,
¬s =⇒ N ` s,

by definitions and (5.5). So:

(M is 2-consistent) ∧ (M `i ¬s) =⇒ N ` s

=⇒ N is inconsistent
=⇒ M is not 1-consistent, by Theorem 3.26
=⇒ M is not 2-consistent.

So we get a contradiction, and so:

M is 2-consistent =⇒ M ⊬i ¬s.

This finishes the proof of the proposition. □

Proof of Theorem 1.6. The computable map G is defined to be T 7→ s(Tur(T )). Then the theorem
follows immediately by the proposition above. □

Proof of Corollary 1.8. Suppose that

(F `i F is 1-consistent) ∧ (F `i T stably enumerates F ) ∧ (F is 1-consistent)

then since F `i ZFC,
(F ` s(Tur(T ))) ∧ F is 1-consistent

by part three of Proposition 5.4. But this contradicts part one of Proposition 5.4. □



INCOMPLETENESS THEOREMS VIA TURING CATEGORY 19

Proof of Theorem 1.4. Let M be a standard model of Fi,Z as in the definition of strong consistency.
In particular:
(5.14) (∀α ∈ Fi,Z) M |= α.

Suppose that F `i F is 1-consistent, then M |= (F `i F is 1-consistent), using that M is standard.
Suppose also:

F `i (∃T ∈ T ) T stably computes F,

then by (5.14)
M |= (∃T ∈ T ) T stably computes F.

And so we obtain:
M |= (F is 1-consistent) ∧ ((∃T ∈ T ) T stably computes F ) ∧ (F `i F is 1-consistent),

that is
(5.15) M |= (∃T ∈ TL) ((T ′)s is 1-consistent) ∧ (T ′ `i (T ′)s is 1-consistent)).
Rephrasing Corollary 1.8 we get:

ZFC ` (∀T ∈ TL) ((T ′)s is 1-consistent =⇒ T ′ ⊬i (T ′)s is 1-consistent).
And F ` ZFC and so again by (5.14) we get:

M |= ¬((∃T ∈ TL) ((T ′)s is 1-consistent ∧ T ′ `i (T ′)s is 1-consistent)),
but this contradicts (5.15). □

Appendix A. Stable computability and physics - Gödel’s disjunction and Penrose

We now give some partly physical motivation for the theory above, in particular explaining why stable
computability and abstract languages were important for us. We aim to be very brief, as this is an
excursion. But developing this appendix would be very interesting in an appropriate venue.

We may say that a physical process is absolutely not Turing computable, if it is not Turing computable
in any “sufficiently physically accurate” mathematical model. For example, it is well known (see for in-
stance [3]) that solutions of fluid flow and N -body problems are generally non Turing computable (over
Z, and probably over R cf. [2]) as modeled in mathematics of classical mechanics. But in a more phys-
ically accurate and fundamental model both of the processes above may become computable.

The question posed by Turing [1], but also by Gödel [6, 310] and more recently and much more
expansively by Penrose [10], [11], [12] is:

Question 1. Are there absolutely not Turing computable physical processes? And moreover, are brain
processes absolutely not Turing computable?

A.0.1. Gödel’s disjunction. Gödel argued for a ’yes’ answer to Question 1, see [6, pg. 310], relating
the question to existence of absolutely unsolvable Diophantine problems, see also Feferman [5], and
Koellner [8], [9] for a discussion.

We now discuss the question from the perspective of our main results. First by an idealized math-
ematician, we mean a mapping H : N → L × {±}, with L a first order language. The language L
is meant to be chosen so that it is sufficient to formalize physical laws (we don’t need to formalize
everything, the context will be self apparent). This might be the language of set theory, but perhaps
one needs more. 2 The mapping H is meant to be the actual time stamped output of a mathematician,
idealized so that their brain does not deteriorate in time, see also Remark 1.2.

2It is of course possible that no such language exists, but this is not our expectation: mathematics is unreasonably
effective at formalizing the universe.



20 YASHA SAVELYEV

We set H = Hs. Now, soundness and in particular strong consistency (Definition 2.15) of the sta-
bilization H is not an unreasonable hypothesis for our “idealized” mathematician, as mathematical
knowledge does appear to stabilize on truth. Here the word ‘stabilize’ is used in the standard English
language sense, but in this setting this is equivalent to the soundness of the mathematical stabilization
Hs.

Without delving deeply into interpretations, we suppose the following axioms for H.

(1) H is L-definable. Meaning, that it is definable with respect to some L-structure (informally,
the latter is obtained from some mathematical (sub)model of the physical universe). 3

(2) H `i ZFC, where i : Z → L is a 2-translation, recall the Definition 2.12.

(3) The “Penrose property” holds:
H `i (H is 1-consistent.)

The “Penrose property” is motivated by ideas of Roger Penrose as appearing in references above.
This property makes sense if our idealized mathematician knows the definition of H, and asserts their
soundness, and hence 1-consistency of H. That the definition of H is known, is not unlikely. The idea
for this is to map the brain (synapses, and other relevant fine structure); then assuming one knows
the working of all underlying physical processes, use this to reconstruct the L-theoretic definition of
H. This would be a fantastically difficult thing to do, but theoretically possible. Given this, there is
no obvious reason to reject the above axioms.

The following just paraphrases Theorem 1.4.

Theorem A.1. For any H,L as above, one of the following holds:

(1) H is not strongly consistent.

(2) H ⊬i H is stably c.e.. (In particular, given our interpretation of H as representing an idealized
mathematician, it is unable to disprove existence of absolutely non Turing computable physical
processes.)

Acknowledgements. Peter Koellner for helpful discussions on related topics.

References
[1] A.M. Turing, Computing machines and intelligence, Mind, 49 (1950), pp. 433–460.
[2] L. Blum, M. Shub, and S. Smale, On a theory of computation and complexity over the real numbers: NP-

completeness, recursive functions and universal machines., Bull. Am. Math. Soc., New Ser., 21 (1989), pp. 1–46.
[3] E. P.-S. D. P. F. Cardona, Robert; Miranda, Constructing turing complete euler flows in dimension 3, PNAS,

118 (2021).
[4] S. Feferman, 1-consistency and faithful interpretations, 6 (1962).
[5] , Are There Absolutely Unsolvable Problems? Gödel’s Dichotomy, Philosophia Mathematica, 14 (2006),

pp. 134–152.
[6] K. Gödel, Collected Works III (ed. S. Feferman), New York: Oxford University Press, 1995.
[7] M. Kikuchi and T. Kurahashi, Generalizations of Gödel’s incompleteness theorems for Σn-definable theories of

arithmetic, Rev. Symb. Log., 10 (2017), pp. 603–616.
[8] P. Koellner, On the Question of Whether the Mind Can Be Mechanized, I: From Gödel to Penrose, Journal of

Philosophy, 115 (2018), pp. 337–360.
[9] , On the question of whether the mind can be mechanized, ii: Penrose’s new argument, Journal of Philosophy,

115 (2018), pp. 453–484.
[10] R. Penrose, Shadows of the mind, 1994.
[11] , Beyond the shadow of a doubt, Psyche, (1996).
[12] , Road to Reality, 2004.
[13] R. I. Soare, Turing computability. Theory and applications, Berlin: Springer, 2016.

3This is natural: as H is determined by some physical processes, it is L-definable, since by assumption the physical
laws are stated in the language L.



INCOMPLETENESS THEOREMS VIA TURING CATEGORY 21

University of Colima, Department of Sciences, CUICBAS

Email address: yasha.savelyev@gmail.com


	1. Introduction
	1.1. Definition of stably c.e. theories and statements of results
	1.2. Generalizations to n

	2. Some preliminaries
	2.1. Abstractly encoded sets and the Turing category
	2.2. Some preliminaries on first order theories

	3. Stable computability and decision maps
	3.1. Decision maps
	3.2. Decision maps in first order theories

	4. The stable halting problem
	5. Incompleteness theorems
	Appendix A. Stable computability and physics - Gödel's disjunction and Penrose
	Acknowledgements

	References

