my email: yashasavelyev@gmail.com

HW Set 1 for wed

Kiselev:
52, 53, 55, 60, 61, 67, 69, 75, 79, 89, 96, 97

HW Set 2 for wed
104, 105, 106, 107, 113, 114, 141, 143, 145, 150

HW Set 3 for wed
153, 154, 155, 158, 159, 178, 179, 180

HW Set 4 for wed
From taste of topology:
2.1: 1,2 2.3: 2,3

HW Set 5 for wed
1) Sea (X, d) un espacio metrico y sea (X, Ld) un length space induced by d. Demuestra que: x, y ∀γ : d(x, y) ≤ L(γ) where γ is a path from x to y.

2) Let X = ℝ2 and dT the taxicab metric: dT(p1, p2) = |x1 − x2| + |y1 − y2| for p1 = (x1, y1) and p2 = (x2, y2). Describe the minimal geodesics from p1 to p2 for LdT.

3) Let X = ℝ2, d the Euclidean metric and dP the Paris railroad metric with respect to P ∈ ℝ2. So: dP(p1, p2) = d(p1, P) + d(p2, P), where d is the Euclidean metric, and p1, p2 ∈ ℝ2.

Describe the minimal geodesics from p1 to p2 for LdP.

4) Sea (ℝ2, L) un length space. Vamos a llamar un mapeo inyectivo γ : ℝ → ℝ2 una recta, si cado segmento γ|[a, b] de γ es un geodesico minimal al respecto de L. Cuales son rectas en (ℝ2, LdP) y cuales son rectas en (ℝ2, LdT)?

5) Con ese definición de las rectas se cumplen los axiomas de geometría de Euclid para (ℝ2, LdT) y para (ℝ2, LdP)? Justify.

HW set 6 for wed
0) Show that for the Eucledian metric d on 2 parallel transport along a segment from A to B is just rigid translation by the map 2 → ℝ2, C ↦ C + (B − A). 1) Let ϕ : (X, dX) → (Y, dY) be a surjective isometry of metric spaces, so that x, y ∈ X : dX(x, y) = dY(ϕ(x), ϕ(y)). Show that

2) For ϕ as in problem 1. Show that γ : [a, b] → X is a minimal geodesic in (X, LdX) if and only if ϕ ∘ γ is a minimal geodesic in (Y, LdY).

3) Extra credit: Suppose that X, Y are surfaces in 3 and dX, dY the natural metrics as discussed in class. For ϕ : X → Y as above, show that ϕ preserves angles between geodesics.

4) Extra credit: Use the above to show that for ϕ as in problem 3), the holonomy around a closed piece-wise geodesic curve γ in X coincides with the holonomy around a closed piece-wise geodesic curve ϕ ∘ γ in Y. Conclude that the zero curvature condition is preserved by an isometry as in problem 3).